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1. Introduction

For centuries, people wondered if the Earth is a unique planet and what life could
look like on other worlds. Would it be similar to our life? Could life be submerged in
liquids other than water? The greek philosopher Epicurus of Samos wrote approxi-
mately 300 BC that there must be multiple "worlds" and that "in all worlds there
are living creatures and plants and other things we see in this world; for indeed no
one could prove that in a world of one kind there might or might not have been the
kinds of seeds from which living things and plants and all the rest of things we see
are composed, and that in a world of another kind they could not have been" (Oates,
1940, p. 12-13). Nowadays, these questions move from the realm of philosophy to
natural sciences. In physics, we can at least address the question of how likely the
formation of planets similar to the Earth is and what they consist of.
For these reasons, this thesis is dedicated to the question of how and with what

compositions planets form around di�erent stars. Research like this is mainly mo-
tivated by the outstanding discoveries of numerous exoplanets in recent years. Ac-
cording to the de�nition of the International Astronomical Union (IAU), "a planet
is a celestial body that (a) is in orbit around the Sun, (b) has su�cient mass for
its self-gravity to overcome rigid body forces so that it assumes a hydrostatic equi-
librium (nearly round) shape, and (c) has cleared the neighborhood around its or-
bit."1. Extending this de�nition to di�erent stars than our Sun analogously de�nes
an exoplanet. However, for exoplanets, the current working de�nition includes an
upper-mass limit of ∼13 MJup, the boundary at which deuterium starts to fuse in the
interior of the object and it would be considered a brown dwarf. 2

The �rst exoplanet around a Sun-like star � the bright star 51 Pegasi � was observed
by Swiss astronomers Michel Mayor and his PhD-student Didier Queloz in 1995
(Mayor & Queloz, 1995) and is called 51 Pegasi b (51 Peg b). For this groundbreaking
discovery, they were awarded the Nobel Prize in Physics in 2019, which highlights
the recognition that the �eld of exoplanetary sciences has gained since.

1.1. Thesis overview

In the remainder of this introduction, we review exoplanet and protoplanetary disk
observations. Both, the techniques and the gained overall picture will be discussed.
Having established the current knowledge of the ground truth, we will move to how

1De�nition from the IAU General Assembly in 2006 (iau.org/news/pressreleases/detail/iau0603/)
2De�nition by the Working Group on Extrasolar Planets of the IAU (see their position statement

astro.berkeley.edu/�basri/de�neplanet/IAU-WGExSP.htm)

1

https://www.iau.org/news/pressreleases/detail/iau0603/
http://w.astro.berkeley.edu/~basri/defineplanet/IAU-WGExSP.htm


1. Introduction

protoplanetary disks can be modeled in Chapter 2. There, we focus on one dimen-
sional models, which can be used to provide input to planet formation studies. This
chapter also includes processes that occur in protoplanetary disks such as collisions
and drift of solid bodies. In Chapter 3, we focus on the sublimation of ice on a solid
body in the framework of a cometary nucleus model. Chapter 4 is dedicated to sum-
marizing the relevant processes of the used planet formation model. Afterwards, we
introduce the concept of planetary population synthesis in Chapter 5 where we also
summarize pebble accretion, 26Al heating of planetesimals and changes due to the
stellar mass. The focus remains on the impact of these parameters on the resulting
synthetic planetary population. Finally, we conclude and give an outlook on future
works in Chapter 6.

1.2. Exoplanetary observations

There exist several ways to determine the presence of a planet in orbit around a
di�erent star. Here, we will brie�y describe the major exoplanet detection techniques.
All of the methods do have their inherent advantages as well as disadvantages and
measure di�erent quantities. In addition, we will also quickly review future prospects
and major upcoming missions.

1.2.1. Radial velocity

The �rst exoplanet around a Sun-like star was discovered using the radial-velocity
(RV) method (Mayor & Queloz, 1995). This approach relies on the precise measure-
ment of the wavelengths of multiple spectral lines in the spectrum of a star. The
�ndings can then be used to determine the velocity of the star respective to the line-
of-sight of the observer. This is possible because the wavelength of all the spectral
lines is minutely shifted as the star moves due to the Doppler shift. If there are pe-
riodic variations over day- or year-timescales, the derived radial velocity component
can be attributed to an object gravitationally pulling on the observable star. Mayor
& Queloz (1995) measured the velocity of 51 Pegasi to be on the order of a few tens
of m s−1 (see the original data in Fig. 1.1). They could only reach this level of pre-
cision thanks to their new high-resolution spectrograph ELODIE at the observatory
of Haute-Provence in France. Having a higher spectral resolution helps to determine
minute changes of spectral-line positions in addition to resolving more lines.
Nowadays, the best facilities reach radial-velocity precisions of 10 cm s−1 (Pepe

et al., 2014). Therefore, the radial-velocity method allows for detection of consid-
erably less massive planets than 51 Pegasi b. Especially for close-in planets, the
radial-velocity method can discover planets with masses as low as the mass of the
Earth. The lowest-mass planet discovered by RV orbits the star YZ Ceti (Astudillo-
Defru et al., 2017) and has a minimum mass below one Earth mass (0.7 M⊕). This
star is itself very small with a mass of (0.14± 0.01) M� (Schweitzer et al., 2019, M�:
Solar mass). As a lighter star is a�ected more by the gravity of a planet with a given

2



1.2. Exoplanetary observations

Figure 1.1.: Original data for the radial velocity of 51 Peg as a function of a �t-
ted planetary orbital period of 4.229 days by Mayor & Queloz (1995).
The left panel shows the radial velocity measured at four di�erent times,
whereas the right panel shows the same data but phase folded and cor-
rected for a long-term trend.

mass than a heavier star, this shows that the smallest planets can be discovered by
RV around the lightest stars. Therefore, this motivates the study of planet formation
around low-mass stars.
Due to the nature of the RV technique, information can be gained on the mass of

the planet multiplied by the sine of the inclination of the planet's orbit with respect to
the line-of-sight (M sin i). Therefore, this value is a lower limit to the true mass of the
exoplanet and would only be exact if the orbit of the planet was exactly aligned with
our line-of-sight (sin i = 1). This limitation can rarely be overcome if the inclination
of the orbit can be measured. For multi-planetary systems, N -body modeling of the
gravitational interactions between the planets can help to constrain the true masses.
Sometimes repeated astrometry measurements of the star, that is measuring the
position of the star in the sky to a very high precision, can reveal the motion of the
star in the plane normal to the line-of-sight. Thus, this is in principle ideal to resolve
the issue. However, most often, neither of the two are possible due to too faint signals
compared to the precision of the instruments involved. Therefore,M sin i values have
to be used for population-wide comparisons of theory and observations.
Another downside to the radial velocity exoplanet dataset is that no well char-

acterized surveys were conducted. Instead, the limits to detections are di�erent for
each star. This is mainly due to time and weather constraints on the ground-based
observational facilities that have to be used. Therefore, inferring clear statistical
occurrence rates of exoplanets at lower masses becomes almost impossible. The best
available census of exoplanets with RV was conducted by Mayor et al. (2011) and
has not been updated since.

3



1. Introduction

1.2.2. Transit

The approach with which most exoplanet candidates were found so far, is not RV but
the transit method. There, the light of the star is continuously measured to a very
high precision. If a planet passes in front of the star with respect to the observer,
the measured �ux decreases. This event is called a transit. As soon as the exoplanet
leaves the stellar disk again, the �ux increases to the previous value (see Fig. 1.2).
Therefore, such a transit event leaves a unique signature in the lightcurve, which is
the measured �ux as a function of time. This kind of measurement is sensitive to
the ratio of the radius of the planet to the radius of the star. This is because the
transit depth, which is the decrease in the lightcurve during the transit, is directly
proportional to the relative area that is covered by the planet. Therefore, good
knowledge on the stellar properties are required to calculate planetary radii. In fact,
before the Gaia mission, knowledge on the stellar radius was the limiting factor that
inhibited �nding more precise planetary radii (Noteworthy is the California Kepler
Survey that adressed this issue, see Petigura et al., 2017; Fulton et al., 2017).

Figure 1.2.: Schematic representation of a transiting planet and the corresponding
observed brightness as a function of time (lightcurve). Image credit:
NASA

The �rst successful transit measurement of the previously known exoplanet HD
209458 b was conducted by Charbonneau et al. (1999). Transit signals of exoplanets
as large and close-in as HD 209458 b are very signi�cant. A 9.9 cm aperture telescope
was large enough to clearly detect the transit from the ground. A key data-analysis
step is to remove noise introduced by the Earth's atmosphere by comparing the �ux
of the target star to multiple other background stars which show similar variations.
Even though transit measurements can be done using telescopes on the ground,

they are most successfully performed with space-based telescopes. In space, the
obtained lightcurves are free of atmospheric noise, which leads to a higher precision.

4



1.2. Exoplanetary observations

The main driver of discoveries using the transit method in the past few years was the
Kepler space telescope (Borucki et al., 2010) which provided over 4000 exoplanetary
candidates (Thompson et al., 2016, 2018).

Even though transit surveys were very successful, the major downside of the transit
method is that it requires the planet to move in front of the stellar disk. Due to the
orbital geometry, this happens quite frequently for close-in planets but becomes very
unlikely to be observable for planets more distant to their host star. Therefore,
transit surveys provide very detailed information only on the particular subset of
close-in exoplanets.

Furthermore, to con�rm an exoplanet discovery in a regime where the signal be-
comes comparable to the noise-level of the instrument, multiple transit events have
to be measured and the data has to be stacked. In particular, this is required to
�nd the smallest exoplanets. However, this necessitates an observation time that
is multiple times the orbital period of the planet. Kepler was observing the same
stars for almost four years. Therefore, it yields data for small planets with orbital
periods below approximately one year. Moreover, Kepler was unique in this regard
as current transit missions (like TESS, Ricker et al., 2014) observe the same stars for
a shorter duration. Overall, the sensitivity of the transit method drops much faster
with separation from the star compared to RV but it is nevertheless the most likely
method to get information on the physical size of exoplanets. In Figs. 1.4 and 1.5
these trends are clearly visible.

A major advantage of the transit technique are the constraints on the atmospheric
composition that can be gained. Measuring the spectrum of a star during and out
of a planetary transit allows for taking the di�erence between the two observations.
Therefore, the light passing through the planetary atmosphere � if present � can be
analyzed. Spectral lines can then be attributed to molecules in the exoplanetary
atmosphere. This analysis called transmission spectroscopy was done successfully in
low-resolution for a number of large, transiting planets using the Hubble and Spitzer
space telescopes (Sing et al., 2016). A recent outstanding discovery was the detection
of water vapor on K2-18 b, a 8 M⊕ mass planet receiving similar stellar �ux as the
Earth (Benneke et al., 2019; Tsiaras et al., 2019). K2-18 b most likely also contains
a lot of hydrogen and helium and orbits a star with a mass of only 0.36 times the
stellar mass. Therefore, it is a world quite di�erent to our Earth. Nevertheless, this
discovery highlights the power of transit transmission spectroscopy � especially for
lower stellar masses.

Even more challenging, but also noteworthy, are observations of secondary transits.
A secondary transit occurs when the planet moves behind the star with respect to the
observers' line-of-sight. Then, the light that is re�ected or emitted by the planet is
subtracted from the total measured �ux of the star and its planets. For close-in giant
planets, this signal is observable and further constrains the planetary composition
(Charbonneau et al., 2005, for a recent review see Alonso, 2018).

5



1. Introduction

1.2.3. Microlensing

The third of the major exoplanet detection methods makes use of the microlensing
e�ect. Di�erent from the two other methods, not the light of the exoplanet host star
is observed but the light of a star in the background of the exoplanetary system.
This background star is termed the source. The light of the source is then bent due
to the gravity of the exoplanetary system, which acts as gravitational lens. This
process was already described in terms of Newtonian gravity by von Soldner (1804)
and within the framework of special relativity by Einstein (1911). With the addition
of corrections due to general relativity, the theoretical description was completed
later on (Einstein, 1936). However, at these times, the authors concluded that the
e�ect should not be observable for stars other than the Sun. Only much later, two
images of the same quasar were found by Walsh et al. (1979).
In the case of exoplanetary sciences, a normal star and its orbiting planets are

not massive enough to lead to a resolvable mirror object. Instead, what can be
observed is a magni�cation of the combined light of the lens and the source. If
resolved over time, the magni�cation might show signatures that are inconsistent
with the lens being a single point mass. Instead, if smaller magnitude brightening
events are observed, these short, tiny variations can be attributed to exoplanets in
the lens system. Therefore, information about the mass-ratio of the planet mass to
the host star mass can be derived (Wambsganss, 2006). Additionally, the timing
of the event gives information about the current projected separation of the planet
perpendicular to the line-of-sight of the observer. However, if the distance of the
lens and the source systems to the observer are not known, this separation cannot
be precisely determined.
The �rst de�nite observation of a microlensing event caused by an exoplanet was

conducted by Bond et al. (2004) in 2003 (see also Bennett et al., 2006; Bond, 2012).
Currently, planets discovered by microlensing are however still quite rare (see Fig.
1.4) and follow-up with updated observational facilities is not possible because the
events are not recurring. After a short period spanning over a few days, where the
source and the lens are aligned, they move apart forever and most often the planets
cannot be observed with other techniques. Mainly, this is because the majority of
the sources are located towards the center of the galaxy and the strongest lenses
correspondingly at half the distance to the galactic center (∼4 kpc). This is much
further away than the other known exoplanetary systems, which are mostly located
in the Solar neighborhood (∼30 pc). Even the stars observed by Kepler, which are
further away, are considerably closer with distances of ∼1 kpc.
The main reason why microlensing can be considered a major exoplanet-detection

method is because in the future, the numbers of detections are thought to increase
substantially. The next NASA �agship space telescope, WFIRST, will spend a lot of
its time looking for microlensing events. WFIRST aims to reach a resolution similar
to the Hubble space telescope, but with a much larger �eld of view. The search for
exoplanets using the microlensing technique is scheduled to take place for six 72-
day periods (Spergel et al., 2015). These observations will yield ∼1400 exoplanet

6



1.2. Exoplanetary observations

discoveries (Penny et al., 2019).
For statistical studies, the WFIRST yield will prove to be very bene�cial. This is

mainly because the sensitivity of the microlensing technique is highest at planetary

separations close to the Einstein radius RE = DL

√
4GML

c2

(
1
DL
− 1

DS

)
, where D is the

distance to the star, and the subscripts L and S stand for the lens and the source
respectively. Typically, RE ≈ 3.5 au

√
ML/M�. Therefore, microlensing is not most

sensitive to the regions closest to the star like the RV and transit methods. Instead,
it provides information about planets located further away from the star at distances
comparable to the water iceline. As gravitational lensing events are not repeatable,
it provides purely statistical properties of the exoplanet population and can rarely
be used to characterize individual exoplanets.

1.2.4. Direct imaging

Maybe the most straightforward method to detect an exoplanet is to look for the light
originating from the exoplanetary surface. This can be re�ected starlight in optical
or emitted radiation in infrared wavelengths. The main challenge to detect signals
from exoplanets is not the sensitivity of the instruments but to resolve the light of
the exoplanet in contrast to the light of the host star. One of the most promising
ways to overcome this challenge is by using coronagraphs, which are covers put in
front of a telescope to block the light of the target star. Detections are therefore
more easily possible at large separations of the exoplanets to the host star.
In addition, the planets have to be bright enough to be discovered. This is currently

only the case if they are hot and therefore emit light themselves. As we will see in
Chapter 4, the accretional energy during planetary assembly is large enough to heat
planets to thousands of kelvin, before they gradually cool. Therefore, planets that
can be most easily discovered by direct imaging are young, massive objects at large
separations. The contrast issue is more easily resolved for cooler stars that emit less
light. For a recent review on direct imaging we refer to Bowler (2016).
To have any chance to reach the low-mass exoplanetary regime with direct imaging,

the largest ground-based telescopes or the Hubble space telescope were used. On the
ground, they are mainly ESO's very large telescopes (VLT, 8.2 m aperture) in Paranal
in Chile or the Keck (10 m) and Gemini (8.1 m) telescopes at Mauna Kea in Hawai'i.
An adaptive optics (AO) system is installed on all of these facilities and is used to
remove most of the atmospheric noise. This highlights the technological challenge of
direct imaging searches compared to transit measurements which can be done with
amateur equipment to discover similarly massive exoplanets.
A fundamental challenge concerning directly imaged exoplanets is to determine the

mass of the objects. As the measurement is sensitive to the luminosity, the masses
are inferred based on age-luminosity relationships from models of planetary cooling
over time (Bara�e et al., 2003; Linder et al., 2019).
The �rst exoplanet discovered using direct imaging orbits the nearby (25 ly) star

Fomalhaut (Kalas et al., 2008). However, the most famous directly imaged system
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Figure 1.3.: Observational image of the HR 8799 system taken from
eso.org/public/videos/eso1905b. The central part is blocked by a
coronagraph and the position of the star is indicated by the yellow
symbol. The latest discovered planet, HR 8799 e, is the innermost
planet (to the right of the star). Other bright spots are speckles, noise
introduced by the combination of a coronagraph with adaptive optics.
A video showing the time evolution of the system is available at the
ESO webpage and facilitates distinguishing the random noise from the
moving planets.

of planets orbits HR 8799 (shown in Fig. 1.3). It was found using the large Keck
and Gemini telescopes (Marois et al., 2008). The system features four known planets
(Marois et al., 2010) with semi-major axes ranging from 14 au to 68 au and masses
around 4 MJup to 9 MJup (Bowler, 2016).
Despite the techniques' fundamental challenges, the major bene�t of direct imaging

lies in the wealth of information that can be provided. Since light of the planet itself
is observed, its spectrum will give information about the planet itself (Kalas et al.,
2008; Janson et al., 2010). If absorption of light can be seen, it provides information
about the presence of an atmosphere and its composition. This is an important step
to determine if an exoplanet could host life. Compared to transmission spectroscopy,
getting spectra of any exoplanet would be possible in principle and not only of the
transiting ones.
In the future, many projects aim to directly observe exoplanets: Soon, most likely

in 2021, the James Webb Space Telescope (JWST) will launch and its near- and
mid-infrared instruments (NIRCam and MIRI) are equipped with coronagraphs to

8
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1.2. Exoplanetary observations

conduct direct imaging measurements of giant exoplanets with much better spectral
resolution than what is currently possible from space. Additionally, the next gener-
ation of extremely large telescopes is under construction and is expected to improve
the angular resolution and sensitivity so much that observations of cold gas giants
will be possible. Additionally, ESO's Extremely Large Telescope (under construc-
tion, �rst light expected in 2025) could even directly image rocky planets around
one of the nearest stars (Quanz et al., 2015). Furthermore, two (LUVOIR, The LU-
VOIR Team, 2019 and HabEx, Gaudi et al., 2020) out of the four space based large
mission concepts handed in for the 2020 NASA Decadal Survey include direct imag-
ing of exoplanets as one of their core goals and aim to push the detection limits to
Earth-analogue planets.

1.2.5. Other methods

As mentioned previously, signatures of gravitational interactions between multiple
planets in a system can be used to determine the planetary masses. In addition to
providing masses to previously known exoplanets, it can also be used to indirectly
infer the presence of additional planets in the system. In practice, the instant of the
transit can be determined to a very high precision. If the repeated transit timing is
slightly non-periodic, these transit timing variations (TTV) are �tted with models
of the gravitational interaction of the bodies (N-body models) in the system varying
the masses or postulating additional planets. The most signi�cant solution is not
always trivial to �nd, since N-body dynamics can get chaotic or very complicated
patterns can emerge for more bodies.
Another technique that will become more important in the future is astrometry.

This is a very old subject of astronomy where the position of stars are determined.
The reason why astrometry can potentially be used for exoplanet detections is the
very high precision that the satellite Gaia o�ers. With Gaia, it will be possible to
determine the position and the velocities of many stars accurate enough to resolve the
motion of host stars caused by their exoplanets' gravitational pull. This is similar to
what is measured by the RV method, but more sensitive to the direction perpendicu-
lar to the line-of-sight. So far, the positions, velocities, and magnitudes of more than
1.3× 109 stars and other sources are published (Gaia Data Release 2, Gaia Collab-
oration et al., 2018). However, this data does not yet contain information about the
variability of these quantities, which would be required to detect exoplanets. The
variability will be included in the Gaia Data Release 3, scheduled before the end
of 2021.3 By then, thousands of giant planets at distances of a few au should be
detected by this method (Lunine, 2010; Lattanzi & Sozzetti, 2010). For the closest
stars, also less massive planets are in principle detectable. The all-sky coverage and
the same statistics for all sources of Gaia will make this dataset very valuable for
comparison to theory.
To conclude this section, we note that the �rst exoplanets were discovered around

3According to Gaia News Webpage accessed on the 7.4.2020
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pulsars � rapidly rotating neutron stars � by measuring the timing of their radio-
frequency pulses (Wolszczan & Frail, 1992). Furthermore, observations of protoplan-
etary disks can be used to infer the presence of planets (disk kinematics in Fig. 1.4,
see also Sect. 1.4) at large orbital separations. Moreover, the light from the planetary
surface added to the light from the star might show detectable variations over the
course of an orbit, this orbital brightness modulation is only rarely recovered for the
exoplanets closest to their host star. The �rst few of such planets were discovered
by Charpinet et al. (2011). Similarly, brightness modulations caused by relativistic
e�ects due to the planet-induced doppler shift of the star were discovered by Faigler
et al. (2013).

Figure 1.4.: Semi-major axis versus mass diagram of observed exoplanets.4The dif-
ferent detection methods are indicated and exoplanets without mass con-
straints are omitted. Frequently, a planet was discovered by transit sur-
veys and its mass was later-on determined by follow-up radial velocity
observations or transit-timing variations.

4Diagram created using Filtergraph, an online data visualization tool developed at Vanderbilt
University (Burger et al., 2013).
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Figure 1.5.: Semi-major axis versus radius diagram of observed exoplanets.4 The dif-
ferent detection methods are indicated and exoplanets without a deter-
mined radius are omitted. Therefore, the diagram is mainly populated
by planets that transit their host star with respect to our line-of-sight.
Rarely, a planet was discovered by RV and follow-up observations re-
vealed a matching transit to determine the radius.
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1.3. Exoplanet demographics

Given the inherent biases to all the exoplanet observation techniques, a bias correc-
tion is required to infer the true exoplanet population. Typically, the distribution of
exoplanets is explored in the orbital period or semi-major axis versus mass or radius
plane. Additional dimensions like the stellar mass or luminosity are less commonly
explored because the data is still relatively sparse.
Nowadays, the oldest work which is still relevant was published by Mayor et al.

(2011) and relies on large radial velocity surveys. In this work, the radial velocity
measurements with the CORALIE and the HARPS spectrographs are combined. In
total, 822 non-active stars with 155 detected planets are included. For both instru-
ments and two versions of CORALIE the detection limits are estimated to statistically
infer the underlying population of exoplanets as a function of their mass and period.
In this work, only Solar-type stars are considered. Mayor et al. (2011) �nd a clear
dominating population of low-mass planets making giants relatively rare after cor-
recting for detection biases. In Fig. 1.4, this is not immediately clear and highlights
the importance of knowing and correcting for detection biases. Additionally, they
�nd that very few planets exist with periods below 6 days and above ∼100 days. This
decrease of the frequency of planets for large orbital periods is noteworthy because
it is in contrast to the Solar System. However, when only looking at planets with
M sin i > 50 M⊕, Mayor et al. (2011) �nd that the number of giant planets increases
with the orbital period. Therefore, the close-in population of planets is dominated by
lower-mass planets. Recently, a similar analysis of the orbital periods of giant planets
was done by Fernandes et al. (2019). Their observational data is based on the same
dataset and they compare the RV data to theoretical models and results from Kepler.
They highlight a decrease of the occurrence rate of giant planets at orbital periods
larger than 1000 days and an overall good qualitative �t to both Kepler and results
from population synthesis (see 5).
Another important general trend known by radial velocity surveys is the correlation

of giant planet frequency with metallicity. Metallicity is measuring the amount of
elements heavier than hydrogen and helium in stars. As a proxy, the fraction of iron
to hydrogen Fe/H is used. By convention, the logarithmic quantity

[Fe/H] = log10

[
Fe/H

(Fe/H)�

]
, (1.1)

where (Fe/H)� = 0.0149 is the iron to hydrogen mass ratio in the Sun (Lodders,
2003). Such a correlation was found and con�rmed already by earlier works (Gon-
zalez, 1997; Santos et al., 2001, 2003) and Mayor et al. (2011) �nd the same for the
massive planets in their sample. For lower-mass planets (M sin i < 30 M⊕) no corre-
lation with host star metallicity is found. This trend is explainable by core accretion
theory if the stellar metallicity is indicative of the amount of solids that were avail-
able for accretion (Ida & Lin, 2004b; Alibert et al., 2011; Mordasini et al., 2012a). It
also rules out gravitational instability as the main giant planet formation pathway
for Jupiter-mass planets at orbital periods within a few years.
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A very valuable dataset is provided by Kepler. The latest data release of the
nominal 3.5 yr mission was presented in Thompson et al. (2016) and the completeness
and reliability were estimated by Thompson et al. (2018). This dataset and estimates
were used by multiple groups to calculate occurrence rates of exoplanets (Mulders
et al., 2018; Hsu et al., 2019; Bryson et al., 2019). Those works provide the currently
best estimates based on transit missions. However, they cannot be considered to
be the �nal estimates of Kepler occurrence rates because the stellar properties are
still being revised (Berger et al., 2020) and the statistical methods in�uence the
results (Bryson et al., 2019). Newer datasets provided by the K2 (using the Kepler
spacecraft but frequently changing the �eld of view) and TESS missions will only
improve the statistics where the parameter space is already well sampled � at short
orbital periods.
The lessons learned from Kepler are manifold, here we highlight only a fraction:

� The main �nding is that small exoplanets are very abundant. Mulders et al.
(2018) estimate that 40 % to 84 % of stars host planets larger than half an
Earth radius. Furthermore, quite commonly there are multiple planets per star
con�rming the radial velocity estimates of many low-mass planets (Mayor et al.,
2011).

� A major contribution by the exoplanet statistics provided by Kepler was to
resolve a gap in the radius distribution at ∼2 R⊕ (Fulton et al., 2017). Such a
gap was predicted to exist due to photo-evaporative loss of primordial hydrogen-
helium envelopes (Owen & Wu, 2013; Lopez & Fortney, 2013; Jin et al., 2014).
If photo-evaporation causes the two populations to split, the location of the
gap indicates that the majority of planets with radii below the gap are rocky
(Jin & Mordasini, 2018).

� In contrast to radial velocity, transit measurements provide some constraints
on the inclination of the transiting planets. Modeling mutual inclination dis-
tributions between the planets in discovered systems showed that single-transit
systems are under-produced if the planets' inclinations are sampled from a sin-
gle distribution (Lissauer et al., 2011). This feature, later dubbed the Kepler
Dichotomy, hints at two di�erent pathways to assemble planetary systems: in
almost a single plane with consistently low mutual inclinations or in a more
chaotic fashion ending up with very large mutual inclinations. The latter path-
way would commonly lead to individually observable transits. For the latter
distribution, stellar rotation rates misaligned with the protoplanetary disk have
been proposed to lead to instabilities thus pumping mutual inclinations (Spald-
ing & Batygin, 2016). However, doubts are also raised that the dichotomy is
not physical but a remnant of not accounting for multiplicity when calculating
how complete the Kepler measurement was (Zink et al., 2019).

� Combined with mass measurements by RV or TTV, the Kepler sample facili-
tates the study of planetary densities and thus compositions of some exoplanets
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down to Earth size. Because of the distant stars that were observed withKepler,
this is not possible for many exoplanets. Instead, dedicated transit measure-
ments by K2, TESS, CHEOPS, Spitzer or Hubble are often more valuable.

� Converting the radii of the Kepler planets to masses, Pascucci et al. (2018) �nd
a peak occurrence rate at planetary to stellar mass ratios of 2.8× 10−5. It lies
at the same location for Sun-like stars as well as less massive stars.

Owing to the di�erent sensitivities, microlensing searches give complementary re-
sults to radial velocity and transit surveys. Suzuki et al. (2016) derived planet-to-star
mass ratios for the large MOA-II microlensing survey running for �ve years. They
determined a peak frequency at mass ratios of 1× 10−4, which would be at masses
similar to Neptune. Due to the insensitivity of microlensing surveys to close-in plan-
ets, these results are only applicable to planets outside the snowline. Suzuki et al.
(2018) then used the same dataset to compare the observational data to population-
synthesis studies. They concluded that the models signi�cantly underproduce the
number of Neptune-mass planets due to runaway gas accretion. Therefore, the mi-
crolensing dataset indicates that runaway gas accretion should be signi�cantly slowed
down. However, the population-synthesis studies used for comparison were assuming
a Solar-type star. With a lower stellar mass and a reduced viscous α value, a better
�t to the microlensing data was achieved (see Sect. 4.2.3 for the dependency of the
gas accretion rate on α). In the future, a comparison should sample over the observed
stellar masses also for this better �tting theoretical calculation and more data would
be desirable for the observational data. In Suzuki et al. (2016) only 23 planetary
signals are included. With future surveys, the drawn conclusions will be more clear.
However, already now, there is enough evidence to warrant a fundamental revision
of the exact gas accretion process, which is currently led by works performing three
dimensional radiation-hydrodynamic simulations of the accretion process (Szulágyi
et al., 2016; Cimerman et al., 2017).
Currently, direct imaging surveys start to provide valuable insights into the demo-

graphics of exoplanets at wide separations around young stars. Nielsen et al. (2019)
�nd a clear giant planet occurrence rate dependency on stellar mass for their survey
of 300 stars conducted with the Gemini South telescope. More giants are in wider or-
bits around stars withM? > 1.5 M�. Furthermore, giants tend to orbit closer to 10 au
rather than 100 au and the inferred distributions should be dominated by low-mass
close-in planets. In contrast, Nielsen et al. (2019) �nd an opposite trend for brown
dwarfs with masses larger than 13 MJup � wide-orbit large-mass. This is indicative of
a core-accretion formation pathway for giant planets and a gravitational instability
formation pathway for more massive objects. This conclusion is in agreement to the
recent analysis of Wagner et al. (2019) who used archival direct imaging data. The
�ndings of Nielsen et al. (2019) are more speci�c than the previous study of Galicher
et al. (2016) which relied on lower-precision measurements and less systems with gi-
ant planets. More direct imaging surveys are currently being conducted or analyzed,
we mention here the two surveys with most targets apart from the continuation of
the Gemini Survey (Nielsen et al., 2019): SHINE, including 400 to 600 stars using the
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SPHERE instrument at the VLT (Chauvin et al., 2017) and ISPY-NACO, observing
200 stars using the NACO instrument also at the VLT (Launhardt et al., 2020).

In the future, a major work-package for planetary scientists will be to combine
datasets originating from di�erent techniques and surveys. This is required to get
a full census of exoplanets. For a potential roadmap to the future of exoplanet
demographics, we refer to the recent white paper by Bennett et al. (2019).

1.4. The cradle of planets: Protoplanetary disks

1.4.1. Disk formation

Planet formation cannot be discussed without basic knowledge about the environ-
ment in which planets form: the protoplanetary disks. Therefore, the discussion
starts with the formation of stars or young stellar objects (YSO) and their disks. In
the picture drawn by Shu (1977), a gravitationally bound, isothermal sphere with an
initial rotation rate starts to contract. Early-on, this contraction is still sub-sonic and
thus it can be considered to be in hydrostatic equilibrium. Once gravitationally un-
stable, the most central region quickly collapses to form a denser core distinguishable
from the envelope.

To model this subsequent stage, collapse models need to include super-sonic �ows,
turbulence, varying temperatures, magnetic �elds and external conditions from the
giant molecular cloud within which the individual star is forming (McKee & Ostriker,
2007). Independent from the exact involved physics, the formation of a thinner disk
of gas and dust follows from basic principles: Since a collapsing cloud of gas must
initially have a slight rotation in a random direction, its total angular momentum
is not zero and has to be conserved. Therefore, during the collapse, large angular
momentum material falls onto a disk oriented normal to the total angular momentum
vector instead of onto the star. Since the mass is now much closer to the rotational
center, the rotational velocities have to increase to conserve angular momentum.

For the Solar System, this resulted in most of the mass ending up in the Sun but
most of the angular momentum staying in the disk. This is known because at the
present day, the giant planets still carry much more angular momentum than the Sun
and there is no realistic source of angular momentum other than the protoplanetary
disk out of which the planets formed.

The timeframe for planet formation is given by the eventual dispersal of the disk.
It is usually longer-lived than the infalling spherical envelope. Nevertheless, it is still
removed over million year timescales (Haisch, Jr. et al., 2001, see also Sect. 1.4.4) by
accretion processes (Sect. 2.3), magnetohydrodynamic winds (Bai et al., 2016) and
photo-evaporation due to X-ray and EUV-radiation (Sect. 2.6).
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1.4.2. Types of disks

There are some constraints from observation as to how protoplanetary disks are
structured. Meeus et al. (2001) classi�ed them into Group I and II, where the disk
emission belonging to Group I can be modeled by a black body and a power law part,
whereas to model Group II disks, a power law is su�cient.

Figure 1.6.: Schematic view of protoplanetary disks by Meeus et al. (2001). The disk
is split into three parts: an inner part (I), the midplane (II) and a �aring
part (III). The upper panel shows Group I type disks, where the star
illuminates the disk and causes the �aring. The lower panel shows a
Group II type disk, where the outer part is shielded from radiation and
thus much less pu�ed-up.

They put forward an explanation for the di�erent emission types. The disk should
have either a �ared structure, where the direct radiation of the central star reaches
the outer part, or a pin-like structure, where the outer part of the disk is shielded by a
"pu�ed up" (Meeus et al., 2001) inner part. The former corresponds to Group I with
the additional power law emission from the �ared part and the latter corresponds to
Group II. This idea is shown in Figure 1.6.
Another more general categorization for YSO is done using the di�erent slopes of

the spectral energy distribution

αλ =
d log(λFλ)

d log(λ)
, (1.2)

where λ is the wavelength and Fλ is the �ux of light at a given wavelength λ. For
the categorization, the values of αλ in the infrared regime for λ ranging from 2 µm
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to 25µm (α2−25µm) are used (Lada & Wilking, 1984; Lada, 1987; Greene et al., 1994;
Williams & Cieza, 2011; Williams et al., 2019). Four categories are then de�ned:

� Class 0 (Andre et al., 1993): F2−25µm ' 0, therefore no α2−25µm can be de�ned.
However, these objects are clear sources of millimeter wavelength light.

� Class I: α2−25µm > 0. This corresponds to a rising spectrum. Lada (1987)
additionally puts an upper limit of α2−25µm < 3.

� Class II: −1.6 < α2−25µm < 0, so a falling infrared spectrum.

� Class III: none or only weak infrared excess with α2−25µm < −1.6 (Greene et al.,
1994). Again, Lada (1987) also constrain α2−25µm > −3.

Some authors (Greene et al., 1994) additionally discriminate the Flat Spectrum cases
with −0.3 < α2−25µm < 0.3 as a separate class.
These categories can be attributed to di�erent stages in the temporal evolution of

young stellar objects. Class 0 objects are the youngest distinct sources of light. They
describe a protostar with a denser central object surrounded by an envelope of gas
and dust, which is still very dense and contains most of the mass. They were �rst
found as a distinct class by Andre et al. (1993). The next stage � and �rst stage of
the more classical categorization � is called Class I, where less mass is in the envelope
and more on the central object (M? > Menv, Williams & Cieza, 2011). This leads
to less optically thick envelopes. During those stages of collapse, a protoplanetary
(or proto-stellar) disk is formed due to conservation of angular momentum. Later
on, Class II objects have completely accreted their envelopes but not yet their disks
from which the infrared excess originates. Lastly, Class III objects do not show this
infrared excess, thus the disk should have mostly dissipated (Lada & Wilking, 1984;
Lada, 1987).
To avoid confusion, note that the objects belonging to Group I and II usually are

Class II objects and there seems to be no evidence for a trend of evolution from
Group I to Group II or vice-versa (Garu� et al., 2017), whereas the Classes track the
time evolution.
As we discuss in this chapter, there are many more details to be known about the

protoplanetary disk structure than these categorization schemes. Furthermore, the
observational data has drastically increased in recent years. Therefore, this simple
picture is quite outdated but the nomenclature is still present in the literature. Most
often, the Group I disks in Figure 1.6 are considered to be more common and the
models reviewed in Section 2 usually describe such a �ared disk.

1.4.3. Minimum mass Solar nebula

Instead of trying to get information from other protoplanetary disks, what was done
in the past was to use the Solar System as a benchmark. A minimum mass Solar
nebula can be constructed by taking into account the known solid and gas masses
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of the Solar System planets (Kusaka et al., 1970, updated by Hayashi, 1981). They
assume that all the mass in the region from

√
rn−1rn to

√
rnrn+1, where rn is the

distance to the star of the n-th Solar System planet, accreted on the n-th planet.

Figure 1.7.: Surface density pro�les as a function of separation taken from Zhang
et al. (2017). In addition to their gas surface density pro�le derived for
the protoplanetary disk TWHydra (red solid line), they include the Mini-
mum mass Solar nebula gas pro�le (MMSN, blue dashed line) by Hayashi
(1981) and constraints on the gas part of the Minimum mass extraso-
lar nebula from Chiang & Laughlin (2013) (MMEN-1) and Schlichting
(2014) (MMEN-2, steeper slope).

Under this assumption, they construct the minimum mass that the Solar nebula
needed to have. It is interesting, that a single radial surface density slope of −1.5
roughly matches all the data for each planet if a jump at the water-iceline is taken
into account.
Fig. 1.7 highlights the discrepancy in derived surface density slopes based on

extrasolar planets, the Solar System, and disk observations. The steeper slopes
derived from planetary data compared to data from disks can be interpreted as
indicators of radially inwards migration of planets (Lin et al., 1996) or drift of solids
(Weidenschilling, 1977) or both.
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Figure 1.8.: Fraction of stars with disks as a function of time. The observational
cluster data compiled by Richert et al. (2018) is marked as gray dots
using the pre-main sequence (PMS) evolution model of Siess et al. (2000).
Exponential �ts to the observational data for the PMS evolution models
of Choi et al. (2016)(MIST), Siess et al. (2000) and Feiden (2016) are
added to highlight its in�uence. The latter is a simpli�ed PMS model
compared to the former two but includes magnetic �elds. The model
data for a synthetic planetary population (NGPPS identi�er: NG76)
with 100 embryos embedded in each disk around Solar-mass stars is
shown with thicker blue lines for di�erent dissipation criteria: complete
dissipation to the minimum surface density (dotted line), to the criterion
by Kimura et al. (2016) (solid line), and to a mass accretion rate lower
than 10−11 M� yr−1 similar to Fedele et al. (2010) (dashed). In contrast
to Fedele et al. (2010), we do not �nd shorter lifetimes using the accretion
criterion.
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1.4.4. Disk lifetimes

A very important constraint on planet formation is the limiting timescale by the
dispersal of the disk. If disks were very long-lived, the accretion of gas would have to
be less e�cient to still allow for the formation of gas giants. However, observations
show that the disk is relatively short-lived (∼3 Myr) compared to the overall lifetime
of stars. Already Pollack et al. (1996) discuss in-depth the constraints put on planet
formation by the disk lifetimes and do not manage to achieve the fast assembly times
for their nominal models. This also gave rise to include planetary migration which
helps to accelerate giant planet growth (Alibert et al., 2004a,b).

The observational data for disk lifetimes is based on sets of stellar clusters. Assum-
ing that the stars in one cluster are approximately of the same age, the fraction of
stars that show an excess of infrared light (i.e. the fraction of Class I or II objects, see
Sect 1.4.2) or the presence of accretional signatures (Mamajek et al., 2009) is directly
linked to how many disks have dissipated. This is only true if all stars did have disks
at their formation and if the observational signatures are not misinterpreted.

For multiple clusters, this fraction of stars with disks can be plotted as a function
of time (Strom et al., 1989; Haisch, Jr. et al., 2001; Mamajek et al., 2009). Usually,
the observational data is best �tted with an exponential decay with a half-life on the
order of a few Myr. We note that the notions of half-life and characteristic times are
both commonly used and should not be confused.

Fedele et al. (2010) found systematically lower lifetimes if they use stellar accretion
compared to infrared excess. They suggest that this discrepancy could be linked to
planets in the inner few au halting accretion onto the star. In Fig. 1.8, we show
fractions of modeled stars with disks from a recent population synthesis. We do not
reproduce the �ndings of Fedele et al. (2010) if we use a criterion for model infrared
excess and accretion rates (thick line, respectively dashed line). Instead, the two
criteria give very similar results.

Another potentially major issue related to disk lifetime estimates was raised by
Richert et al. (2018) who compare di�erent pre-main sequence stellar-evolution mod-
els to infer the age of the clusters. They found very di�erent lifetimes due to this
systematic shift of the time-axis. We brie�y touch on this topic in Paper III, where
we use the data to constrain a free model parameter that regulates the dispersal time
of the disk and �ts using the di�erent stellar models are shown in Fig. 1.8.

When comparing modeled disks to disk lifetimes, it has to be de�ned when a disk is
considered as dispersed. For models, an arbitrary low-mass disk can still be tracked.
However, the infrared excess might no longer be observable. Therefore, we adopted
a simple prescription from Kimura et al. (2016) to de�ne which disks are observable
and which are dispersed (see Paper III). Compared to the numerical limit of a very
low surface density everywhere in the disk, the observability condition yields shorter
lifetimes by a few 100 kyr.

20



1.4. The cradle of planets: Protoplanetary disks

1.4.5. Stellar accretion rates

Corresponding to a thinning out of the disk and the envelopes of YSO, gas has to
fall onto the central object. The velocities that can be reached due to the gravita-
tional potential of the star are on the order of 300 km s−1, thus the matter is highly
super-sonic when it reaches close to the stellar photosphere (see Hartmann et al.,
2016, for a recent review). The resulting shock leads to the energy being released
and gas temperatures of 1× 106 K in a narrow region. The corresponding emission
should be at X-ray wavelengths, but is usually not directly observable. Instead, it is
absorbed and a continuum emission in the ultraviolet regime corresponding to lower
temperatures can be measured (e.g. Bertout et al., 1988; Gullbring et al., 1998; Al-
calá et al., 2017). Additionally, some high frequency spectral lines can be used to
measure stellar accretion processes (e.g. Natta et al., 2006; Fang et al., 2013; Manara
et al., 2015).
Both methodologies consistently �nd stellar accretion rates on the orders of 10−10 M� yr−1

to 10−7 M� yr−1. Together with the disk lifetime, this puts clear constraints on the
disk evolution which need to be considered in models. Manara et al. (2019) compared
measured accretion rates to a population synthesis and found that giant planet for-
mation can explain some high-mass disks with low stellar-accretion rates. However,
they are produced too frequently in the theoretical population synthesis.
For the project of looking at the in�uence of the stellar mass (Paper III), we use

the dataset of Alcalá et al. (2017) for comparison. This work determines many stellar
accretion rates by measuring the ultraviolet continuum excess with the Very Large
Telescope. They took spectra of more than 90 % of the young stellar objects in the
four main stellar Lupus clouds. These regions are known to be very young with
estimated ages ranging from 1 Myr to 3 Myr. Therefore, it is ideal to compare to
planetary population syntheses, since especially giant planet formation has to be a
rapid process.

1.4.6. Dust observations in the ALMA era

The Atacama Large Millimeter/Submillimeter Array (ALMA) got �rst light in 2011
and has subsequently led to a revolution in the �eld of protoplanetary disk observa-
tions. As the name suggests, ALMA is sensitive to radio-wavelength signals. Thanks
to its elevated and dry location at 5000 m altitude in the Atacama desert in Chile, the
incoming astrophysical signal is less absorbed by atmospheric water vapor. ALMA
consists of 50 12-meter antennas � the "main-array" � and an additional "compact ar-
ray" of four 12-meter and twelve 7-meter dishes. The data of all the dishes contained
in an array is combined to act as a single telescope.
If light is integrated over a range of wavelengths, the instrument is most sensitive

to the continuum �ux in millimeter or submillimeter wavelengths emitted by an
astrophysical source. For protoplanetary disks, this mainly probes cold dust (T '
10 K) which thermally emits light. This emission is proportional to the dust opacity
for radio-frequency light, which is closely linked to the physical size of the dust.
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1. Introduction

Figure 1.9.: ALMA and VLA images of the HL Tau disk from Carrasco-González
et al. (2019). The ALMA bandwidths (top right of each panel) are
shorter than those of the VLA and the disks can be better resolved with
ALMA.

Particles much larger or smaller than the observed wavelength do not contribute
signi�cantly.
In addition to thermal emission, some molecules produce lines in the spectrum

due to rotational transitions. This can be used to constrain the chemistry or the
gas content (e.g. Ansdell et al., 2016) in a disk if the wavelength range is chosen
accordingly.
The �rst observations focused on the brightest known disks and led to the discovery

of a wealth of substructures (ALMA-Partnership et al., 2015; Isella et al., 2016;
Andrews et al., 2018a). Figure 1.9 shows a few of those well-resolved targets and also
highlights the di�erence of the ALMA resolution compared to the older Very Large
Array (VLA). Especially the DSHARP survey (Andrews et al., 2018a) completes the
picture that large, bright disks commonly have axis-symmetric rings and gaps, quite
a fraction shows global spirals and some have axis-asymmetric features.
However, the DSHARP project should not be mistaken for a complete census of all

kinds of disks. It only focuses on the disks with most �ux detected. Other works use
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1.4. The cradle of planets: Protoplanetary disks

lower-resolution but observe all disks of a given cluster to constrain the distribution
of all kinds of disks (Ansdell et al., 2016; Barenfeld et al., 2016; Pascucci et al.,
2016; Ansdell et al., 2018; Williams et al., 2019). The �ndings of these works do
not reveal common substructures because many disks are compact and structures
would be smaller than what can be resolved by ALMA. However, these works are
very valuable to infer realistic total dust masses and radii of disks.
Two main �ndings are very noteworthy (a short discussion can also be found in

Paper III). First, Ansdell et al. (2017) report larger gas disk radii compared to dust
disk radii in the overall sample of disks. Gas disk radii are larger by a factor of
1.94±0.04. This �nding was possible thanks to combining continuum measurements
sensitive to the dust content with observations of the same disks but sensitive to
multiple spectral lines due to rotational transition of the CO-molecule. The factor
of roughly two was found independent of the exact de�nition of the disk radius.
Two disk radius de�nitions were tested: one where 68 % of the total measured �ux
emerges from regions starwards of the disk radius and one where 90 % of the �ux
lies within. These larger gas radii can be interpreted as indicators of radial drift of
dust. If micrometer-sized dust particles coagulate and grow in the outer regions of
the disk, they will spiral towards the star (see Sect. 2.8) and thus, the outer regions
will gradually deplete of dust but not of gas.
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Figure 1.10.: Dust mass measured with ALMA in the Lupus star forming region
by Ansdell et al. (2016) as a function of stellar mass (left) and age
(right). Errorbars and upper limits were omitted. The dashed line
in the left panel shows a linear �t on the shown data, whereas the
colored straight lines show �ts obtained by Ansdell et al. (2017) using
a Bayesian framework to include non-detections as upper limits and
errorbars for multiple star forming regions. The order and color of the
lines correspond to an increasing estimated age of the di�erent regions.
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The second �nding is about the relation of total dust disk mass to stellar mass.
Pascucci et al. (2016) and Ansdell et al. (2017) �nd that it is not a linear relationship.
In Fig. 1.10, we show that more massive stars do have a higher dust to stellar mass
fraction than low-mass stars. However, by linearly �tting this slope of logarithms
of disk mass as a function of stellar mass leads to di�erent results depending on
the stellar cluster. In fact, there is a tendency of steeper slopes with higher ages.
Extrapolating those observed slopes to time zero gives a result that is consistent with
a constant disk to stellar mass ratio for all stellar masses. Therefore, these trends
could be purely due to evolutionary processes. Currently, dust evolution models are
still �ne-tuned to Solar masses, and the relationship should be explored by theorists
in the future.
Additionally, Fig. 1.10 shows the dependence of the dust disk mass on the age of

the source. Ages of individual sources are estimated by Andrews et al. (2018b) using
X-shooter spectra collected at the VLT by Alcalá et al. (2014, 2017) and a stellar
evolution model (Choi et al., 2016). However, this comes with a large uncertainty of
∼0.5 dex, which is why we omitted the error bars for better visibility. The data is
best �t with a model linear in log stellar mass but quadratic in log age using linear
regression and ignoring errorbars and upper limits of undetected sources. This means
that there are indicators that the dust mass drops � as expected � with age, but then
starts to increase again. This could originate from a second generation of dust that is
produced in collisions. Although this trend is far from being statistically signi�cant
using only the shown data from the Lupus cluster, Williams et al. (2019) also report
a potential increase of dust masses between 1 Myr and 3 Myr because the disks in the
very young Ophiuchus star forming region are measured to be smaller than those in
Lupus. This gives some more credibility to this quick analysis.
To conclude the discussion about ALMA, we would like to highlight the newly

found constraints on the distribution of disk masses. Especially noteworthy is that
for the �rst time studies were published focusing separately on the early Class 0
and Class I stages (Tychoniec et al., 2018; Williams et al., 2019; Tobin et al., 2020).
Although they are not able to precisely determine the gas masses and instead assume
a dust to gas ratio, these works are nevertheless well suited as initial conditions for
planet formation models. This is natural because the already evolved Class II disks
should not be used as an initial state. Indeed, the found disk masses are much
larger than what was reported for Class II objects Ansdell et al. (2016); Barenfeld
et al. (2016). This is still true despite a reduction of a factor on the order of two in
Williams et al. (2019) compared to Tychoniec et al. (2018).

1.4.7. Scattered light

In contrast to the observations done by ALMA, which are sensitive to millimeter-
sized particles, observations at shorter wavelengths in the visible or near infrared
range track dust particles of micrometer size. These tiny grains do not settle to the
midplane as easily as mm-sized particles and are therefore good tracers of the gas.
Hence, observations of scattered light are very valuable to get constraints on the
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Figure 1.11.: VLT/SPHERE images of protoplanetary disks. SPHERE observations
track the micrometer sized dust in protoplanetary disks and are not
sensitive to the light of the star thanks to observing only polarized
light. Unpolarized light from the star becomes partially polarized when
it is scattered on the dust particles. Image credit: ESO; Avenhaus et al.
(2018); Sissa et al. (2018); DARTT-S and SHINE collaborations
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gaseous part of protoplanetary disks. For example, the aspect ratio h/r of the disk
can be measured (see Sect. 2.1). Doing this, Avenhaus et al. (2018) �nd a relation
of h/r ∝ r(1.219±0.026)−1. However, they note that measurements are sensitive to the
scattering surface of the disk and do not necessarily track the scale height.
In principle, scattered light observations meet the same challenges as the direct

imaging searches for exoplanets (see Sect. 1.2.4) which is the extreme brightness of
the star in contrast to the desired signal. For scattered light observations, this can be
overcome using polarimetric di�erential imaging. This is an observational technique
that splits the light into two beams and uses di�erent angles of a linear polarization
�lter before recombining the gathered data to only show the contribution of linearly
polarized light (Kuhn et al., 2001; Hinkley et al., 2009; Quanz et al., 2011; Avenhaus
et al., 2014). Therefore, the unpolarized light of the star is �ltered out and only
polarized light, stemming from re�ection and scattering from the grains, remains.
The major disadvantage is that considerably less light remains after these steps.

Therefore, the largest ground based telescopes have to be used to image protoplane-
tary disks in this fashion. Nevertheless, especially the images (see Fig. 1.11) collected
using the SPHERE (Beuzit et al., 2019) instrument commissioned in 2014 at the VLT
are contributing a lot to the understanding of the physics in protoplanetary disks.
The recent project Disks Around T Tauri Stars with SPHERE (DARTTS) aims

at obtaining a census of disks in polarized light instead of focusing on individual
sources (Avenhaus et al., 2018; Garu� et al., 2020). For now, this survey still targets
the brightest disks to be able to gather data (similar to the DSHARP survey using
ALMA) and is not a complete survey of all disks. However, the statistics for Solar-
type stars is drastically increasing. We highlight two of the �ndings of Garu� et al.
(2020): In the presence of a nearby companion star, they did rarely detect a disk and
for their younger targets, disk sub-structures like rings are only present in the ALMA
observations and not in the scattered light. The latter �nding would �t well to the
picture of a planet �rst trapping dust in the midplane before it in�uences the global
vertical structure of the disk. Especially such comparisons of ALMA and SPHERE
data should be very fruitful for a better understanding of disk processes.
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2. Models of disk processes

The structure and dynamics of the protoplanetary disk is essential for all the studied
processes here. Therefore, we discuss in more detail the governing equations to model
such a disk. Overall, the aim is to have a simple, mostly analytic model, where only
the radial direction is resolved numerically (1D disk). This can then be used to obtain
realistic conditions for the dynamics and thermodynamics of bodies embedded in the
central, denser parts of the disk. The derivation loosely follows Armitage (2019) and
the used variables are de�ned in Table 2.1.

Symbol Unit (cgs) Description
r cm Distance to the central star projected onto the disk plane
z cm Elevation above the disk midplane
ϕ rad Azimuthal angle
θ rad Polar angle measured from the disk midplane
Ω rad s−1 Angular velocity
λ m Wavelength
Fλ erg cm−2 s−1 Flux at wavelength λ
P barye Pressure
n cm−3 Number density
T K Temperature
ρ g cm−3 Gas density
Σ g cm−2 Gas surface density
µ Mean molecular mass of the gas
` cm Mean free path
ν cm2 s−1 kinematic viscosity of the gas

M? g Stellar mass
h cm Vertical scale height of the gas disk

Table 2.1.: Variables used for the disk part.

2.1. Vertical structure

For many cases, the protoplanetary disk can be approximated to be thin and has
negligible mass compared to the star. In the vertical direction, it is supported by gas
pressure and is thus in hydrostatic equilibrium forced by gravity and the pressure
gradient.
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2. Models of disk processes

We approximate the interior of the disk to be isothermal in the vertical direction.
For now, we assume the temperature T as given. The gas can be assumed to be ideal
for almost all regions of the disk, thus

P = nkBT =
ρkBT

µmH

, (2.1)

where mH is the hydrogen mass and kB the Boltzmann constant.
Using a spherical or cylindrical coordinate system is very natural for a radially

symmetric disk. The condition for vertical hydrostatic equilibrium is expressed as

1

ρ

dP

dz
= −gz = − GM?

r2 + z2
sin θ , (2.2)

where sin θ = z/
√
r2 + z2. Here, we used the aforementioned assumption MDisk �

M?. Replacing the sine yields

1

ρ

∂P

∂z
= − GM?z

(r2 + z2)3/2
≈ −Ω2

K,midz , (2.3)

where the last expression can be used because the disk is assumed to be �at z � r.
We introduced the Keplerian orbital velocity at the midplane

ΩK,mid ≡ vK,mid/r ≡
√
GM?/r3 . (2.4)

Expressed in terms of the density, using the ideal gas law (2.1) and the isothermal
assumption, we get

1

ρ

∂ρ

∂z
= −

Ω2
K,mid µmHz

kBT
, (2.5)

which can be integrated to result in

ρ(z) = ρ0 exp
(
−z2/2h2

)
(2.6)

with the integration constant ρ0 ≡ ρ(0) being the density at the midplane and

h ≡
√

kBT

Ω2
K,midµmH

(2.7)

is the vertical scale height, which is commonly written as h = csT/ΩK , where csT =√
kBT
µmH

is the isothermal sound speed. This is the sound speed assuming no heat

release during compression, or � in di�erent terms � the one with an adiabatic index
γ = 1. Finally, integrating ρ over z de�nes the surface density

Σ ≡
∫ ∞
−∞

ρ(z)dz = ρ0h
√

2π . (2.8)
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2.2. Azimuthal velocities

Now, we brie�y explore the case of the disk being thick, that is without the simpli-
�cation of z � r we used in equation (2.3). Note that we keep the strong assumption
of an isothermal structure. Then, we get the di�erential equation

1

ρ

∂ρ

∂z
= − GM?µmHz

kBT (r2 + z2)3/2
, (2.9)

which is separated as well and performing the integration yields

ln(ρ) =
GM? µmH

kBT︸ ︷︷ ︸
r3/h2

1√
r2 + z2

+ C (2.10)

⇒ ρ(z) = C exp

[
r2

h2

(
1 +

z2

r2

)− 1
2

]
, (2.11)

where C is an integration constant that can be expressed using the previously de�ned
ρ0 by requiring

ρ(0)
!

= ρ0 . (2.12)

Hence C = ρ0e
− r

2

h2 and the resulting density pro�le in z direction is

ρ(z) = ρ0 exp

[
r2

h2

((
1 +

z2

r2

)− 1
2

− 1

)]
. (2.13)

A Taylor expansion of the term in brackets around z2/r2 = 0 reveals that equation
(2.6) is equivalent to the �rst order expansion. In principle, re�ned approximations
could be used, but it is revealed quickly that assuming a constant temperature also
has a large in�uence. Therefore, only two-dimensional models that resolve the vertical
structure usually correct for the height over the midplane. However, we note that
it is essential to keep in mind the simpli�cations, especially when considering young
disks with aspect ratios h/r on the order of 0.1

2.2. Azimuthal velocities

The radial structure of the disk is governed by the momentum equation (Euler equa-
tion, i.e. Navier-Stokes without viscosity)

∂~v

∂t
+ (~v · ∇)~v = −1

ρ
∇P − F , (2.14)

where F are the acting forces. In the most simple case only gravity of the central
star is acting. The radial dependence of the density is an observational question or
can be modeled in time dependent models, but not in the static case. However, we
can address the azimuthal velocity in that case.
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2. Models of disk processes

We apply the gradient operator in cylindrical coordinates on the vector ~v for a
static disk vr = vz = 0. Then, the radial component of equation (2.14) reduces to

v2
φ

r
= gr +

1

ρ

∂P

∂r
, (2.15)

where P is the pressure, gr = GM?r
(r2+z2)3/2

the radial component of the gravitational
acceleration and the lefthand side of (2.15) is the appearing centrifugal force term.

2.2.1. Gas angluar velocity

Studying the case of non-zero pressure in equation (2.15) will give results for the disk
gas. In contrast, we will later focus on P = 0 to obtain the angular velocity of the
dust.
Introducing the gas angular velocity Ωg(r, z) =

vφ
r
in equation (2.15) yields

rΩ2
g =

GM?r

(r2 + z2)3/2
+

1

ρ

∂P

∂r
. (2.16)

We can specify the disk by power-law pro�les of the surface density and the temper-
ature as was done in Takeuchi & Lin (2002)

ρ(r, z) = ρ0r
pe
− z2

2h(r)2 (2.17)

cs(r)
2 = c2

0r
q . (2.18)

Then,

h(r) =
cs(r)

ΩK,mid(r)
= h0r

(q+3)/2 , (2.19)

where h0, c0 and ρ0 denote the scale height, sound speed and density at a �xed
distance of 1 AU and the radius power law scales in units of 1 AU.
Because the derivation is quite long, we show in Appendix A.1 that

Ωg(r, z) ≈ ΩK,mid

(
1 +

1

2

h2

r2

[
q + p+

z2q

2h2

])
, (2.20)

which reduces to

Ωg(r, z) ≈ ΩK,mid

(
1− h2

2r2

[
11

4
+

9z2

8h2

])
(2.21)

for the typical values p = −9/4 and q = −1/2.
By means of this expression, it becomes apparent that the vertical di�erences of

the gas angular velocity is not straightforward even assuming an isothermal disk.
For realistic disk �ows, the vertical direction needs to be resolved. However, if the
relevant part of the disk is concentrated around the midplane, the simple picture is
still useful.
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2.3. Disk evolution

2.2.2. Dust angular velocity

The angular velocity of dust particles is given by

rΩK(r, z)2 =
GM?r

(r2 + z2)3/2
, (2.22)

which is the same equation as (2.16), but without the pressure gradient dependent
term. Large particles do not feel the gradient in pressure, hence they move with the
Keplerian angular velocity ΩK(r, z). Note that here we explicitly neglect gas drag,
which will be discussed in Sect. 2.8.
The Taylor expansion around z = 0 yields

ΩK(r, z) ≈ ΩK,mid

√
1− 3

2

z2

r2
(2.23)

and with a Taylor expanded root the Keplerian orbital velocity is

ΩK(r, z) = ΩK,mid

(
1− 3

4

z2

r2

)
. (2.24)

We conclude for now that the orbital angular velocity of solid particles di�ers from
the gas angular velocity and that this di�erence is a function of z.

2.3. Disk evolution

Disks are observed to evolve. To explain this, the classical approach is to treat the
disk as an axis-symmetric, vertically thin sheet consisting of a viscous �uid. This
viscosity cannot be the molecular viscosity of the gas, but could be induced as the
outcome of turbulences (Shakura & Sunyaev, 1973).
We assume the disk to have a viscosity ν, which will be justi�ed in Sect. 2.3.2.

Thus, angular momentum is transported in the orthogonal direction to a shear be-
tween two annuli of gas. Overall, one can expect di�erences in angular momentum
to di�use in the disk.
The equations governing this process were derived in the work of Lynden-Bell &

Pringle (1974) (see also Pringle, 1981), by using the continuity and angular momen-
tum conservation equation. Noteworthy in this context is the earlier analytical work
by von Weizsäcker (1948), who �rst derived the equations of motion for rotating
masses of gas. In Appendix A.2, we follow these works and derive the disk evolution
equation

dΣ

dt
=

3

r

d

dr

(
r1/2 d

dr

(
r1/2νΣ

))
. (2.25)

The key assumption to reduce the continuity and the angular momentum conserva-
tion equation to a single equation is to approximate the angular velocity of the gas in
the midplane as time independent and Keplerian (Ω ≈ ΩK =

√
GM?/r3). Without
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Keplerian rotation, for example due to the self-gravity of the disk, equation (A.22)
can be used for a time-independent Ω.
Equation (2.25) is a nonlinear di�usion equation for Σ. Analytical solutions can be

found (Armitage, 2015; Pringle, 1981; Lynden-Bell & Pringle, 1974) if the viscosity
is independent of Σ and the equation thus is linear. Most of the mass moves inward
in these solutions, and only the tail of the distribution moves outward. Hence, this
process drives the accretion of gas by the central star.
A further driver of the disk's dispersal is photo-evaporation (see also Sect. 2.6).

Photo-evaporative terms can be added to the right-hand side of equation (2.25) and
will be discussed in Sect. 2.6.

2.3.1. The viscous accretion rate

Of particular interest is the rate of accretion onto the star Ṁ given by viscous evo-
lution governed by equation (2.25) to compare it to observed stellar accretion rates
(Sect. 1.4.5). Furthermore, the �ow of gas past a growing planet is an important
quantity to constrain its accretion and migration (Sects. 4.2.3 and 4.3). In an inter-
mediate step of the derivation in Appendix A.2 (equation A.21) the expression

rvrΣ =
1

(r2Ω)′
∂

∂r

(
r3νΣΩ′

)
(2.26)

was found, where the prime ′ denotes the derivative with respect to r.
Evaluating all the derivatives with respect to r for the combined term νΣ being

constant in r yields vr = −3ν
2r
. Using this radial velocity of the gas, the total accretion

rate onto the star (i.e. taken from the disk, resulting in a sign change) is

Ṁ = −2πrvrΣ = 3πΣν . (2.27)

This admittedly quite circular argument shows that if νΣ is constant in r, the �ow
towards the star will also be constant over the disk and can be expressed using
equation (2.27) and is directly proportional to νΣ. Therefore, this is called the
steady state solution.

2.3.2. Viscosity

Above, it was assumed that the disk has a kinematic viscosity ν. However, the
viscosity is used to mimic the behavior of di�erent physical processes and does not
represent a known molecular viscosity due to micro-physics. This is because the
viscosity of a gas is on the order of ν ∼ vth`, where vth is the thermal speed of the
molecules of the gas and ` its mean free path. It is given by

` ∼ 1

nσ
, (2.28)

where n is the number density and σ is the collision cross-section of the molecules.
Since the disk mainly consists of hydrogen molecules with a radius of r ∼ 10−8 cm,
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σ ∼ π(10−8 cm)2 and at around 1 AU, n ∼ 1015 cm−3 and vth ∼ 105 cm s−1. With this
we can estimate the mean free path

` ∼ 3 cm (2.29)

and the viscosity
ν ∼ 3× 105 cm2 s−1 . (2.30)

The di�usion time scale for an equation of the form of equation (2.25) is τν ∼ (∆r)2/ν
Armitage (2015), i.e. for a disk with a characteristic size R, the surface density will
evolve on time scales of the order of

τν ≈
R2

ν
, (2.31)

which would be 1013 yr. This is by far longer than what is observed to be the lifetime
of protoplanetary disks.
To still be able to explain the evolution according to (2.25), the viscosity has to

have an other origin. Shakura & Sunyaev proposed in their paper about black hole
accretion disks (Shakura & Sunyaev, 1973) that small scale turbulences cause a trans-
port of angular momentum which replaces the molecular viscosity in a way nowadays
called the Shakura-Sunyaev α-prescription. They estimate that if the maximal size
of a turbulent cell is l and its velocity is vt, then

ν = αvtl . (2.32)

As a standard approach one can replace vt and l by characteristic velocities, such as
the isothermal sound speed csT , and the scale height h of the disk to obtain

ν = αcsTh . (2.33)

This is justi�ed because if a turbulent cell had a size larger than h, it would span
into regions where there is very little gas present. Shakura & Sunyaev (1973) already
restrict α to be smaller than unity, since α > 1 would mean that there are supersonic
turbulences, which would heat the gas and slow itself down.
In section 2.1 we saw that h ≈ csT/ΩK , thus the viscosity can be approximated by

ν = αc2
sT/ΩK or using the scale height instead of the sound speed by

ν = αh2ΩK . (2.34)

α is in general a function of the radius and not constant but is often assumed to
be constant (usually set to values between 0.1 and 10−5 ) to allow a theory of the disk
structure that depends on one single free parameter α. Note that the α given by the
molecular viscosity would be smaller than 10−11. In reality, there is likely a more
complicated behavior of the viscosity that depends on the exact physical process
driving accretion.
Nowadays, there are still multiple potential drivers of accretion discussed. The

main competitors are disk winds induced by magnetic �elds (Konigl, 1989; Gressel
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et al., 2015; Bai et al., 2016) or turbulence due to hydrodynamic instabilities (see
Fromang & Lesur, 2019, for a review). If the driver of accretion are winds induced by
magnetic �elds, the assumption of a single constant α everywhere in the disk would
be wrong and instead a prescription like the one presented in Bai (2016) could be
used. However, magnetic �eld strengths cannot be directly measured and the rate
of ionization of the gas disk is not known. Both are important parameters in the
magnetic wind-driven scenario (Hartmann & Bae, 2018).
Alternatively, if the disk is turbulent, the α prescription can be used as an ap-

proximation. Potentially, a dependence of α on r or the time might be warranted
once the exact drivers are known. For a long time, the magnetorotational instability
(MRI) was a good candidate to drive turbulence (Gammie, 1996). However, recent
models showed that the instability is suppressed if more detailed non-ideal magneto-
hydrodynamic e�ects are considered (e.g. Bai & Stone, 2013). Instead, purely hy-
drodynamic instabilities could be responsible for turbulence in most regions of the
protoplanetary disk. Two instabilities that are good candidates to drive moderate
amounts of turbulence (up to α ∼ 10−4) are the vertical shearing instability (Nelson
et al., 2013; Stoll & Kley, 2014; Cui & Bai, 2020) or convective overstability (Klahr
& Hubbard, 2014).

2.4. Thermal physics

For the derivations above, a temperature T at the disk midplane was assumed. Here,
we show how to analytically estimate the midplane temperature.

2.4.1. Irradiated razor-thin disk

A �rst estimation of the disk temperature can be made by approximating the disk as
a thin layer around the star, which absorbs all the �ux from the star passing through
it and having the emission of a black body.
The radius R? and temperature T? of the star are usually given by observation of

the star.
Our variables are the radial distance of the star r and the angle θ which is measured

at a surface element from the line connecting it to the center of the star.
The total �ux of one surface element of the �at disk at a distance r is then

F =

∫
I? sin θ cosφ dΩ︸︷︷︸

sin θdθdφ

, (2.35)

where I? = 1
π
σT 4

? is the brightness of the star described using Stefan's constant σ.
Performing the intergral with limits −π/2 < φ < π/2 and 0 < θ < sin−1

(
R?
r

)
yields

F =
σT 4

?

π

sin−1

(
R?

r

)
−
(
R?

r

)√
1−

(
R?

r

)2
 . (2.36)
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Note that this represents the �ux coming only from one side of the disk and should
be doubled for the full �ux being absorbed by the disk at a given distance. We can
now equate this �ux to the emission σT 4

surf to obtain

(
Tsurf
T?

)4

=
1

π

sin−1

(
R?

r

)
−
(
R?

r

)√
1−

(
R?

r

)2
 . (2.37)

The Taylor expansion to �rst order in (R?/r)� 1 yields

Tsurf =

(
2

3π

)1/4(
R?

r

)3/4

T? +O
(
R?

r

)5/4

(2.38)

for a thin, �at, passive disk. This leads to the conclusion that h/r ∝ r1/8, meaning
that the disk grows thicker with distance. This e�ect is called �aring.
Considering that the disk does have an increasing h/r, would modify the received

�ux from the star (equation 2.35). Therefore, the precise treatment considering the
�aring is slightly more involved and can be found in Kenyon & Hartmann (1987). A
useful simple expression was found by Ruden & Pollack (1991) under the assumption
that the disk is still thin and that the location is distant enough from the star

Tsurf ≈ T?

[
2

3π

(
R?

r

)3

+
1

2

(
R?

r

)2
H

r

(
d lnH

d ln r
− 1

)]1/4

, (2.39)

where the �rst term is the same as in equation (2.38) and the second term in brackets
originates from the fact that dH/dr > 0.

2.4.2. Viscous heating

In Sect. 2.4.1, we considered the temperature due to stellar irradiation. Therefore,
the temperature Tsurf describes the temperature at a layer of the disk that corresponds
to how deep the stellar irradiation can penetrate. This surface is located at the
transition from the optically thick to optically thin layer. However, aside from stellar
irradiation, dissipation of gravitational potential energy due to accretion also needs
to be included to calculate midplane temperatures. For the denser parts of the disk,
it often poses the dominant energy source. Let us �rst assume that there is no stellar
irradiation and the disk to be optically thick in the radial direction. Then, we can
derive the temperature pro�le in the z direction due to viscous heating, i.e. energy
released due to shear e�ects in a viscous �uid.
As long as the isothermal region is large, the density approximately follows the

derived ρ(z) from equation (2.6), which we assume here to be the true pro�le.
To approximate T (z) for the viscously heated disk we follow quite closely the

lecture notes of Dullemond (2013) and assume that the energy dissipation due to
viscosity is strongly concentrated around the midplane.
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2. Models of disk processes

Since the optically thick region is treated here, we use the so called radiative
di�usion theory which is applicable if the mean free path of the photons is short
compared to the typical length scales. In this case, the energy �ux follows a di�usion
equation

F = −D∇U , (2.40)

where D is a di�usion coe�cient and U is the energy density of radiation. In a three
dimensional space, D is in general

D =
1

3
vlp , (2.41)

where v is the average velocity of the particles and lp is the mean free path. For
photons v = c, i.e. the speed of light, and lp = 1

κRρ
, where κR is the Rosseland mean

opacity.
The energy density of radiation can be found from statistical quantum mechanics

and integrating over all wavelength, yielding

U(T ) =
8π5k4

B

15c3h3
P

T 4 =
4σ

c
T 4 , (2.42)

where hP is Planck's and σ is Stefan's constant.
Then, equation (2.40) can be written considering only the upward z component of

energy �ux as

F+
z (z) = − c

3κRρ(z)

4σ

c

dT 4

dz
, (2.43)

yielding

F+
z (z) = − 16σT 3

3κRρ(z)

dT

dz
. (2.44)

This describes the transport of energy in the radial direction. The dissipation is in
the viscously dominated part of the disk due to viscous shear. The energy dissipation
rate is

Ėvisc = Σν

(
r

dΩ

dr

)2

, (2.45)

which is for Keplerian angular velocity Ω = ΩK

Ėvisc = Σνr2
(

(−3/2)
√
GM?r

− 5
2

)2

=
9

4
ΣνΩ2

K . (2.46)

In the mean, half of this energy is transported upwards, i.e. 1
2
Ėvisc = F+

z , leading to

1

2
Ėvisc = − 16σT 3

3κRρ(z)

dT

dz
(2.47)

⇒ Ėvisc

∫ zph

0

ρ(z)dz = −32σ

3κR

∫ Tph

Tmid

T 3dT (2.48)

⇒ Ėvisc

1

2
Σ = − 8σ

3κR

(
T 4
ph − T 4

mid

)
, (2.49)
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2.4. Thermal physics

where Tph and zph are the temperature and height of the photosphere, i.e. the location
where the radiation is radiated away due to the gas becoming optically thin. We
assumed zph � h to replace

∫ zph
0

ρdz ≈
∫∞

0
ρdz = 1

2
Σ. Rearranging the terms, leads

to an expression for the di�erence between the surface (or photosphere) temperature
Tph and the central temperature Tmid of the disk

T 4
mid − T 4

ph =
3κRΣĖvisc

16σ
=

3τRĖvisc

8σ
=

27κRΣ2νΩ2
K

64σ
, (2.50)

where τR = 1
2
κRΣ. 1

Of interest would now be to get an expression for Tmid. For this we can use the
energy balance at the photosphere

σT 4
ph = σT 4

cloud +
1

2
Ėvisc , (2.51)

where the right hand terms include heating from the environment and heating prop-
agated from the disk midplane (i.e. we assume thermodynamical equilibrium). The
left hand term is the black body cooling rate and

Tcloud ≈
(
σ(10 K)4 + σT 4

surf

)1/4 � Tmid (2.52)

is some ambient temperature, which should have a �oor value of the order of 10 K
from the galactic neighborhood and can include contributions from stellar irradiation
such as equation (2.39) derived in the previous Section. Using the result in equation
(2.50) to replace Tph yields

T 4
mid −

3κRΣĖvisc

16σ
= T 4

cloud +
1

2σ
Ėvisc (2.53)

⇒ T 4
mid = T 4

cloud +
1

2σ

(
1 +

3κRΣ

8

)
Ėvisc . (2.54)

As mentioned before, we assumed that the disk is optically thick, i.e. κRΣ � 1,
thus, we can simplify the expression to obtain

T 4
mid = T 4

cloud +
3κRΣĖvisc

16σ
. (2.55)

If we are in the optically thin regime, Nakamoto & Nakagawa (1994) derived a
surface temperature, which is equal to the midplane temperature, of

T 4
ph = T 4

mid =
Ėvisc

4σκPΣ
+ T 4

cloud , (2.56)

1Note that this de�nition of τR di�ers from the one used in Nakamoto & Nakagawa (1994),
where they use τR = κRΣ.
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2. Models of disk processes

where κP is the Planck opacity. An approximative equation that works for both
regimes is then

T 4
mid =

1

4σ

(
3κRΣ

4
+

1

κPΣ

)
Ėvisc + T 4

cloud , (2.57)

which is close to equation 3.10 by Nakamoto & Nakagawa (1994), only missing a
shock heating term from an ongoing infall of gas onto the disk.
Equation (2.57) is a useful analytic approximation to the midplane temperature.

We would like to stress again that many assumptions were made to get this result.
Nevertheless it is of great importance to have a temperature on the right order of
magnitude to use for planetary growth which scales correctly using di�erent physical
assumptions. Especially for the composition of forming planets, the temperature
structure of the disk is very important.

2.5. Composition of disks

Having a model for the temperature and pressure in the disk allows us to calculate
which chemical species can be present in solid form as a function of the location. The
point at which the conditions in the disk reach the condensation point for a certain
molecule is called an iceline or snowline. The latter is more commonly used for the
H2O iceline.
It is important to notice that not only the temperature, but also the gas pressure

are important to determine the condensation point. Furthermore, it is not strictly
correct to talk about a single point but a smooth transition should be considered using
a sublimation rate following the Hertz-Knudsen-Langmuir prescription (Hertz, 1882;
Delsemme & Miller, 1971). Therefore, one has to specify a timescale for comparison
to determine the icelines (Marboeuf et al., 2014b). For many practical applications,
it is however su�cient to use a single point because the sublimation rate is a steep
function of the temperature.
Furthermore, there is a dependence of the temperature and pressure on the vertical

direction of the disk. Therefore, the icelines are in fact ice-surfaces that are typically
closest to the star in the disk midplane and extend further out at higher elevations
above the midplane. This is important for observational studies of the disk.
Another aspect of the icelines will be explored in Paper I, where we will study

the e�ect of the motion of a particle in the disk. Commonly used de�nitions of the
iceline rely on the temperature and pressure of the disk but do not consider that
particles also drift towards the star in the disk (Sect. 2.8). We will follow a body
undergoing radial drift and calculate its ablation in the disk to �nd a better estimate
of the location in the disk where no water exist anymore. The water iceline induces
the largest jump in the surface density of solids because H2O is the most common ice
in protoplanetary disks. Therefore, its signi�cance for planet formation is largest.
In addition to sublimation, chemistry acts depending on the temperature and

pressure as well as the abundance of elements. For in�nite time and �xed thermal
conditions, chemical reactions push a system towards an equilibrium that minimizes
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2.5. Composition of disks

the Gibbs free energy (Gibbs, 1873). This approach was used by Thiabaud et al.
(2014) to calculate the abundance of 32 common molecules (Bond et al., 2010) in
the disk's gas and solid phases. The model takes as input the disk temperature and
pressure as well as the abundance of 16 elements as measured in stars (e.g. Lodders,
2003, for the Sun) and outputs elemental abundances of solid grains as a function of
the distance to the star. The top panel of 2.1 shows the resulting relative abundances
for a disk with a gas disk mass of 0.034 M�, a solid to gas mass ratio of 0.0159 and
a viscous α of 2× 10−3 (equivalent as for the disk shown in Sect. 2.7). The major
drop at ∼3 au is due to the H2O iceline, where a jump in the total amount of solids
occurs. Marboeuf et al. (2014b) consider condensation and trapping in ices of volatile
molecules (i.e. molecules which are likely to sublimate in typical disk conditions) to
enlarge the total amount of solids. Such a kind of trapping of molecules in the lattice
structure of a di�erent ice can occur in a protoplanetary disk and the structure is
described as a clathrate.
For the results shown in Fig. 2.1, we follow the works of Thiabaud et al. (2014) and

Marboeuf et al. (2014b) for solar elemental abundances (Lodders, 2003) but use the
newer disk model, where the disk midplane temperature is calculated following the
analytic works of Nakamoto & Nakagawa (1994); Hueso & Guillot (2005). Apart from
this major relevant di�erence, the initial surface density pro�le is chosen di�erently.
Additionally, the analysis of refractory sulfur, calcium and aluminium is enabled
thanks to tracking them individually as opposed to summing them up with the
remaining untracked species (Ti, P, Cr, Na, H and He). It is important to notice
that H and He are not commonly present in solids despite being the most abundant
elements in protoplanetary disks. The dominant refractory elements are iron, oxygen,
silicon and magnesium and water ice is the dominant icy species followed by carbon-
dioxide (CO2), methanol (CH3OH) and carbon-monoxide (CO).
A planet accreting these molecules incorporated in solid planetesimals at the di�er-

ent location incorporates them and the chemistry on the planet becomes much more
complex. However, the elemental ratios of the overall planet cannot be changed un-
less the elements get lost back to space, which is only common for hydrogen and
helium. The abundance of all heavier elements on the planet stays the same and
determines the planetary composition. The compositions of planets using this model
are discussed in Thiabaud et al. (2014, 2015); Marboeuf et al. (2014a) and an updated
analysis in the framework of the NGPPS papers (see Chapter 5) is planned.
As mentioned, the major assumption that enters this model is that the Gibbs

energy minimum is reached (for the refractory part of the model), which requires
chemical reactions to proceed faster than the typical timescale of planet formation of
∼Myr. This is most likely not true in the outer regions of the disk where the pressure
is low and the chance for two molecules to encounter each other and react is low. For
higher pressures within a few astronomical units, the assumption is more justi�ed
for the most common molecules (Henning & Semenov, 2013; Thiabaud et al., 2014;
Eistrup et al., 2016, 2018).
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Figure 2.1.: Abundance of elements in refractory species and ices compared to the
total amount of solids in the disk. The top panel and the corresponding
legend above it correspond to elements in refractory species (Thiabaud
et al., 2014). Ca and Al and Ti, P, Cr, Na, H and He (Other) are
grouped together. The elements contained in the icy species (Marboeuf
et al., 2014b, bottom panel) are not included in the abundances of the
top panel.40



2.6. Photo-evaporation of disks

2.6. Photo-evaporation of disks

The process of photo-evaporation occurs if high-energy radiation ionizes and excites
a neutral gas. In that case, the excited gas particle can disperse if the energy received
is large enough to escape the gravitational potential in which the gas is placed. This
process can occur for planetary atmospheres as well as for protoplanetary disks. Here,
we will focus on the evaporation of disks. This problem was �rst addressed in-depth
by Hollenbach et al. (1994) and belongs now to the standard processes in the disk
(see Alexander et al., 2014, for a recent review). It is considered important in the
later stages of the disk evolution, where a pure viscous disk would gradually thin
out. However, observations indicate that the dispersal of the disk is rapid (Armitage,
2019). This rapid stage can be attributed to photo-evaporation.
Two categories of photo-evaporation can be distinguished depending on the origin

of the radiation: Internal photo-evaporation due to the central star and external
photo-evaporation driven by nearby massive stars. Furthermore, a range of radiation
energies from very high X-ray (Ercolano & Rosotti, 2015) (λ ∼0.01 nm to 10 nm) over
the extreme ultraviolet (λ up to ∼ 30 nm) to the far ultraviolet (λ up to 200 nm)
has been considered. Independent of the origin of the radiation, the concept of a
gravitational radius rg is useful. It describes the location in the disk where the
ionized gas can escape the disk. This can be derived by equating the orbital velocity
with the sound speed reached after excitation√

GM?

rg
=

√
kBTi
µmH

, (2.58)

where Ti is the temperature of the gas after ionization. If we solve for the character-
istic gravitational radius we get

rg =
µmHGM?

kBTi
. (2.59)

Note that this description is equivalent to equating the thermal energy kBTi to the
gravitational binding energy of an individual gas praticle GM?µmH

rg
, which helps to

understand why the sound speed is chosen and not the thermal velocity or some
other characteristic speed of a gas.
This estimate of the gravitational radius is quite simple. A more detailed analysis

of when particles can be launched as a ionized wind leads to a Bernoulli equation
(Li�man, 2003)

1

2
v2
K +

γ

γ − 1

kBTi
µmH

− GM?

r
= E , (2.60)

where γ is the adiabatic index, a purely Keplerian motion for the gas was assumed
and the heat capacity at constant pressure was used. The particle can escape if
E > 0, thus a critical radius results:

rc =
(γ − 1)GM?µmH

2γkBTi
. (2.61)
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Figure 2.2.: Comparison of mass loss pro�les for di�erent photo-evaporation mod-
els. For reference, we also show the old model, which follows a simple
dependency of Σ̇w ∝ r−1 used in Veras & Armitage (2004); Mordasini
et al. (2009a), as well as in Paper I to mimic external photo-evaporation.
The pro�le following the external photo-evaporation case in Matsuyama
et al. (2003) was scaled arbitrarily for this plot and is used in the newer
works of the Bern group (Mordasini et al., 2012b). The pro�les from
Owen et al. (2012) and Picogna et al. (2019) are �ts to results from a
similar numerical model taking into account X-ray and EUV radiation
from the star. Similarly, the pro�le from Clarke et al. (2001) also models
internal photo-evaporation based on the analytical model by Hollenbach
et al. (1994).
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2.6. Photo-evaporation of disks

If the gas is monatomic γ = 5/3, then rc = 0.2rg. In the literature, di�erent values
for the critical radius rc are found ranging from 0.1 to 0.2 rg (Alexander et al., 2014).
For extreme-ultra-violet radiation, the temperature of the ions is on the order of

104 K (Hollenbach et al., 1994; Clarke et al., 2001) whereas lower-energy radiation
in the far-ultra violet the temperatures are close to 103 K. Interestingly, the higher
X-ray energy does not lead to higher temperatures but also to T ∼ 103 K because the
radiation is not absorbed by a single particle. This is because only extreme-ultra-
violet radiation spans the energy region for hydrogen ionization (13.6 eV). Therefore,
the corresponding gravitational and critical radii di�er by a factor of 10. For EUV,
the critical radius is rc,EUV ≈ 1.45 au.
This generally leads to the conclusion that EUV acts very close to the star, whereas

FUV and X-Ray radiation might be dominant for the outer regions of the disk. Since
there is much more mass to evaporate at distant regions, FUV or X-Ray radiation
should dominate the overall e�ect on the disk dispersal (Gorti & Hollenbach, 2008;
Ercolano & Rosotti, 2015). In principle, both the overall spectrum of ionizing and
hydrogen-dissociating radiation should be taken into account and the combined mass
loss should be studied. For X-Ray and EUV, this is already completed by the works
of Owen et al. (2012); Picogna et al. (2019).
Despite the fact that EUV radiation does not contribute a lot to the total mass

loss of the disk, it is nevertheless very important in shaping the disk pro�le. As
gas accretes onto the star, the surface density decreases and at some point in time,
the viscous �ow becomes insu�cient to replenish the photo-evaporative mass loss
per areaΣ̇w (Clarke et al., 2001). As the gas drifts with a viscous radial speed of
vr = −3ν

2r
(see Sect. 2.3.1), we can derive a critical Σcrit for which the mass in the

annulus decreases. This leads to the opening of a hole.

3νρcrit
2r

= Σ̇w (2.62)

⇒ Σcrit =
2
√

2πrh

3ν
Σ̇w =

2
√

2π

3α

r

h

Σ̇w

ΩK

, (2.63)

where we used the α description of the viscosity (equation 2.34) to obtain the last
equality. Therefore, where Σ falls below Σcrit, a hole in the disk forms and the gas
in the region starwards of the hole will quickly accrete onto the star. This is because
the in�ow of gas from outer regions is missing. Such inner cavities tend to open
where the Σ̇w pro�le peaks, that is, close to the critical radius (equation 2.61). This
is made clear in Fig. 2.3, where we see that using the steady-state �ow for Σcrit gives
a good �rst approximation to gauge if holes will open. The surface density in the
outer regions is also below Σcrit because of external photo-evaporation being used.
Nowadays, detailed numerical calculations provide realistic mass loss rates due to

photo-evaporation. In the �rst analytical work, Hollenbach et al. (1994) found that
the time to recombine dissociated hydrogen limits the amount of loss. In that case
a mass loss rate Ṁw ∝ Φirg

α2
µmHcs results, where Φi is the photon luminosity in

photons per second of the star and α2 is the recombination coe�cient. Hollenbach
et al. (1994) estimated the radial pro�le to drop with r5/2. Clarke et al. (2001)
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adapted the results to the case of Sun-like stars and the resulting mass loss rate as a
function of the semi-major axis for a Sun-like star can be seen in Fig. 2.2.
Over the course of this thesis, the newer photo-evaporation descriptions from Owen

et al. (2012) and from Picogna et al. (2019) were implemented in the disk module of
the Bern model of global planet formation and evolution (Bern model). Therefore, we
restate in the remainder of this chapter their analytical �ts to the numerical modeling
results and describe in some detail the numerical implementation. For comparison
to the older works, these newer pro�les are shown in Fig. 2.2.

2.6.1. X-ray luminosity

Before describing the detailed evaporation results, we brie�y discuss the most impor-
tant parameter for X-ray driven photo-evaporation: The luminosity of the star in the
X-ray wavelength regime LX . The X-ray luminosity of young stars is most likely cre-
ated by accretion shocks as supersonic gas falling onto the stellar surface decelerates.
Therefore, the X-ray luminosity should in principle scale with the accretion rate, but
only low accretion rates are required to reproduce the observations ∼10−10 M� yr−1

and how much radiation is absorbed in the shock region is not well known.
From analytical theory, accretion-induced X-ray luminosity should amount to LX ∼

Lacc ≈ 0.8GṀaccM?

R?
(Calvet & Gullbring, 1998; Güdel & Nazé, 2009; Hartmann, 2009;

Hartmann et al., 2016). Observationally, the samples of young accreting protostars
(Class II) in Lupus and Orion are consistent with LX ∝M

3/2
? (Preibisch et al., 2005;

Güdel et al., 2007). Similar measurements can be used to derive accretion rate de-
pendencies on stellar mass ranging from 1.8 (Alcalá et al., 2014) to 2.1 (Hartmann
et al., 2016) with a potential steeper slope for stellar masses below 0.2 M� (Alcalá
et al., 2017, see also Paper III). The distribution of LX as found by Güdel et al.
(2007) but for all targets scaled to a star of mass 0.7 M� can be seen in Fig. 2.4.
Theory would predict an accretion-induced LX independent of the rotation rate of

the star. However, for X-rays produced in older stars and the Sun, it is clear that
the X-ray radiation is produced by magnetic phenomena in the stellar photosphere.
For this process, LX depends on the strength of the stellar magnetic �eld which is
produced by a magnetic dynamo. Thus, LX induced by magnetic activity scales with
the rotation rate Ω? of the star as LX ∝ Ω2

? (Pizzolato et al., 2003). Accretion-induced
LX seems to dominate for young stars but the magnetically induced luminosity should
not be neglected.

2.6.2. Numerical X-Ray photo-evaporation models

Photo-evaporation can be considered if a term Σ̇w is added to the right hand side of
equation (2.25). Numerically, this is then considered as the disk evolution is solved.
Owen et al. (2012) and Picogna et al. (2019) do provide overall mass loss rates Ṁw

and pro�les for Σ̇w(r) that then have to be scaled by a normalization factor nX to
ful�ll Ṁw = nX

∫∞
0

2πrΣ̇w(r)dr.
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Figure 2.3.: Surface density pro�les for a disk with nominal photo-evaporation
(Clarke et al., 2001, top panel) and one with internal photo-evaporation
based on Picogna et al. (2019) (bottom). The time between two drawn
pro�les is set to ∼1× 105 yr and the fraction Σcrit/Σ is indicated by the
line-color. Dark and red regions would not have enough gas �ow towards
them to sustain the photo-evaporative loss.
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Figure 2.4.: Cumulative fraction of observed X-ray luminosities (Güdel et al., 2007)
and corresponding numerical �ts. The observed luminosities were scaled
to represent a 0.7 M� star using the relation LX ∝ M1.5

? . A Gaussian
distribution with mean value of µ = 30.06 and standard deviation σ =
0.4 does well match the observed distribution in log10 LX space. For
reference, the scaled distributions for 0.1 M� and 1.0 M� are shown.

However, this is not straightforward because if there are regions where the surface
density drops to zero, Σ̇w also amounts to zero. Therefore, it is not possible to �x
Σ̇w in time for the case of disk cavities.

Because the numerical simulations are snapshots in terms of the disk evolution,
they generally consider either an extended disk or the case of a disk with a consid-
erable inner cavity. Therefore, it is not directly applicable to disks that have gaps
carved by planets or small cavities. To overcome this issue, we decided to not keep
Ṁw constant over all the disk's lifetime. Instead, we determine the normalization
for the extended case at the beginning of the simulation, when the disk structure is
free of any kind of gaps. Afterwards, this nX is kept for the remainder of the �rst
phase of photo-evaporation, which means that Σ̇w(r) is constant in time as long as
Σ(r) > 0.
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2.6. Photo-evaporation of disks

This is done until the criterion of a considerable hole being opened is met. The
hole criterion is inspired from Owen et al. (2011, 2012) and is ful�lled if the radius
of the inner hole reaches the region of relevant photo-evaporation xhole > 2 (see
de�nitions below). The hole radius rhole is de�ned as the location where the integrated
radial column number density through the midplane reaches the maximum X-ray
penetration depth of 1022 cm−2. This is then translated to the dimensionless units

xhole = 0.85
(
rhole
au

) (
M?

M�

)−1

by Owen et al. (2012). This hole opening criterion is used

in our implementation for both photo-evaporation models.
Once a hole has opened, the pro�le and overall mass loss rates change and we

determine the normalization constant at the time of hole-opening. Afterwards, as
the disk disperses, the normalization is kept constant. This leads to a time dependent
Ṁw,hole during the hole phase. This treatment is chosen despite the results in Picogna
et al. (2019) showing no dependency of Ṁw,hole on the hole radius. The reason is
numerical stability at the latest stages when the disk becomes a very narrow ring.
Then, the normalization would locally lead to almost in�nite Σ̇w,hole. Thanks to the
pro�le Σ̇w,hole depending on the hole radius, Ṁw,hole does not change by factors larger
than 10 during the dispersal of the disks modeled here.

Owen et al. (2012) XEUV evaporation
Owen et al. (2012) �t their numerical results and �nd for the total mass-loss rate of
an the extended disk

Ṁw,Owen = 6.25× 10−9

(
M?

M�

)−0.068(
LX

1030 erg s−1

)1.14

M� yr−1 . (2.64)

For the pro�le, they introduce the variable x ≡ 0.85
(
r

au

) (
M?

M�

)−1

. If x is below 0.7,

no evaporation occurs, which corresponds to the concept of gravitationally bound
gas despite the heating. For x > 0.7

Σ̇w,Owen(x) ∝10[a1 log10(x)6+b1 log10(x)5+c1 log10(x)4+d1 log3
10 +e1 log2

10 +f1 log10 +g1]

× 1

x2

[
6a1 ln(x)5

ln(10)7 +
5b1 ln(x)4

ln(10)6 +
4c1 ln(x)3

ln(10)5

+
3d1 ln(x)2

ln(10)4 +
2e1 ln(x)

ln(10)3 +
f1

ln(10)2

]
exp

[
−
( x

100

)10
]
,

(2.65)

where we would like to point out that both the natural logarithm ln and the logarithm
to basis 10 log10 are used. The constants are a1 = 0.15138, b1 = −1.2182, c1 = 3.4046,
d1 = −3.5717, e1 = −0.32762, f1 = 3.6064 and g1 = −2.4918.
During the hole stage, Owen et al. (2012) found

Ṁw,hole,Owen = 4.8× 10−9

(
M?

M�

)−0.148(
LX

1030 erg s−1

)1.14

M� yr−1 (2.66)
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and a new radial coordinate is introduced

y = 0.95(r − rhole)
(
M?

1 M�

)−1

. (2.67)

Then, the pro�le at y > 0 is described by

Σ̇w,hole,Owen(y) =

[
a2b2 exp(b2y)

r
+
c2d2 exp(d2y)

r
+
e2f2 exp(f2y)

r

]
exp

[
−
( y

57

)10
]

(2.68)
and the constants are given by a2 = −0.438226, b2 = −0.10658387, c2 = 0.5699464,
d2 = 0.010732277, e2 = −0.131809597 and f2 = −1.32285709. Within the hole
radius, that is for y < 0, no evaporation takes place.

Picogna et al. (2019) XEUV evaporation
Similar to Owen et al. (2012), Picogna et al. (2019) introduce a new radial variable

r1 = 0.7
( r

1 au

)( M?

1 M�

)−1

(2.69)

and re = ln(r1), r10 = log10(r1). Then, for r1 > 0.7, the evaporation pro�le for a
0.7 M� star is given by (Picogna et al., 2019, equations 2,3, and 4)

Σ̇w,Picogna(r1) ∝ 10[aXr610+bXr
5
10+cXr

4
10+dXr

3
10+eXr

2
10+fXr10+gX]

×

(
6aXr

5
e

r2
1 ln(10)7 +

5bXr
4
e

r2
1 ln(10)6 +

4cXr
3
e

r2
1 ln(10)5

+
3dXr

2
e

r2
1 ln(10)4 +

2eXre

r2
1 ln(10)3 +

fX

r2
1 ln(10)2

)
,

(2.70)

where aX = −0.5885, bX = 4.3130, cX = −12.1214, dX = 16.3587, eX = −11.4721,
fX = 5.7248 and gX = −2.8562. The total mass loss rate used for the normalization
is given by

log10

(
Ṁw,Picogna

1 M�/yr

)
= aL exp

(
(ln(log10(LX))− bL)2

cL

)
+ dL , (2.71)

where aL = −2.7326, bL = 3.3307, cL = −2.9868 × 10−3, dL = −7.2580. Ṁw,Picogna

is scaled ∝M?
−0.068 following Owen et al. (2012) because the calculations were done

at �xed stellar mass in Picogna et al. (2019).
After an inner hole in the disk has opened, an additional transition disk evaporation

is employed, yielding higher total mass loss rates Ṁw,hole during this stage. The total
transitional mass loss rate is given by

log10

(
Ṁw,hole,Picogna

1 M�/yr

)
= 0.965× log10

(
Ṁw,Picogna

1 M�/yr

)
−9.592×10−3× rhole

(1 au)
(2.72)
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and the pro�le is given by (Picogna et al., 2019)2

Σ̇w,hole,Picogna ∝
bt − atct(

bt + ct

(
r

(1 au)
− rhole

(1 au)

))2 , (2.73)

where at = 0.9058, bt = 12.876, ct = 0.9056. To prevent unphysical evaporation, we

restrict rhole to be smaller than 120 au×
(

M?

0.7 M�

)
.

Using the internal X-ray and EUV evaporation rates alone yields relic disks, i.e.
rings of gas outside of ∼ 100 au that are not e�ciently removed (Owen et al., 2011,
2012). These remnants are not observed and are e�ciently removed by FUV evapora-
tion according to Gorti & Hollenbach (2008). We can thus employ a FUV evaporation
rate of 3× 10−8 M�/yr (Gorti & Hollenbach, 2008) with a �at pro�le and a cut-o�
(Matsuyama et al., 2003; Mordasini et al., 2012b) shown in Fig. 2.2. A full X-ray,
EUV and FUV model that is based on realistic hydrodynamic simulations would be
preferable to this solution but is not available as of yet (Ercolano & Pascucci, 2017).
We show a comparison of disk pro�les with the nominal Clarke-Matsuyama-Mordasini

(Clarke et al., 2001; Matsuyama et al., 2003; Mordasini et al., 2012b) photo-evaporation
to the new Picogna-Gorti (Picogna et al., 2019; Matsuyama et al., 2003; Gorti & Hol-
lenbach, 2008) evaporation in Fig. 2.3. For the initial X-ray luminosity the mean of
the distribution for Solar-mass stars discussed in Sect. 2.6.1 was chosen.
A striking di�erence is the location of the opening hole. However, the early evo-

lution is very similar between the models. The Owen et al. (2012) prescription leads
to similar pro�les as the Picogna prescription, with a hole that opens in-between the
holes caused by the Clarke- and the Picogna-model. This can be understood from
the photo-evaporation pro�les shown in Fig. 2.2.

2.6.3. Photo-evaporation outlook

Technically, there were a few challenges to overcome originating from the normal-
ization and the complicated form of the �ts to the numerical results. It would be
desirable to have a clearer picture of the photo-evaporation formulas during the tran-
sition from a disk without a hole to the disk with a hole. Currently, this is an abrupt
jump at a physically motivated but quite arbitrary time.
In the future, more physics could be added. For example one should consider the

implementation of pro�les following the work by Wölfer et al. (2019) for the case of
carbon-depleted disks. Having the di�erent photo-evaporation models implemented
in the same planet formation code now allows for comparison of the resulting pop-
ulations of planets. Currently, this has not yet been done with the Bern model but
is adressed by Monsch et al. (in prep) using a di�erent numerical code. Before this
can be tackled with the Bern model and the new descriptions, the disk modeling
challenge formulated in the next section should be ful�lled.

2This pro�le has a simpler functional form than the one reported in Picogna et al. (2019) but
is a �t to the same data.

49



2. Models of disk processes

2.7. The disk modeling challenge

Having reviewed the observational constraints on protoplanetary disks (Sect. 1.4) and
how to model it as an α-disk with photo-evaporation, we can formulate a challenge
that all protoplanetary disk models have to ful�ll: Protoplanetary disks have to
be modeled ful�lling all observational constraints. In detail, this means that (1) a
protoplanetary disk has to exist for approximately 3 Myr and (2) the accretion onto
the star has to be on the order of 10−10 M� yr−1 to 10−7 M� yr−1 given (3) an initial
mass based on observations (e.g. Tychoniec et al., 2018; Williams et al., 2019), (4)
a realistic viscous α on the order of 10−4 (Stoll & Kley, 2014), and (5) a photo-
evaporation rate in agreement with the most recent models (Picogna et al., 2019).
The free parameters, which can be tuned, are few, but the main handle is the initial
pro�le of the surface density Σ. In the case of using a pro�le following Andrews et al.
(2009)

Σ(r) = Σ0

( r

5.2 au

)−β
exp

[
−
(

r

rout

)(2−β)
]
, (2.74)

this narrows down the choices of parameters to only the characteristic radius Rout,
the slope β and the overall normalization Σ0.
Hartmann & Bae (2018) recently solved this challenge in the case without photo-

evaporation but including a prescription for the magnetic winds, residual infall from
the stellar envelope (Class I stage, see Sect. 1.4.2), and FU orionis outbursts (Bell &
Lin, 1994; Hartmann & Kenyon, 1996). They �nd, that the models can be brought
into agreement with observations for reasonably large surface densities at the inner
regions. By bringing more mass close to the star, the measured accretion rates can
be reproduced, which is not the case if more shallow pro�les are chosen.
In Figs. 2.5 and 2.6, we show a �rst approach to overcome the disk modeling

challenge. A typical initial disk mass from Tychoniec et al. (2018) is �xed for all
simulations, but we modify the initial pro�le and the α-viscosity to see which choice
can match the observational constraints. As mentioned above, the goal would be to
match observed accretion rates with α set to 2× 10−4. However, this does not work
with the parameters that are shown.
The main constraint that is not met are the high observed accretion rates. In

the top right panels of Figs. 2.5 and 2.6, a �t from Hartmann et al. (2016) to
numerous accretion rate measurements is shown. They calculate a time-dependency
of the accretion rate with a slope of −1.07. Observational data uses the total age
of the object as time variable, which naturally includes the protostellar phase (see
Sect. 1.4.1). However, in our models, we do not model the infall of matter on the
protoplanetary disk, nor the formation of the stellar core. Therefore, time t = 0 in
our simulations is set later than in observations. To account for this, Hartmann &
Bae (2018) shift their initial time by 0.4 Myr, which lies between previous estimates
of 0.1 Myr to 0.2 Myr by Kenyon & Hartmann (1995) and the more recent estimate
of 0.54 Myr of combined Class I and II lifetime by Evans et al. (2009). We subtract
0.5 Myr in close agreement to the latter work. This leads to a distortion of the
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Figure 2.5.: Comparison of the evolution of disks with di�erent α and initial pro-
�les. Observational median ALMA dust disk masses (Tobin et al., 2020)
times an assumed factor 100 are shown with their interquartile range.
The Class I disk masses are shown at arbitrary times and would roughly
correspond to time t = 0 in our simulation. In the top right panel, the
�t to stellar accretion rates of Hartmann et al. (2016) is shown shifted
to earlier times by an assumed protostellar lifetime of 0.5 Myr (Hart-
mann & Bae, 2018). Disk photo-evaporation follows the nominal model
(Mordasini et al., 2012b) and Ṁwind is scaled ∝ α−2 to get disk life-
times of a similar order of magnitude. The initial mass of all disks is
set to 0.034 M� following the NGPPS series (see Paper III) and nomi-
nal rout,n = 61.776 au obtained using the relation rout ∝M1.6

disk (Andrews
et al., 2009, 2018b).
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Figure 2.6.: As Fig. 2.5 but with internal disk photo-evaporation following Picogna
et al. (2019). The X-ray luminosity is set to 1.96× 1039 erg s−1; the
mean of the scaled Gaussian distribution shown in Fig. 2.4 for 1 M�
(green line). In contrast to Fig. 2.5, we do not modify the external
photo-evaporation rate for the di�erent α cases. Instead, a �xed ex-
ternal evaporation with Ṁwind = 3× 10−8 M� yr−1 is chosen (Gorti &
Hollenbach, 2008).
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power-law in the log-log plot towards early times.
Despite accounting for previous protostellar phases, no close match to observed

accretion rates is found for any parameter of evaporation model. Instead we miss an
order of magnitude of accretion at the important later times. Initially, the mass seems
to be chosen large enough to sustain accretion rates on the order of 10−7 M� yr−1 for
high α or compact disks rout = rout,n/4, where rout,n = 61.776 au is the nominal radius
for the chosen disk mass following the relation of disk size to disk mass found by radio-
astronomers for evolved disks Andrews et al. (2009, 2018b). This nominal disk radius
does not necessarily have to be an initial condition since the observations were done
for Class II disks. It is therefore valid to treat this parameter as free. Hartmann &
Bae (2018) calculate that the mass available for accretion onto a 1.0 M� star after the
Class I stage amounts to 0.073 M�, which is a factor 2 more than our chosen initial
mass. This means that, in order to stay at least in proximity to measured accretion
rates, most of the disk gas would have to be accreted onto the star and should not
be lost by photo-evaporation. In the bottom left panels of Figs. 2.5 and 2.6, we see
that this is not the case for our simulations. At most, ∼50 % of the gas mass can be
accreted onto the star and this is only possible for high α. This naturally explains a
factor 4 di�erence to observations.
The problem might not be as severe as the accretion rate panel might suggest,

because the region of uncertainty around the Hartmann et al. (2016) �t only ac-
counts for the intrinsic scatter of the disk population. It does not take into account
the uncertainty of the age determination, which could di�er by a factor of two or
three. However, it is unreasonable to think that all objects are much younger than
derived using standard pre-main sequence evolution models (Siess et al., 2000; Choi
et al., 2016). Instead, taking into account magnetic �elds in the pre-main sequence
evolution generally seems to lead to estimating the objects to be older (Feiden, 2016).
Hartmann & Bae (2018) locate the reason for the disagreement in the measured

disk masses relying on assumptions on the temperature and the opacity of the disk.
Furthermore, as soon as the disk becomes optically thick in the mm wavelengths,
only a lower limit to the local mass can be derived. Therefore, it is a valid way to
solve the disparity, by pumping a lot of mass into the optically thick region of the
disk close to the star.
This would imply that the masses derived for the gas disks from ALMA for Class I

objects are lower-limits that lie an order of magnitude (for Orion and Oph Williams
et al., 2019; Tobin et al., 2020) or at least a factor 4 (for Perseus Tychoniec et al.,
2018) below the real disk masses. Indeed, the observations with ALMA show a
large dependency on the assumed temperature pro�le. In the top left panels of Figs.
2.5 and 2.6, we show the derived median masses of Class I objects with interquartile
ranges in Orion from Tobin et al. (2020), once with their temperature pro�le depend-
ing on the stellar �ux that the disk receives and once with a constant temperature
of 20 K everywhere. The resulting distribution of disk masses is very sensitive to
this choice. Tobin et al. (2020) use their methodology to re-analyze the Perseus data
from Tychoniec et al. (2018) and derive slightly larger masses, also shown in the top
left panels. Additionally, we show the mass distribution of evolved Class II objects
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in Lupus (Ansdell et al., 2016) and Taurus (Tripathi et al., 2017) as listed by Tobin
et al. (2020). For Class II objects, the optically thick region should be considerably
smaller compared to Class 0 and Class I objects and the derived disk masses should
be closer to reality.
An additional point to take into account is the assumed dust to gas ratio of 1 %

that is used here to convert dust masses to gas masses. This roughly corresponds to
stellar metallicities (Lodders, 2003; Santos et al., 2003) and the interstellar matter
(Bohlin et al., 1978). However, it might be di�erent in disks where the dust is being
processed and was found to lead to a slight over-estimation for Class II gas disk
masses (Ansdell et al., 2016). A serious disk challenger would have to model dust
growth and transport in disks and compare modeled (sub)mm-�uxes to observational
data from Class 0 to Class II stages for a distribution of disk parameters instead of a
�xed disk mass. Therefore, the model would need to further include infall of matter
onto the planetary disk. Addionally, the disk gravity should be taken into account
since we reach disk masses that are on the order of tens of percent of the stellar mass.
Certainly, the disk gravity starts to play a role in this mass range.
The latest development based on ALMA data is to use the observed disk radii.

Ansdell et al. (2018) and Barenfeld et al. (2017) measure disk sizes using CO isotopo-
logues. The disks in the Taurus region were additionally observed in X-rays (Alcalá
et al., 2017), which allows for estimating an age for each disk based on pre-main se-
quence models (Trapman et al., 2020). Sources with estimated masses ranging from
0.7 M� to 1.5 M� are shown and labeled in the bottom right panels of Figs. 2.5 and
2.6. Those disk radii are in principle not directly comparable to the numerical outer
disk radii. Instead we should follow Trapman et al. (2020) in modeling chemistry
including photo-dissociation and neither use a numerical limit nor the characteristic
radius to compare the results to the observed 90% CO radii. However, the shown
data can be considered lower limits to the measure we chose here.
Finally, we would like to touch on the subject of di�erent photo-evaporation mod-

els. In the context of observational constraints, a similarly good match for both
models was possible. Compared to the measured 90% CO radii, the newer photo-
evaporation model reproduces the results better. This is mainly because external
photo-evaporation � which removes mass in the outermost regions � is reduced in
those model runs. Therefore, the disks in Fig. 2.6 do are not truncated as much as
those in Fig. 2.5.
Photo-evaporation does not in�uence the early stages due to having constant loss

rates in time, which are much smaller than accretion rates in the beginning. There-
fore, modeled accretion onto the star is much more dependent on α and the initial
disk pro�le that is chosen. However, for similar parameters, the evaporation model
by Picogna et al. (2019) led to a maximum of about a third of the initial mass being
accreted onto the star. Therefore, in the spirit of Hartmann & Bae (2018), disk
masses would have to be increased by a factor six compared to the Tychoniec et al.
(2018) masses. Nevertheless, the new photo-evaporation model making use of physi-
cal input for photo-evaporation in the form of observed LX is very valuable to narrow
the parameter space of possible disk con�gurations.

54



2.8. Radial drift

2.8. Radial drift

The results of Sect. 2.2 lead to the conclusion that dust particles at the midplane
orbit at di�erent azimuthal velocities (ΩK) compared to the gas (Ωg). Therefore, the
particles will feel a headwind and thus drag. Since they lose angular momentum,
this will lead to a spiraling motion of all particles towards the central star. This was
already noted by Whipple (1972) and explored in more depth by Weidenschilling
(1977). They found that for typical disk conditions, the fastest drifting bodies are
meter-sized. For larger and smaller particles, the drift speed quickly decreases and
is negligible for micrometer-sized particles and kilometer-sized planetesimals.
The results of Paper I heavily rely on the radial drift speed. Therefore, we show in

the appendix of Paper I a comparison of the commonly used approximative formula
compared to the results solving the di�erential equations of motion. The discussion of
drift processes in Paper I is quite in-depth, but the derivation of the approximative
radial drift formula is too long to be suited for repetition in the published paper.
Therefore, we derive the approximative equations here that can be used to calculate
the radial drift of particles in a disk. The derivation follows the traditional work
of Whipple (1972) and the newer conclusive derivation by Takeuchi & Lin (2002).
Noteworthy are also the works of Adachi et al. (1976) who derived the equations
of motion not only for particles on circular orbits but more generally for arbitrary
eccentricities and inclinations of the particle. In addition, the work by Nakagawa
et al. (1986) is also insightful and the �rst to consider the feedback of drifting dust
onto the motion of the gas particles.
In the following, we focus on particles at the disk midplane. Therefore, the Keple-

rian (orbital) velocity vK,mid (ΩK,mid) is shortened to vK (ΩK) for better readability.
We note that in general, all formulas depend on the elevation above the midplane z.
We will begin by following equation (2.16), leading to the azimuthal velocity of

the gas

vg,ϕ = vK

√√√√√1 + 2
r

2v2
Kρ

∂P

∂r︸ ︷︷ ︸
≡−η

, (2.75)

where we de�ned the useful quantity

η ≡ − r

2v2
Kρ

dP

dr
(2.76)

to measure the non-Keplerianity of the gas �ow. This implies

vK =
vg,ϕ√
1− 2η

. (2.77)

The equation of motion restricted to the r-ϕ plane for a dust particle at the mid-
plane in a co-rotating frame of reference is
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dvp,r
dt

=
v2
p,ϕ

r︸︷︷︸
Fcent

− GM?

r2︸ ︷︷ ︸
FG

−FD,r/mp (2.78)

dvp,ϕ
dt

= −FD,ϕ/mp (2.79)

where the drag force FD and the particle mass mp were introduced. The drag force
depends on the relative velocity ∆v between the gas and the dust particles which is
in the azimuthal direction

(∆v)ϕ ≈ −ηvK . (2.80)

First-order approximation
For the case of no radial velocity and exactly Keplerian orbits (vp,ϕ = vK) of the dust
particles (as in Whipple, 1972), equation (2.79) simpli�es to

dvK
dt

=
d

dt

(√
GM?

r

)
= −1

2

√
GM?

r3︸ ︷︷ ︸
ΩK

dr

dt
= −FD,ϕ/mp (2.81)

and naturally yields a radial drift speed

dr/dt = vp,r,Whipple =
2FD,ϕ
mpΩK

. (2.82)

Using the de�nition by Whipple (1972) for the stopping time ts = mp∆v/FD, this
then reads as

vp,r,Whipple =
2∆v

tsΩK

≈ −2rη

ts
. (2.83)

Higher-order approximation
However, from equations (2.78) and (2.79) it is apparent that the above assumptions
are not consistent with the force balance. Therefore, Takeuchi & Lin (2002) take
more terms into account. In the following, we loosely follow their derivation.
First, equation (2.78) can be simpli�ed. We begin by modifying the term

v2
p,ϕ

r
− GM?

r2
=
v2
p,ϕ

r
− v2

K

r
(2.84)

=
v2
p,ϕ

r
−

v2
g,ϕ

r(1− 2η)
(2.85)

=
v2
p,ϕ − 2ηv2

p,ϕ − v2
g,ϕ

r(1− 2η)
. (2.86)
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This can be approximated as

v2
p,ϕ

r
− GM?

r2
≈
v2
p,ϕ − 2ηv2

p,ϕ − v2
g,ϕ

r
(2.87)

≈
−2ηv2

p,ϕ

r
+
v2
p,ϕ − v2

g,ϕ

r
(2.88)

≈
−2ηv2

p,ϕ

r
+

(vp,ϕ + vg,ϕ)(vp,ϕ − vg,ϕ)

r
(2.89)

≈ −2ηv2
K

r
+

2vK(vp,ϕ − vg,ϕ)

r
, (2.90)

where we used the Keplerian velocity for the particle velocity in the small term pro-
portional to η and we approximated the sum of the two velocities as twice Keplerian.
These simpli�cations introduce errors proportional to η2.
Combined with introducing the stopping time in the �nal term, equation (2.78)

then reads as

dvp,r
dt

= −2η
v2
K

r
+ 2

vK
r

(vp,ϕ − vg,ϕ)− 1

ts
(vp,r − vg,r) . (2.91)

Now, we use the derived equation (2.83) giving an expression for ∆v = (vg,ϕ−vp,ϕ)
to replace the middle term. This leads to

dvp,r
dt

= −2η
v2
K

r
− 2vK

r

vp,rtsΩK

2
− 1

ts
(vp,r − vg,r) . (2.92)

Solving for vp,r in steady-state, that is setting the time derivative to zero, leads to(
1

ts
+

ΩKtsvK
r

)
vp,r = −2η

v2
K

r
+
vg,r
ts

(2.93)

⇒
(

1

ΩKts
+ tsΩK

)
vp,r = −2ηvK +

vg,r
ΩKts

(2.94)

which gives a more appropriate formula for the drift speed

vp,r =
−2ηvK + vg,r

ΩKts
1

tsΩK

+ tsΩK

. (2.95)

De�ning the dimensionless stopping time or Stokes number as s = tsΩK further
simpli�es the equation

vp,r =
−2ηvK + s−1vg,r

s−1 + s
. (2.96)

Equations (2.83) or (2.96) can easily be implemented and depend on the drag
regime. For a discussion of the drag regimes, we refer to Paper I. Here, we would
like to mention that for large bodies, the quadratic drag regime applies and Stokes
numbers are large s � 1. Therefore, expression (2.96) reduces to (2.83), which is
what is used in Paper I for the quadratic regime. Additionally, a comparison of the
analytic expression to numerically solving the equations of motion can be found in
the appendix of Paper I.
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2. Models of disk processes

2.9. Distribution of planetesimals in protoplanetary

disks

Before we can address how frequent collisions between bodies embedded in a proto-
planetary disk are, we have to establish how the bodies are distributed in terms of
their size and the eccentricity and inclination of their orbits. The eccentricity e and
inclination i of a body determines its velocity relative to a second body on a circular
orbit (Sect. 2.9.2); therefore, the expressions of velocity of a body or its e and i are
used in the literature to describe the same quantity. A body is said to be excited if it
has large velocities or e and i. As will be described in detail, a large velocity might
lead to a larger �ux of bodies through the intersecting cross-section of a target body.
However, this is countered by a smaller cross-section and a lower number density of
particles due to a larger spread in space.
A note on the notation: We will now switch to describing bodies using the semi-

major axis a, eccentricities e and inclinations i to describe the location. a will also
be used for bodies on circular orbits instead of the equivalent distance to the star r
used above. This allows us to use r for the radius of the body; although we will put
subscripts t or p for target and projectile radii (see Table 2.2).

Symbol Unit (cgs) Description
a cm Semi-major axis of a body on a Keplerian orbit
e Eccentricity of a body on a Keplerian orbit
e∗ Dispersion of an eccentricity distribution
i rad Inclination of the orbital plane of a body
i∗ rad Dispersion of an inclination distribution

rm, rt, rp cm Radii of a generic body with mass m, the target and the projectile
ρ g cm−3 Gas density

ρm g cm−3 Bulk density of a solid body with mass m
ρsolids g cm−3 Volume density of solids distributed in space
Σsolids g cm−2 Surface density of solids measured as solid mass per area

v cm s−1 Relative velocity between the target and the projectile
n cm−3 Volume number density of particles
Γ s−1 Collision rate

Table 2.2.: Variables used to describe collisions and planetesimal populations

2.9.1. Size distribution

Not all bodies in a disk have the same size. Instead, a distribution of sizes or masses is
found. Usually, the distributions are approximated as power laws. Therefore, slopes
can be introduced in multiple di�erent ways:

� The number of particles of mass m is given by N(m) such that N(m)dm is the
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2.9. Distribution of planetesimals in protoplanetary disks

number of bodies in the interval [m,m + dm]. A slope α is introduced, such
that N(m) ∝ m−α, which implies d log n/d logm = −α.

� Similarly, the number of particles can be described by introducing a slope de-
pending on the cumulative mass as

∫ m
0
N(m′)dm′ ∝ m−s. Therefore, N(m) ∝

−sm−s−1, which implies α = s+ 1.

� Instead of using the mass as a variable, the population of sizes can also be
described using the radius rb. The di�erential distribution is then described
as N(rm) ∝ m−q and assuming a constant bulk density leads to N(m)dm =
N(m(rm))drmdm/drm which in turn is equal to 4πr2

mρmN(m(r))drm ∝ r2
mr
−3α
m ,

therefore α = (q + 2)/3. Note that some authors introduce the exponents
without the minus signs and again, the cumulative size distribution can be
expressed using the radius as a variable.

This short excurse into basic analysis was required to be able to interpret the di�erent
notations that are used in the literature.
From theory, Dohnanyi (1969) estimated which slope would result if the collisions

led to catastrophic break-up or erosion of the bodies. Dohnanyi (1969) found that
the result is (to �rst order) independent on the size distribution of fragments that
is produced by catastrophic break-up for the steady-state (or self-similar) solution
which results in α = 11/6 (see also Tanaka et al., 1996; Makino et al., 1998). Modern
works consider the size-dependent velocity distribution (Pan & Schlichting, 2012) or
updated results from SPH simulations (Benz & Asphaug, 1999) taking the internal
structure of the target body into account (Jutzi et al., 2010).
Observations more readily give size distributions because the �ux emitted by as-

teroids or comets depends on the visible area. Therefore, a conversion to mass distri-
butions is only possible assuming or knowing the densities of the bodies. For small
enough objects, a �xed density can be used. Another issue with observations is that
they give constraints on the present-day distribution. The debate is still ongoing if
the larger asteroid-belt objects are primordial and would represent the distribution
as it was during the formation of planets (Morbidelli et al., 2009) or they were also
collisionally processed over the Gyrs to the present-day (Weidenschilling, 2011).
Observational data exist for many regions in the Solar System and all kinds of

small Solar System bodies. In Paper I, we focus on a process related to the water
iceline and small bodies with sizes smaller than ∼1 km. The location of the water
iceline depends on the disk model and assumptions but is consistently found to lie in
the range from ∼1 au to Jupiter's orbit at 5.2 au. Therefore, small asteroids (Ryan
et al., 2015) and Jupiter-family comets (Fernández et al., 1999; Tancredi et al., 2006;
Fernández et al., 2013) are most relevant for the the discussion in Appendix B of
Paper I. It is important to be aware of the size regime of interest because there is a
break in the observed power-law of Kuiper Belt Object sizes at ∼10 km (Bernstein
et al., 2004; Fraser & Kavelaars, 2009).
For planet formation, the dominant size in mass in the protoplanetary disk are

relevant. Therefore, slopes steeper than α = 2 would be dominated by low-mass
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2. Models of disk processes

objects. This will be discussed further in Sect. 5.3, where we justify the choice of
small planetesimal sizes. However, the proximity of measured slopes to the value
of α = 2 indicates that a distribution of planetesimal sizes should in principle be
modeled. This would allow for studying fragmentation and dynamical friction (see
below and Ida & Makino, 1992b) in the proximity of a planet and their feedback onto
planetary growth (see also Letter I).

2.9.2. Eccentricity and inclination distribution

Ida & Makino (1992a) found that the squares of the eccentricity and inclination of a
population of planetesimals in the protoplanetary disk can be described as a Gaussian
distribution

fe dẽ2 =
1

(ẽ∗)2
exp

{(
− ẽ2

(ẽ∗)2

)}
dẽ2 (2.97)

fi dĩ
2 =

1

(̃i∗)2
exp

{(
− ĩ2

(̃i∗)2

)}
dĩ2 , (2.98)

where the notation for the reduced eccentricity ẽ = e/h12, respectively the reduced in-
clination ĩ = i/h12, with3 h12 = ((m1 +m2)/(3M?))

1/3 is introduced. The dispersions
i∗ and e∗ respectively are used to characterize the spread of the distribution and de-
pend on a variety of physical e�ects. The reduced dispersions ẽ∗ = e∗/h12 and ĩ∗/h12

are de�ned analogously to the reduced values of the eccentricity and inclination.
Here, we have to discuss that the e�ect of a protoplanet on the eccentricity and

inclination distribution is not included in Ida & Makino (1992a). The same authors
continue to investigate the in�uence of the planet on the distribution in their follow-
ing papers (Ida & Makino, 1992b, 1993), coming to the conclusion that scattering
of planetesimals by the larger planet leads to a "heating" of the population of plan-
etesimals, i.e. their eccentricities and inclinations increase. Based on this e�ect,
we will see that the growth rate of the protoplanet decreases because gravitational
focusing becomes less e�cient (i.e. the second term in equation (2.146) decreases).
This regime of growth of a large body is called the oligarchic regime.
If there is no planet present, the assumption of a Gaussian distribution of eccen-

tricities and inclinations is justi�ed by N -body simulations (Ida & Makino, 1992a;
Inaba et al., 2001). In the vicinity of a planet, the distribution can change. We do
not consider this e�ect here, because it should be treated in N -body simulations.
Instead, we assume that the form of the distribution stays the same even if there is
a planet; thus equations (2.97) and (2.98) are employed universally.
Since the literature uses di�erent notations, we transform equations (2.97) and

3m1 andm2 being the masses of two particles that interact (in the following often the protoplanet
and a planetesimal or two planetesimals). See also section 2.10.3.
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2.9. Distribution of planetesimals in protoplanetary disks

(2.98) by evaluating the di�erential dẽ2 = 2ẽdẽ, respectively dĩ2 = 2̃idĩ to obtain

fRe dẽ ≡ 2feẽ dẽ =
2ẽ

(ẽ∗)2
exp

{(
− ẽ2

(ẽ∗)2

)}
dẽ (2.99)

fRi dĩ ≡ 2fiĩ dĩ =
2̃i

(̃i∗)2
exp

{(
− ĩ2

(̃i∗)2

)}
dĩ (2.100)

or combined

fR dẽ dĩ ≡ 4ẽ̃i

(ẽ∗)2(̃i∗)2
exp

{(
− ẽ2

(ẽ∗)2
− ĩ2

(̃i∗)2

)}
dẽ dĩ , (2.101)

which are Rayleigh distributions. Thus, the distribution in terms of the squared
values is a Gaussian, but the eccentricities and inclinations are in fact distributed
according to a Rayleigh distribution and the di�erent notions are equivalent.
For completeness, we also mention that the velocity of a planetesimal relative to

the mean circular orbit in the disk midplane with the same semi-major axis a is

v ≈
√
e2 + i2vk (2.102)

for small e and i. More precisely, the velocity of one planetesimal relative to the local
mean circular orbit averaged over an epicycle is

vlc =

√
5e2

8
+
i2

2
vk , (2.103)

as given in Lissauer & Stewart (1993). The former is used in e.g. Nakazawa et al.
(1989a) for the two-body approximation in their appendix B, whereas the latter is
used in Fortier et al. (2013) and our works.

2.9.3. Eccentricity and inclination damping and stirring

The eccentricities and inclinations of a population of planetesimals are distributed
according to equation (2.101), but the dispersions e∗ and i∗ are subject to physical
processes due to interactions with the gas, the planetesimals, and the planets in the
disk.
We consider a population consisting of planetesimals with a given �xed mass m,

which is in�uenced by two di�erent processes: gravitational perturbation and gas
drag. For di�erent masses, direct collisions and dynamical friction would in�uence the
eccentricity and inclination of the populations for the di�erent mass bins. However,
for a population consisting of bodies of a single mass there is no such e�ect. A
treatment for the case of populations with multiple masses can be found in Inaba
et al. (2001) and would be out of the scope of this chapter.
The overall eccentricity and inclination dispersion evolution of a population of

planetesimals with a single mass m can thus be written as
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de∗2

dt
=

de∗2

dt

∣∣∣∣
drag

+
de∗2

dt

∣∣∣∣
VS,M

+
de∗2

dt

∣∣∣∣
VS,m

(2.104)

di∗2

dt
=

di∗2

dt

∣∣∣∣
drag

+
di∗2

dt

∣∣∣∣
VS,M

+
di∗2

dt

∣∣∣∣
VS,m

, (2.105)

where VS is used to abbreviate viscous stirring, i.e. gravitational interactions with a
planet (VS,M) or the population of planetesimals (VS,m). Note that here the non
reduced eccentricity and inclination dispersions e∗ and i∗ are used.

Gas drag damping

The eccentricity and inclination damping by gas drag averaged over one period and
applicable for small e, i, and η is derived in Adachi et al. (1976) and the radial
component as well as the physical background is discussed in section 2.8. They
depend on the drag regime the bodies are in. Here, we �rst state the result for the
quadratic regime by Inaba et al. (2001) who improved the equations by Adachi et al.
(1976) to match numerical results for comparable e,i and η and averaged over the
distribution function. They found,

τ

e∗2
de∗2

dt

∣∣∣∣
drag, Re&20

= −2

(
9

4π
E[3/4]2e∗2 +

1

π
i∗2 +

9

4
η2

)
(2.106)

τ

i∗2
di∗2

dt

∣∣∣∣
drag, Re&20

= −
(

1

π
E[3/4]2e∗2 +

4

π
i∗2 + η2

)
, (2.107)

where E[k] is the elliptic integral of the second kind (see section A.4),

τ =
2m

CDπr2
mρaΩK

=
8rmρm
3CDρvk

(2.108)

and

η = − 1

2Ω2
Kaρ

dP

da
(2.109)

is de�ned in the same way as in section 2.8, but we call the radial variable a instead
of r, as the orbits are now not necessarily circular.
For the Epstein and Stokes regime of the drag, the formula simpli�es and the result

without averaging over the distribution function is

1

e2

de2

dt

∣∣∣∣
drag, rm<λ

=
2

i2
di2

dt

∣∣∣∣
drag, rm<λ

= − csρ

ρmrm
, (2.110)

respectively
1

e2

de2

dt

∣∣∣∣
drag, Re<20

=
2

i

di2

dt

∣∣∣∣
drag, Re<20

= −3

2

λcsρ

ρmr2
m

. (2.111)

Note that these last two equations are valid for eccentricities and inclinations and
not their dispersions. However up to factors of order unity it can be used for their
evolution as well, as in Fortier et al. (2013).
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2.9. Distribution of planetesimals in protoplanetary disks

Gravitational stirring

The planetesimal eccentricities and inclinations are excited by gravitational interac-
tion among themselves (VS,m) and possibly with a forming planet (VS,M). The
expressions are based on the results in Ohtsuki et al. (2002). The �rst application
is the viscous stirring of a body with a large mass M , thus we neglect the terms
which are small in m (Ohtsuki et al., 2002, equation 6, respectively 7) and spread
the planetesimal mass out over a region of b Hills radii (called the feeding zone
(b ≈ 10)) (Chambers, 2014) to get a number density nM = 1/(2πa2bhmM), where

hmM =
(
m+M
3M?

)1/3

≈ (M/(3M?))
1/3,

de∗2

dt

∣∣∣∣
VS,M

= f(∆)
MΩK

3bM?2π
PVS (2.112)

di∗2

dt

∣∣∣∣
VS,M

= f(∆)
MΩK

3bM?2π
QVS , (2.113)

where

f(∆) =

[
1 +

(
∆

nahmM

)5
]−1

(2.114)

is a factor to ensure that the perturbation of the planet is con�ned to its neighborhood
within n ' b Hill radii (Guilera et al., 2010) and

PVS =

(
73(ẽ∗)2

10Λ2

)
ln
(
1 + 10Λ2/(ẽ∗)2

)
+

(
72IPVS(β)

πẽ∗ĩ∗

)
ln
(
1 + Λ2

)
(2.115)

QVS =

(
4(̃i∗)2 + 0.2̃i∗(ẽ∗)3

10Λ2ẽ∗

)
ln
(
1 + 10Λ2 ∗ ẽ∗

)
+

(
72IQVS(β)

πẽ∗ĩ∗

)
ln
(
1 + Λ2

)
,

(2.116)

with Λ = ĩ((ẽ∗)2 + (̃i∗)2)/12. Here, the integrals

IPVS =

∫ 1

0

5K(θ)− 12(1− λ2)E(θ)/(1 + 3λ2)

β + (β−1 − β)λ2
dλ (2.117)

IQVS =

∫ 1

0

K(θ)− 12λ2E(θ)/(1 + 3λ2)

β + (β−1 − β)λ2
dλ , (2.118)

with β = ĩ/ẽ and θ =
√

(3− 3λ2)/2, appear. K and E are the elliptic integrals A.4.
IPVS and IQVS can, according to Chambers (2006), be approximated for 0 ≤ β ≤ 1
to within 3 % by

IPVS(β) u
β − 0.36251

0.061547 + 0.16112β + 0.054473β2
(2.119)

IQVS(β) u
0.71946− β

0.21239 + 0.49764β + 0.14369β2
. (2.120)
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Figure 2.7.: Eccentricity and inclination of a population of planetesimals at 1 au from
self-stirring. The upper lines correspond to planetesimals with a radius
of 100 km, while the lower values are for radii of 1 km. Equation (2.104)
and (2.105) were solved without the term for stirring due to a planet. For
comparison, the equilibrium values from Fortier et al. (2013) for em−meq

respectively im−meq are indicated (dashed lines).
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Figure 2.8.: Eccentricity and inclination of a population of km-sized planetesimals
from self- and embryo-induced-stirring at 1 au. Equation (2.104) and
(2.105) are solved including gravitational stirring due to a 1 M⊕ (lower
lines) or a 100 M⊕ (upper lines) mass planet and the population of plan-
etesimals itself. For comparison the equilibrium values as in Fortier et al.
(2013) for em−Meq respectively im−Meq are indicated (dashed lines).
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Again, the reduced eccentricity and inclination dispersions are used which we re-
state for better readability

ẽ∗ ≡ e∗/hmM , ĩ∗ ≡ i∗/hmM . (2.121)

For the viscous stirring amongst planetesimals, we use ẽ∗ = e∗/hmm and ĩ∗ =

e∗/hmm with hmm = (2m/(3M∗))
1/3. Then the eccentricity and inclination evolve as

de∗2

dt

∣∣∣∣
VS,m

=
1

6

√
Ga

M?

ΣsolidshmmPVS (2.122)

di∗2

dt

∣∣∣∣
VS,m

=
1

6

√
Ga

M?

ΣsolidshmmQVS , (2.123)

where PVS and QVS are given as above, but need to be evaluated with the adjusted
reduced eccentricity and inclination.
To approximate the equilibrium value between gas drag and either viscous stirring

by a planet or by planetesimals, the timescales of these processes can be equated to
obtain (Fortier et al., 2013)

em−Meq ≈ 1.7
m1/15M1/3ρ

2/15
m

b1/5C
1/5
D ρ1/5M

1/3
? a1/5

(2.124)

and im−Meq = 0.5em−Meq for the viscous stirring due to a planet. Similarly4

em−meq ≈ 2.31
m4/15Σ

1/5
solidsa

1/5ρ
2/15
m

C
1/5
D ρ1/5M

2/5
?

(2.125)

and im−meq = 0.5em−meq . These equilibrium values are compared to the solutions of
the di�erential equations (2.104) and (2.105) in �gures 2.8 and 2.7. The equilib-
rium value for the viscous stirring by a planet agrees reasonably with the di�erential
equation, whereas em−meq and im−meq do not agree well with the results of the di�eren-
tial equation for small planetesimal sizes. This is most likely not because of using
the quadratic drag regime to derive equation (2.125), but because the gravitational
stirring timescales found by Ida & Makino (1993) are used. Those become less accu-
rate for low eccentricities (e ∼ 2hmm ≈ 10−6 for 1 km planetesimals). Additionally,
the terms including η were neglected to derive equations (2.124) and (2.125), which
becomes relevant for small bodies.
We note that for those small eccentricities at small radii it would additionally be

necessary to include turbulence of the disk gas as a reason for stirring of eccentricity
and inclination as well (e.g. Ormel & Kobayashi, 2012; Kobayashi et al., 2016). This
will be addressed in a future paper belonging to the NGPPS series (Sect. 5.6).

4A typographic error from Fortier et al. (2013) is corrected here by replacing Σ by Σsolids. Using
the factor of Ce ≈ 40 from Ida & Makino (1993), the overall prefactor evaluates to 2.6 instead of
2.31 as reported in Fortier et al. (2013).
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2.10. Frequency of collisions and accretion rates

The frequency of collisions between bodies is a key component in all the works pre-
sented here. Therefore, we give some historical context as well as go into moderate
detail using di�erent approaches to calculate collision rates. It is important to note
that once collision rates between bodies are established, it is trivial to multiply by
the mass of the smaller of the two bodies undergoing collision to get a mass accre-
tion rate for the larger of the two bodies. Solid accretion is the key component in
all planet formation models, but the collision rates themselves are interesting when
calculating if a small body can survive in a disk. This latter case is used in Paper I.
In order to take small solids into account, such as grains, a statistical approach

using a prescribed distribution function of planetesimals (see section 2.9.1) is accu-
rate. The alternative is to perform N-Body simulations (e.g. Wetherill, 1980), which
will not be discussed here. In the literature the two-body approximation, which is
to neglect the in�uence of the central star, was the dominant way to estimate the
collision rate (e.g. Safronov, 1969). This was until Nakazawa et al. (1989a,b); Ida
& Nakazawa (1989) and independently Greenzweig & Lissauer (1990, 1992) treated
collisions statistically, assuming the central star's mass to be much bigger than that
of the planetesimals and their eccentricities and inclinations to be much smaller than
unity. The system under these assumptions is described by the classical Hills equa-
tions (Hill, 1878). The underlying, adopted probability of a particle hitting a planet
during one orbit was already derived by Öpik (1951). In this section, both methods
are brie�y revised and numerical results of the collision rate of a single planetesimal
colliding with a disk of solids as well as accretion rates for a planet are presented.

2.10.1. Particle in a Box

The so-called "Particle in a Box" method assumes that spherical particles, i.e. the
projectiles, move in straight lines relative to a resting, spherical target and is for
example used in the classical works of Safronov (1969) and Pollack et al. (1996) but
was already derived by Öpik (1951) in his �rst chapter (and potentially even earlier
given the simplicity of the approach). If the radius rp, the number density n (usually
approximated by ΣsolidsΩK/(v ∗mp)) and the relative velocity v of the projectiles and
the radius of the target rt are given, then the collision rate is

Γ = π(rt + rp)
2vn . (2.126)

Here, the spherical shape of the involved particles was used to simplify the well known
scalar product ~σ ·~v. Here, ~σ is the normal vector onto the cross sectional area of the
target, which is in our case for all directions equal to π(rt + rp)

2. This is the area,
for which a physical collision occurs if the projectile's center moves through it.
Assuming that the full mass of each projectile sticks to the target, this translates

to a mass accretion rate
dmt

dt
= π(rt + rp)

2vnmp , (2.127)
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where mp is the mass of each projectile and mt is the mass of the target.

2.10.2. Gravitational focusing

In a disk, we can take the gravitational force of the target into account to get a better
estimate. This is the dominant e�ect for the case where the mass of the target is
large, e.g. for the accretion rate of a planet.
We consider a projectile that passes in a straight line in a distance b from the

target. Instead of assuming a straight line, in reality it is attracted towards the
planet. We are interested in �nding b, such that the closest approach to the target
of the projectile is the sum of the physical radii. If a particle passes closer than in a
distance b to the target, it is then always accreted onto the target. This represents a
gravitational cross section equal to π ∗ b2 and the physical radius rt + rp in equation
2.126 can be replaced by b to get a better estimate for the collision rate.
b can be found by equating the energy and angular momentum at an in�nite

distance and at the location of closest approach, which are listed in Table 2.3.

Energy Angular Momentum

In�nitely far from target 1
2
mpv

2 bv

At closest approach 1
2
mpv

2
max −

Gmpmt
rt+rp

(rt + rp)vmax

Table 2.3.: Energy and angular momentum for a projectile getting de�ected towards
a target and passing it at a distance of rt + rp, where rt and rp are the
radii of the target and the projectile respectively.

We note that the assumption mp � mt was used to get the values in Table 2.3,
which means that the gravitational force of the projectile was neglected. Using those
values, energy and angular momentum conservation yield

v2
max = v2 +

2Gmt

rt + rp︸ ︷︷ ︸
v2esc

(2.128)

b = (rt + rp)
vmax

v
. (2.129)

This in turn simpli�es to

b = (rt + rp)

√
1 +

v2
esc

v2
(2.130)

and thus, the collision rate including a one-body (i.e. the planet) gravitational fo-
cussing is

Γ = π(rt + rp)
2

(
1 +

v2
esc

v2

)
vn . (2.131)
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As a mass accretion rate of the target, this reads as

dmt

dt

∣∣∣∣
gmt

= π(rt + rp)
2

(
1 +

v2
esc

v2

)
vρsolids , (2.132)

where ρsolids is the density of solids distributed in space, which is di�erent from the
bulk density of the solids ρm or the gas density ρ.
For better readability we introduced here the subscript gmt for the accretion rate

to make clear that this expression includes the gravity of the target with mass mt.
In the literature, the notion of a gravitational focussing factor (sometimes also called
"gravitational enhancement factor") Fg, i.e. the ratio of the gravitational cross sec-
tion to the geometric cross section, is often used. The above simple derivation leads
to

Fgmt = 1 +
v2
esc

v2
= 1 +

2Gmt

(rt + rp)v2
. (2.133)

A two-body gravitational focussing factor Fgmtmp taking into account just the target's
and the projectile's gravity could not be found in the literature. This might be
because going into that much detail without taking into account the central star's
gravity is not very meaningful and no analytic expression seems to exist. Note that
there also exists a one-body Fgms only taking into account the star's gravity. To
avoid confusion when comparing works by di�erent authors, a detailed look at the
notation is recommended. Greenzweig & Lissauer (1990) for example, de�ne Fg as
the ratio between the (numerically found) three-body (including central star, target
and projectile) or (analytic) two-body (central star,target) to the one-body (central
star) collision probability and not to the 0-body, i.e. the physical cross section, as
above.
Most authors that use the particle in a box approximation, including Safronov

(1969), use a scale height associated to the density of projectiles to get a value for
n, respectively ρsolids. This is done equivalent to the derivation in section 2.1 for the
gas, but with the relative velocity v instead of the sound speed used as the typical
speed. Safronov (1969) writes this in his equation 3.5

Σsolids =
π

2ΩK

ρsolidsv (2.134)

which is referenced in Safronov (1969), chapter 9. The original argumentation by
Safronov is in a non-translated and non-accessible paper (Safronov, 1954) and can
thus not be reviewed here. Up to numerical factors of order unity, the resulting
accretion rates agree with the accretion rates that do not have to rely on a midplane
density, but take the actual orbits with inclinations into account and are discussed
in the next section (2.10.3).
We repeat the one-body accretion rate with ρsolids exchanged for comparison with

expressions shown below

dmt

dt

∣∣∣∣
gmt

= 2(rt + rp)
2

(
1 +

v2
esc

v2

)
ΣsolidsΩK . (2.135)
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2.10.3. Orbiting particles

To motivate the inclusion of the protosun's gravity, Greenzweig & Lissauer (1990)
argue that gravitational encounters between protoplanets and planetesimals can last
for a signi�cant fraction of an orbital period. Other authors have addressed this
topic as well (Wetherill & Cox, 1985; Hénon & Petit, 1986; Ida & Nakazawa, 1989),
but here, the derivation by Greenzweig & Lissauer (1990) will be outlined since we
consider it to be the most educational one. Greenzweig & Lissauer (1990) assume
a given eccentricity and inclination of the planetesimals. The same authors later
extended the framework to a distribution of eccentricities and inclinations (see 2.9.2)
(Greenzweig & Lissauer, 1992), which is partially updated in Inaba et al. (2001).

Collision probability per orbit
The probability of a spherical projectile hitting a spherical target on a circular orbit
per revolution of the projectile according to Öpik (1951) is

P =
(rt + rp)

2
(

1 + v2esc
v2

)
v

a2π sin(i)|vx|
, (2.136)

where the magnitude and the x-component of the velocity of the projectile before
feeling the in�uence of the planet are denoted by v and vx and the x-axis is chosen
to overlap with the star to planet direction. The elements a,e and i of the projectile
are �xed, whereas the argument of perihelion is assumed to be randomly distributed.

Öpik (1951) uses5 the velocities v =
√

3− 1/a− 2
√
a(1− e2) cos(i)vk and |vx| =√

2− 1/a− a(1− e2)vk. An assumption made to derive the probability (2.136) is,
that during the approach of the projectile to the target, the trajectories of both the
target and the projectile can be considered rectilinear. In other words, (2.136) is valid
only for large enough i. Otherwise the encounter would take a signi�cant fraction of
an orbital period and the trajectories would not follow straight lines anymore. This
condition translates to (Greenzweig & Lissauer, 1990)

s� ae (2.137)

s� a sin i , (2.138)

where s = (rt + rp)
√

1 + v2
esc/v

2 is the radius of the interaction region of the target.
In Appendix A.5, we restate lower-order accretion rate approximations that can be
found analytically. Here, we will focus in the following on the results by Inaba et al.
(2001).

5In Öpik (1951), eq. 20a,b the factor vk is missing because he works in units of time such that
one period is equal to 2π and units of space such that the distance from the central star to the
planet is equal to one, which yields units of Keplerian velocity for velocities.
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e and i Distributions
Before we can write down the complete accretion or collision rate of a body with a
population of planetesimals, the integration over the planetesimal orbits has to be
done. That means, we now need to couple this to the results in Sect. 2.9. There,
we showed the distribution of e and i for the planetesimals. It is therefore necessary
to average over this Rayleigh distribution, which was done by Inaba et al. (2001)
whose results we restate. We switch to their notation, even though Greenzweig &
Lissauer (1992) did the same exercise and would use a similar notation as above and
in appendix A.5 in their work. However, Inaba et al. (2001) improved the low and
intermediate regime accretion rates by taking into account the results of Nakazawa
et al. (1989a,b); Ida & Nakazawa (1989) and modifying the interplay of the di�erent
regimes (Inaba et al., 2001, eq. 15, restated in equation 2.151).
To decouple the collision rate from the local properties in the disk, the averaged

number of collisions between two populations of planetesimals per unit area and per
unit time is written as (Nakazawa et al., 1989a; Ohtsuki, 1999; Inaba et al., 2001)

〈Γcol〉12 = h2
12a

2ΩKns(m1)ns(m2)dm1dm2〈Pcol〉12 , (2.139)

where 〈Pcol〉12 is a non-dimensional mean collision rate between planetesimals with
masses m1 and m2 that is independent of the number of planetesimals, but depends
on the common semi-major axis, the radii and masses of the two planetesimals and
the mass of the central star. The brackets indicate that the mean collision rate is an
average over all eccentricities and inclinations given by a distribution function with
eccentricity (inclination) dispersions e∗ (i∗) which change the mean collision rate
as well (see Sect. 2.9.2). ns(m)dm is the surface number density of planetesimals
with masses between m and m + dm, whereas h12 is the reduced Hill radius of two
planetesimals with masses m1 and m2 given by

h12 =

(
m1 +m2

3M?

)1/3

. (2.140)

For the case of a same-mass population of planetesimals ns(m2) = δ(m2−m)ns(m)
with a mass m and a single embryo with mass M > m (ns(m1) = δ(M − m1)),
equation (2.139) can be integrated and reduces to

ΓmM = R2
HΩKns(m)〈Pcol〉mM , (2.141)

where the usual de�nition of the Hill radius can be used RH = a(M/(3M?))
1/3. The

mass accretion rate is accordingly in agreement with the expressions of Chambers
(2006); Fortier et al. (2013)

Ṁ = R2
HΩKΣsolids〈Pcol〉mM . (2.142)

Therefore, we see that to �nd mass accretion or collision rates, all that is left to
do is determining the non-dimensional collision probability 〈Pcol〉. In addition to the
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quantities mentioned above, we restate the de�nitions of the reduced eccentricity and
inclination

ẽ ≡ e/h12 , ĩ ≡ i/h12 (2.143)

and similarly the reduced eccentricity and inclination dispersions

ẽ∗ ≡ e∗/h12 , ĩ∗ ≡ i∗/h12 (2.144)

and furthermore we de�ne
r̃p ≡

r1 + r2

h12a
. (2.145)

Inaba et al. (2001) review in their second chapter the approximated collision rates
by Nakazawa et al. (1989b) and Greenzweig & Lissauer (1990). They �nd that the
averaged non-dimensional collision rate can be approximated

� for the high-velocity regime (ẽ,̃i & 2) by

〈Pcol〉high =
r̃2
p

2π

(
F(I∗) +

6

r̃p

G(I∗)

(ẽ∗)2

)
, (2.146)

where I∗ ≡ ĩ∗/ẽ∗,

F(I∗) ≡ 8

∫ 1

0

I∗2E[
√

3(1− λ2)/2]

[I∗2 + (1− I∗2)λ2]2
dλ (2.147)

and

G(I∗) ≡ 8

∫ 1

0

K[
√

3(1− λ2)/2]

[I∗2 + (1− I∗2)λ2]
dλ , (2.148)

where K and E are the complete elliptic integrals of the �rst and second kinds
(see A.4).

� for the intermediate regime (0.2 . ẽ, ĩ . 2) by

〈Pcol〉med =
r̃2
p

4πĩ∗

(
17.3 +

232

r̃p

)
(2.149)

� and for the low velocity regime (ẽ,̃i . 0.2) by

〈Pcol〉low = 11.3
√
r̃p . (2.150)

For the entire range of eccentricities and inclinations Inaba et al. (2001) found that
numerical results are well reproduced by6

〈Pcol〉 = min
(
〈Pcol〉med,

(
〈Pcol〉−2

high + 〈Pcol〉−2
low

)−1/2
)
. (2.151)

6A peculiarity of equation (2.151) � that might not have been intended by the original creators
� is that for small h12 � therefore for low masses of both bodies � the term 〈Pcol〉med drops linearly
with i∗. Because 〈Pcol〉high �attens for large i∗, 〈Pcol〉med will dominate for large i∗. However, in the
literature, 〈Pcol〉high is meant to cover the high velocity case. This behavior only occurs for physical
inclinations when estimating collisions amongst low mass objects like km-sized planetesimals. In
any case, one has to be aware that the formula is no longer supported by numerical data from Inaba
et al. (2001) for ẽ∗ and ĩ∗ larger than 10.
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Figure 1.a in Inaba et al. (2001) compares equation (2.151) to numerical results and
the curves are reproduced for a consistency test in Figure 2.9.
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ẽ∗

〈P
c
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l〉

Figure 2.9.: Mean collision rate evaluated using equation (2.151) as a function of
reduced eccentricity dispersions for three di�erent r̃p. The inclination
dispersion is set to ĩ∗ = ẽ∗/2. This is a reproduction of Figure 1.a in
Inaba et al. (2001) to validate our implementation.

Having an expression for 〈Pcol〉, we can put the results for di�erent eccentricity
and inclination dispersions into equation (2.139) to obtain the average number of
collisions between two populations of planetesimals 〈Γcol〉12.
This approach will be used in Paper I and Letter I. Here, we apply it to the

case of having only one size r and corresponding mass m = 4/3πρsr
3 of spherical

planetesimals in the disk. The results are shown in �gure 2.10. More results of this
kind are shown in Paper I, where we estimate the number of collisions to gauge their
importance for the evolution of a body that crosses the snowline.
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Figure 2.10.: Sum of the number of collisions between planetesimals in a year as a
function of the planetesimal radius. Calculated using equation (2.139),
assuming all planetesimals to be spherical and having the same size.
The inclination dispersion is set to ĩ∗ = ẽ∗/2, for three di�erent eccen-
tricities given. The kink that can be seen for the e = 10−5 line is due
to a change from the high to the intermediate velocity regime. All the
other cases lie purely in the high velocity regime.
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2.11. Letter I: The formation of Jupiter by hybrid

pebble-planetesimal accretion

Having established a way to calculate the accretion rate of solids by a planet, I applied
this method to constrain the feasibility of a scenario for the growth of Jupiter in the
letter by Alibert et al. (2018).
The letter addresses the formation of Jupiter given two new developments in theory

and observations. Kruijer et al. (2017) evaluated meteoritic data and assume that a
separation in space of two reservoirs is the cause for the di�erent compositions of two
main categories of meteorites � the carbonaceous meteorites and the noncarbonaceous
meteorites. Such a separation can be achieved if a planet su�ciently massive is
located between the two reservoirs and opens a gap in the gas disk. Then, drifting
solid particles (pebbles) can no longer cross this location due to a pressure bump at
the outer edge of the gap. A pressure bump acts as a natural trap for pebbles due
to the dependency on the pressure gradient via η in equation (2.96). Therefore, the
reservoirs of solids inside and outside of the planet remain decoupled until the planet
becomes massive enough to scatter nearby bodies from the outer to the inner region
and vice-versa.
The best candidate to cause such a scenario in the Solar System and therefore

explain the di�erence between the carbonaceous and noncarbonaceous meteorites is
Jupiter. Given the composition of the meteorites, Kruijer et al. (2017) determined
that the reservoirs became separated after less than 1 Myr and remained like that
for 2 to 3 Myr. The typical masses for the opening of a gap and blocking the peb-
ble �ux called pebble isolation mass is ∼20 M⊕ (Bitsch et al., 2018; Ataiee et al.,
2018); whereas the mass at which the reservoirs get reconnected due to scattering is
estimated to be ∼50 M⊕.
In particular the stage at which Jupiter has to grow relatively slowly from 20 to

50 M⊕ would not occur naturally because at these masses rapid gas accretion should
occur once pebble accretion stops. In this letter, we explain this growth pattern by a
stage of signi�cant planetesimal accretion following the pebble accretion phase. This
provides a luminosity source for the planet which prevents cooling and contraction,
which would trigger gas accretion (see Sect. 4.2).
In Fig. 2 of the letter below, we show that � using the framework described above

� the accretion rates of planetesimals at 1 Myr can be large enough to provide this
energy input for reasonable solid mass fraction in the disk ∼0.05 given a relatively
small radius of planetesimals of 1 km. In supplementary Fig. 4 of the letter, we
show that the presence of small planetesimals is likely because the velocities that are
reached due to the viscous stirring of the planetesimals exceeds their breakup limit
(Benz & Asphaug, 1999).
We note that the underlying assumption to the conclusion from Kruijer et al.

(2017) is the hypothesis that the di�erent meteoritic compositions stem from a spacial
separation of the reservoirs. If instead a temporal separation is the cause of the
di�erences, the whole scenario is invalid.
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The standard model for giant planet formation is based on the 
accretion of solids by a growing planetary embryo, followed 
by rapid gas accretion once the planet exceeds a so-called 
critical mass1. However, the dominant size of the accreted 
solids (‘pebbles’ of the order of centimetres or ‘planetesi-
mals’ of the order of kilometres to hundreds of kilometres) 
is unknown1,2. Recently, high-precision measurements of 
isotopes in meteorites have provided evidence for the exis-
tence of two reservoirs of small bodies in the early Solar 
System3. These reservoirs remained separated from ~1 Myr 
until ~3 Myr after the Solar System started to form. This 
separation is interpreted as resulting from Jupiter growing 
and becoming a barrier for material transport. In this frame-
work, Jupiter reached ~20 Earth masses (M⊕) within ~1 Myr 
and slowly grew to ~50 M⊕ in the subsequent 2 Myr before 
reaching its present-day mass3. The evidence that Jupiter’s 
growth slowed after reaching 20 M⊕ for at least 2 Myr is puz-
zling because a planet of this mass is expected to trigger fast 
runaway gas accretion4,5. Here, we use theoretical models to 
describe the conditions allowing for such a slow accretion 
and show that Jupiter grew in three distinct phases. First, 
rapid pebble accretion supplied the major part of Jupiter’s 
core mass. Second, slow planetesimal accretion provided 
the energy required to hinder runaway gas accretion dur-
ing the 2 Myr. Third, runaway gas accretion proceeded. Both 
pebbles and planetesimals therefore play an important role in 
Jupiter’s formation.

High-precision measurements of isotopes (molybdenum, tung-
sten and platinum) in meteorites have recently been used to tempo-
rally and spatially constrain the early Solar System3, by combining 
two main cosmochemical observations (see Methods). On the basis 
of these data, the existence of two main reservoirs of small bodies in 
the early Solar System can be inferred6–8. These reservoirs remained 
well separated for about 2 Myr because of the formation of Jupiter 
and were reconnected only when the planet grew massive enough 
to scatter material from beyond Jupiter’s orbit to inner regions of the 
Solar System3. This cosmochemical evidence, which has never been 
included in growth models of Jupiter, places severe constraints on 
planet formation models.

We simulate Jupiter’s growth at its present location by solid and 
gas accretion by using state-of-the-art planet formation models9 to 
determine the time required for Jupiter to reach 50 M⊕, the mass 
presumably needed to reconnect the two reservoirs3. We checked, 
using N-body simulation, that this mass is indeed large enough for 
efficient scattering to happen (see Supplementary Information). We 

consider different values for the mass of Jupiter at 1 Myr and for 
the average accretion rate of solids after 1 Myr. As the opacity and 
the composition of Jupiter’s envelope are not precisely known, we 
ran models using a large range of assumptions (low or high opac-
ity, pure hydrogen and helium, or envelope enriched in heavier ele-
ments). The model results show that the cosmochemical constraints 
are met, but only with a planetary mass at 1 Myr between about 
5 M⊕ and 16 M⊕ depending on the assumed conditions (Fig. 1). 
Therefore, the minimum mass of the forming Jupiter that is required 
to prevent the transport of pebbles (the ‘pebble isolation mass’) is 
somehow smaller than the 20 M⊕ inferred previously3. Note that the 
precise values of the pebble isolation mass and the mass that Jupiter 
should have attained at about 3 Myr after the beginning of the Solar 
System are not directly derived from cosmochemical studies, but 
result from theoretical interpretation3.

Our models also show that a relatively high solid accretion rate 
(at least 10−6 M⊕ yr−1) is required to prevent rapid gas accretion after 
1 Myr. Indeed, slow gas accretion is possible only through substantial 
thermal support of the gas-dominated envelope that can counteract 
the strong gravity of the planetary core. We find that the dissipation 
of the kinetic energy from infalling solids thermally supports the 
envelope and inhibits high gas accretion rates. We checked that the 
ranges of values of pebble isolation mass and solid accretion rates 
are very robust and insensitive to the envelope composition and/or 
the opacity values, the planet’s location and the disk properties (see 
Supplementary Figs. 1 and 2).

Because Jupiter reached the pebble isolation mass around 1 Myr, 
maintaining a high solid accretion rate after this time must result 
from the accretion of planetesimals, which do not experience the 
isolating effect of the planet as pebbles do (see Supplementary 
Information). During the first million years, the solid accretion rate 
needs to be as high as about 10−5 M⊕ yr−1 for Jupiter to reach a mass 
of about 5–16 M⊕ in only 1 Myr. This accretion rate is too high to 
result from the accretion of planetesimals and must result from the 
accretion of pebbles (see Supplementary Information). However, 
a rate of at least 10−6 M⊕ yr−1 in planetesimal accretion is required 
to stall runaway gas accretion and keep the planetary mass below 
50 M⊕ for the next 2 Myr. Hence, fulfilling the cosmochemical time 
constraints3 in a Jupiter formation scenario is possible only through 
a hybrid accretion process where, first, pebbles provide high accre-
tion rates and grow a large core (about 5–16 M⊕) and, second, sub-
stantial planetesimal accretion sets in afterwards. This planetesimal 
accretion, which occurs after 1 Myr, supplies the energy required 
for delaying rapid gas accretion and only modestly contributes to 
the core’s mass.

The formation of Jupiter by hybrid pebble–
planetesimal accretion
Yann Alibert   1*, Julia Venturini2, Ravit Helled2, Sareh Ataiee1, Remo Burn   1, Luc Senecal1,  
Willy Benz1, Lucio Mayer2, Christoph Mordasini1, Sascha P. Quanz   3 and Maria Schönbächler4
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The derived accretion rate of planetesimals onto Jupiter repre-
sents a substantial flux of infalling solids. Such high accretion rates 
cannot be sustained by large (hundreds of kilometres in size) plane-
tesimals, given the excitation they experience from the gravitational 
interaction with a growing planetary embryo and the inability of gas 
drag to damp the eccentricity and inclination of such big objects10,11. 
Thus, our results suggest that a substantial mass of small planetesi-
mals (kilometres in size) was present in the solar nebula at 1 Myr 
(see Fig. 2 and Supplementary Information), in apparent contra-
diction to recent studies suggesting the existence of large primor-
dial planetesimals12,13. These smaller objects would, therefore, be 
second-generation planetesimals, resulting from the fragmentation 
of larger primordial objects14. Indeed, the presence of a planet of a 
few Earth masses leads to collisions that are violent enough to dis-
rupt primordial planetesimals14. Moreover, the collision timescale 
among large planetesimals is short enough to allow the formation of 
small ones by fragmentation in less than 1 Myr (see Supplementary 
Information). In this way, the initial growth of Jupiter by pebble 
accretion during the first million years provided the conditions to 
fragment large primordial planetesimals into small second-genera-
tion objects in a timely manner.

Our formation scenario also provides a solution to the prob-
lem of the timing of pebble accretion. Indeed, pebble accretion is 
so efficient that objects quickly become more massive than Jupiter 
unless accretion starts shortly before the dispersal of the proto-
planetary disk15,16. This timing is inconsistent with detailed models 
of pebble growth, which conclude that pebbles form and accrete 
early17. In the hybrid pebble–planetesimal scenario, the formation 
of Jupiter-mass planets is stretched over a few million years, com-
parable to the typical lifetimes of circumstellar disks18. In this case, 

it is possible that pebbles are accreted in the early phases of proto-
planetary disk evolution, without leading necessarily to the forma-
tion of massive planets.

We conclude that Jupiter formed in a three-step process (Fig. 3).  
(1) Jupiter’s core grew by pebble accretion. The contribution of large 
primordial planetesimals to the solid accretion was negligible. As 
Jupiter’s core became more massive, large primordial planetesi-
mals dynamically heated, collided and formed second-generation 
smaller planetesimals. (2) Pebble accretion ceased (Jupiter reached 
the pebble isolation mass), and the protoplanet grew more slowly 
by the accretion of small planetesimals. The solid accretion rate 
remained high enough to provide sufficient thermal support to the 
gas envelope and to prevent rapid gas accretion. (3) The critical 
mass for gas accretion was reached, gas rapidly accreted and Jupiter 
reached its present-day mass. During this last phase, further solids 
may have been accreted, increasing the final heavy-element content 
in Jupiter19.

Our simulations show that the total heavy-element mass in 
Jupiter (core and envelope) before runaway gas accretion (account-
ing for both pebble and planetesimal accretion) ranges from 6 M⊕ to 
20 M⊕. These values can be compared with Jupiter’s heavy-element 
mass as derived from structure models, which ranges from 23.6 M⊕ 
to 46.2 M⊕ (ref. 20). This comparison implies that Jupiter accreted 
up to about 25 M⊕ during runaway gas accretion or at a later stage19. 
Heavy elements that accreted late do not necessarily reach the core. 
They can dissolve in the envelope21, leading to envelope enrichment 
and the formation of heavy-element gradients22.

In this new hybrid pebble–planetesimal scenario, the time a pro-
toplanet spends in the mass range of 15–50 M⊕ extends over a few 
million years before rapid gas accretion takes place. Because the 
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final mass of a planet is determined by the dissipation of the pro-
toplanetary disk, our formation scenario increases the likelihood of 
forming intermediate-mass planets, which provides a natural expla-
nation for the formation of Uranus and Neptune1,23.

Methods
Meteoritic constraints. Kruijer et al.3 constrained Jupiter’s growth history 
by combining two main cosmochemical observations. First, cosmochemical 
data of the youngest inclusions (chondrules) in primitive meteorites constrain 
the maximum accretion age for small primitive bodies, while the short-lived 
182Hf to 182W decay system dates metal–silicate separation and, as such, the 
accretion timescales of small differentiated bodies and planets. Second, distinct 
nucleosynthetic isotope compositions (for example, of molybdenum or tungsten) 
that were imprinted in dust accreted by planetary bodies allow regions in the 
protoplanetary disk with originally distinct dust compositions to be identified. 
On the basis of this, cosmochemical data constrain two main reservoirs of small 
bodies that existed in the early Solar System6–8. They remained well separated for 
about 2–4 Myr (refs 3,24). The separation of these two reservoirs occurred in the first 
million years after the beginning of the Solar System, as defined by the formation 
of the oldest Solar System materials (Ca–Al-rich inclusions). It was proposed3 
that this separation was initiated by the growth of proto-Jupiter reaching pebble 
isolation mass (20 M⊕), thereby isolating the population of pebbles inside and 
outside its orbit. The two reservoirs remained separated until Jupiter grew massive 
enough to scatter small bodies, reconnecting the reservoirs. This occurred when 
Jupiter reached 50 M⊕, and not earlier than 3–4 Myr after Ca–Al-rich inclusion 
formation3. While cosmochemical evidence constrains the timescale of the 
separation of the reservoirs, it does not constrain the mass that Jupiter had at  
these epochs.

Modelling planetary growth. We compute planetary growth in the framework  
of the core accretion model by solving the planetary internal structure  
equations4,5, assuming that the luminosity results from the accretion of solids  
and gas contraction.

We consider two limiting cases regarding the fate of solids accreted by proto-
Jupiter. In the first case, the so-called non-enriched case, all the accreted heavy 
elements are assumed to sink to the centre (core). In this case, the envelope is 
made of pure H and He. In the second case, the enriched case, we assume that 
the volatile fraction of the accreted solids is deposited in the envelope, whereas 
the refractory component reaches the core20,25. The volatile fraction is assumed to 
be 50 wt%, following recent condensation models26. The luminosity in this case 
is that provided by the refractory material only, since the volatiles are assumed 
to remain mixed in the envelope and contribute to the luminosity generated by 
its contraction25. In all the models presented here, we treat the accretion rate of 
solids between 1 Myr and 3 Myr as a free parameter that varies from 10−8 M⊕ yr−1 to 
10−5 M⊕ yr−1.

The internal structure equations4,5 are solved by using, as boundary conditions, 
the pressure and temperature in the protoplanetary disk at the position of the 
planetary embryo, and by defining the planetary radius as a combination of the 
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Fig. 3 | The three stages of the hybrid pebble–planetesimal formation 
model. Stage 1 (up to 1 Myr): Jupiter (black) grows by pebble accretion 
(small circles), and planetesimal accretion is negligible. Large primordial 
planetesimals (large circles) are excited by the growing planet and suffer 
high collision velocities (large arrows), leading to destructive collisions 
(yellow), which produce small, second-generation planetesimals (medium 
circles). Stage 2 (1–3 Myr): Jupiter is massive enough to prevent pebble 
accretion. The energy associated with the accretion of small planetesimals 
is large enough to prevent rapid gas accretion (grey arrows). Stage 3 
(after 3 Myr): Jupiter is massive enough to accrete large amounts of gas 
(hydrogen, helium). Nearby pebbles and small planetesimals can be 
gravitationally captured. Ultimately, a gap (white) is opened in the solar 
nebula, stopping further gas accretion. Red and blue indicate the two 
reservoirs of small bodies (inside and outside Jupiter’s orbit, respectively), 
which are separated by Jupiter’s growth in stage 2 and reconnected in 
stage 3. The Sun is shown on the left.
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Hill and Bondi radii27. The evolution of the planetary envelope depends on the 
equation of state and opacity used. For the non-enriched case, we use the equation 
of state of H and He (ref. 28). For the enriched case, the envelope is assumed to 
be composed of H, He and water, and we take into account the mixture of the 
three components25,28,29. For the opacity, we use either interstellar medium (ISM) 
opacity39, or a reduced opacity in which we multiply the ISM opacity by 1/10 to 
mimic the possible opacity reduction due to grain growth30,31. The calculations 
do not include the effect of destruction and replenishment of pebbles in Jupiter’s 
envelope32,33, because the growth of Jupiter after 1 Myr is dominated by the 
accretion of planetesimals, for which the effect of destruction in the planetary 
envelope is less important33.

Disk structure. The disk model provides the pressure and temperature at 
the location of Jupiter’s formation, which serve as boundary conditions for 
computation of the internal structure. This model is designed to fit two-
dimensional radiative hydrodynamic simulations of protoplanetary disks34.

Planetesimal accretion. In early planet formation models, it was assumed that 
the accreted solids were large planetesimals4 (hundreds of kilometres in size), 
in agreement with several theoretical and observational constraints12,13. These 
planetesimal-based formation models still face the problem that the time required 
to reach rapid gas accretion is comparable to or even longer than the disk’s 
lifetime4,18. This challenge is even more severe if dynamic heating (increased 
eccentricity and inclination) of the planetesimals by the gravity of a proto-Jupiter 
is considered10,35 (see also Supplementary Information), because this hinders the 
core growth. Dynamic heating is counteracted by damping caused by gas drag and 
thus primarily affects small planetesimals. Hence, accreting solids that are only a 
few kilometres in size can relieve the timescale problem9,10. Numerical simulations, 
however, predict much larger typical sizes for primordial planetesimals, of 
the order of tens to hundreds of kilometres12, with most of the mass stored in 
the largest bodies, in agreement with the constraints from the asteroid belt13. 
Therefore, kilometre-size planetesimals are probably generated by the collisional 
fragmentation of large primordial planetesimals. This in turn requires high 
collision velocities, which result from the gravitational stirring of primordial 
planetesimals by objects of a few Earth masses14.

Planetesimal accretion depends on three factors: the amount of planetesimals 
near the planet, the mass of the forming planet and the degree of planetesimal 
excitation. In particular, the planetesimal accretion rate depends on the 
gravitational focusing factor, Fgrav, itself depending inversely on the relative velocity 
between planetesimals and the growing Jupiter, vrel. When planetesimals are 
dynamically excited (that is, when they have large eccentricity and inclination), 
vrel increases, and the planetesimals are accreted less efficiently. Planetesimals 
are excited by the forming planet and by planetesimal–planetesimal interactions 
and are damped by gas drag. Large planetesimals are more excited than small 
ones because gas drag is less active on the former. Therefore, vrel is larger for large 
planetesimals, leading to smaller accretion rates than for small planetesimals. We 
compute the accretion rate of planetesimals14 that are 100 km or 1 km in size as a 
function of the planetary mass and planetesimal/gas mass ratio. The properties 
of the gas disk that are required for this calculation (for example, gas density) are 
taken from the disk model at a radial distance of 5.2 au and an age of 1 Myr (when 
planetesimal accretion begins).

Fragmentation of large planetesimals. Two conditions are required to account 
for the formation of small planetesimals from the fragmentation of large ones 
before 1 Myr (when the accretion of pebbles stops). Collisions must be both 
frequent enough (so that small planetesimals are produced rapidly enough) and 
violent enough (so that collisions lead to fragmentation). We estimate the collision 
timescale36,37 between planetesimals that are 100 km in size as a function of the 
protoplanet’s mass and the solid surface density at 5 au. The collision frequencies 
are calculated for a single-size population of planetesimals. The calculation 
includes the stirring of planetesimals by the growing Jupiter, but not the interaction 
between planetesimals, which is negligible for planets of a few Earth masses11. 
Including this effect would increase the excitation of planetesimals, leading to 
even more violent collisions and further fragmentation. We also include the gas 
drag that decreases the eccentricity and inclination of planetesimals and, therefore, 
their collision velocity. To determine in which case the collisions lead to the 
destruction of planetesimals, we compared the specific energy of the collision 
with that required for disruption, Q*

D. We chose for this value a very conservative 
estimate of 6 ×  109 erg g−1, which corresponds to the highest value found for any 
set of compositional parameters38. As a result, for all collisions involving an energy 
larger than Q*

D, planetesimals are expected to be destroyed and to fragment into 
much smaller objects. More details on the calculation of the fragmentation of large 
planetesimals are in the Supplementary Information.

Data availability. The data that support the plots within this paper and other findings 
of this study are available from the corresponding author upon reasonable request.
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Supplementary Information

Sensitivity tests
In order to test the sensitivity of the results to the assumed disk metallicity, we also
compute models assuming half or twice solar metallicity. As can be seen by Sup-
plementary figure 1, our results are insensitive to the assumed metallicity and/or disk
mass.

In all the models presented here, we assume for simplicity that Jupiter forms at
5.2 AU without migration. Our results are not very sensitive to the assumed planetary
location (see upper panels of Supplementary figure 1).

In order to test the influence of Jupiter’s migration on our result, we also ran a sim-
ulation where Jupiter’s core was assumed to start at 20 AU (at 1 Myr), and migrated
with a constant migration rate down to 5 AU12,13, the other conditions (gas composition
and opacity) being the same as in Supplementary figure 1. As these results show (Sup-
plementary figure 2), the mass of Jupiter at 1 Myr, as well as the required accretion rate
of solids beyond 1 Myr are hardly modified by including migration.

Pebble isolation mass
Constraints on disk parameters

Our results provide constraints on the structure of the solar nebula between 1 and 3
Myr, since the pebble isolation mass depends on the disk scale height42. We find that
the pebble isolation mass at 1 Myr is ∼5 up to ∼14-16 ME (for the non-enriched high
opacity, and enriched low opacity cases) therefore, corresponding to a scale height
between 0.033 to 0.044, respectively. This translates into temperatures at 5.2 AU and 1
Myr in the 50-100 K range. According to more recent simulations including the effects
of viscosity43, the disk aspect ratio at 1 Myr must lie in the 0.03 (for high viscosity) to
0.06 (for low viscosity) interval (see Supplementary figure 3). Furthermore, the growth
timescale derived from cosmochemical constraints3 implies that Jupiter remained in
the 15-50 ME mass range for a long time (∼2 Myr), but planets in this mass range
are normally expected to be affected by migration44. The existence of Jupiter during
2 Myr in the 15-50 ME mass range implies that a zone of very reduced migration,
known as convergence zone, was present for a long time in Jupiter’s formation location.
Interestingly, our disk model37 predicts the existence of convergence zones for planets
of the required mass around 5.2 AU. It remains, however, to be investigated under what
conditions such convergence zones can be sustained for a timescale of 2 Myr. The
migration of Jupiter, at least in the range of semi-major axis we considered (2 to 10
AU), would therefore not change our conclusions.

Difference with the planetesimal isolation mass

When Jupiter reaches the pebble isolation mass, pebble accretion stops by definition,
but planetesimal accretion is not affected. Indeed, when a planet forms by accretion
of planetesimals, the accreted bodies are the ones located initially close enough to the
planet, in the so-called feeding zone (radial drift is not very important for such massive
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bodies). As a consequence, even if the planet is massive enough (for example beyond
the pebble isolation mass), it will continue to accrete planetesimals whatever its mass,
provided there are still planetesimals in the feeding zone. It is important to note that the
pebble isolation mass depends on the total mass of the planet (gas and solids), whereas
the planetesimal isolation mass only depends on the initial amount of planetesimals
at a given location, and therefore on the disk solid surface density. Finally, note that
in the planetesimal-based formation models4,5,6, planetesimal accretion is still possi-
ble beyond the planetesimal isolation mass, as a result of the increase of the planet’s
feeding zone (itself resulting from the accretion of gas).

Planetesimal fragmentation
Supplementary figure 4 shows the results of the computed collisional timescale of 100
km-size planetesimals as a function of the planetesimal-to-gas ratio and core mass at 1
Myr. The major quantity governing the collision timescale is the solid surface density
(at 5 AU). The required parameter range (Q/Q?

D > 1 and collision timescale smaller
than 1 Myr) is delimited by the green area, and overlaps largely the typical planetes-
imal surface density expected for the solar nebula (shaded white area on the figure,
corresponding to a range of values between the MMSN and ten times the MMSN). We
can therefore conclude that if an initial population of large planetesimals was present
at the beginning of Jupiter growth, it could evolve into a population of much smaller
planetesimals as a result of fragmentation caused by Jupiter’s excitation during the first
1 Myr45. Note that these estimates do not allow us to determine the sizes of the small
planetesimals. However, since planetesimals of 100 m to 1 km in size are the most
fragile ones (the ones for which the specific energy required for catastrophic disruption
is the smallest), a large fraction of the planetesimals produced by fragmentation should
have sizes in this range46.

Mass of Jupiter at 3 Myr
After the period of slow growth, Jupiter reached a mass large enough to scatter solids
from outside its orbit to the inner part of the solar system, reconnecting the two reservoirs3.
The value of Jupiter that is required for this reconnection is quoted to be 50 ME3.

In order to constrain this later value, we ran N-body simulations using the GENGA
code47. Jupiter was set at 5 AU, and a swarm of 10000 planetesimals (1 km in size)
was distributed between 1.5 AU and 10 AU. The inclination and eccentricity of plan-
etesimals was drawn at random, following Rayleigh distributions, the rms value being
given by the equilibrium between excitation by Jupiter and gas drag. The gas disk
model used was the same as the one we used in the rest of the simulations.

We considered different masses for proto-Jupiter, from 20 to 100 Mearth, and com-
puted the fraction of planetesimals inside Jupiter’s orbit that came initially from the
outer parts of the system. We computed this fraction for three ranges of semi-major
axis, between 1.5 and 3 AU. Supplementary figure 5 shows the fraction of solids com-
ing from outside Jupiter’s orbit, as a function of the planet’s mass. From this figure,
it is clear that a non-negligible mixing is only attained for a mass larger than 30 to 40
ME, a value close to the 50 ME quoted by ref. 3.
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We have therefore tested the influence of changing the value of 50 ME on our result.
As can be shown in Supplementary figure 6, varying this value in the 30-70 ME does
not change our results.

Uncertainties in the cosmochemical constraints
Cosmochemical constraints3 predict that Jupiter grew slowly up to 50 M⊕ in a period
that lasted around 2 Myr. Other cosmochemical constraints based on chondrule for-
mation ages26 indicate that two distinct reservoirs were separated by Jupiter up to 4
Myr, hence, implying a growth time up to 50 ME in 4 Myr. We have therefore run
our growth models to compute under which conditions the growth of Jupiter could be
inhibited during 4 Myr. In this calculation, the disk lifetime is assumed to be equal
to 5 Myr. The results are shown in Supplementary figure 7, for the same assumptions
regarding the planetary composition and opacity as the ones used in Fig. 1 of the main
text. As can be seen on the figure, the required mass at 1 Myr and accretion rate of
solids beyond 1 Myr are very similar to our baseline model (see Fig. 1 of the main
text).

In addition, we have also tested the influence of varying the time when Jupiter
reaches the isolation mass by 20 %. As can be seen in Supplementary figure 6, the
results are hardly changed.

Effect of Jupiter growth on the composition of chondrites
According to ref. 3, the growth of Jupiter beyond 10 ME implied the blockage of the
radial flow of pebbles. This prevented the mixing of the inner and outer reservoirs of
solids from which the different types of chondrites were formed. One problem with
this scenario is that the inner disk (interior to Jupiter’s orbit) would have been depleted
in a few thousand years after Jupiter grew to the pebble isolation mass, because of
pebble drift. This depletion of the inner reservoir is inconsistent with the age spread of
individual chondrules in ordinary chondrites (from 0 to 3 Myr after CAI48). However,
such a depletion is only possible provided two conditions are met:

• Dust particles have a relatively high Stokes number (St), of the order of 0.1, as
this corresponds to the most rapid drift.

• The pressure increases monotonically from Jupiter down to the Sun. If this is not
the case, as for example at a pressure maximum, radial drift would stop.

If these two conditions are not met, dust particle could be stored during large amounts
of time even after Jupiter has stopped the supply of pebbles from the outer solar system.
This dust could then take part in the formation of chondrules during the following
epochs.

In the early solar system, two effects could have provided the conditions for slow
(or suppressed) radial drift inside Jupiter’s orbit: 1- When crossing the iceline, icy
pebbles sublimate, releasing small dust particles. Such dust particles have a much
smaller Stokes number, and their orbital drift is heavily reduced49. 2- When Jupiter
grows largely enough, it modifies the disk structure in such a way that the gas velocity
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becomes keplerian at some location beyond, but also inside Jupiter’s orbit. As a conse-
quence, two zones of pressure maximum appear, one beyond Jupiter’s orbit, one inside
Jupiter’s orbit. The inner pressure maximum could represent an efficient local trap of
small particles (for already formed chondrules, but also the matter that ultimately forms
them, see Surville et al., in prep). Finally, we note that the stopping of dust, as well
as its accretion by forming planets, depends on its Stokes number. Recent gas-dust
simulations46, showed that the stopping of pebbles occurs mainly for particles around
St∼0.1, but much smaller particles follow the gas flow and can cross the planetary orbit.
As these small St number particles are accreted very inefficiently50, they might have
avoided being accreted by Jupiter. Hence, they could provide a source for dust in the
inner solar system. This dust can be ultimately incorporated in chondrules formed in
the subsequent Myr.

Considerations on the gas accretion rate: 3D vs. 1D models and dust
opacity of the envelope
In this work we have computed Jupiter’s growth by means of 1D models (i.e., assum-
ing spherical symmetry). However, gas accretion is more accurately modelled by 3D
high-resolution simulations.51,52 Nevertheless, given the recent implementation of such
simulations, and the large numerical complexity that they entail, different works pre-
dict very different gas accretion rates onto protoplanets.51,52,53 For instance, compared
1D and 3D gas accretion rates computed by (51) for planets of 5, 10 and 15 ME at 5
AU, gave similar results, the difference in gas accretion rate being only a factor of 1.9
at 15 ME, and of 1.6 at 10 ME and 5 ME. Moreover, (53) derived an accretion rate that
is much larger than the one that is required to grow Jupiter in a time lapse of 2 Myr
suggested by ref. 3. On the opposite side, (52) claim that gas accretion is reduced when
modelled in 3D compared with 1D, but they still find a transition towards runaway gas
accretion at a planetary mass of ∼15 ME (as classical 1D calculations). Thus, 3D ef-
fects could not prevent rapid gas accretion for a protoplanet growing from ∼15 to 50
ME, as is the case in our scenario.

Consequently, other effects must operate to accrete gas in the slow fashion that is
compatible with the interpretation of the meteoritic record3. One possibility is the pres-
ence of high dust opacity at the top layers of the envelope. A high dust opacity could
result from the production of dust created from catastrophic planetesimals’ collisions.
Nevertheless, it is important to remark that our calculations already account for high
dust opacity values21 (Fig. 1, left panels). These values are in agreement with the ISM,
which represents likely the higher end of the opacity distribution in disks. The work
of (52) shows that for opacities of 1 g/cm2 (also of the order of ISM values), rapid gas
accretion cannot be prevented for cores larger than 15 ME. We conclude that neither
3D effects nor high-dust opacities can hinder rapid gas accretion of proto-Jupiter after
reaching pebble isolation mass. We suggest therefore that the delay in accreting gas is
due to the heating coming from planetesimal accretion after the pebble isolation mass
is attained.
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3. Ablation of drifting bodies

We have now established in-depth a disk model that can be used to study planet
formation and that matches the constraints given by observations. In this chapter,
we will focus on the evolution of a meter-sized body embedded in a protoplanetary
disk which is drifting towards the star. The goal is to quantify how far such a body
could travel into the warm regions of the disk before it lost all of its water due to
sublimation.
The tools we use to perform this calculation were developed in the context of

modeling comets. For a comet, the observational signature originates from material
that was previously outgassed from the solid cometary nucleus. Therefore, the sub-
limation of ice and the release of solid grains was studied in-depth in this context.
For an embedded body in the protoplanetary disk, the physical phenomena that oc-
cur are very similar. The cometary nuclei should be amongst the most primordial
objects that still exist and for which observations are possible. Therefore, the prop-
erties of a meter to kilometer-sized body that formed in the cold, ice-rich region of
a protoplanetary disk should be fairly close to that of present-day cometary nuclei.
Therefore, we �rst take a look at the observation evidence on the structure of these
objects in Sect. 3.1 before we state the most important components of a cometary
nucleus model (Sect. 3.2). However, we have to keep in mind that some degree of
collisional processing of cometary nuclei certainly occurred (Davidsson et al., 2016),
which might change the properties to some degree.

3.1. Evidence on the structure of cometary nuclei

Comets arrive at regions close to the Sun by being on an elliptic orbit due to some
gravitational interaction with each other or the planets. There are Jupiter-family
and Halley-type comets that originated outside Neptune's orbit from the Kuiper belt
and main-belt comets from the much closer asteroid belt. Additionally, the category
of comets with longer-periods P > 200 yr might partially have originated from the
Oort cloud and two interstellar objects have now been found (Meech et al., 2017;
Guzik et al., 2020).
To characterize a cometary nucleus and not just the well visible coma, it is nec-

essary to �y into its proximity. For several comets, space missions took place and
characterized the nucleii of Comet 1P/Halley, 19P/Borrelly, 81P/Wild, 9P/Tempel
and 67P/Churyumov�Gerasimenko (67P). We list the resulting bulk densities in Ta-
ble 3.1. It is apparent that comets are really low-density objects.
For this reason, since the detailed observations of Comet 1P/Halley in 1986 it is
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3. Ablation of drifting bodies

Comet Density (g cm−3) Reference
1P/Halley 0.5-1.2 Skorov & Rickman (1999)†

9P/Tempel ∼0.6 A'Hearn et al. (2005)
19P/Borrelly 0.18-0.3 Davidsson & Gutiérrez (2004)
81P/Wild 0.6-0.8 Davidsson & Gutiérrez (2006)
67P/Churyumov�Gerasimenko 0.533±0.06 Pätzold et al. (2016)
†Correction by Skorov & Rickman (1999) based on the original value of Rickman (1989)

Table 3.1.: Bulk densities of well-researched cometary nucleii.

generally assumed that comets have a high porosity Rickman (1989). The dominant
volatile component is water ice, where other volatiles, such as CO, CO2, HCN, N2,
etc., can be mixed with the water ice or incorporated within. If the volatiles are
incorporated in the ice, it is either in the form of clathrate-hydrates or as trapped
gases.
Thanks to the recent Rosetta and Philae mission, a lot of data is available for

67P. Pätzold et al. (2016) estimate the porosity to be 72 % - 74 % if the measured
dust-to-ice mass ratio of 4± 2 in the coma Rotundi et al. (2015) is representative for
the full cometary structure. This value of the dust-to-ice ratio is larger than what
is expected from models of ice condensation onto planetesimals (Marboeuf et al.,
2014b). The di�erence might come from a depletion of the body from ice due to
outgassing over Gyr timescales. Determining the exact dust-to-ice ratio for 67P is
di�cult because it is a degenerate problem due to the unknown bulk macro-porosity
of the nucleus and a not well constrained dust grain density (incl. micro-porosity).
Silicate grains should have a density of ∼3 g cm−3 (Brownlee et al., 2006) but the
presence of organic materials (ρ ∼ 2 g cm−3) can lower the mean density.
In Paper I, we argue that we choose a dust-to-ice ratio of 1 following Marboeuf

et al. (2014b) instead of inferred ratios for a single present-day object. The bulk
density of the modeled object lies in the right range given a porosity of 70 %.

3.2. Cometary nucleus models

In the following, we will brie�y summarize the main constituents for a cometary
nucleus model. An detailed review can be found in Prialnik et al. (2004) and more
details about the speci�c model that we will use in Paper I are described in Marboeuf
et al. (2012) or the publicly available thesis of Marboeuf (2008). Note that in Section
2.2. of Paper I itself, we also brie�y discuss the model and describe the processes
leading to the formation of a dust mantle in more detail.
There are three main sources of energy available to comets: Solar radiation that

advances inward from the surface of the comet as a heat wave, internal heat release
by radioactive isotopes contained in the dust of the comet and the release of latent
heat originating in the transformation of formless (amorphous) into crystalline ice
Klinger (1981). Radioactivity is important for the long time a comet is far from
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3.2. Cometary nucleus models

the Sun, but negligibly close to the Sun. The crystallization of amorphous water ice
depends on the temperature and only occurs above a threshold temperature.
Sublimation of the ice can release previously trapped gases from the interior of

the nucleus and its pressure can cause it to �ow to the surface and the pressure may
surpass the tensile strength of the grainy con�guration of the solid material and burst
out of the comet. The gas can take dust of various size with it, which is then released
with the gas or blocks the pores.
When modeling (Prialnik et al., 2004; Marboeuf et al., 2012) comet nuclei they are

often assumed to be spherical. It can then be assumed to rotate fast, meaning that
the surface is evenly heated at all times, making the model one-dimensional with the
radius R.
To better approximate the behavior of comets near the Sun, one can assume them

to rotate slowly and calculate the radial heat transfer at one point on the equator
(1.5 D), at several points lying on one meridian (2.5 D) or at points on the full sphere
(3 D) at each timestep. For the 3D case, the assumption of slow rotation is no longer
necessary, but the models still neglect lateral conduction.
Since the comet is incompressible, one can usually prescribe a (constant) density

pro�le. This approximation no longer holds for larger, di�erentiated bodies (Licht-
enberg et al., 2016).

3.2.1. Energy conservation

Internal

The energy conservation at each point (neglecting possible lateral transport of energy
or mass) inside the nucleus is given by

∑
l

ρlcl
∂T

∂t
=

∂

∂r

(
K
∂T

∂r

)
− ∂

∂r

(∑
α

cαραJα

)
+ S , (3.1)

where

� T is the temperature,

� ρl is the density and cl the speci�c heat capacity of the static material inside
the nucleus, where l sums up all constituents in all phases (ice, dust or clathrate
including some trapped gas),

� K is the radial heat conductivity, discussed in section 3.2.3,

� Jα is the mass �ux of a gas of the sort α with speci�c heat capacity cα and
density ρα,

� S sums up all kinds of sources qualitatively discussed in the �rst section of this
chapter and the heat absorbed or released by phase transitions (e.g. crystal-
lization, sublimation).
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3. Ablation of drifting bodies

Surface

At the surface of the nucleus, the energy conservation is given by a thermal balance
between the Solar energy and thermal emission, heat di�usion towards the core and
local sublimation of ices

S0(1− A)

R2
h

max(cos ξ, 0) = εσT 4 +K
∂T

∂r
+
∑
x

αxHxϕx , (3.2)

where

� S0 is the Solar constant (W m-2), A is the Bond albedo, Rh is the heliocentric
distance,

� ξ is the Solar zenith distance given by

cos ξ = cos θ cosω cos δ + sin θ sin δ , (3.3)

where δ is the declination, θ the latitude and ω the hour angle,

� ε is the infrared surface emissivity, σ the Stefan-Boltzmann constant,

� αx the surface fraction covered by an ice or clathrate, Hx the latent heat and
ϕx the free sublimation rate of the species x.

As we discuss in Paper I, this balance is modi�ed if the body is embedded in an
opaque protoplanetary disk instead of being exposed to starlight.

3.2.2. Mass conservation

For each layer and chemical species x, the di�usion of gas through the solid structure
of grains is solved using the mass conservation equation:

∂ρgx
∂t

= Mx (∇φx +Qx) , (3.4)

where ρgx is the mass density of the gas x, Mx is its molar mass, φx its molar �ow
(described in Marboeuf et al., 2012) andQx is the net source of released gas. Processes
that can release or trap gas and are included in Qx are: water ice crystallization, ice
sublimation and condensation as well as clathrate dissociation and formation.

3.2.3. Heat conduction

Since we want to solve the radial conduction of heat at each timestep, it would be nice
to have an analytical solution for the conductivity throughout the porous cometery
material. The conductivity depends on the size and form of the grains, respectively
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3.2. Cometary nucleus models

of the pores in the solid structure. Therefore, an analytical formula which �ts all
regimes is not easily obtained. One possible way is to assume Russel's formula

K =
Ks
[
Ψ2/3Kp + (1− ψ2/3)Ks

]
Ks [ψ − ψ2/3 + 1]−Kpψ2/3 [ψ1/3 − 1]

, (3.5)

where ψ is the porosity, and
Kp = 4εσrpT

3 (3.6)

is the radiative conductivity across the pores, where ε is the infrared emissivity of the
nucleus material, σ the Stefan-Boltzmann constant and rp the radius of the pores.
Ks is the heat conductivity in the solid (depending on the state of the solid and the
amount of dust, respectively ice).
This formula is not a good approximation for high porosities, where the solid

material no longer has a big area of contact between neighboring grains. Here the
conductivity is reduced by a factor h, called the Hertz factor

K = hKs . (3.7)

In fact, it is possible to simply use the Hertz factor and empirically �t h and Ks

to reproduce measured heat distributions inside comets without having to invoke
Russel's formula. This approach is chosen in Paper I.
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3. Ablation of drifting bodies

3.3. Paper I: Radial drift and concurrent ablation

of boulder-sized objects

We have now discussed in moderate detail the way to model a cometary nucleus.
Combined with the disk model in Chapter 2, this can be used to follow the evolution
of a drifting body as it crosses the water iceline or snowline. In the paper attached
below, published in Burn et al. (2019), we do that and �nd that bodies drift a few
percent closer to the star compared to the location of the water iceline.
It would be more extreme if the water vapor was contained inside the body by a

dust mantle. However, a dust mantle should not be present, because collisions with
small bodies would frequently erode it. The limitations of the work are accessed and
future works should consistently model those collisions as well as take into account
the water vapor released to the gas phase (Dr�a»kowska & Alibert, 2017; Schoonenberg
& Ormel, 2017) and its feedback onto the sublimation rate of the bodies.
The signi�cance of this work is strongly dependent on how frequent bodies in

the size-regime of centimeters to kilometers are. If most bodies are smaller (Stokes
number much smaller than 1), they would drift more slowly and sublimation would
take place very close to the snowline. If most of the mass is in objects larger than a
kilometer, the objects never cross the snowline. In both cases, the dynamics of the
objects can then be safely neglected as long as their eccentricity is small enough.
The case of eccentric planetesimals and their evolution would be an interesting

project for the future. Overall, the physics at icelines is being investigated in more
detail recently (Ida & Guillot, 2016; Schoonenberg et al., 2018; Hyodo et al., 2019)
because it could be an ideal location for large planetesimals to form.
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ABSTRACT

Context. The composition of a protoplanetary disk at a given location does not only depend on temperature and pressure but also on
the time dependent transport of matter, such as radial drift of solid bodies, which could release water and other volatile species before
disintegration or accretion onto a larger body with potentially considerable implications for the composition of planets.
Aims. We perform a parameter study focused on the water depletion of different sized bodies able to cross the water snowline by gas
induced radial drift.
Methods. Either the analytical Hertz-Knudsen-Langmuir sublimation formula assuming equilibrium temperature within the body or
a more involved, numerical model for the internal thermal evolution is coupled with an α-disk model. Different properties of the disk
and the embedded body are explored.
Results. Bodies with radii up to 100 m drift faster towards the central star than the water snowline, hence, cross it. The region that
can be reached before complete disintegration – and is therefore polluted with H2O ice – extends to 10 % closer to the star than the
snowline location. The extent of this polluted region could be multiple times larger in the presence of a dust mantle, which is, however,
unlikely to form due to frequent collisions with smaller-than centimeter sized objects.
Conclusions. Given a significant abundance of meter sized boulders in protoplanetary disks, the transport of water by radial drift of
these bodies towards regions closer to the star than the snowline is not negligible and this flux of volatiles can be estimated for a given
distribution of solid body sizes and compositions. A simple expression for surface sublimation is applicable for a homogeneous body
consisting of only dust and water ice without a dust mantle.

Key words. Comets: general - Protoplanetary disks - Planets and satellites: formation - Planets and satellites: composition

1. Introduction

Recent years of observations and theoretical work on planet for-
mation have stressed the importance of the physics at the vari-
ous snow- or icelines, i.e. the regions in the protoplanetary disk
where a volatile species reaches its condensation temperature.
Rather than defining snowlines using the condensation temper-
ature, it is more relevant for planet formation to focus on the
presence of water ice in building blocks of planets, which might
be different due to dynamical processes. However, we will keep
the notion of snowline to refer to the "classic" snowlines based
on temperatures and pressures only.1

Thanks to the continuous improvement of radio-
astronomical facilities, such as the Atacama Large
Millimeter/Submillimeter Array (ALMA), observations of
the carbon monoxide (CO) snowline in certain disks are now
possible (Qi et al. 2013, 2015; Schwarz et al. 2016; Nomura
et al. 2016; Guidi et al. 2016). The CO snowline is the most
accessible snowline to observation because of the low freezing
point (30 K-40 K (Fray & Schmitt 2009)), implying a large
distance to the star, and the high abundance of CO in the disk
gas. Unfortunately, the H2O snowline is harder to observe
owing to the higher condensation temperature of water. So far,
observations were limited to a disk heated by a stellar outburst
(Cieza et al. 2016).

The main interest on the water snowline stems from emerg-
ing compositional studies of terrestrial planets, motivated by in-

1 Here, we generally ignore the fact that a snowline is a surface with
a strong dependence on height, but instead only consider the snowline
position at the midplane.

creased precision on measured radii and masses of planets using
radial velocity measurements combined with Kepler transit data
(e.g. Marcy et al. 2014), or transit timing variation (e.g. Gillon
et al. 2017; Grimm et al. 2018, for the TRAPPIST-1 system).
Theoretical models of planet formation may help break the de-
generacy between planets covered by oceans and those contain-
ing H, He atmospheres, while also constraining the mantle com-
position, if they can put reliable constraints on the volatile con-
tent of planets (Adams et al. 2008; Rogers & Seager 2010; Dorn
et al. 2015). To achieve this, the compositions of solids and gas
in the disk, which are accreted by the (migrating) planets, have
to be well constrained over a large region. This will be ultimately
necessary to assess the habitability of observed exoplanets.

Finally, the recent studies of Ida & Guillot (2016);
Dra̧żkowska & Alibert (2017); Schoonenberg & Ormel (2017)
show increased planetesimal formation rates by streaming insta-
bility at the H2O snowline, the latter two taking released water
vapor into account (see also Ros & Johansen 2013). Those re-
sults show the need for proper treatment of all occurring physical
processes at the snowline.

A redefinition of the snowline for asteroids in the solar sys-
tem was explored by Schorghofer (2008) using similar means
to what we will present. Schorghofer (2008) found that ice can
persist on asteroids of kilometer size up to temperatures of at
least 145 K over the solar system lifetime and calculated for
multiple parameters where these conditions occur. Other re-
cent works aimed at determining the disk composition used
chemically evolved (Visser et al. 2009; Eistrup et al. 2016) or
equilibrium chemistry (Thiabaud et al. 2015) disks as a basis.
However, in these works, no transport of solids, such as radial
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2 R. Burn et al.: Radial Drift and Concurrent Ablation of Boulder-Sized Objects

drift (Weidenschilling 1977) or diffusion processes were mod-
eled. In addition to the relevant chemical evolution, these dy-
namical effects need to be considered (see Pudritz et al. 2018,
for a recent review). Some studies that do address radial trans-
port of different species by pebbles and vapor are Stevenson &
Lunine (1988); Dra̧żkowska & Alibert (2017); Schoonenberg &
Ormel (2017). Here, we will investigate the potential impact of
boulder-sized bodies (sizes from cm to 100 m), which is a size
regime not treated in the aforementioned works. Such bodies
might efficiently transport water ice to regions starwards of the
classical water snowline by drifting through the disk faster than
the snowline is moving towards the star. In general, this fast drift
leads to fast removal of these bodies, which is usually used as an
argument not to include those sizes in models. Furthermore, co-
agulation processes are not efficient enough to let a body grow
directly to this size range under nominal conditions (see Blum
2018, for a recent review). However, bodies in this range of sizes
are present in the current asteroid population (e.g. Bottke et al.
2005) and models suggest they are naturally produced in colli-
sions of larger bodies (e.g Benz & Asphaug 1999; Bottke et al.
2015).

In this work, we postulate the presence of meter-sized ob-
jects and perform a parameter study to determine the region that
can be reached by fast drifting bodies crossing the water snow-
line. This will let us gauge the importance of modeling solid
ice transport of fast drifting bodies in the disk. For this, we will
identify the dominating processes contributing to thermal heat-
ing of the bodies and the parameters and properties influencing
the process. Furthermore, we test a simplified, analytic model
for the sublimation of water on a boulder-sized body against a
more complex, cometary nucleus model (Marboeuf et al. 2012)
adjusted to account for the presence of protoplanetary disk gas in
the vicinity. The application of a simple analytical expression in-
stead of a more complex numerical model for the sublimation of
water ice would help to substantially reduce the computational
cost and complexity of future works.

In Sect. 2, we describe the different parts and modes (numer-
ical/analytic) of the model. The results are presented in Sect. 3
and discussed in Sect. 4, where we also describe the validity of
our models with regards to all physical processes, which – to our
knowledge – influence the results. We conclude in Sect 5.

2. Model description

The model is built on two components: The first component con-
sists of a protoplanetary disk model, including a single solid
body embedded in the disk midplane. Its radial drift is calcu-
lated and its radially inward motion followed (Sect. 2.1.3). Once
the temperature reaches a threshold value (set to 150K), the lo-
cal disk temperature and radius of the body are used to calcu-
late the body’s thermal and compositional evolution during one
timestep of the disk model. Two different modes for this second
component are investigated: (a) a numerical model based on the
cometary nucleus model by Marboeuf et al. (2012) (Sect. 2.2) or
(b) an analytical expression treating the surface ablation (Sect.
2.3). In both cases, mass loss from the body changes its radius,
which in turn affects the drift speed.

2.1. Disk

Our α-disk model assumes axis-symmetry, vertical hydrostatic
equilibrium, flatness (z � r) and no self-gravity (MDisk � M∗).
The surface density Σ ≡

∫ ∞
−∞ ρ(z)dz = ρ0H

√
2π, where ρ0 is the

midplane density and H is the vertical scale height, is evolved
in time and the isothermal sound speed cs is frequently used to
abbreviate the ideal gas law as P = c2

sρ (see Sect. 2.1.2 or e.g.
Armitage 2019, for more details).

We would like to point out that the purpose of the disk model
in this paper is to simulate typical conditions and timescales in
the disk midplane only, thus a simple model is sufficient. Of par-
ticular importance for this work is the thermal part of the disk
model (see Sect. 2.1.1).

2.1.1. Midplane temperature

The midplane temperature T is calculated, as in the model of
Hueso & Guillot (2005), by assuming that the disk is geometri-
cally thin, heated viscously and by irradiation from the star, and
is optically thick in the radial direction. Instead of solving the
radiative transfer numerically, analytic expressions derived by
Nakamoto & Nakagawa (1994) are used2. In their work, the mid-
plane temperature is approximated as a sum of terms accounting
for optically thick, optically thin, and stellar contributions:

σT 4 =
9
8

(
3
8
τR +

1
2τp

)
ΣνΩ2

K + σT 4
l , (1)

where σ is the Stephan-Boltzmann constant, ν is the viscosity
described in Sect. 2.1.2 and τP is the Planck mean optical depth
which is assumed to be τP = 2.4τR as in Nakamoto & Nakagawa
(1994). τR is the Rosseland mean optical depth, which is defined
in terms of the Rosseland mean opacity κR as

τR = κRΣ . (2)

The Rosseland mean opacity is calculated using the modified
Alexander/Cox/Stewart opacities by Bell & Lin (1994),

κR = κiρ
a
0T b , (3)

where the exponents a and b and the factor κi differ in different
temperature regimes, i.e. depend on the gas state. The values for
a, b and κi can be found in the appendix of Bell & Lin (1994).

Tl is an effective temperature which includes effects of the
irradiation by the star

Tl = T∗

[
2

3π

(R∗
r

)3

+
1
2

(R∗
r

)2 H
r

(
d ln H
d ln r

− 1
)]1/4

, (4)

where the first term is due to irradiation onto the inner part of
a flat disk by a finite sized star (with radius R∗) and the second
term is accounting for irradiation onto the flared outer part. At
all radii, we fixed d ln H/d ln r = 9/7 as in Hueso & Guillot
(2005). In contrast to their work, however, we did not include a
molecular cloud temperature in equation (4) and instead use a
fixed floor value of 10 K for the temperature.

2.1.2. Disk evolution

For the disk, we assume an α-viscosity ν = αcsH, where α
is a numerical factor on the order of 10−4 to 10−2 (Shakura &
Sunyaev 1973). This viscosity, together with mass and angular
momentum conservation, and approximating the orbital velocity
of the gas to be Keplerian, lead to a diffusion equation for the
disk (Lynden-Bell & Pringle 1974; Pringle 1981)

dΣ

dt
=

3
r
∂

∂r

(
r1/2 ∂

∂r

(
r1/2νΣ

))
+ Σ̇w . (5)

2 Eq. 3.10 in Nakamoto & Nakagawa (1994)
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We have added an external photo-evaporation term
{

Σ̇w = 0, if r ≤ rg

Σ̇w ∝ r−1, otherwise ,
(6)

where the gravitational radius rg is taken to be equal to 5 AU
(Veras & Armitage 2004). The mass loss parameter Ṁwind, corre-
sponds to the mass that a disk extending to 1000 AU would lose
due to photo-evaporation. The actual mass loss due to photo-
evaporation is approximately 1 % of this value because the typi-
cal disk only extends to ∼ 100 AU. Ṁwind can be chosen to repro-
duce reasonable lifetimes (Ribas et al. 2014), which is the case
for values ∼ 10−7 M� yr−1.

In our disk model, the disk evolution equation (5) is solved
numerically on a one dimensional, logarithmically spaced grid
in radial direction (Alibert et al. 2005, 2013).

2.1.3. Radial drift

Solid bodies in the disk feel a drag force caused by the differ-
ent velocities of the gas (vg) and the particles (vK) which would
move with Keplerian speed, in the absence of gas, whereas the
former move with a slower velocity due to pressure support
(Weidenschilling 1977; Whipple 1972).

To quantify this difference,

η ≡ 1 − vg/vK ≈ − r
2v2

Kρ0

dP
dr

(7)

is defined, where the density ρ0 and the pressure P are the values
taken at the location of the body.

The resulting radial drift depends on the drag regime. To
discriminate between the different regimes, the radius R of the
solid body is compared to the mean free path λ = mH2/(πd2

H2
ρ0).

Here, dH2 and mH2 are the kinetic diameter and mass, respec-
tively, of the hydrogen molecule, i.e. the dominant species in the
disk. With that, the drag regime is determined by the following
conditions:

– If R < 3λ/2, we use the Epstein drag law
– Else:

– if Re < 27, where Re = 3(vK − vg)R/(λvtherm) is the
microscopic Reynolds number and vtherm the midplane
mean thermal velocity, the Stokes drag is used (Rafikov
2004),3

– if Re > 27, the bodies drag is governed by the quadratic
drag law.

In this work, we use the radial drift formula that is used in
Chambers (2008) and is based on the solutions found by Adachi
et al. (1976) and similarly by Nakagawa et al. (1986); Takeuchi
& Lin (2002):

dr
dt
≈



− 2rη
tstop

, (Quadratic regime)

− 2rη
tstop

(
s2

1 + s2

)
, (Epstein/Stokes regime) ,

(8)

3 This is an approximation introduced by Rafikov (2004), in the
literature there is often an additional, intermediate drag regime used
between the Quadratic and the Stokes regime (Weidenschilling 1977;
Whipple 1972). Additionally, we use here the thermal velocity instead
of approximating it as the sound speed. Furthermore, the definition of
Re differs by a factor of two compared to Whipple (1972).

where

s = tstopΩK (9)

is the Stokes number. When switching from Stokes regime to the
quadratic regime, the Stokes number should be large, such that
there will be no discontinuity of the drift speed. This is the case
in our application (s ∼ 5000 for radii ∼ 100 m for which the drag
regime changes, see also Fig. 7(b)).

The stopping times differ in the three drag regimes and are
given by (Chambers 2008; Takeuchi & Lin 2002; Whipple 1972)

tstop =



ρsR
ρ0vtherm

(Epstein)

2ρsR2

3ρ0λvtherm
(Stokes)

6ρsR
ρ0(vK − vg)

(Quadratic) ,

(10)

where R and ρs are the radius and the density of the solid body.4
It can be easily verified that the drag regimes are chosen such
that the stopping time is continuous.

The orbits of the bodies are assumed to be circular, thus the
effect of eccentricity and inclination on the drift are omitted.
This assumption is reasonable because the eccentricity and in-
clination get damped by gas drag on shorter timescales than the
semi-major axis (Adachi et al. 1976).

We note, that the drift formula (8) does not include the radial
gas flow (e.g. Desch et al. (2017)), which does not have a large
influence during the fast drifting phases and for large bodies (i.e.
high Stokes numbers).

2.2. Cometary nucleus model

We describe here the cometary nucleus model (Marboeuf et al.
2012) that we apply to solid bodies embedded in the protoplane-
tary disk. The model is able to include multiple volatile species,
clathrates and amorphous water ice structures in a 1D (Marboeuf
et al. 2012) or 3D model (Marboeuf & Schmitt 2014). Here, we
use the 1D model and pure crystalline water ice. Therefore, the
equations can be simplified and, for completeness, are presented
in that form here, with emphasis on the changes due to the pres-
ence of a disk.

The presence of the disk influences the energy sources avail-
able to the nucleus, which is discussed in Sect. 2.2.1. Then,
the structure and physical model (Sect. 2.2.2) are summarized.
Finally, the possible formation of a dust mantle is described in
Sect. 2.2.3 and has a large impact on the resulting evolution of
snowline crossing bodies.

2.2.1. Energy sources

In the comet related literature, there are usually three main
sources of energy considered: solar radiation which heats the
surface with energy propagating inward, internal heat release
by radioactive isotopes contained in the cometary dust, and
the release of latent heat originating from different possible
phase changes (crystalline/amorphous ice, clathrates, sublima-
tion) (Klinger 1981).

4 As in Chambers (2008), the stopping time in the quadratic regime
includes a factor of 6, in agreement with Whipple (1972), but in
disagreement to the factor 5 in Rafikov (2004). Correspondingly the
quadratic drag regime boundary is set to Re = 27 instead of Re = 20.
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When considering bodies smaller than 100 m, radioactive
heating is negligible: The simple estimates and values from
Merk & Prialnik (2003) 5 for heating by 26Al yield a net cooling
for radii below 1 km, due to conduction and radiation from the
surface. Because the heat produced by radioactive decay scales
∼ R3, whereas the cooling scales ∼ R2, radioactive heating be-
comes more important for larger objects with radii > 10 km.

The crystallization of amorphous water ice is dependent on
the temperature and becomes efficient above 100 K (Schmitt
et al. 1989). It is not clear whether the initial structure of wa-
ter ice inside comets is crystalline or amorphous. We assume an
initial purely crystalline and clathrate-free water ice structure, or
crystallization to have happened before the start of the calcula-
tion.

For a body embedded in the protoplanetary disk, additional
energy sources are available: heat transfer (mainly by isotropic
thermal radiation) from the gaseous disk and frictional heating.
In contrast, direct irradiation from the sun is suppressed, as the
disk is opaque in the midplane (see also Sect. 2.2.2 for imple-
mentation).

Frictional heating is caused by the different azimuthal veloc-
ities of the disk gas and the solid body. This process is negligible
for the main part of this study and discussed in Sect. 4.3.

Hence, the main source of energy for a small body relates
to the thermal bath in which the body is moving. This justifies
the use of a one dimensional model because of the invariance
of heating on the orientation of the body in the disk. We use
the local disk gas temperature as a surface temperature for our
numerical model. This assumption is discussed in Sect. 4.2.

2.2.2. Structure and physical model

The body is composed of grains, consisting of refractory ma-
terial, that are enclosed by a mantle of icy water following the
model by Greenberg (1988). This structure is drawn schemati-
cally in Fig. 1.

For each layer, the diffusion of water vapor through the solid
structure of grains is solved using the mass conservation equa-
tion. The only processes that can release or bind gas in our crys-
talline and clathrate-free model are water ice sublimation and
condensation.

The flow of gas through the solid matrix can be in differ-
ent flow regimes; free molecular (Knudsen) flow (Kn > 1) or
viscous flow (Kn � 1), depending on the Knudsen number
Kn = λ/(2rp), where λ is the mean free path of the molecules and
rp is the radius of a pore (Knudsen 1909). In addition, we include
a transition flow regime for Knudsen numbers 10−2 < Kn < 1
following Fanale & Salvail (1987). One important quantity ap-
pearing in the expressions for the flow (Marboeuf et al. 2012),
due to the influence of the structure of the pores, is tortuosity.
Here, the arc-chord ratio definition of tortuosity is used, i.e. tor-
tuosity is the ratio of the length of a pore to the distance between
the endpoints (see Fig. 2).

Energy is conserved at each point inside the nucleus, where
heat conduction is modeled using an empirical Hertz factor to
account for porosity (Davidsson & Skorov 2002; Prialnik et al.
2004). For detailed equations and explanations refer to Marboeuf
et al. (2012).

In Marboeuf et al. (2012) the thermal boundary condition is
given by a balance between the solar energy, sublimation of wa-
ter ice at the surface (if no dust mantle is present), and thermal
emission at the outermost layer of the nucleus. In the midplane

5 See their equation 2 with KT ≈ 5 W m−1, ρ = 0.5 g cm−3, t = 0

Fig. 1. Schematic view of the structure model. Adapted from
Marboeuf & Schmitt (2014).

Fig. 2. Tortuosity of a path through a porous structure. In (A)
a path through the material is shown, in (B) the length of
the pore L and the distance between the endpoints X is in-
dicated. Tortuosity is defined as L/X. Image adapted from
O’Connell et al. (2010) under a creative common licence
(http://creativecommons.org/licenses/by/2.0).

of a gaseous disk, there is no direct irradiation, since the disk is
opaque. Instead, the midplane temperature is used as a bound-
ary condition at the surface of the nucleus and we do not solve
the energy balance equation at the surface (this assumption is
discussed in Sect. 4.2). The surface sublimation rate follows ex-
pression (12).

The gas pressure of the disk in the vicinity of the body is
neglected, i.e. the partial pressure of water that is relevant for
the sublimation rate is set to zero and the potential influence of
the disk gas on diffusion of gaseous species in the interior is not
considered. In our model the total amount of gas in the interior is
given by the tracked gas flow of the cometary nucleus model and



R. Burn et al.: Radial Drift and Concurrent Ablation of Boulder-Sized Objects 5

is not including disk gas. We discuss the impact of disk material
on the dominating surface sublimation rate in Sect. 4.4.

2.2.3. Dust mantle formation

The solid dust grains that are freed from the rigid structure by
sublimation of water ice in the interior can either be ejected
from the nucleus or they can accumulate at the surface. The
mechanisms for this accumulation are reviewed in Prialnik et al.
(2004). To summarize, there are multiple drivers of dust mantle
formation that simultaneously appear in a body that undergoes
sublimation.

Firstly, gas drag pulls the freed grains outward, but gravity
counteracts this process. The magnitude of the gas drag force de-
pends on the grain size, hence there is a critical radius rc of grains
that can be ejected. For a slow spinning nucleus the centrifugal
force can be neglected, thus (Rickman et al. 1990, equation 7)

rc =
3
8

CD,KnmH2OφH2OvH2O

ρgrainG Mnucleus

R2
nucleus

, (11)

where CD,Kn ∼ 2 is the drag coefficient in the free molecular
(Knudsen) flow regime (Prialnik et al. 2004), Rnucleus and Mnucleus
are the radius and the mass of the whole nucleus, mH2O the mo-
lar mass, φH2O the molar flow, and vH2O the velocity of water
vapor.6 Grains with radii larger than rc do not get ejected but in-
stead settle on the nucleus’ surface, already depleted of ice by
sublimation. Hence, a porous dust mantle forms on the surface.
Huebner et al. (2006) remark that rc only gives an upper size
limit, for escaping grains, but smaller grains are not necessarily
escaping, as the flow of gas thins above the surface and the grain
might fall back onto the nucleus. Furthermore, already in early
studies investigating this process, e.g. Brin & Mendis (1979), it
was noted that for large dust-to-volatile mass ratio it is impossi-
ble to blow off all the freed dust, even though the particles might
have radii smaller than rc.

The second process comes into play if a dust mantle already
exists. The accumulated grains on the surface will interfere with
the liberated grains, such that they can no longer pass through
the less porous mantle. Hence, they are trapped within the nu-
cleus and further increase the size of the mantle (Shul’man 1972;
Rickman et al. 1990).

Furthermore, the dust mantle can break under the gas flow,
or its cohesive strength can be large enough to trap not only the
dust, but the gas as well (Huebner et al. 2006). In our model,
no cohesive forces between the grains are taken into account
(Marboeuf et al. 2012). Therefore, we test in section 3.3.3 three
cases: (a) the nominal case for which no initial dust mantle is
present nor is it allowed to form subsequently, i.e. all the freed
dust is lost, (b) an unstable dust mantle case, for which no cohe-
sion forces are taken into account but particles larger than rc are
assumed to fall back onto the surface after ejection thereby form-
ing a dust mantle over time, and (c) a constant dust mantle case,
with a fixed thickness over the full evolution of the body. In case
(c) most of the ejected dust is still lost, but a fraction is kept to
keep the artificial constant mantle thickness. These cases differ
compared to the work of Schorghofer (2008) who assumed that
no dust is lost. This is essentially related to the size of the bod-
ies considered. Small bodies with sizes below hundreds of me-
ters undergoing sublimation (considered in this work) can lose

6 This expression differs from the one in Rickman et al. (1990), since,
in our case, the gas flow is numerically modeled throughout the nucleus
and can be used directly instead of analytically estimating it.

their dust, but larger bodies (considered in Schorghofer (2008))
will be able to keep their dust due to the increased gravity (i.e.
rc ∝ R2

nucleus/Mnucleus is smaller than all the typical grain sizes).

2.3. Analytical surface ablation model

Instead of invoking the full model from Marboeuf et al. (2012)
which is described in Sect. (2.2), an analytic model for the sub-
limation of water ice from the surface, i.e. ablation, is outlined
here, which can be tested against similar models from the liter-
ature, e.g. D’Angelo & Podolak (2015), or our full model that
includes the very same surface sublimation term.

For a body without a mantle, ablation follows the kinetic the-
ory expression, also known as the Hertz-Knudsen-Langmuir for-
mula, for a free sublimation rate (e.g. Hertz 1882; Delsemme &
Miller 1971; Schorghofer 2008; Marboeuf et al. 2012)

ϕ(T ) =
Ps(T )√

2πmH2ORgT

(
mol m−2 s−1

)
, (12)

where Ps is the water vapor sublimation pressure (Pa), mH2O
is the molar weight of water and Rg is the ideal gas constant
(J mol−1 K−1). Equation (12) is valid assuming zero partial pres-
sure of water in vicinity of the body. We discuss this approxima-
tion in Sect. 4.4. For non-zero pressure with the same tempera-
ture, the difference between pressures replaces Ps in the equa-
tion.

If this amount of water is removed from a layer with thick-
ness δ � R at the surface, the total water mass loss is
dm
dt

∣∣∣∣∣
H2O

= ϕ(T ) mH2O 4πR2 . (13)

For the refractory part (i.e. dust) of the structure, we assume that
the grains are freed in the surface layer and matter gets released
immediately adding their contribution to the total mass loss. This
can be compared to the case without dust mantle formation of the
cometary nucleus model (see Sect. 2.2.3).

Expressed as a decrease in radius, we can write
dR
dt

= ϕ(T )
mH2O

ρH2O,matrix
, (14)

where ρH2O,matrix is the macroscopic water density in the matrix
(taking into account porosity). The initial conditions shown in ta-
ble 2 yield a ρH2O,matrix = 276 kg m−3. At fixed porosity, increas-
ing the amount of refractory components reduces the available
water, hence reducing ρH2O,matrix and increasing the total mass
loss. The assumption that the dust is freed with the sublimation
of the ice is not valid for high dust to water ratios, since the co-
hesive forces between dust particles would become relevant.

It is noteworthy that if the temperature is kept constant and
the body has a homogeneous structure, expression (14) is inde-
pendent of the body’s total radius, leading to a constant decrease
in radius over time. Fig. 3 shows the result of a cometary nucleus
model run of an initially 10 m sized body, which exhibits this
behavior and motivates the analytic sublimation formula. This is
true, as long as (i) the total radius is much larger than the radial
extent of the surface layer (R � δ) and (ii) there are no interior
temperature gradients that would change the surface tempera-
ture.

Furthermore, we would like to point out that the analytic sur-
face sublimation model is identical to the full cometary nucleus
model (Sect. 2.2) assuming: (i) no heat transport of any sort, i.e.
the temperature inside the body’s structure is the same as in the
disk, (ii) no other species than pure crystalline water ice and dust
to be present and (iii) no mantle at the surface to form.
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Fig. 3. Almost linear decrease in radius over time (green line, left
axis) for a fixed surface temperature of 169 K using the cometary
nucleus model. The derivative dR/dt is plotted in orange (right
axis).

2.4. Initial conditions

2.4.1. Disk

The initial gas surface density of the disk is given by a power
law with exponential outer cut-off boundary (as proposed by
Andrews et al. 2010) and a normalization constant Σ0, corre-
sponding to the surface density at approximately 5.2 AU, which
determines the total disk mass.

Σ(r) = Σ0

( r
5.2 AU

)−β
exp

−
(

r
Rout

)(2−β) , (15)

where Rout is a constant exponential cut-off radius, β is the
power law exponent, determining the slope of the surface den-
sity profile. The disk evolution is then given by the Shakura-
Sunyaev α parameter and the photo-evaporation (Sect. 2.1.2).
We leave α fixed and run simulations with (nominal) and with-
out photo-evaporation. The values, which are fixed in all results
in this paper, can be seen in table 1. The initial total gas mass
in the disk is accordingly 0.05 M�, which is the disk mass that
Weidenschilling (1977) uses for the minimum mass solar nebula
(MMSN). The star was assumed not to evolve during the disk’s
lifetime and the temperature and radius values are taken at a time
of 1 Myr of stellar evolution according to Baraffe et al. (2015).

In order to gauge the influence of the initial parameters, we
varied the total mass, lifetime and heating mode of the disk and
the results and changes to the nominal parameters can be found
in Sect. 3.3.2.

2.4.2. Solid body

To reduce complexity, we chose to model a body consisting only
of water ice and dust, without any other volatile species. Water
is the main volatile component (see Marboeuf et al. 2014, about
the composition of planetesimals in disks) and the last one to
sublimate. Using the parameters listed in table 2, the result-
ing total density of the body is ∼ 0.42 g cm−3 which is of the
same order of magnitude as the recently found bulk density of
(0.533 ± 0.006) g cm−3 (Pätzold et al. 2016) and the previous
value of (0.470 ± 0.045) g cm−3 by Sierks et al. (2015) of the
comet 67P/Churyumov-Gerasimenko. Addition of other volatile

Table 1. Physical parameters for the nominal disk initial struc-
ture and evolution

Parameter Value

Stellar mass 1 M�
Stellar radius 2.416 R�(a)

Stellar effective temperature 4377 K(a)

Helium fraction 0.24
Power law slope β 0.9(b)

Cut-off radius Rout 50 AU(b)

Inner boundary radius 0.03 AU
Surface density at 5.2 AU Σ0 268.5 g cm−2(c)

Shakura-Sunyaev α-viscosity 2 × 10−3

Photo-evaporation parameter Ṁwind 10−7 M� yr−1

References.
(a) Baraffe et al. (2015) at 1 Myr;
(b) Andrews et al. (2010);
(c) MMSN (e.g. Weidenschilling 1977)

Table 2. Physical parameters of the cometary nucleus

Parameter Value

Initial nucleus porosity 70 %
Dust mantle porosity 70 %
Tortuosity

√
2(a)

Initial dust/ice mass ratio 1(b)

Water ice bulk density 920 kg m−3(c)

Dust bulk density 3000 kg m−3(c)

Enthalpy of sublimation [51983.9 − 20.0904 T ] J mol−1(d)

Heat conductivity [0.0028 + 1.3/T ] W m−1 K−1(c)

Volumetric heat capacity [1582 (114.8 + T )] J K−1 m−3(c)

References.
(a) Carman (1956); Mekler et al. (1990); Kossacki & Szutowicz (2006);
(b) Marboeuf et al. (2014);
(c) Marboeuf et al. (2012);
(d) Washburn (1928); Delsemme & Miller (1971)

species would increase the density to values even closer to these
measurements. We chose to represent realistic dust to ice mass
ratios (∼ 1) (Marboeuf et al. 2014) instead of tuning the ratio to
represent measured bulk densities.

The initial location of the body in the disk is set to a distance
10 % further away from the star than the snowline, unless other-
wise stated. This starting position allows the body to relax to the
environment so that initial conditions are forgotten by the time
we start computing evaporation.

For heat capacities and conductivities of dust and water ice,
we adopted the values listed in Marboeuf et al. (2012) and refer-
ences therein.

3. Results

We first (Sect. 3.1) present the test cases comparing the two dif-
ferent sublimation models described in Sects. 2.3 and 2.2. Then,
we study which bodies are able to cross the snowline (Sect. 3.3).
Finally, the results of simulated bodies crossing the snowline that
were mainly obtained with the full cometary nucleus model for
different varied quantities are presented in Sect. 3.3.
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3.1. Comparision between the two sublimation models

Fig. 4 shows the results for a test case, in which we placed a
body with an initial radius of 10 m and the composition shown
in table 2 into the nominal disk (see table 1). The initial semi-
major axis is set to 6 AU at time zero of the disk evolution. We
find almost indistinguishable outcomes between the analytical
surface sublimation model and the cometary nucleus model for
this particular test.

For the larger, 100 m radius case (Fig. 5), the drift timescale
is much larger. To save computation time, the body is initially
positioned closer to the star than the initial snowline, namely at
4.3 AU. The initial bulk temperature for the analytical sublima-
tion is, by construction, assumed to be equal to the local disk
gas temperature. To estimate the influence of the initial temper-
ature of the body, we ran two different cases with the cometary
nucleus model: one with a pre-heated body, i.e. the initial bulk
temperature is set to 170 K, which is the local gas temperature,
and one without pre-heating, i.e. an initial bulk temperature of
20 K. The results are discussed in Sect. 3.4.

For equal initial conditions and under the assumption of ini-
tial homogeneous temperature in the nucleus, the analytical so-
lution for the sublimation, i.e. equation (12), and the cometary
nucleus model do agree well in the tested size range of bodies
(i.e. meters to 100 m). The agreement worsens with increasing
size even in the absence of a dust mantle (see Sect. 3.3.3).
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Fig. 4. Comparison of the comet model solving the internal
structure and the analytical solution (equation 12) for 10 m sized
bodies. The solid lines show the distance to the star (left axis)
with dots representing the locations where the bodies shrank to
a size of 10 cm while the dash-dotted lines show the remaining
mass fraction (right axis). The lines of the two different model
solutions are essentially indistinguishable. The initial position is
10 % above the snowline location at time zero in the nominal
disk. The barely visible kink in the mass fractions at 600 yr is
due to reaching the threshold temperature of 150 K, where the
sublimation models are started.

3.2. Snowline versus drift velocity

Temperature and pressure determine the classical snowline po-
sition during the evolution of the disk. In our nominal disk (see
table 1), the classical water ice line, i.e. the snowline, was deter-
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Fig. 5. As Fig. 4, but for a 100 m sized body. The initial position
is chosen starwards of the snowline, i.e. at 4.3 AU. One of the
cometary nucleus model runs is started with a low initial bulk
temperature of 20 K (green line), whereas the other is pre-heated
to the local gas temperature at the starting location (170.16 K),
which is the implicit assumption of the Analytical Sublimation.
The lines of the analytical sublimation model and the preheated
comet model are barely distinguishable. The local gas tempera-
tures at the end of the calculation are 174.95, 175.07, 174.94 K
for the preheated, analytical and the cold model respectively.

mined (see Fig. 6). Due to external photo-evaporation, the disk
vanishes almost completely after 2.8 Myr. As the inner disk sur-
face density decreases, direct irradiation from the central star can
invert the cooling of the disk to a heating (via the direct irradia-
tion included in Tl in equation 1) in the inner region. Thus, the
snowline motion reverts as well. This would not happen in a disk
without photo-evaporation, where the disk gradually thins out as
a result of the viscous evolution only, i.e. depending solely on α,
and the snowline motion never changes direction.
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Fig. 6. Surface density evolution for the nominal disk. The
dashed, blue line shows the snowline position.

In the nominal disk model we calculated the drift speed (see
Sect. 2.1.3) of solid bodies in the size range from 10−2 m to
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Fig. 7. Drift velocity and regime in an irradiated disk with photo-
evaporation. All the bodies with sizes in the red area in Fig.
(a) cross the snowline, since they drift faster than it moves to-
wards the central star. The snowline is determined using tab-
ulated values for the temperature and pressure. After approxi-
mately 2.4 Myr, the snowline position starts to move away from
the star, due to the disks dispersal. Thus, the ratio of the body’s
drift speed to the snowline speed is negative and the log in Fig.
(a) is no longer defined and the ratio is set to a value of 12 to in-
dicate that all the bodies will cross the snowline in that phase. In
order to smooth out numerical artifacts, we applied a Gaussian
filter in horizontal direction.

105 m over time, as well as the change of the snowline position.
For objects bigger than 105 m, gas drag is not the relevant source
of migration, but the torque exerted by density waves (type I mi-
gration) (Goldreich & Tremaine 1979; Ward 1997). The ratio of
the body’s drift speed to the snowline speed is shown in Fig.
7(a). Important for our goal is the size range where the transi-
tion from bodies moving slower than the snowline to faster than
snowline speed lies. In Fig. 7(a) the color code is chosen such
that this transition lies in the white region. We found that plan-
etesimals with R & 100 m will no longer drift towards the star

fast enough to cross the snowline, thus the water ice on these
bodies will never sublimate. To help interpret the figure, the drag
regime of the different sized bodies is plotted in Fig. 7(b). A size
of roughly 100 m happens to coincide with the transition from
Stokes to quadratic drag regime emphasizing the need to take
into account the different drag regimes.

3.3. Parameter study of snowline crossing bodies

In this part of the results section we present the evolution of
drifting solid bodies in the protoplanetary disk. These results –
obtained using the cometary nucleus model – are presented in
Sect. 3.3.1, 3.3.2 and 3.3.3, in which the radius, disk conditions
and dust mantle properties are varied.

3.3.1. Initial radius dependence

Figs. 8(a) and 8(b) show the innermost locations reached by dif-
ferent sized bodies, drifting from outer regions of the disk. In the
following, we call this position the location of complete disinte-
gration. To get the results, the full cometary nucleus model mode
was used. The composition of the different sized bodies was as-
sumed to be equivalent and corresponds to the values given in
Sect. 2.4 and table 2. No dust mantle is present in all shown
cases, i.e. dust mantle formation is excluded.

When the body reaches high enough temperatures it under-
goes ablation and thus loses mass. After shrinking to a radius
of 10 cm the location is marked as a dot in Fig. 8(a). This loca-
tion is considered to be the the location of complete disintegra-
tion, since a centimeter sized icy body at those temperatures and
pressures has a very short lifetime (e.g. Lichtenegger & Kömle
1991). 20 bodies are modeled starting at different times over the
disk lifetime for each evaluated size. Initially, the bodies are lo-
cated 10 % further away from the star than the snowline location
at the specific starting time.

The lowest included initial radius is 0.5 m. Due to numerical
and physical assumptions of the model, such as not tracking sin-
gle grains, lower initial radii are excluded and these pebble sized
objects are the main subject of other studies (e.g. Dra̧żkowska &
Alibert 2017; Schoonenberg & Ormel 2017).

It can be seen in Fig. 7(a) that bodies with radii on the order
of one meter drift the fastest in the protoplanetary disk (see also
Weidenschilling 1977; Adachi et al. 1976). Bodies with radii
lower than one meter drift slower and thus only cover a small
distance after crossing the snowline. The smallest body in our
dataset, with an initial radius of 0.5 m, loses all of its mass and
stops very close to the snowline due to its relatively slow drift.
The tabulated snowline position values and the sublimation are
calculated independently. Therefore, the good agreement of the
snowline location in Fig. 8 with the location of complete disinte-
gration of the 0.5 m sized body shows that the tabulated snowline
position is a reasonable choice of reference.

A larger than meter-sized body with identical composition
will also undergo sublimation and thus lose mass. As a con-
sequence, it gradually speeds up until it reaches maximal drift
speed at a radius of one meter. This size will be reached closer to
the star than the equilibrium position of the snowline. Thus, the
object will ultimately drift farther than an initially smaller body
until complete disintegration. The difference in the position of
complete disintegration will decrease with increasing size, be-
cause the initial drift slows down and thus only little distance is
traveled before reaching a smaller size. However, the difference
will stay bigger than zero, and therefore bigger bodies always
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Fig. 8. Comparison of locations of complete disintegration of
different sized bodies without a dust mantle. In panel (a) the dis-
tance to the star is measured in AU and the dots represent the
locations where the body shrank to a size of 10 cm. The dashed,
cyan line indicates the evolving position of the P-T tabulated
snowline, and the regions where only icy solid bodies, only water
depleted solid bodies, and the region that is injected with drifting
icy bodies are colored and labelled. In panel (b), the same data is
shown but measured in units of the evolving, tabulated snowline
position (1 corresponds to the snowline position, 0 to the central
star).

cross a larger distance before they completely disintegrate. This
asymptotic behavior can be seen in Figs. 8 and 8(b). Since the
difference of the position of disintegration between a five meter
sized and a ten meter sized body is negligible compared to other
effects (see e.g. Sect. 3.3.3) and due to the numerical cost of sim-
ulating a large body, no larger sizes were included. There is no
reason to expect the position of disintegration of larger bodies
to change significantly compared to the one of ten meter sized
bodies up to the 100 m size boundary, where the bodies can no
longer cross the snowline by radial drift (see Sect. 3.2).

To show that the results can be well decoupled from the disk
evolution, Fig. 8(b) shows the same results as Fig. 8(a), but in-
stead of measuring the distance from the central star in units of
AU, it is measured in units of the snowline position rsnowline (1
corresponds to the snowline location, 0 to the central star). The
ratio of the location of complete disintegration to the snowline
position stays approximately constant in time.

We would like to point out that this behavior is only found if
the bodies are not covered by dust mantles. For bodies with dust
mantles, a similar size-dependent behavior is only recovered for
exactly equal mantle thicknesses using the constant dust mantle
mode described in Sect. 3.3.3. However, the scaling of the man-
tle thickness depending on size would be the dominant factor but
is to our knowledge not well constrained.

The aforementioned time-decoupling of the effect by using
units of snowline distance can be used to tentatively explore the
overall mass fraction of drifting bodies that should be found at a
given distance from the star – measured in units of the snowline
position – at all times in the disk (Fig. 9). The mass fraction value
shown is an integral over the assumed distribution of bodies (see
Sect. 4.1), which was cut such that all included sizes do cross
the snowline at all times of the nominal disk evolution (i.e. 1 kg
to 1 × 109 kg corresponding to 8 cm to 76 m). For simplicity, the
density was fixed to the nominal value of 0.422 g cm−3 and the
analytical sublimation model was used. To help interpret the re-
sults, we note that the largest bodies which are abundant for flat
slopes do drift the furthest (see Fig. 8), but do not lose a lot of
their mass starwards of the snowline. The most efficient transport
of mass is achieved by meter sized bodies who are most abun-
dant in the -1.83 slope case, where the location at which 50 %
of solids remain in the disk is moved from the snowline to two
percent starwards of the snowline.

3.3.2. Disk influence

In addition to the nominal disk with values given in table 1,
we repeated the calculations for bodies with a radius of 10 m
embedded in disks for which we modified one parameter com-
pared to the nominal case: a light disk (Mdisk = 0.01 M�, i.e.
Σ0 = 53.704 g cm−2), a massive disk (Mdisk = 0.1 M�, i.e. Σ0 =
537.046 g cm−2), a long-lived disk (Ṁwind = 3 × 10−9 M� yr−1),
and a disk without heating by irradiation of the central star
(Tl = 0 in equation 1). As before, the cometary nucleus model is
started multiple times in all the different disk evolution calcula-
tions. Initially, the body is separated from the star by a distance
10 % larger than the classical snowline distance. To cover the
full evolution of the disk, the starting times of the individual cal-
culations are scaled with the lifetimes of the different disks. The
markers labelled "no mantle" in Fig. 10 show the temporal mean
of all these calculations for the different disk cases with indicated
standard deviations (1σ error-bars). As in Fig. 8(b), the distance
is measured in units of the classical snowline.

We find, that most of the different tested disks have influ-
ences on the locations of complete disintegration in units of clas-
sical snowline distances on the percent level only. In Fig. 10 it
is shown that different disk masses and lifetimes (controlled by
photo-evaporation) do not change the result significantly.

However, the non-irradiated disk has a very different temper-
ature profile once the viscous heating is no longer dominating.
Thus, the snowline location is altered to a large extent moving,
at late times, very close to the star (i.e. to 0.14 AU during the
calculation of the latest datapoint). Due to the proximity of the
snowline to the star, the slope of the surface density and thus
the pressure gradient starts to decrease, hence reduces the drift
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Fig. 9. Remaining mass fraction in the overall population of bodies crossing the snowline (1 kg ≤ m ≤ 1 × 109 kg) with shaded
bands indicating the standard deviation due to the evolving disk. The mass shown is an integral over a distribution of masses with
the indicated power-law slope and a mean over time in the disk. More details can be found at the end of Sect. 3.3.1.

speed. Therefore, the location of complete disintegration is lo-
cated closer to the snowline, i.e. only 3 % below it, which is sig-
nificantly different from the other cases.

Overall the resulting disintegration locations are robust
for the contrasting tested disk cases at many different times.
However, the local pressure gradient has a strong influence.

3.3.3. Dust mantle influence

As discussed in Sect. 2.2.3 the formation of a dust mantle on a
cometary nucleus is likely. We assume here the same for a disk-
embedded body and quantify its potential influence. An impor-
tant factor is the size of the body, since the process of dust mantle
formation depends on the gravitational force. In general, bigger
grains are more easily ejected from small nuclei. We consider
here thin dust mantles to initially exist on bodies in the gas disk
with radii of 10 m and evaluate the dust mantle evolution and the
influence on the location of complete disintegration. Our model
includes dust formation and removal (described in Sect. 2.2.3
and Marboeuf et al. (2012)) without cohesive strength (in the
following called the "unstable" model).

To estimate the extreme case, where the dust mantle cannot
be removed, simulating an infinitely large cohesive strength, we

artificially set the dust mantle to a constant thickness (called the
"constant" model).

In Fig. 11, it can be seen that using the unstable model the
mantle is removed very quickly and the position of complete
disintegration differs only slightly from the one without mantle.
However, if the dust mantle cannot be removed due to strong
cohesive strength and surface sublimation is thus always sup-
pressed, the disintegration location is up to 1 AU closer to the
star for a 10 cm thick mantle. In Figs. 10 and 12, the less extreme
case of a 5 cm thick constant dust mantle is shown. In the former
figure, the temporal mean of the location of complete disintegra-
tion for different disks is depicted and in the latter its temporal
evolution for the nominal disk is shown.

These results demonstrate the importance of the cohesive
strength and thickness of the mantle in determining the thermal
evolution of the body. The thickness of the dust mantle is not
well constrained by observations, since data is very sparse. The
permittivity probe SESAME-PP of the Rosetta mission showed
that the first meter is more compact than the rest of the comet
67P (Lethuillier et al. 2016). However, no estimate on the to-
tal thickness can be made from this single data point and it is not
clear what the composition (possible volatile content) and poros-
ity of this compact layer is. Furthermore, it is not clear how to
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Fig. 11. Sublimation comparison of a 10 m sized bodies with dif-
ferent dust mantle thicknesses and removal processes. The leg-
end is ordered in increasing sublimation time. The smooth line
marks the location of the body in time (left axis), while the dots
at the end of the line indicate shrinking to a radius of 10 cm as
in Fig. 8 and 12. The dash-dotted lines indicate the mass frac-
tion compared to the initial mass of the same colored case (right
axis). The kink that is visible in the mass fraction of the unstable
(initially 5 cm thick) mantle stems from the mantle breaking up
at that point in time.

scale mantle properties from an object with dimensions on the
order of kilometer to one with a radius of ten meter.

The large influence of the dust mantle is caused by the
change of the sublimation process because free sublimation at
the surface is no longer possible if the object is covered by a
mantle. Sublimation in the interior still happens, it is however
suppressed by the relatively slow diffusion of the released water
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Fig. 12. Locations of complete disintegration in the nominal disk
of initially 10 m sized bodies with and without a dust mantle.
The classical water ice line (snowline) in the disk is indicated
for reference.

vapor through the dust mantle, since the small pore radius of the
dust mantle limits diffusion.

By analyzing the interior structure of the numerically mod-
eled body, we found that the low thermal conductivity of the
dust mantle and porous matrix does not play a dominant role.
The body’s interior is heated on short timescales on the order
of years for the size range we are interested. This can be seen
in Fig. 13, where almost no radial gradient in terms of temper-
ature is visible. This behavior is found for all small body cases
with radii of up to 100 m. For larger bodies or much thicker dust
mantles, the picture can change.

The fact that we do not remove the dust mantle by some
process is representative of infinite cohesive strength. Thus, the
results for a body without dust mantle and the one with con-
stant mantle should be interpreted as lower and upper bound-
aries for a realistic physical result and the results in Figs. 10 and
12 should be interpreted as such. Measuring the distance from
the body to the central star in units of snowline distances again,
the location of complete disintegration without dust mantle is at
∼ 0.9, whereas the one with a dust mantle goes down to 0.5 of
the snowline distance to the star. However, for a more realistic
result, a dust mantle formation and removal model that takes the
cohesive strength of the material into account would be needed.

3.4. Internal thermal evolution

To analyze the importance of the internal thermal evolution of
the body, we first take a look at the results of the comparision of
the analytical surface ablation model and the cometary nucleus
model (Sect. 3.1) without a dust mantle.

The underlying assumption of the analytical ablation model
is an already equilibrated temperature throughout the body’s
full structure and the gas. Hence, as expected, the pre-heated
cometary nucleus model results are closer to the analytical
model. This good agreement between the two models shows that
a numerical treatment of the internal evolution is not necessary
for bodies composed mainly of dust and water ice with sizes
smaller than 100 m and with initially equilibrated temperatures.
For many applications of pure water sublimation it is not neces-
sary to invoke a full model keeping track of the internal structure
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and temperature because heat conduction - and thus tempera-
ture equilibration throughout the body - happens at timescales
of years. E.g. for a ten meter sized body, the thermal timescale
τT ' R2ρc/K, where ρc is the density times the heat capacity and
K is the heat conductivity (see table 2), is approximately 0.3 yr.
Thus, the internal temperature of a meter sized body spiraling
towards the star on timescales of thousands of years is expected
to be in thermal equilibrium with the disk.
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Fig. 13. Interior Temperature of an initially 10 m sized body cov-
ered by a 10 cm thick dust mantle. The number of layers is re-
duced to 15 compared to nominal runs for better visibility and
60 timesteps are merged into one block. The uppermost, dark
framed layer shows the dust mantle. Outside the body, the local
disk temperature is plotted. A radial temperature gradient is only
barely visible.

In the case of a 100 m sized body within the snowline but
without pre-heating, the body shrinks faster than the heat is
transported to the interior. However, the cold interior acts as a
heat sink. Thus, heat is conducted to the interior which leads to
cooler surface temperatures and slower sublimation (see Fig. 5).
This behavior is only reproduced at relatively high temperature
regions closer to the central star than the snowline where subli-
mation is more efficient than heat conduction.

For bodies covered with a dust mantle, the internal temper-
atures that are reached are significantly higher than for bodies
without a dust mantle. Similar is the observed fast heat conduc-
tion: for a 10 m sized body very little variability in the radial
direction is visible (Fig. 13), indicating that sublimation does
not lead to a faster shrinking than heat can be conducted to the
interior. Thus, the body first becomes isothermal before it disin-
tegrates. No significant thermal insulation increase by the mantle
is found: as in the case without a dust mantle, heat conduction
acts on timescales of years.

We remark that a numerical treatment of thermal conduc-
tion is required to track changes on timescales of years, i.e. on
timescales on the order of the orbital period. Hence, assuming
an isothermal interior is only valid for objects on almost circu-
lar orbits and should not be applied to bodies on eccentric orbits
(such as comets).

We conclude that the interior of drifting small bodies (R <
100 m), composed of water ice and dust grains, with zero eccen-
tricity and inclination can be assumed to be isothermal. With

that, our analytical model reproduces well the results of the
cometary nucleus model. We note that for planetesimals with
radii > 10 km, differentiation due to heating by 26Al (Sect. 2.2.1)
can occur (Lichtenberg et al. 2016). For a differentiated body
with an ice layer on the surface, sublimation is not hindered by
a dust mantle and the analytical sublimation formula becomes
appropriate again if no heat is lost to the interior, e.g. if the body
is in thermal equilibrium.

4. Discussion

A number of simplifications and assumptions were made to ob-
tain the presented results. These require discussion and some ad-
ditional calculations that we describe in this section. In addition
to that, a successful test of the radial drift formula is presented
in appendix A.

4.1. Collisions

In a protoplanetary disk, collisions are a key evolution factor. In
this section, we calculate collision rates between our test body
– called the target – and a population of other bodies present in
the disk – the impactors – and compare them to the timescale of
sublimation, which we broadly estimate to be ∼1 × 103 yr.

Both, the target and the population of impactors undergo ra-
dial drift. Even though radial drift timescales can be as short as
1000 orbital periods (Armitage 2019), they always remain much
larger than the orbital period. We calculate collision rates due to
two different processes: (a) caused by coupling to the gas (differ-
ence in radial and azimuthal velocities) of different sized bodies
and (b) due to eccentricity and inclination distributions induced
by gravitational stirring and assuming no radial drift. The latter,
which we call the orbital collision rate, is applicable for larger
bodies that no longer drift significantly, while the former is ap-
plicable for smaller bodies and we call it Stokes collision rate
to emphasize the coupling to the gas which is quantified by the
Stokes number.

In order to compute the collision rates, a statistical approach
using a prescribed distribution function of solids is required.
For that, the two body (or "particle in a box") approxima-
tion (Safronov 1969), i.e. to neglect the influence of the cen-
tral star, was used to estimate collision rates until Nakazawa
et al. (1989a,b); Ida & Nakazawa (1989), and independently
Greenzweig & Lissauer (1990, 1992) treated collisions using
Hills approximation (Hill 1878). The underlying, adopted prob-
ability of a test particle hitting a gravitating object (e.g. a planet)
during one orbit was derived by Öpik (1951). However, this ap-
proach can only be used for the orbital collision rate. For the gas
coupled collision rate, we apply the "particle in a box" approach
(Safronov 1969). A detailed description of the approaches can
be found in appendix C and the underlying, assumed mass dis-
tribution of bodies as a power law with slope α is described in
appendix B.

The resulting integrated orbital collision rates of our nom-
inal target body with impactors larger than the indicated min-
imum mass (x-axis) are shown in Fig. 14(a). Collisions of the
target with large impactors mi > mt are rare for all considered
eccentricity and inclination distributions and are thus negligible.
Collisions with smaller bodies have to be treated with the Stokes
collision rate prescription (appendix C.2) and are shown in Fig.
14(b). In both cases, the rates were integrated from the mini-
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Fig. 14. Collision rates of the nominal target body (table 2) with
a radius of 10 m integrated over impactor masses larger than the
indicated minimum mass. Results are shown for three different
slopes of the impactor mass distribution and in panel (b) addi-
tionally for three different eccentricity and inclination values.
eM−m

eq is the equilibrium eccentricity in the vicinity of a mars
mass perturber (Ida 1990; Thommes et al. 2003). The red shaded
region depicts collisions more frequent than once every thousand
years and the target mass mt is indicated.

For a very flat mass distribution, relatively high-energy im-
pacts with bodies with diameters larger than 1 m – leading to
fragmentation (Windmark et al. 2012; Blum 2018) – are fre-
quent, i.e. are happening about once per 100 yr, which is com-
parable to the simulation time of the nominal, drifting body dis-
cussed in Sect. 3. If the mass distribution is steeper, the target is
less likely to encounter this kind of collisions.

In terms of energetics, the collisions do not contribute large
amounts of energy compared to the thermal energy of the body
or the total sublimation energy (see table 2): Integrating over
all sizes, the kinetic energy is . 7 × 106 J yr−1 (using the defini-
tion of the "reduced mass kinetic energy" in Stewart & Leinhardt

7 The Stokes collision rates for bodies more massive than the target
agree to an order of magnitude precision with the orbital collision rates
and do not contribute significantly to the integral.
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Fig. 15. Collisional energy calculated with the Stokes collision
rate, integrated over impactor masses larger than the indicated
minimum mass. The energy is measured in units of the energy
required to heat the body by one Kelvin. The target properties
and impactor mass distributions are the same as in Fig. 14 and
the target mass mt is indicated.

(2009)), which is ∼ 4 × 10−4 yr−1 of the energy required to heat
the body by one kelvin and ∼ 3 × 10−7 yr−1 of the total subli-
mation energy. The yearly collisional energy deposited on the
target by a population of impactors in units of the heat capacity
of the target is shown in Fig. 15. For a smaller, 1 m sized body,
the relative numbers increase by almost an order of magnitude.
However, the drift and sublimation timescales are also reduced
for this smaller body, again resulting in negligible heating by
collisions during this stage of the sublimation process.

Most of the energy input results from collisions with bod-
ies with radii smaller than one meter (see Fig. 15). Locally on
the targets, the impacts by these smaller bodies are able to erode
away target material. This could be the most severe constraint on
the applicability of the presented model. The mass encountered
per year by the nominal target is ∼ 4 × 10−4 times its own mass.
Windmark et al. (2012) fitted erosion efficiencies based on lab-
oratory experiments for silicate grains. Using their velocity and
mass dependent fit (Windmark et al. 2012, equation 17), the total
eroded mass relative to the target mass is ∼ 8 × 10−2 % yr−1. This
would imply that the assumption of a collision free sublimation
is only applicable on timescales . 10 yr. Furthermore, for col-
lisions involving impactors with sizes comparable to the target,
fragmentation of both objects can happen and only a remnant
with mass smaller than the masses of each object remains but
Fig. 14(b) shows that this comparable-size case is rare and can
be safely ignored. The erosion rates in the regime of collisions
with meter-sized bodies is not well studied and applying the fit
of Windmark et al. (2012) is therefore an extrapolation with its
inherent flaws. Using the lower limit of the erosional prescrip-
tion for porous icy agglomerates used in Krijt et al. (2015) yields
smaller erosion rates ∼ 2 × 10−2 % yr−1 translating to erosion of
less than 7.5 % of the bodies mass over the time where sublima-
tion was active (T > 150 K) in the numerical simulations shown
in e.g. Fig. 4.

We conclude, that during the crucial short phase (∼ 100 yr −
1000 yr), where sublimation and fast radial drift take place, col-
lisions with small bodies are happening frequently. The results
presented in Sect. 3 are only strictly valid if either the surface
density of solids is reduced (e.g. by not converting all solids to
pebbles, by less efficient settling, or by accumulation of solids in
planets), or erosion is less efficient in the relevant mass regime
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(large uncertainties of extrapolation of laboratory experiments).
Otherwise, erosion by collisions could become an additional rel-
evant mass loss mechanism. In terms of thermal energy, colli-
sions do not heat the body, thereby justifying the thermal balance
model we presented in Sect. 2. The fast erosion of meter sized
bodies is the main argument against their presence in disks. In
this work, however, we postulate their presence, which could be
justified by frequent enough fragmentation of larger bodies.

We note, that the retention of a dust mantle is very hard to
achieve if collisions are eroding away the uppermost layers of
the body. A mantle of centimeter thickness is eroded by colli-
sions with pebbles in less than 10 yr.

4.2. Gas versus surface temperatures

D’Angelo & Podolak (2015) showed that for small bodies (R <
10 km) the bulk temperature of the body is in equilibrium with
the gas after less than 500 orbits (see Fig. 20 in D’Angelo &
Podolak (2015)). In their work, the entire body was heated and
reached equilibrium temperature in this amount of time, whereas
in our full model, we only assume equilibration of the temper-
ature in an uppermost, thin layer. Instantaneous heat exchange
from the thermal bath, i.e. the disk, to the body is thus well jus-
tified.

4.3. Frictional heating

In this work, heating due to interactions with the non-Keplerian
gas is not taken into account. D’Angelo & Podolak (2015) cal-
culate the equilibrium value of the surface temperature for their
planetesimals to be (D’Angelo & Podolak 2015, equation 38)

(T eq
s )4 ≈ T 4

g +
CDρ0

32σεs
|vg − vK|3 , (16)

where CD is the drag coefficient, σ is the Stefan-Boltzmann con-
stant and εs is the thermal emissivity (for a black body εs = 1).
To derive this equilibrium value, a fraction of CD/4 of the to-
tal collisional energy is assumed to be transmitted as heat to the
body, which corresponds to an upper limit (Podolak et al. 1988).

For a simple estimate, using the typical values ρ0 =
10−9 g cm−3, Tg = 140 K and η = 4 × 10−3, frictional heating
yields a negligibly small temperature increase of 8 × 10−4 K for
a black body. Only in very dense regions of the disk or poten-
tially in the atmospheres of planets could a significant change
occur.

4.4. Water vapor pressure

Disk water vapor can change the sublimation rate and even lead
to deposition of water onto bodies if present in high enough
abundance (Pvapor > Ps(T )). In an ideal case, where all other
solid bodies in the disk do not move radially and the disk is not
evolving, Pvapor < Ps(T ) everywhere. Hence, no water would
condense onto the surface of a body drifting by. However, if fast
drifting pebbles are present, the water vapor surface density can
be replenished by diffusion of the freshly released vapor star-
wards of the snowline (Ros & Johansen 2013; Schoonenberg
& Ormel 2017; Dra̧żkowska & Alibert 2017). Another source
for out of thermal equilibrium water vapor could potentially be
stellar outbursts which episodically heat up the disk (Hartmann
& Kenyon 1996). To study constraints for deposition or sup-
pressed sublimation in detail, a model including the evolution
of all solids and water vapor in the disk would be needed. If a

significant amount of vapor is transported further away from the
star than the snowline, it could be deposited onto a drifting body,
reducing (for Stokes numbers s > 1) the drift speed, which al-
lows for even more deposition, potentially leading to growth to
planetesimal size.

A local source for enhanced water vapor pressure could also
be the drifting body itself, due to exhibiting a coma-like region
with enhanced partial pressure of water, reducing the sublima-
tion rate. The transport of gas or vapor away from the body is
not modeled here and would differ from the case of a comet due
to the disk gas interacting with the released vapor and the lack
of solar wind, which is absorbed in the disk. Our assumption of
no increased local partial pressure due to the coma is consistent
with a complete erosion of the coma by the disk gas.
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Fig. 16. Evolution of a 10 m sized body in the nominal disk
calculated with the analytical surface ablation model, with and
without water vapor pressure. The water vapor increases expo-
nentially depending on the local disk temperature up to a maxi-
mum of one percent of the local pressure.

If the partial pressure of vapor is smaller than the sublimation
pressure Ps but not zero, it reduces the sublimation rate com-
pared to the nominal results without vapor. In Fig. 16 we show
the influence of an artificially chosen, exponential increase of
partial pressure of water vapor (motivated by results of the peb-
ble based evaporation models of Schoonenberg & Ormel (2017))
up to one percent of the total pressure. The location to reach the
percent level is set to where the temperature is 176.6 K to avoid
deposition of water.

Under these assumptions, the water vapor moves the location
of complete disintegration farther in towards the star. Hence, in
the context of presence of water ice in solid bodies (the "dy-
namical" snowline), the results for the case without a mantle and
without water vapor in the disk is an upper boundary for the dy-
namical snowline location.
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5. Conclusions

We presented the application of a cometary nucleus model to
disk-embedded, radially drifting, spherical bodies, tracking the
thermodynamic evolution of the object. The body is assumed to
consist of only dust and water ice. Different properties of the
disks and the drifting bodies were explored and the time evolu-
tion of the disk was taken into account. The main focus of the
work was to constrain the regions that can be reached by drifting
icy bodies, ultimately determining the zone where some water
can be incorporated in solids and thus be accreted by growing
terrestrial planets.

Here, we summarize the key findings:

1. Almost independently of the properties and temporal evolu-
tion of the disk, drifting bodies with radii ≥ 1 m can trans-
port water ice at least ten percent closer to the star than the
location of the "classical" snowline before they completely
disintegrate.

2. If surface sublimation is not impeded in any way, e.g. by
the presence of a dust mantle, it is the dominant process for
the evolution of the object and can be modeled in a simple,
analytic way with good agreement with the results of a full
numerical model.

3. These results are applicable to bodies with radii ranging from
meters to 100 m. Smaller bodies never experience fast radial
drift, therefore the effect is suppressed, whereas bodies larger
than 100 m do not drift fast enough to even cross the snow-
line. In the range from tens to hundreds of meters, the dif-
ference in locations of complete disintegration is small. This
implies that if bodies in this size range are present, a quantifi-
able smearing of the water snowline results. In the absence
of meter-sized bodies, the snowline is given by the local disk
properties only.

4. A dust mantle covering the body suppresses surface subli-
mation and forces the internally released vapor to diffuse
through the mantle. For the extreme case of a non-breakable
mantle, this results in icy bodies drifting starwards to about
one half of the classical snowline position. However, the
presence and formation of a global dust mantle on a body
embedded in a protoplanetary disk is hindered by collisions
with pebble sized objects, because these collisions occur at
relative velocities typically leading to net mass loss, i.e. ero-
sion of the uppermost layers of the body. In particular, for
bodies smaller than meter-size a dust mantle is highly un-
likely to be kept due to the – relative to the total mass – large
erosion rates.

Multiple processes were not included and several assump-
tions were made to obtain the above results. We identified two
key processes that could affect our results and which should be
addressed in future works:

– Collisions with different sized bodies, mainly stemming
from the difference in radial and azimuthal velocities due
to gas drag, are frequent for large solid fractions and would
mostly lead to erosion. For a model including multiple bod-
ies of different sizes, tracking the thermodynamic evolution
of each is necessary to properly estimate the general out-
come. A potential approach to reduce the numerical cost is
to use the analytic surface sublimation expression for objects
with low thermal variability over the course of an orbit (i.e.
low eccentricity and inclination).

– Specific water vapor pressures influence sublimation rates
and thus the results are sensitive to this. To get fully consis-

tent results, it is required to take the water vapor distribu-
tion in the disk, including the contribution of the evaporation
bodies, into account.

The approximations of imposing the gas temperature as surface
temperature, neglecting frictional heating, and using a simple
formula for the radial drift is found justified for all discussed
parameters.

Of particular interest for future works is to test and poten-
tially apply the analytic sublimation formula in complete N-body
terrestrial planet formation models (as suggested by Coleman
& Nelson 2016). This would also include larger than 100 m
sized bodies because they could be moved across the snow-
line by N-body interactions (e.g. scattering or resonant trap-
ping) and bodies on significantly eccentric and inclined orbits for
which further research on their thermal evolution is necessary.
Furthermore, we did not include different chemical species that
could either be present as icy layers on the grains or as clathrates
and we leave the treatment of the evolution of bodies at differ-
ent, potentially observable ice lines to future works. Moreover,
the influence of including amorphous water ice and the phase
change to crystalline ice along with a model for dust mantle
growth including cohesive strength and predicting the properties
(pore size, porosity, tortuosity, thickness) of the formed mantle
should also be addressed in the future for a complete model.

The presented and proposed steps will help to constrain
compositions and available masses for terrestrial planet growth,
which will be increasingly required to match the precisions on
future observational constraints on planetary compositions.
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Appendix A: Radial drift formula
Treating the fastest drifting bodies in protoplanetary disks correctly, might re-
quire additional changes to the radial drift formula shown in equation (8). We
show here the validity of the assumptions made to derive this form of the equa-
tion, i.e. assuming orbit averaged drift τdrift � τorb, neglecting terms quadratic
in η, assuming no radial acceleration (dvr,s/dt = 0), and setting the particle’s az-
imuthal speed to Keplerian (vθ,s = vK) in the derivative term (first term in equa-
tion (A.2))8. The equations of motion in the disk plane (vz = 0) are (Takeuchi &
Lin 2002)

dvr,s

dt
=

vθ,s
r
−Ω2

Kr − ΩK

tstop

(
vr,s − vr,g

)
, (A.1)

d
dt

(
rvθ,s

)
= − vK

tstop

(
vθ,s − vθ,g

)
, (A.2)

where the subscript s and g are for the solid body and gas, respectively, and
tstop is given by equation (10). For a test, we assumed vr,g = 0 and solved the
equations of motion numerically. The results can be seen in Fig. A.1 and are
compared to the results of the analytical equation (8) with the same initial con-
ditions. After one stopping time has passed (dashed vertical line), the initially
Keplerian azimuthal (vθ,s(t = 0) = vK) speed slowed down to an equilibrium
value and the analytical expression (8) reproduces the differential equation re-
sults well. The radial drift speed is slowing down because the body moves to-
wards the star (dr/dt ∝ rη(r)). The order of percent difference after equilibration
of the azimuthal speed can thus be explained by this non-zero dvr,s/dt, which is
assumed to be zero to derive equation (8).This difference is small compared to
the uncertainties of the other processes treated in this work.

Appendix B: Mass distribution
Before assessing the collision rates, we discuss here briefly the required mass
or size distributions of the bodies in the disk. The differential mass distribution
n(mi) is defined such that n(mi)dmi is the number of bodies with masses in the
interval [mi,mi + dmi]. We describe n(mi) as a power-law with exponent α. Data
constraining the mass distribution is mainly available from solar system obser-
vations or from theoretical works treating collisional cascades or related effects

8 See Takeuchi & Lin (2002) for an instructive derivation of the sim-
plified equations
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Fig. A.1. Radial drift speed comparision between the approxi-
mate equation 8 and the numerical solution to the differential
equations. The radius is 1 m, the initial location is at 2 AU, tem-
perature and midplane density are constant over the disk and set
to 140 K and 2.5 × 10−10 g cm−3. Initially the body moves with
Keplerian speed in azimuthal direction and no radial velocity.
The dashed, vertical line marks the stopping time.

(e.g. Dohnanyi 1969; Tanaka et al. 1996; Makino et al. 1998; Benz & Asphaug
1999; Jutzi et al. 2010; Pan & Schlichting 2012; Belton 2015). The observa-
tional data is either gathered by direct measurements of Jupiter family comets
(e.g Fernández et al. 1999; Tancredi et al. 2006; Fernández et al. 2013), trans-
Neptunian objects (e.g. Bernstein et al. 2004) or asteroids (e.g. Gladman et al.
2009) or inferred from distributions of craters on planets, satellites or other mi-
nor planets (Zahnle et al. 2003; Singer et al. 2019). The measured and predicted
values of the slope α of the differential mass distribution – assuming a fixed den-
sity for converting size distributions – lie in the interval [−1.5,−2.1]. We note
that multiple studies found different slopes for bodies with radii smaller than km
(Zahnle et al. 2003; Fernández & Morbidelli 2006; Fernández et al. 2013; Singer
et al. 2019). Nevertheless, we adopt for our order of magnitude estimates simple
unbroken power laws with three fixed values for α: the upper (-1.5 as Morbidelli
& Rickman 2015) and lower (-2.1 slightly lower than the -2.05 found by Belton
2015) limits and the α resulting from the self-similar solution to the collisional
cascade (-1.83, Dohnanyi 1969).

To avoid divergence, the distribution needs to be cut at a lower and an upper
boundary. We choose an upper limit to the mass of 1 × 1024 g, corresponding to
a radius of 827 km. The lower cut is of particular importance for the resulting
collisions rates. We choose the typical pebble that can form by coagulation for
the lower limit: according to laboratory experiment it has a size of ∼1 cm and a
corresponding mass of ∼1 g (Blum 2018). To not underestimate the amount of
solids, we assume a 100 % conversion of dust to pebbles and larger bodies.

Appendix C: Collisions

C.1. Orbital collision rate

The averaged number of collisions between a target with mass mt and a popula-
tion of bodies with mass mi per unit time is written as (Nakazawa et al. 1989a;
Ohtsuki 1999; Inaba et al. 2001)

〈Γcol〉ti = h2
tia

2ΩKns(mi)dmi 〈Pcol〉ti , (C.1)

where 〈Pcol〉ti is a non-dimensional mean collision rate between bodies with
masses mt and mi that is independent of the total number of bodies, but depends
on the common semi-major axis, the radii and masses of the two bodies, and the
mass of the central star. The brackets indicate, that the mean collision rate is an
average over all eccentricities and inclinations given by a Reyleigh-type distri-
bution function with eccentricity (inclination) dispersions e∗ (i∗), which also in-
fluence the mean collision rate (Inaba et al. 2001). ns(mi)dmi = Σs/mi n(mi)dmi
is the surface number density of bodies with masses between mi and mi + dmi
with Σs the surface density of solids, whereas hti is the reduced Hill radius of
two bodies with masses mt and mi given by

hti =

(
mt + mi

3M∗

)1/3

. (C.2)

For the entire range of realistic eccentricity and inclination distributions,
Inaba et al. (2001) found that numerical results are well reproduced if the non-
dimensional mean collision rate is set to

〈Pcol〉 = min
(
〈Pcol〉med ,

(
〈Pcol〉−2

high + 〈Pcol〉−2
low

)−1/2
)
, (C.3)

where the individual parts are

– 〈Pcol〉high =
r̃2

p

2π

(
F (I∗) +

6
r̃p

G(I∗)
(ẽ∗)2

)
, (C.4)

where I∗ ≡ ĩ∗/ẽ∗,

F (I∗) ≡ 8
∫ 1

0

I∗2E[
√

3(1 − λ2)/2]
[I∗2 + (1 − I∗2)λ2]2

dλ (C.5)

and

G(I∗) ≡ 8
∫ 1

0

K[
√

3(1 − λ2)/2]
[I∗2 + (1 − I∗2)λ2]

dλ , (C.6)

where K and E are the complete elliptic integrals of the first and second
kinds,

– 〈Pcol〉med =
r̃2

p

4πĩ∗

(
17.3 +

232
r̃p

)
(C.7)

– 〈Pcol〉low = 11.3
√

r̃p , (C.8)

with the reduced eccentricity and inclination dispersions

ẽ∗ ≡ e∗/hti , ĩ∗ ≡ i∗/hti (C.9)

and

r̃p ≡ Rt + Ri

htia
. (C.10)

C.2. Stokes collision rate

For drifting, small particles we use the "particle in a box" approximation, where
the collision rate Γcol,ti of a gravitating target with radius Rt and with a number
of impactors with radius Ri is (Safronov 1969)

Γcol,ti = nV (mi)π(Rt + Ri)2∆v
(
1 +

v2
esc

∆v2

)
, (C.11)

with the volume number density of impactors nV (mi), the relative velocity ∆v of
the impactors with respect to the target and the mutual escape speed

v2
esc = 2G

mt + mi

Rt + Ri
. (C.12)

To estimate the collision rate, we use the squared sum of the difference in radial
(equation (8)) and azimuthal drift velocities of the target and impactors according
to their size. The azimuthal difference in velocity is given by ηvk | 1

1+s2
i
− 1

1+s2
t
|,

where si and st are the Stokes numbers of the impactor and the target (Birnstiel
et al. 2016). This excludes the additional velocity components due to Brownian
motion and turbulence. For a more complete discussion of relative velocities we
refer to Ormel & Cuzzi (2007).

The number density of a given size of impactors can be estimated given
three ingredients: their mass (or size) distribution discussed above, the density
of the gas and the local dust to gas ratio fsolid, which is locally enhanced due to
dust settling and can for low masses be described by (Youdin & Lithwick 2007;
Birnstiel et al. 2016)

fsolid =
0.01√

αZ
s+αZ

, (C.13)

where s is the Stokes number and αZ is a dimensionless parameter for turbu-
lent diffusion in the vertical direction. Here, we assumed a global dust to gas
fraction of 0.01 and we assume αZ ' α, which is true on orders of magnitude
level (Youdin & Lithwick 2007). For larger than meter-sized bodies the settling
is no longer well described by the processes considered in Youdin & Lithwick
(2007), since gravitational interactions between the particles become important.
Therefore fsolid is restricted to be fsolid ≤ 1 and this maximum is reached at
R2 ≈ 5 m. At meter size, the inclination caused by the viscous stirring of a larger
planetesimal in the vicinity of our target leads to approximately the same eleva-
tion above the midplane as the reduced scale height (Ida 1990; Thommes et al.
2003; Fortier et al. 2013).





4. Planet formation

4.1. Growth stages

The formation of a planet can be split into di�erent stages of growth. For solid
accretion, we already discussed a number of the relevant processes when calculating
the distribution of planetesimals and collision rates in Sects. 2.9 and 2.10. From
that, it becomes clear that there are multiple stages of solid accretion, depending on
which term in equations (2.104) and (2.105) dominates.
The early stage is when the largest of the planetesimals grows. However, it is

small enough to not stir the population of planetesimals. Therefore, the self-stirring
term in (2.104) dominates and leads to moderately large eplts and iplts. Additionally,
the planetesimal population is massive enough to lower the e and i of the largest
planetesimals via dynamical friction (Stewart & Wetherill, 1988; Ida, 1990), which is
a process that is distinct from viscous stirring, acts for di�erent sized planetesimals
(which is why we omitted it in the discussion in Sect. 2.9) and drives the system
towards equal kinetic energies for each particle. Therefore, dynamical friction will
lower the velocity and in turn the e and i of the largest body. This largest body, the
oligarch or protoplanet, will therefore have an orbit close to the midplane of the disk
where it has access to a lot of mass for accretion. Thus, it will accrete more mass
than smaller planetesimals and its gravitational focusing factor increases which in
turn makes it grow even faster. This is called the runaway solid accretion stage.
At some point, the protoplanet will become massive enough for the gravitational

stirring term in (2.104) to become signi�cant. The larger eccentricities and inclina-
tions of the surrounding planetesimals lead to a slower growth. This second regime
is called the oligarchic growth stage (Ida & Makino, 1992a,b, 1993). There is still
solid accretion occurring, but on a much slower timescale.
Any protoplanet or planetary embryo is surrounded by a gaseous envelope. This

envelope becomes more massive and contracts as the embryo gains mass. The gas
of the envelope interferes with the planetesimals passing through it and decrease
the relative velocity of the planetesimal to the embryo. At a certain distance to
the embryo, this e�ect is e�cient enough to force the planetesimal to spiral towards
the embryo and be accreted instead of passing by. Therefore, the capture radius
is increased compared to a body of the same mass but without a gaseous envelope
(Inaba & Ikoma, 2003; Ormel & Klahr, 2010). When following the prescription by
Inaba & Ikoma (2003), we �nd that the increase of the capture radius is already
signi�cant when the planet has a mass on the order of M⊕.
At embryo masses ∼10 M⊕, gas accretion becomes very signi�cant and the gas
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mass is comparable to the accreted solid mass of the protoplanet. This triggers
runaway gas accretion (Perri & Cameron, 1974; Mizuno et al., 1978; Mizuno, 1980;
Bodenheimer & Pollack, 1986; Pollack et al., 1996).

Already before that, the embryo starts to migrate in the disk, favoring the direction
towards the star. There are two main migration regimes, type I and type II migration.
They di�er by the depth of the gap that the planet carves into the disk structure.
The gap is created by the gravitational perturbation of the disk due to the embryo
(Crida et al., 2006). If the gap is shallow and the disk pro�le can be approximated
as unperturbed, the planet is in type I migration regime, whereas for clear gaps, the
type II regime applies.

In this chapter, we will describe the processes of gas accretion and migration. For
a detailed discussion of solid accretion, we refer to Sects. 2.9 and 2.10, where collision
rates are discussed. The collision rate can be used directly as a solid accretion term
when assuming perfect merging of the bodies. We would like to point out that a
complete review of planet formation is out of the scope of this work. Therefore,
we will focus on outlining the major processes which are required to interpret the
outcome of planet formation models and planetary population syntheses (Chapter
5).

4.2. Envelope structure

The amount of gas that can be accreted by a planetary embryo is very closely linked
to the structure of the gaseous envelope surrounding the planet. There is a supply of
gas provided by the disk, which could in principle be pulled into the region where the
protoplanet's gravity dominates compared to the stellar gravity. This region is called
the Hill sphere and Hill radius describing the size of the Hill sphere is for negligible
eccentricities

RH = a

(
M

3M?

)1/3

, (4.1)

for the case of a planet with mass M in orbit around a star with mass M? and
semi-major axis a.

However, the gas in the Hill sphere of the planet has to contract to allow for new
gas from the disk �lling up the freed spherical shell. In order for the envelope to
contract, it has to cool by radiating away energy. Therefore, it is clear that the
mass and energy transport equations have to be solved for the envelope structure to
determine how much gas can be accreted. In the following we present the spherically
symmetric case in hydrostatic equilibrium. However, numerical models show that
there are quite a number of non-symmetric e�ects and gas �ows (Szulágyi et al.,
2016).
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4.2. Envelope structure

4.2.1. Governing equations

The internal structure of the gaseous envelope of the planet is governed by the fol-
lowing set of equation, which is very similar to the stellar structure equations (e.g.
Bodenheimer & Pollack, 1986):

� Mass conservation
∂m

dr
= 4πr2ρ , (4.2)

wherem(r) is the total mass interior to the radius r and ρ(r) is the local density;

� hydrostatic equilibrium
1

ρ

∂P

∂r
= −Gm

r2
, (4.3)

where P (r) is the pressure and G is the gravitational constant;

� energy conservation

∂L

∂r
= 4πr2ρ

(
ε− P ∂V

∂t
− ∂E

∂t

)
, (4.4)

where L(r) is the luminosity, ε(r) is a local energy source, V = 1/ρ and E is
the internal energy per unit mass;

� radiative transfer

� given in convective regions � with e�ective convection � by the adiabatic
gradient

∂T

∂r
=
T

P

(
d lnT

d lnP

)
s

, (4.5)

where the subscript s denotes that the entropy is �xed when calculating
the gradient,

� or approximated as di�usion when the structure is radiative

∂T

∂r
= − 3

4ac

κRρ

T 3

L

4πr2
= − 3κRρL

64πσT 3r2
, (4.6)

where T (r) is the temperature, c is the speed of light, a = 4σ/c is the
radiation density constant, κR(r) is the Rosseland mean opacity of the
dust and gas mixture (following Bell & Lin, 1994, but the dust opacity
is multiplied by a reduction factor fopa = 0.003 as found by Mordasini,
2014);

� and an equation of state (Saumon et al., 1995) linking ρ,T , and P and providing
an adiabatic gradient.
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To determine if the structure is convective or radiative, we check for stability
using the Schwarzschild criterion: if the adiabatic gradient (equation 4.5) is larger
than the radiative gradient (equation 4.6), then the structure is stable. Therefore,
no convection can occur and radiation is assumed to dominate the overall energy
transport (neglecting heat conduction). We note, that the Schwarzschild criterion is
only accurate if no compositional gradient is present. Otherwise, the Ledoux criterion
should be used instead (see e.g. Kippenhahn et al., 2012).
For practical reasons, the equations are often written in terms of the mass m

instead of the radius r, yielding

∂r

∂m
=

1

4πr2ρ
(4.7)

∂P

∂m
= − Gm

4πr4
(4.8)

∂L

∂m
= ε+

P

ρ2

∂ρ

∂t
− ∂E

∂t
(4.9)

∂T

∂m
=

{
3

16σ
κR
T 3

L
16π2r4

for the radiative part
T

4πr2ρP
d lnT
d lnP

for the convective part
. (4.10)

A major simpli�cation to the equations can be made: All the incoming energy
can be deposited at the core-envelope boundary. For the solid accretion luminosity,
this is equivalent to assuming that solid bodies reach the core-envelope boundary
without slowing down in the gaseous envelope. This is a justi�able approximation
for relatively large planetesimals and small envelopes. Additionally, we can assume
that when the envelope is contracting, the gained energy is also released at the core-
envelope boundary instead of locally. This is not exact but most of the contraction
energy originates from the deep interior (Mordasini et al., 2012c).
Thanks to these assumptions, the luminosity L(r) has to become constant in r

(Mordasini et al., 2012c). Even without the simpli�cations, the equations can be
solved numerically. However, this is not trivial, mainly due to boundary conditions
being given at the core-envelope boundary (L,m = Mcore or r = Rcore) as well as
at the outer boundary of the structure (T ,P ). Therefore, a shooting method can
be employed which iterates over assumed T and P at the core-envelope boundary
until the outer temperature and pressure are well enough matched (inside-out) or
the inverted outside-in approach where the total radius or mass and the luminosity
are guessed. These schemes are quite time-consuming but it is not infeasible with
present-day computing power. A signi�cant speed-up is possible if the luminosity at
the outer boundary is given instead of having to guess it. This is achieved by the
constant luminosity assumption.

4.2.2. Boundary conditions

In the Bern model, we use the outside-in approach with constant luminosity; therefore
the outer radius has to be speci�ed. Following Lissauer et al. (2009); Helled et al.
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(2014), we do not simply use the total Hill radius RH but a reduced radius due to
gas �ow geometry around the embryo

Rtot =
GM

c2
s + aGM

4

(
3M?

M

)1/3
. (4.11)

At this location, the outer boundary conditions have to be given. For the temper-
ature we set

T (Rtot)
4 = T 4

disk +
3τ(Rtot)L(Rtot)

8πσR2
tot

, (4.12)

where τ(Rtot) = max(κR(ρdisk, Tdisk)ρdiskRtot, 2/3) (Mordasini et al., 2012c). The
second term is the increase of the temperature due to the luminosity of the planet
itself. It has to be hotter than the surrounding disk to obtain a net decrease in energy
and can be found by solving the radiative transfer equation in the radiative di�usion
limit assuming constant luminosity (Bodenheimer et al., 2000). If the expression
κRρdiskRtot < 2/3, the expression reduces to the temperature of a black body with a
given luminosity T 4 = L

4πσRtot
.

The boundary condition for the pressure P (Rout) di�ers depending on the accretion
phase (attached, detached phase). We state them below.

4.2.3. Maximum gas accretion

There is not an in�nite amount of gas that can be accreted by a planet over a given
timespan. This limit is called the maximum gas accretion rate Ṁg,max.
Early models used the viscous �ow as a limit (equation 2.27); thus

Ṁg,max = 3fLubπνΣ , (4.13)

with a factor fLub introduced as the accretion e�ciency by Lubow et al. (1999). They
found values of fLub above unity because of gradients introduced by the planet but
a clear decrease for planets with masses above 1 MJup (see also Veras & Armitage,
2004). A non-linear expression arises because the planet perturbs the disk in the
vicinity leading to complicated �ow patterns depending on the mass ratio of the
planet to the disk as well as gradients present in the disk.
In Brügger et al. (2020) (Paper II), we use equation (4.13) with fLub = 1 for

simplicity. In Letter II, Paper III, and the NGPPS series, we use a slightly modi�ed
approach based on Mordasini et al. (2012c) described in detail in Emsenhuber et al.
(submitted). For this approach, a key quantity is the ratio of the planetary radius
Rtot to the scale height of the disk h (Sect. 2.1). The goal is to estimate how
much gas �ows through the planetary environment assuming a radially symmetric
�ow. In the case of a small planet compared to the vertical disk extent Rtot < h, a
three dimensional �ow pattern emerges and the maximum gas accretion rate follows
approximately

Ṁg,max,3D = ΣπR2
tot/hvrel , (4.14)
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4. Planet formation

where we assume that the gas capture cross section follows πR2
tot and that the local

gas density is given by Σ/h. The relative velocity between the gas and the planet is
vrel = max(ΩKRtot, cs).
The two dimensional cross section is given by 2Rtot, therefore

Ṁg,max,2D = 2RtotΣvrel . (4.15)

Finally, the smaller of Ṁg,max,2D and Ṁg,max,3D is adopted as the limit of gas ac-
cretion. For in-depth discussion and more updated expressions for the maximum gas
accretion rate we refer to Mordasini et al. (2012c); Mordasini (2018); Machida et al.
(2010); Bodenheimer et al. (2013).

4.2.4. Attached phase

As long as the planetary envelope is in contact with the protoplanetary disk, this is
called the attached phase. During this early stage, there is enough material being
provided by the disk to �ll up the region within Rtot. This implies that the gas
accretion rate determined by solving the structure equations (Sect. 4.2.1) Ṁ is lower
than Ṁg,max.
In this case, the pressure at Rtot is given by the disk pressure Pdisk because the

envelope-disk system is one single �uid.
A very useful quantity to estimate the gas accretion rate during the attached phase

is the Kelvin-Helmholtz timescale. It describes the characteristic time over which a
gravitationally bound body loses its energy. It is de�ned as

τKH =
Egrav

Ltot

=
GM2

RtotLtot

(4.16)

and gives a timescale for accretion in the attached phase.
From this expression, we see that as long as solid accretion Ṁs,acc ∝ ΣsR

2
H (see

Sect. 2.10) dominates the luminosity L ∝ GMṀs,acc/Rcore, the Kelvin-Helmholtz
timescale scales moderately with the planetary mass τKH ∝ M1/3. Therefore, the
accretion of gas would be slowed down. However, either the planetesimal supply
can drop or the gas accretion can become the dominant term. Once solid accretion
does not provide enough energy input to heat the planetary structure, runaway gas
accretion will occur. For typical disk conditions, the crossover or critical mass Mcr

when this occurs is similar to 10 M⊕ (e.g. Piso & Youdin, 2014).

4.2.5. Detached phase

Once Ṁ > Ṁg,max, the planet goes to the detached phase (Bodenheimer et al., 2000).
Physically, the disk is not able anymore to provide the gas that could be accreted
by cooling. This implies that the gas accretion is �xed to what the disk can provide
Ṁg,max.
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4.3. Orbital migration

Additionally, this means that the outermost radius of the envelope structure is no
longer in contact with the disk. Therefore, we adapt the outer boundary condition
of the pressure, which now reads as

P (Rtot) = Pdisk + Pedd + Pram + Prad , (4.17)

where

Pedd =
2GM

3κR2
tot

(4.18)

is the Eddington pressure accounting for gas above the τ = 2/3 surface. An additional
term

Pram =
Ṁg,acc

4πR2
tot

vff (4.19)

is caused by the ram pressure of the supersonic gas that falls onto the surface of the

embryo with free-fall velocity vff = 2GM
(

1
Rtot
− 1

RH

)
. Finally, the radiation pressure

is taken into account

Prad =
2σT 4(Rtot)

3c
, (4.20)

where c is the speed of light in vacuum. As soon as the disk is gone, the temperature
at Rtot has to include the equilibrium temperature due to stellar irradiation (see
Emsenhuber et al. (submitted) for details). We note that Papaloizou & Nelson (2005)
do take their values for the outer boundary at τ = 0.5, wheres the τ = 2/3 surface
is considered here which introduces a factor of order unity and neither Papaloizou
& Nelson (2005) nor Bodenheimer et al. (2013) add the usually negligibly small
radiation pressure term Prad (/10−2 barye).

4.3. Orbital migration

A growing protoplanet and the protoplanetary disk in which it is embedded do not
ignore each other. Instead, they gravitationally interact. To �rst order, the planet
excites a density wave in the disk at the location of the Lindblad resonance and clears
a gap in the disk (Goldreich & Tremaine, 1979; Lin & Papaloizou, 1979; Ward, 1986,
1997). The gap can be maintained if the angular-momentum transport due to the
disk viscosity is smaller than the angular-momentum transport due to the planet
(Bryden et al., 1999; Lin & Papaloizou, 1993; Crida et al., 2006).
In the case of a distinct gap that was caused by supersonic wakes (Masset, 2001),

type II migration applies, which we describe in Sect. 4.3.2. If the planet has an
insu�cient mass to excite the wake enough to get shocks, it can still migrate and its
migration is classi�ed to be in the type I regime (Sect. 4.3.1).
The criterion at which planet to star mass ratio q the gap becomes distinct is

approximately (Lin & Papaloizou, 1993)

q > 40ν/r2Ω (4.21)
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and

q > 3

(
h

r

)3

, (4.22)

where h is the scale height and ν is the viscosity of the disk. The numerical factors
in (4.21) and (4.22) are nowadays found numerically e.g. in Bryden et al. (1999)
by hydrodynamical simulations of the gas �ow around massive (accreting) planets.
The former equation originally stems from equating the angular-momentum �ux
by the planet and by the disk viscosity, whereas the second criterion comes from
considerations in the vertical direction of the disk (see Lin & Papaloizou, 1993).
Crida et al. (2006) merge the two criteria into a single one. They use the ratio of

the scale height to the Hill radius instead of the disk aspect ratio and re-determine
the values to give

3h

4RH

+
50νM?

Ma2ΩK

≤ 1 . (4.23)

In the following, we use equation (4.23) to determine if a gap has opened. Addition-
ally, the value of the expression on the left hand side is used to smoothly transition
from the type I to type II regime. We would like to point out that Ida et al. (2020)
propose an updated, more simple, generalized prescription for both, type I and type
II migration.
Formally, we recall that whenever a torque ~Γ = ~r × ~F acts on a planet in a

circular Keplerian motion with angular momentum J = M
√
GM?a, we obtain from

dJ/dt = Γ
da

dt
=

2aΓtot

J
, (4.24)

where Γtot is the azimuthal component of the total torque. Thanks to this rela-
tion, the question of �nding the radial motion of a planet reduces to the problem of
determining the acting torques.

4.3.1. Type I

For type I migration, it is useful to de�ne the quantity

Γ0 =

(
Ma

M?h

)2

Σa4ΩK , (4.25)

which is an overall factor describing any torque acting on a planet in the type I
regime (Paardekooper et al., 2010, 2011). Then, factors to scale Γ0 can be found
numerically for the cases of the Lindblad or wake torque (Ward, 1997; Tanaka et al.,
2002) and the horseshoe drag or co-rotation torque. As a very broad estimate, a
migration timescale can be obtained by using Γtot = Γ0 in equation (4.24). This is
roughly equal to M/M? in years at 1 au (Baruteau et al., 2014).
The Lindblad torque stems from the gravitational pull of the overdensity of gas

in the wave-like pattern just in front of and just behind the planet (Goldreich &
Tremaine, 1979; Ward, 1986). The gas in the wake that extends radially inwards
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moves on near-Keplerian orbits, therefore it leads the planet; whereas the outer wave
trails behind the planet. Hence, the inner wave exerts a positive torque on the planet,
which would azimuthally accelerate the planet and move it further out and the outer
wake would do the opposite. Due to the geometry of the disk, the outer wake usually
exerts a larger torque, which leads to a net inwards movement of the planet. However,
this conclusion depends on the radial temperature and surface density pro�le (for a
recent descriptive review, see Baruteau et al., 2016).
The co-rotation torque stems from gas on very similar orbital separations to the

planet. Gas in this region has a slightly larger (smaller) angular velocity compared to
the planet if it is on an orbit with slightly lower (larger) orbital distance. Therefore,
a parcel of gas approaches the planet until it reaches a location close to a Hill sphere
behind (in front) of the planet. There, the gravitational pull of the planet moves it
outwards (inwards) to an orbital separation larger (smaller) than the planet's orbital
separation. This interaction leads to a negative (positive) torque on the planet. From
this, it becomes clear that two very similar contributions from the inwards U-turn and
the outwards U-turn emerge. Therefore, the sign of the torque can change depending
on which region gives rise to the larger angular-momentum exchange. The analysis
depends on the temperature and density gradient accross the co-rotation region as
well as the turbulence on this scale which might be realistically modeled using the
α-viscosity for the disk evolution (Sect. 2.3.2). The detailed analysis shows that
outward migration is favored (Paardekooper et al., 2010, 2011; Kley & Nelson, 2012;
Baruteau et al., 2014, 2016, and references therein).
For planet formation, the co-rotation torque has the impact of potentially keeping

the planets at large enough orbits to grow more heavy than when only the fast, inward
migration due to the Lindblad torque was acting. However, the co-rotation torque
saturates at a certain planetary mass. This means that the gradients in the horseshoe
region cannot be replenished; therefore no net torque results. An estimate can be
made at which point this happens when comparing the viscous di�usion timescale tν
and the thermal di�usion timescale td to the libration timescale tlib. We consider a
co-rotation region with width (Paardekooper et al., 2011, omitting a factor of order
unity)

rco ≈
a

γ1/4

√
Ma

M?h
, (4.26)

where γ is the adiabatic index. Then, the timescales are (Hellary & Nelson, 2012)

tν = r2
co/ν , td = rco/D , tlib =

8πa

3ΩKrco

, (4.27)

where

D =
4σT 3

3κρ2

(γ − 1)µmH

kB
. (4.28)

Thus, if tν > tlib ∧ td > tlib, the co-rotation torque is saturated and becomes
negligible. Because the co-rotation width increases with planetary mass, saturation
is bound to happen at some planetary mass, which typically lies around 10 M⊕.
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4. Planet formation

Then, type I migration becomes really rapid because the Lindblad torque increases
with ∼M2 (see equations 4.24 and 4.25).
In the population synthesis work presented in chapter 5, we follow the description of

Paardekooper et al. (2010, 2011) taking into account viscous and thermal di�usion in
the co-rotation region. Additionally, we use the eccentricity and inclination damping
from Coleman & Nelson (2014).

4.3.2. Type II

The type II migration regime deals with planets with masses so large that a gap in
the disk around them forms, i.e. the surface density of the local disk is dominated
by the planet.
The presence of a distinct gap leads to the planet potentially getting locked in

position and leading to an orbital evolution coupled to the gas disk. Once a gap has
opened, the classical approach is to assume that the planet migrates with the radial
velocity of the viscous evolution of the disk (Sect. 2.3.1), which holds for the case if
no gas crosses the gap. Therefore, the migration speed can be set to

ȧ = vr = −3ν

2a
, (4.29)

where the minus sign denotes the direction towards the central star.
The approximation that the planet moves with the viscous gas �ow is no longer

valid if the planet mass is larger than the disk mass, since the gas �ow of the disk can
then be slowed down signi�cantly instead of pushing the planet. Ida & Lin (2004a)
propose to use another migration rate, that does hold for larger q. Their approach
is to set the angular-momentum transport across the gap 1

2
MpΩK,paȧ to the angular-

momentum transport due to the viscous evolution in the disk J̇vc = 3
2
ΣvcνvcΩK,vcr

2
vc,

evaluated at the radius of maximum viscous couple rvc, i.e. the distance to the star
at which the radial gas �ow changes sign. Thus, they derive a migration speed of

ȧ = sign(a− rvc)
3Σvcνvcr

2
vcΩK,vc

MpaΩK,p

, (4.30)

where we introduced the sign function to indicate that the planet moves towards
the star as long as a < rvc. A common modern simpli�cation is to evaluate the
angular-momentum transport J̇ at the location of the planet as well to get

ȧ =
3Σνa

Mp

. (4.31)

Dittkrist et al. (2014) merged the two extremes and take the non-equilibrium �ow
of the disk into account. We follow this approach in the following to determine the
type II migration rates. It is noteworthy, that this prescription is similar to the newer
work of Kanagawa et al. (2018), but does not account for the aspect ratio h/r of the
disk.
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4.4. N-body interactions

4.4. N-body interactions

Although the gravity of the central star is often dominating, planets do also feel
the gravitational pull of other planets. In models, this can be accounted for us-
ing a semi-analytical prescription to frequent N-body phenomena such as excitation
of eccentricities and inclinations, collisions or resonance capture (Ida & Lin, 2010;
Ida et al., 2013) or by numerically modeling all gravitational forces (N-body code).
We use the second approach using an established N-body code called MERCURY
(Chambers, 1999), which is fast enough to allow for modeling up to 100 gravitation-
ally interacting planetary embryos over millions of simulated years.
MERCURY is a symplectic integrator, which means that it uses an expansion of

the Hamiltonian formulation of the N-body problem and neglects high order terms
that include both the gravitational pull of the central star and those of a third body.
This can be safely done as long as the pull by the third body is smaller than that
of the star. Chambers (1999) solves this issue and decides to switch to an exact
numerical scheme for the three-body problem in case of close encounters.
We would like to highlight here two interesting e�ects that arise because of the

gravitational interactions. Of course the overall �eld of celestial dynamics is much
broader and a �eld as old and established cannot be reviewed here.

4.4.1. Close encounters

By coincidence, two gravitating bodies can get close to each other. Then, they will
feel a gravitational pull which can exceed the central stars gravity. Multiple outcomes
are possible. First, the two bodies might physically collide. The probability for this
to happen is enlarged, because gravity acts to pull them closer to each other. This
topic is also discussed for the case of planetesimal collisions and accretion in Sect.
2.10, where a gravitational focussing factor is introduced. The outcome of a collision
is another sub-�eld of astrophysics and usually addressed with the smooth-particle-
hydrodynamics (SPH) method (Benz & Asphaug, 1999; Jutzi, 2015). Modern �ts of
the outcome of such simulations might be used in the future when modeling planet
formation (Emsenhuber et al., 2020). Additionally, water might be evaporated in
these violent collisions, which should considerably modify the resulting composition
of planets (Burger et al., 2018, 2020).
The second possible outcome of a close encounter leads to an acceleration of both

bodies. This leads to an increase in the eccentricity and inclination of both bodies.
These scattering events will modify the semi-major axis of the bodies. However, the
sum of the angular momenta

Jsys =
∑
k

Mk

√
GM?ak

√
1− e2

k cos ik (4.32)

of the planets in the system (Laskar, 2000) has to be retained, therefore an increase
in semi-major axis generally also leads to an increase in eccentricity and inclination.
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In the presence of a gas disk, the eccentricity and inclination can be damped and the
planet's orbit will circularize over time. This is a mechanism to transport planets
to locations where their growth in-situ would not be possible. Examples are the
proposed pathway to form the observed close-in (Weidenschilling & Marzari, 1996)
or far-out giant planets (Alibert et al., 2013).

4.4.2. Mean motion resonances

The second e�ect of N-body interactions is the possibility of planets getting locked
in mean motion resonances. In general, an orbital resonance describes the state of
two gravitating bodies in orbit around a central body, where they regularly interact.
The mean motion resonance is a type of resonance, where the bodies get into each
other's vicinity because the ratio of their orbital periods is close to a small integer
n. Then, the planets will meet every n orbits of the outer planet and gravitationally
interact. In case of a stable resonance, this leads to a slight accelerating of the body
which "came late" to the meeting point, whereas it leads to a deceleration of the
early planet. Therefore, the system stabilizes. The periods do not have to be an
exact integer ratio, but thanks to the stabilization mechanism, the con�guration can
oscillate (librate) around the point of exact resonance.
Mean motion resonances exist in the Solar System among the Jupiter moons or

the asteroids and seem to be common in exoplanetary systems (e.g Gillon et al.,
2017). For planets, the existence of the resonant systems points towards a formation
period where the planets migrated towards each other (convergent migration). Of
course the bodies could be assembled in the exact location of the resonance but the
probability for this to happen is very low. When migrating, they get trapped in
the resonance as long as the push they receive from the body is strong enough to
revert the migration they underwent in the n orbits. This allows to estimate the
speed of migration from the order of the resonance. If migration was very slow,
a planet migrating from very far out in the system would have been captured in
the outermost resonance, practically speaking the 2/1 or even a 3/1 resonance. If
resonances closer than that are populated, this means that the push by migration
was strong enough to overcome at least the 2/1 resonance. Studies making use of
this phenomenon to constrain migration speeds are planned (Rosemary Mardling,
private communication).
The e�ect of mean motion resonances in planet formation with active migration

is very substantial. Instead of planets migrating towards the central star, they get
trapped in mean motion resonances with each other and then migrate as a resonant
convoy or chain. These resonant chains move according to the overall torque divided
by the sum of the angular momenta. If a heavy body migrating in the slow type II
regime is part of the chain, it will drastically reduce the migration speed of lighter
planets in resonance.
However, this theoretically clean pathway seems to be less common in reality or the

resonant chains frequently break up after the disk has dissipated because quite few
resonant planet pairs have been discovered (Winn & Fabrycky, 2015, and references
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4.4. N-body interactions

therein). Here, we �nd that models with more embryos (because of their initially
closer packing) reduce the frequency of resonant planet pairs and there is a trend of
more pairs in systems around low-mass planets. We continue this discussion in Paper
III.
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5.1. Principle

The planetary population synthesis principle means to start with initial conditions
sampled from observed distributions and simulate planetary growth as well as motion
which results in a synthetic population of planets. This population is then compared
to the observed distribution of exoplanets. If necessary, unconstrained model param-
eters are changed and the process is repeated until a good statistical match between
the synthetic and the observed distribution of exoplanets is found. Early works taking
this route were done by Ida & Lin (2004a) and Mordasini et al. (2009a).

With this approach, it is not guaranteed that the parameters found are correct.
Nonetheless, what can be learned is which set of parameters can be excluded. For
example, Ida & Lin (2008) and Mordasini et al. (2009b) made a strong point of
excluding very fast type I migration as found based on linear analysis (Ward, 1986;
Tanaka et al., 2002). It became clear that the migration speed of small planets would
be too fast to to allow for growth of gas giants. Nowadays, type I migration rates
are investigated in more detail including non-linear e�ects which reduced the overall
migration rate Paardekooper et al. (2010, 2011).

Furthermore, if an agreeable �t to the observed population of planets is found
and con�dence in the model solution is established, tentative predictions about the
population of planets in regions of the parameter space that has not yet been explored
can be made. Mordasini et al. (2009b) predicted many more rocky planets to be
discovered in future missions, which is now clearly con�rmed by large surveys (e.g.
Mayor et al., 2011; Thompson et al., 2018).

In this thesis, the planet formation model founded on the basis of works by Alibert
et al. (2004b) and Mordasini et al. (2009a), which was updated in Mordasini et al.
(2012c), Alibert et al. (2013), Fortier et al. (2013), Dittkrist et al. (2014), and Jin
et al. (2014). Reviews can be found in Benz et al. (2014); Mordasini et al. (2015);
Mordasini (2018). The relevant physical processes are brie�y reviewed in Chapter 4.

In the following, we will provide an overview of both the parameters that can
be determined observationally as well as unconstrained parameters. The list is not
supposed to be complete to the last detail; only the most relevant parameters are
mentioned.
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5.2. Randomized initial conditions

In order to statistically compare model results to observations, a distribution has to
be given for the initial parameters of a system. Then, random variables can be drawn
and enough systems have to be simulated to properly sample the overall parameter
space.
The most important parameters to describe a disk are arguably the contained

masses of both the dust Mdust and the gas Mgas. The combined dust and mm-
to cm-sized pebble mass can be inferred from radio-astronomy measurements (see
Sect. 1.4.6). Surveys of young stellar clusters provide complete distributions of all
contained protostars or at least all objects that show accretional signatures in their
spectra. To use the masses as initial condition, data from the youngest clusters
(Taurus and Lupus) should be used. Alternatively, the distribution of disk masses
around objects belonging to Class 0 or Class I can be used (Tychoniec et al., 2018;
Williams et al., 2019; Tobin et al., 2020). The latter option should be preferred
because the Class II objects in Lupus or Taurus could still be a few Myr old since
models estimate their cluster ages to range from 1 Myr to 3 Myr. Therefore, despite
some leftover infall onto the disk that is not modeled in our work, the masses of disks
around Class I objects were used Tychoniec et al. (2018). We note that the amount
of matter which is infalling during Class I is disputed McKee & Ostriker (2007).
As radio astronomy measurements do more readily give constraints on the dust

mass of disks, an assumption has to be made to obtain disk gas masses. A good
approximation should be to use the overall bulk abundances of refractory elements
in stars, that is, the metallicity [Fe/H] of stars (Santos et al., 2003). Using this, a gas
disk mass naturally results with some additional scatter. In principle, this is a more
consistent way to build up the distribution of the disk masses than what is currently
done in Paper III and Brügger et al. (2020) (Paper II), which is to �rst assume a
factor of 100 to convert the dust masses to gas masses following Tychoniec et al.
(2018) before multiplying by the measured metallicities to re-compute dust masses.
It is sometimes useful to describe the disk mass using the parameters of the initial

disk pro�le following Andrews et al. (2009) (equation 2.74) by the proportionality
factor Σ0, the power-law slope β and the exponential cut-o� radius Rout. The total
mass is then (see the derivation in Appendix A.6)

Mgas =
2πΣ0

(5.2 au)−β
r2−β

out

(2− β)
. (5.1)

Using a randomly drawn Mgas, �xed values for β and a observation-informed re-
lation rout(Mgas then leads to a distribution of Σ0. Here, we note that the relation
rout(Mgas) should be revised in the future. The relation rout ∝ M

1/1.6
gas was found

by Andrews et al. (2010) and similar values were con�rmed more recently (Andrews
et al., 2018b). However, this relation is true for evolved disks of a few Myr in age.
At younger stages, the pro�le could have looked di�erently. This is why this relation
could be relaxed in the future to better match measured accretion rates (see Hart-
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mann & Bae, 2018). For now, the measured relation of disk mass to characteristic
radius is still used.
Additional parameters that might follow a randomized distribution are the inner

disk edge rin and an external photo-evaporation rate Ṁw. We discuss in detail in
Paper III the distribution that follows if the stellar rotation rate of young stars is
used as a proxy for the inner edge. For the external photo-evaporation rate, the
current approach is to tune Ṁw, such that observational lifetime constraints are met
(Sect. 1.4.4). In the future, this could be replaced or combined with a distribution
of X-ray luminosities (see the discussion in Sect. 2.6).
Last but not least, the initial position of the embryos has to be randomized. For an

individual embryo (as in Paper II), we draw the location from a distribution uniform
in logarithmic space between the inner disk edge and 40 au. This is kept the same for
multiple embryos, but with the additional constraint that they are not injected closer
than 10 Hills radii to an already placed embryo (Kokubo & Ida, 1998; Chambers,
2006). In addition, a time for embryo-formation could be drawn randomly. In the
works shown here, we always assume a �xed time for embryo formation tini. In
principle, this could be also varied and included in the Monte Carlo variable space.
The initial location rini drawn from a random distribution introduces a parameter

per embryo. Therefore, the Monte Carlo variables we use to describe a system are
Mgas (in an alternative formulation Σ0), [Fe/H] (or equivalently the dust to gas ratio
fdg), rin, Ṁw, and the N di�erent rini. This results in a 4 +N dimensional parameter
space, where N is the number of embryos. It is not clear how many embryos should
be injected, but realistic numbers are on the order of tens of embryos to study
the formation of giant planets (Alibert et al., 2013) and even more if the results
should be representative for lower planetary masses. Thus, the parameter space
is inherently very multi-dimensional and in principle it is not possible to sample
it completely considering that a single simulation (called the forward model in the
statistical context) takes up to months of CPU time. Instead, we currently assume
that a small number of rini combinations is su�cient to indicate possible results for
a given disk.
Future work should and will address this issue with a model for planetesimal (Völkel

et al., 2020) and embryo growth (Völkel et al. in prep). It would be desirable to
have a deterministic model for embryo placement to reduce the number of required
simulations. However, the growth to lunar mass objects is inherently chaotic due
to the N-body interactions between the bodies. Therefore, it might be required to
keep a certain amount of randomness when determining the initial location of the
embryos.

5.3. Fixed parameters

In Sect. 5.2, we already touched on several parameters that might be randomized but
are currently �xed. In addition to those, many parameters can be used to describe the
physical model. Here, we will not discuss all of them; instead, we give an overview of
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the most important parameters for the resulting distribution of planets and reference
controversies where applicable.

Number of embryos N
As mentioned above, the initial number of embryos that form in a system is currently
not known and might di�er signi�cantly between disks. In principle, it should be lim-
ited by the available mass in planetesimals. The e�ect of the choice of the number
of embryos is investigated by Alibert et al. (2013) and Emsenhuber et al. (submit-
ted). The �ndings are consistent and show that for heavier planets, less embryos are
required than for low-mass planets.

Embryo-placement time tini

In reality, it takes time for planetesimals to collide and grow the largest planetesimals
into lunar-mass embryos (Ida & Makino, 1993; Inaba & Ikoma, 2003; Chambers,
2006). However, the starting time of the simulation t = 0 is also o�set from the time
of star formation, which is not an instantaneous process to begin with. We explore
the in�uence of the starting time in Paper II, where we show that it has a small
in�uence on the resulting population in the planetesimal-accretion scenario but a
large impact in a pebble-accretion case.

Initial embryo mass Mini

The initial mass of an embryo can be chosen freely in the models. However, it
makes sense to start at a stage where more simple analytic descriptions fail and
multiple processes and their feedback have to be considered. This is the case at
the end of the runaway growth stage Kokubo & Ida (1998); Chambers (2006). In
the earlier runaway growth stage, the mass of the embryo is not large enough to
signi�cantly excite the planetesimals. Therefore, it is not required to model the
feedback and interaction between di�erent embryos and the planetesimal disk. Thus,
the end of runaway growth is a reasonable starting point for numerical simulations
and the initial embryo mass would be a function of the radial distance from the star
(Mini ∝ (r2Σs)

3/5, Chambers, 2006). For relatively steep initial solid surface density
pro�les Σs, this results in similar embryo masses at the end of the runaway stage
everywhere in the disk, which is in agreement with N-body results (Weidenschilling,
2000). The typical values are around one lunar mass, which is why we choose 0.01 M⊕
or 0.0123 M⊕ for the works presented here.

Planetesimal size
A very important quantity for the growth of planets is the typical planetesimal size.
For smaller planetesimals, gas drag e�ciently damps eccentricities and inclinations
which leads to more e�cient gravitational focusing onto growing embryos (Sect.
2.10). Therefore, the growth timescale of planets is very sensitive to the planetesimal
size. In reality, planetesimals are not given by a single size, but they follow a size
distribution also discussed in the appendix of Paper I and in Sect. 2.9.1. There is a
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current controversy on the interpretation of the observed slope in the size distribution
of the Kuiper and asteroid belt objects. Some authors argue that it should be close
to the primordial distribution (Morbidelli et al., 2009; Cuzzi et al., 2010) but others
favor a steep initial slope indicative of the mass being dominated by small objects
(Weidenschilling, 2011; Pan & Schlichting, 2012). In any case, impact crater count-
ing on Pluto and Charon (Singer et al., 2019) and planetesimal formation models
(Johansen et al., 2012) generally result in planetesimals of large size (∼100 km). In
Paper III, we assumed a planetesimal radius of 300 m, which is tuned and leads to
realistic growth timescales (Fortier et al., 2013), whereas in Letter II, we explored
larger planetesimal sizes because the e�ect studied there is not relevant for small
sizes.

Viscous α
In Sect. 2.3.2, we discussed potential origins of turbulence leading to viscous α ∼10−4.
However, the exact drivers of angular-momentum transport remain controversial. In
Paper II, Paper III, and Letter II we chose α = 2× 10−3 to roughly match observed
disk lifetimes (Benz et al., 2014). The e�ect of varying α was addressed for example
in Mordasini et al. (2009b). We would like to stress that the viscosity does not
only strongly in�uence the disk evolution, but also the migration rate of planets, the
maximum gas accretion rate, the thermal structure of the disk and therefore also the
composition of planets. An especially distinct di�erence is that for low values, the
outward migration regime appearing in certain disk regions for strong co-rotation
torques (Paardekooper et al., 2010) vanishes.

Surface density slope of gas βg and solids βs
For Paper III and Paper II, we chose di�erent slopes for the solids βs = 1.5 compared
to the gas βg = 0.9 motivated by radial drift of solids and observations (see Sects. 2.8
and 1.4.6). For Letter II, we set βs = βg = 0.9. The chosen value for the gas slope
is found in observations of typically Class II objects (Andrews et al., 2010, 2018b)
but might di�er at early stages due to relatively inviscid disks that fail to viscously
spread (Hartmann & Bae, 2018). Future works will not require a prescription for βs
thanks to the implementation of a dust transport and growth model (Völkel et al.,
2020).

N-Body integration time
Reality would not turn o� gravitational forces at some point but in simulations it
takes considerable computational time to integrate the evolution of systems of Gyr
timescales. Therefore, we stop the integration after 20 Myr in Paper III. Fig. 5.1
highlights that there is a sizable fraction of systems which recently had dynamical
instabilities or are in an unstable con�guration at the end of the simulation. At least
for these systems, the N-body code should run for a longer time. This issue will be
addressed and quanti�ed in future work.
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Figure 5.1.: Histogram of latest dynamical instability of systems in a population with
50 embryos around a Solar-mass star (NG75). A dynamical instability

is recorded at time t if |a(t)− a(t−∆t)| > a
(
Mmax(t)

3M?

)1/3

for any planet

in the system. ∆t is the timestep and Mmax(t) is the mass of the most
massive planet in the system. ∼65 % of the systems did not undergo
an instability in the last Myr before the simulation was terminated at
20 Myr. Therefore, it is justi�ed to assume that these systems would
remain stable even if the integration time was prolonged. For the oth-
ers, more changes due to dynamical interactions would likely occur after
20 Myr if the integration continued.
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Migration timescale
As mentioned above, the migration timescales, especially the type I migration timescale
was discussed in Ida & Lin (2008); Mordasini et al. (2009b). Despite the updated,
non-linear torque formulations Paardekooper et al. (2010), type I migration is a very
rapid process compared to planetary growth at masses ∼10 M⊕. Therefore, it is the
limiting factor for growth in most cases and a reduction naturally leads to larger
planets. Due to the complexity of the planet-disk interactions leading to torques and
because of potential structures in the disk, it is possible that our understanding of
migration is not complete. Therefore, a reduction factor for migration can be intro-
duced to parametrize our ignorance. This exercise is performed for type I migration
(fI) in the appendix of Paper III.

Disk and envelope opacities
To radiate away energy received from accreting solids and gas is the only way for a
growing planet to cool and contract. By contracting, it can trigger more gas accretion.
Therefore, the growth of a planet is very sensitive to the amount of energy radiated
away, which in turn depends on the opacities (see Sect. 4.2.1). In the interstellar
medium, the Rosseland mean opacity is dominated by the opacity of the dust κs.
However, recent works have highlighted that for planetary envelopes, di�erent grain
abundances and sizes can change �and typically reduce � the dust opacity (Podolak,
2003; Movshovitz & Podolak, 2008). A reduction leads to the energy being radiated
away more easily. Mordasini (2014) found a good �t of planetary radii compared to
the results of the Kepler mission when introducing a reduction factor fopa ≈ 0.003
for the Rosseland mean opacity of the dust κs = fopaκs,ISM. In the following, we
adopt the same value unless stated otherwise.

Retention of impact energy
A quite fundamental unsolved question emerges when treating collisions between
embryos with gaseous envelopes. It is not clear, which fraction of the impact energy
is brought to the core or distributed in the envelope or directly radiated away. In
Alibert et al. (2013), it was assumed that no energy from the impact is kept to
heat the envelope structure. As described in Emsenhuber et al. (submitted), we now
deposit the full impact energy of the solid core of the impactor at the core-envelope
boundary of the target. Reality should lie somewhere between those two extremes and
a parameter to describe the amount of energy deposited in the planetary structure of
the target should be introduced in the future. This treatment is important because a
recently impacted planetary structure might increase its radius drastically and part
of the previously bound envelope could become gravitationally unbound. Therefore,
this is an additional envelope-loss mechanism which should be compared to long-term
photo-evaporative mass loss.

Maximum gas accretion
Multiple works addressed the disk-limited case of gas accretion (Sect. 4.2.3). We use
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a very simple estimate in Paper II, where the amount that can be accreted by the
growing planets cannot exceed the viscous steady-state �ow (equation 2.27). In Paper
III and Letter II, we use the procedure described in Emsenhuber et al. (submitted)
which is similar to the description in Mordasini et al. (2012c).

Capture radius
The radius at which planetesimals are captured due to gas drag and spiralling towards
the planetary core can be determined from the structure of the envelope (Inaba &
Ikoma, 2003). However, the planetesimal could also break up in the envelope leading
to an additional capture radius enhancement (Podolak et al., 2019). This e�ect will
be studied in the future. In the works presented here, we follow the description
of (Inaba & Ikoma, 2003). We also note that the enhanced capture radius also
increases the growth of planets with masses below 1 M⊕, despite the envelope being
very insigni�cant in terms of masses. This explains parts of the di�erences of our
results compared to the recent work of Johansen & Bitsch (2019) who did not take
into account the capture-radius enhancement.

Partitioning of solids in dust, pebbles, and planetesimals
The metallicity mentioned in the section above can be used to infer the total amount
of dust in a disk. After determining this, a conversion factor ε has to be determined
of how much of this dust is converted to planetesimals or pebbles. In Paper II, we
vary and discuss ε whereas it is set to ε = 1 in the other works. This parameter can
also be replaced in the future thanks to the work presented in Völkel et al. (2020).
However, a free planetesimal formation e�ciency is introduced instead.

Stellar parameters
Not every star is identical. So far, this was hardly explored in population synthesis
works, except for the in�uence of the stellar mass we assume a stellar radius and
luminosity that is evolved in time following the relations of (Bara�e et al., 2015) but
does not vary between the individual simulations. However, for example rotation
rates and compositions are known to di�er for the same stellar mass. This might
lead to imprints on the planetary population via the inner cavity size or di�erent
X-ray luminosities depending on the rotation rate. In terms of composition, Letter II
addresses the in�uence of di�erent amounts of the radioactive 26Al and we take the
overall metallicity distribution into account. However, varying the overall elemental
abundances could also lead to observable imprints on the radius.

5.4. Paper II: Pebbles versus planetesimals: the

outcomes of population synthesis models

A new paradigm of core accretion, pebble accretion, has been proposed in the last
ten years. In Brügger et al. (2020) accepted for publication in A&A (Paper II),
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5.4. Paper II: Pebbles versus planetesimals

we compare the outcome of a pebble accretion based (Brügger et al., 2018) and a
planetesimal accretion based model, namely the Bern model of planet formation. The
approach we take to do this is to draw planetary populations from both models, where
we use the exact same randomized disks as a basis. As the goal is not to recreate the
observed population of exoplanets, but instead to compare populations, it is justi�ed
to use models that include less physical processes. Therefore, adjustments and some
simpli�cations to the full Bern model were made and we give a complete, detailed list
of all changes in Sect. 5.4.2 after brie�y outlining the principle of pebble accretion
in the following section.

5.4.1. Pebble accretion

Since the detailed calculations of the feedback of accreting embryos on the planetes-
imal population (Ida & Makino, 1993), it is known that planetesimal accretion with
large planetesimals is not e�cient enough to grow giant planets. One possiblity to
circumvent the issue is to assume that the planetesimal population is dominated by
small ∼km-sized bodies. If the population of bodies would be dominated by meter-
sized bodies, they would quickly drift towards the star (Sect. 2.8). Therefore, the
minimum size of planetesimals can only be ∼100 m. However, instead of assum-
ing bodies of sizes above the radial drift barrier, Ormel & Klahr (2010), Ormel &
Kobayashi (2012), and Lambrechts & Johansen (2012) investigated the other possi-
bility of a signi�cant fraction (or all, in the case of Lambrechts & Johansen, 2012)
of bodies having sizes below the meter-size barrier. This approach was later termed
pebble accretion. For a recent review, we refer to Johansen & Lambrechts (2017).
The main bene�t of a population of small, centimeter-sized bodies, are the very

low eccentricities and inclinations that result for these bodies due to damping by the
gas and a large increase of the capture radius of the protoplanet (similar to the e�ect
for planetesimals following e.g. Inaba & Ikoma, 2003).
In the paper attached below, led by Natacha Brügger, we compare the outcome

using two most prominent core-accretion mechanisms: pebble accretion and planetes-
imal accretion. This work is in line with the recent work of Coleman et al. (2019),
who focused on the Trappist-1 system and the pebble accretion model is an evolved
version of the model presented in Brügger et al. (2018). We choose the population
synthesis framework but the focus does not lie on synthesizing a population of planets
that can be compared to the observed exoplanets. Instead, the di�erences of popu-
lations obtained with reasonably simpli�ed models are investigated. The population
synthesis approach is chosen to have a span of realistic conditions for the growth of
planets and to naturally explore the parameter space.

5.4.2. Project speci�c changes to the Bern model of planet

formation

The key part of Paper II revolves around consistently using the same disk, migration,
and envelope models in both the pebble accretion and the planetesimal accretion
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5. Planetary population synthesis

pathways. Therefore, the two codes had to be adjusted to exactly match in these sub-
modules. For the nominal Bern model which is used in Paper III and was developed
for a longer time and by multiple people, this led to a number of simpli�cations.
We give here a complete and detailed list of all changes to the code. A more brief
summary can be found in the paper below.
For the planetesimal accretion sub-module, no modi�cations were required because

this module di�ers naturally from the pebble accretion model (Brügger et al., 2018).
However, we implemented the option to replace planetesimal accretion by a �xed
solid accretion value used for testing.

Disk

� In Brügger et al. (2018), the overall solid mass is split into pebbles and dust
with a pebble fraction of ε. The pebble part can be accreted and we assumed a
complete conversion of the pebbles to planetesimals for the comparison project.
The dust part 1 − ε is used for the opacity in the disk. Therefore, the disk
opacities are reduced linearly with the amount of pebbles or planetesimals
removed from the dust ε. This is di�erent and an improvement compared
to the nominal calculations of the Bern model, where an additional 1 % of the
gas mass is assumed to be dust responsible for the disk opacities.

� The direct irradiation term which heats the disk through the midplane was
neglected. It is only important at the last stage of the disk clearing and allows
for a smooth transition to the evolution stage. However, this stage was not
important for this project.

� Gas that is accreted by planets should in principle be removed from the disk.
This reduction was neglected here. This is in line with the spirit of not allowing
too many feedback processes in this project.

� The solids in the disk consist of either rocky or ice-rock mixtures. The com-
positional model tracking the elemental abundances and introducing multiple
ice-lines from Thiabaud et al. (2014) is turned o� for this project.

Stellar model

� While a stellar evolution model is used for the nominal Bern model runs, we
use a �xed star in the pebble vs planetesimal comparison project. In the �rst
place, the stellar evolution is important for the long-term evolution, which was
turned o� in the comparison. Therefore, we do not have to introduce further
minor e�ects to keep the project in the spirit of a as simple as possible but still
realistic comparison.
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5.4. Paper II: Pebbles versus planetesimals

Structure and gas accretion

� The envelope structure modules rely on the disk temperature, surface density
or pressure. For these values, we took the values at the location of the planet.
In the full model, the values are usually calculated as a mean over the feeding
zone. However, this is only signi�cant if the gas surface density is not smooth,
which is very rarely the case in the simpli�ed model.

� The density of the solid core of the planets was �xed to 5.5 g cm−3. This replaces
the core density model from Mordasini et al. (2012c).

� The numerical scheme to solve the internal structure equations follows the
fourth-order Runge-Kutta method. In contrast, the Bulirsch-Stoer method
(Bulirsch & Stoer, 1964) is applied for the structure in the attached phase in
the nominal Bern model. This was tested to have a negligible in�uence on
the result, but potentially leads to a minimal loss of performance if using the
Runge-Kutta approach.

� The updated radius of the new timestep is used to calculate the luminosity
instead of the radius of the previous timestep. This is more precise, but can lead
to numerical issues if the boundary conditions change a lot during one timestep.
Because we use single planets, a fast change in the ambient conditions does not
happen. Therefore, we can employ the more precise luminosity estimate.

� We do not include radioactive decay, which could be added as a small luminosity
source. It makes sense to add it when considering the long-term evolution, but
for this project it did not play an important role.

� For similar reasons, we exclude deuterium fusion (Mollière & Mordasini, 2012)
for all planets, despite the possibility of forming brown dwarfs-mass objects in
extremely massive disks.

� In the detached phase, the outer boundary pressure includes the Eddington
and radiation pressure terms (Sect. 4.2.2). For this project, we set them both
to zero. Therefore, the only terms for the pressure in the detached case are the
disk pressure and the ram pressure of the infalling material.

� The only limit to gas accretion in the detached case is the amount that would
viscously �ow past the planet in a steady-state disk Ṁ = 3πΣν. Therefore,
neither the non-equilibrium terms and the geometry of the �ow, nor the local
reservoir are considered (Mordasini et al., 2012c).

� Whenever a planet has a larger radius than its Hill radius, the gas should in
principle become unbound from the planet. This results in a mass-loss. We do
not take this e�ect into account here.
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� We account for planetary luminosity heating the surrounding disk (equation
20 Mordasini et al., 2012c). To do that, we use the disk opacity instead of the
reduced planetary envelope opacity. Reality should lie between the two cases,
since the opacity in a transition zone between planetary envelope and the disk
is relevant.

� The long-term evolution was not calculated in the nominal models, instead the
simulation stopped after 20 Myr. For a radius plot, we calculated the long-
term evolution with the same code for both models in a post-processing mode.
In contrast, in the nominal Bern model, the evolution is always computed
consistently in the same model run.

Migration

� In the nominal Bern model, the adiabatic coe�cient γ for calculation of the
type I migration is taken from the output of the equation of state module. For
Paper II, we simply set γ = 1.4, which is the value for an ideal di-atomic gas.

� Similar to the input from the disk to the envelope structure, the local values
for the viscosity ν are taken instead of a mean over a zone spanning from 90 %
to 110 % of the distance of the planet to the star.

� We note that there remains a minor di�erence in the calculation of the gradi-
ents dΣ/dr, and dT/dr used in the migration sub-module: In the pebble code
a quadratic interpolation in a region spanning twenty gridpoints in both di-
rections is used, whereas in the adapted and the nominal Bern model a region
spanning 10 % of the distance to the star in both regions is used.

Multiple planets

� In the future, a similar comparison will be done using the same two codes as
a basis. However, the treatment of collisions has to be matched. We will use
the approach of Alibert et al. (2013) and assume a complete loss of impact
energies, except if the impact energy is larger than the gravitational binding
energy of the envelope, which leads to envelope stripping. However, in contrast
to Alibert et al. (2013) the collision detection is implemented directly in the
N-body code for which we use the MERCURY code (Chambers, 1999) for both
models.
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ABSTRACT

Context. In the core accretion scenario of giant planet formation, a massive core forms first and then accretes a gaseous envelope.
When discussing how this core forms some divergences appear. First scenarios of planet formation predict the accretion of km-sized
bodies, called planetesimals, while more recent works suggest growth by accretion of pebbles, which are cm-sized objects.
Aims. These two accretion models are often discussed separately and we aim here at comparing the outcomes of the two models with
identical initial conditions.
Methods. The comparison is done using two distinct codes: one computing the planetesimal accretion, the other one the pebble
accretion. All the other components of the simulated planet growth are computed identically in the two models: the disc, the accretion
of gas and the migration. Using a population synthesis approach, we compare planet simulations and study the impact of the two solid
accretion models, focussing on the formation of single planets.
Results. We find that the outcomes of the populations are strongly influenced by the accretion model. The planetesimal model predicts
the formation of more giant planets, while the pebble accretion model forms more super-Earth mass planets. This is due to the pebble
isolation mass (Miso) concept, which prevents planets formed by pebble accretion to accrete gas efficiently before reaching Miso.
This translates into a population of planets that are not heavy enough to accrete a consequent envelope but that are in a mass range
where type I migration is very efficient. We also find higher gas mass fractions for a given core mass for the pebble model compared
to the planetesimal one caused by luminosity differences. This also implies planets with lower densities which could be confirmed
observationally.
Conclusions. We conclude that the two models produce different outputs. Focusing on giant planets, the sensitivity of their formation
differs: for the pebble accretion model, the time at which the embryos are formed, as well as the period over which solids are accreted
strongly impact the results, while the population of giant planets formed by planetesimal accretion depends on the planetesimal size
and on the splitting in the amount of solids available to form planetesimals.

Key words. planetary systems - planetary systems: formation - pebbles - planets: composition

1. Introduction

In the standard giant planet formation theory, the so-called core-
accretion model, a core forms first through the accretion of solids
and then, if it becomes massive enough, it accretes gas. A cru-
cial constraint for gas accretion is that the core should be massive
enough to accrete the gas before the dissipation of the gas disc
(Haisch et al. 2001). The first scenarios predict that the solids ac-
creted by the core are planetesimals, which are ∼kilometer-sized
objects (Pollack et al. 1996; Fortier et al. 2013). Historically the
typical radius of planetesimals was 100 km. One problem that
arises when using planetesimals of this size, is that the time
needed to form a core is typically longer than expected disc
lifetimes (Pollack et al. 1996). Forming giant planets is there-
fore difficult for traditional planet formation models (Coleman
& Nelson 2014). Reducing the size of the planetesimals allows
however to form cores within typical disc lifetimes (Coleman &
Nelson 2016b,a). This time-scale struggle gave birth to a new
approach that suggests the accretion of drifting centimeter-sized
bodies known as pebbles (Birnstiel et al. 2012). Due to their
small size, pebbles are able to be accreted much more easily

Send offprint requests to: N. Brügger

through increased gas drag, resulting in a more rapid core for-
mation (Ormel & Klahr 2010; Lambrechts & Johansen 2012).

These two scenarios of solid accretion were recently com-
pared by Coleman et al. (2019) with the aim of examining
planet formation around low mass stars akin to the Trappist-1
planetary system. They explored a wide range of initial condi-
tions and found that both scenarios formed remarkably similar
planetary systems, in terms of planetary masses and periods,
resonances between neighbouring planets, and the general ob-
servability of the planets and their respective systems. Whilst
Coleman et al. (2019) compared the two scenarios within the
frame of the Trappist-1 system, in this paper we focus on solar
mass stars and vary some parameters of our model, e.g. the start-
ing time of the embryo or the distribution of the amount of solids.
We aim here at comparing the two solid accretion scenarios by
using identical initial conditions drawn form a distribution com-
parable to those used within population synthesis models (e.g.
see Mordasini et al. 2015). Using two separate models, one for
planetesimal accretion and one for pebble accretion, we examine
the outcomes of population of single planet systems. To proceed,
we use the same disc model, gas accretion model and migra-
tion regimes for both codes. It is important to underline that the
two codes are distinct from one another and that this comparison
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2 Brügger et al.: Planetesimal vs pebble accretion

aims at comparing the outcomes of the two different accretion
scenarios and not to achieve a match to observations.

This paper is organised as follows. In Sect. 2 we provide all
of the theoretical aspects behind the comparison. We discuss the
similarities between the two codes, e.g. the disc model and its
evolution, the gas accretion theory and the migration formulae,
as well as the two distinct accretion models. To test our imple-
mentations we present in Sect. 3 comparisons between the two
codes for the common components of the models. The evolution
of the disc is discussed, as well as the accretion of gas and the
migration regimes. Once the agreement between the two codes is
established, the effect of the two solid accretion models can then
be compared. Using a population synthesis approach, we com-
pute single planet per disc simulations and study the outcomes in
Sect. 4, where we also compare the two modes of solid accretion.
Finally, Sect. 5 is dedicated to discussions and conclusions.

2. Theoretical models

We first introduce the disc model, which is common to both
accretion models. We then present the planetesimal accretion
model, which is an improved version of that presented in
Mordasini et al. (2012b); Alibert et al. (2013); Fortier et al.
(2013), as well as the pebble accretion model, which is similar to
that of Brügger et al. (2018). We then describe another common
aspect of the two models: the gas accretion. Finally, we discuss
the planet migration.

2.1. Disc model and evolution

The disc model we use is similar to that provided by Hueso &
Guillot (2005). The initial gas surface density profile follows
(Andrews et al. 2010):

Σ(r) = Σ0

( r
5.2 AU

)−β
exp

−
(

r
rout

)(2−β) , (1)

where Σ0 is the initial surface density at 5.2 AU and r is the
location in the disc, rout is the outer radius of the disc and β =
0.9. This disc model accounts for observational constraints that
are relevant to the disc evolution calculations (stellar properties,
disc outer radius and surface density profile or accretion rate).
The disc profile is therefore very different from that provided by
Bitsch et al. (2015) and used in Brügger et al. (2018), which may
lead to different outcomes. For instance the surface density in the
outer regions is much lower in the disc used here compared to
that of Bitsch et al. (2015) .

To calculate the midplane temperature we use a one-
dimensional model based on a semi-analytical approach, where
we include both stellar irradiation and the dissipation of vis-
cous energy for heating the disc. In the radial direction the disc
is assumed to be thick. Heat can therefore be more efficiently
transported vertically where the disc can be geometrically thin
or thick. Consequently these two regimes are both combined
in the midplane temperature Tm determination (Nakamoto &
Nakagawa 1994; Hueso & Guillot 2005):

T 4
m =

1
2σ

(
3κR

8
Σ +

1
2κpΣ

)
Ėν + T 4

irr , (2)

with σ being the Stefan-Boltzmann constant, κR the Rosseland
mean opacity, κP the Planck opacity, Σ the gas surface density
of the disc, Ėν = 9

4 ΣνΩ2
K the viscous energy dissipation rate

(Nakamoto & Nakagawa 1994) and Tirr the effective temperature

due to stellar irradiation that is a function of the stellar temper-
ature T∗ (Adams et al. 1988; Ruden & Pollack 1991; Hueso &
Guillot 2005):

Tirr = T∗

(
2

3π

(R∗
r

)3

+
1
2

(R∗
r

)2 H
r

(
dln(H)
dln(r)

− 1
))1/4

. (3)

Here ΩK =

√
GM∗

r3 is the Keplerian frequency, T∗ is the star’s
temperature, R∗ is the radius of the star (see Table 1), H the disc
scale height and dln(H)

dln(r) = 9
7 , which is the equilibrium solution

for a disc where the flaring term (term containing dln(H)
dln(r) in the

temperature determination (Eq. 3)) is the dominant one (Hueso
& Guillot 2005). The vertical structure of the disc can then be
derived from Eq. 2, the viscosity ν and the opacity of the disc κ
(Bell & Lin 1994), which in our model is scaled with the amount
of dust in the disc.

Once the properties of the disc are defined, its evolution
follows the standard diffusion equation (Lynden-Bell & Pringle
1974):

∂Σ

∂t
=

1
r
∂

∂r

[
3r1/2 ∂

∂r
(νΣr1/2)

]
, (4)

where ν = αcsH is the viscosity, which is parametrized using
the α-viscosity parameter (chosen to be α = 0.002) of Shakura
& Sunyaev (1973) and the isothermal sound speed cs.

To obtain realistic disc lifetimes (between 2 and 5 Myr
(Haisch et al. 2001)), we use the external photoevaporation
model of Matsuyama et al. (2003) and the internal photoevap-
oration model given by Clarke et al. (2001) with modifications
from Alexander & Pascucci (2012). For internal photoevapora-
tion, Clarke et al. (2001) assume a region within which the pho-
toionized gas remains bound to the star. This region is defined
by its radius:

Rg,int =
GM∗

cs
, (5)

with cs being the sound speed of photoionized gas (T = 1000 K)
and M∗ the mass of the star (see Table 1). Beyond this radius,
material can be lost from the disc at a rate given by (Clarke et al.
2001):

Σ̇w,int = 2csn0(r)mH , (6)

where the factor 2 considers the mass loss from both sides of
the disc, n0(r) is the number density at a distance r and mH is
the mass of the hydrogen atom. This corresponds to a total wind
mass-loss rate of (Clarke et al. 2001):

Ṁw,int = 4.1 × 10−10φ1/2
41

(
M∗
M�

)1/2

M�yr−1 , (7)

where φ41 = 1 is the ionizing photon flux of the star in units of
1041s−1.
For external photoevaporation, Matsuyama et al. (2003) predicts
that the surface density evaporation rate for radii beyond Rg,ext
(same definition as Eq. 5 but with a sound speed given for a
temperature of T = 104 K) follows:

Σ̇w,ext =
Ṁw,ext

π
(
R2

d − β2R2
g

) , (8)

where Rd is the disc outer edge (Rd = 1000 AU in our test
cases, see Table 1), β = R∗/Rg and the mass loss rate is given
by Ṁw,ext = 1 × 10−7 M�/year for our test cases (see Table 1 as
well).
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Regarding the solid components of the disc, the total amount
of solids available in the disc Ztot, initially all in the form of dust,
is split into a fraction that forms the bodies that can be accreted
(either planetesimals or pebbles) while the rest remains as dust,
contributing to the disc opacity. The same splitting is applied
in both models and the two ratios we investigate are Zpeb,plan =
0.9 × Ztot with Zdust = 0.1 × Ztot, which we call the ε = 0.9 case,
and Zpeb,plan = 0.5×Ztot with Zdust = 0.5×Ztot, which we call the
ε = 0.5 case. For our test cases (Sect. 3), we use the ε = 0.9 case
following Brügger et al. (2018) and the total fraction of solids to
gas is given by Ztot = 0.01 (see Table 1).

Another component that is common to both models is the
determination of the ice line. For simplicity we define it as the
place in the disc where the temperature is equal to 170 K (Burn
et al. 2019). This location therefore depends on the temperature
of the disc, which is influenced by the opacity of the disc. The
latter is impacted by the amount of solids as well as the ratio
ε, since the fraction that remains as dust contributes to the disc
opacity. The ice line location has an impact on the pebble size
(see Sect. 2.3) and on the composition of the planets (see Sect.
4.3).

2.2. Planetesimal accretion model

The planetesimal accretion model is described in detail in Fortier
et al. (2013). The basic principle is to represent planetesimals as
a fluid-like disc. The initial profile of the surface density of plan-
etesimal Σpls is however steeper than the one of the gas (Lenz
et al. 2019; Drążkowska & Alibert 2017). The surface density as
well as the eccentricity rms epls and the inclination rms ipls evolve
over time. To have a consistent description of epls and ipls for all
planetesimal sizes, we solve the differential equations for self-
stirring (e.g. Ohtsuki 1999), the gravitational stirring of planetes-
imals by forming planets (Ohtsuki 1999) as well as the damping
by gas drag (Adachi et al. 1976; Inaba et al. 2001; Rafikov 2004)
instead of assuming that equilibrium between stirring and damp-
ing is attained instantaneously.1 We do not take into account the
radial drift of planetesimals as it was found to be negligible over
the disc lifetime for our chosen radius of 1 km. This approach
is valid for particles that decouple from the gas, which typically
happens at sizes larger than 100 m (Burn et al. 2019).

The accretion of solids is given by

Ṁpls = ΩK Σ̄plsR2
H pcoll , (9)

where ΩK is the Keplerian angular velocity, RH =
(mp+mpls

3M∗

)1/3
a

is the planet’s Hill Radius, Σ̄pls is averaged over the planet’s feed-
ing zone (spanning ten Hill radii for a planet on a circular orbit,
considering that the planet is in the middle of its feeding zone)
of the aforementioned surface density of planetesimals and pcoll
is the collision probability following Inaba et al. (2001):

pcoll = min
(
pmed,

(
p−2

high + p−2
low

)−1/2
)
. (10)

The individual components are:

phigh =
r̃2

p

2π

(
F (I) +

6
r̃p

G(I)
(ẽ)2

)
, (11)

pmed =
r̃2

p

4πĩ

(
17.3 +

232
r̃p

)
, (12)

1 Fortier et al. (2013) found that for larger planetesimal sizes (10 km
or 100 km), the assumption of equilibrium epls and ipls is justified, but
here we assume smaller planetesimal sizes (1 km).

plow = 11.3
√

r̃p . (13)

Here I ≡ ipls/epls, ẽ =
a.epls

RH
is the eccentricity of the planetes-

imals in Hill’s unit, we use numerical fits for the integrals F (I)
and G(I) following Chambers (2006), ĩ =

a.ipls

RH
is the inclination

of the planetesimals in Hill’s unit and

r̃p ≡
Rcapture + Rpls

RH
. (14)

Rpls = 1 km is the planetesimal radius and Rcapture is the planet’s
capture radius, which is enlarged as described in Inaba & Ikoma
(2003) when a gaseous envelope is present. We numerically re-
trieve Rcapture from equation (17) of Inaba & Ikoma (2003):

Rpls =
3
2

v2
∞ + 2GMcore/Rcapture

v2∞ + 2GMcore/RH

ρ(Rcapture)
ρpls

. (15)

Here ρpls is the density of the planetesimal, ρ(Rcapture) is the den-
sity of the gaseous planetary envelope at Rcapture and

v∞ = vK

√
5/8 e2

pls + i2pls (16)

is the typical relative velocity at infinite distance to the planet.

The Keplerian velocity vK is defined as vK =

√
GM

R .
In addition to the accreted mass of planetesimals that is re-

duced from Σpls over the planet’s feeding zone, an estimated
amount of ejected planetesimals is subtracted following Ida &
Lin (2004)

Ṁejected,pls =

(
aplanetMplanet

2M∗Rcapture

)2

Ṁpls . (17)

The factor in front of the planetesimal accretion rate is the ratio
of the characteristic surface speed and the escape speed from the
star.

2.3. Pebble accretion model

For the pebble accretion model we follow the model outlined by
Brügger et al. (2018). An embryo is assumed to form via the
streaming instability in the disc at a given time, which is a free
parameter of the model. This embryo grows by accreting pebbles
that form in the outer regions of the disc and then drift towards
the star (Lambrechts & Johansen 2014). The amount of pebbles
depends on the fraction of solids in the disc that can turn into
pebbles (Zpeb) as mentioned in Sect. 2.1.

We use the pebble accretion rates given by Johansen &
Lambrechts (2017) which distinguish between the Bondi accre-
tion regime (small protoplanets) and the Hill accretion regime
(large protoplanets). The Bondi accretion regime occurs for low
mass planets where the planets do not accrete all of the peb-
bles that pass through their Hill sphere, i.e. the planet’s Bondi
radius is smaller than the Hill radius. Once the Bondi radius be-
comes comparable to the Hill radius, the accretion rate becomes
Hill sphere limited, and so the planet accretes in the Hill accre-
tion regime. This is the typical regime for more massive bodies
in the disc. Within the Hill regime a further distinction occurs
whether the planet is accreting in a 2D or a 3D mode. This is
dependent on the relation between the Hill radius of the planet
and the scale height of the pebbles in the disc. For planets with
a Hill radius smaller than the scale height of pebbles, the accre-
tion is in the 3D mode, whilst for planets with a Hill radius larger
than the pebble scale height, the 2D mode. The general equation
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for the 2D and 3D accretion rates are respectively (Johansen &
Lambrechts 2017)

Ṁ2D = 2RaccΣpebδv , (18)

and:
Ṁ3D = πR2

accρpebδv , (19)

where ρpeb is the midplane pebble density and Σpeb =
Ṁpeb

2πRvr
is

the pebble surface density including the flux of pebbles Ṁpeb
and their velocity vr. The approach speed is given by δv =
∆v + ΩKRacc, with ∆v ∼ ηvK being the sub-Keplerian velocity,
η = − 1

2

(
H
r

)2 dlnP
dlnr the gas pressure gradient and ΩK the Keplerian

frequency. The accretion radius Racc used in Eqs. 18 and 19 is
defined with the help of:

R′acc =

(
4τ f

tB

)1/2

RB , (20)

in the Bondi regime, and:

R′acc =

(
ΩKτ f

0.1

)1/3

RH , (21)

in the Hill regime.
Here RB = GM

∆v2 is the Bondi radius and tB = RB/∆v. RH is
the Hill radius and τ f = St/ΩK (Johansen & Lambrechts 2017)
with St being the Stokes number that describes the pebble size
(Lambrechts & Johansen 2014, see discussion below). These ex-
pressions (Eq. 20 and 21) however only consider strong coupling
between the pebbles and the protoplanet. In order to account for
the less efficient accretion when the friction time becomes longer
than the time to drift past the protoplanet, Racc becomes (Ormel
& Klahr 2010):

Racc = R′acce−0.4(τf/tp)0.65
, (22)

before going back to Eqs. 18 and 19. Here tp = GM/(∆v +

ΩKRH)3 is the drifting time-scale.
The pebble size is usually described by the Stokes num-

ber St. Outside the ice line the pebbles are assumed to be
made of ice surrounding trapped silicates. Their size is given by
tgrowth(rg) = tdrift(rg), leading to St ∼ 0.01 − 0.1 (Lambrechts
& Johansen 2014). However inside the ice line, this assump-
tion no longer holds because the ice sublimates (Ida & Guillot
2016) and releases the silicates. Therefore the pebble size signif-
icantly shrinks to the size of these silicate grains, which are much
smaller than the original icy pebbles (Morbidelli et al. 2015;
Shibaike et al. 2019). Observations hint that the size of these
silicates is similar to the one of chondrules, which are mm-sized
particles (Friedrich et al. 2015). Therefore if a planet accretes
pebbles inside the ice line, the accreted pebbles have a much
lower Stokes number St << 1 (Birnstiel et al. 2012), which im-
pacts on the accretion rate (see discussion in Sect. 4.2).

The embryo thus grows by accreting pebbles until it reaches
the so-called pebble isolation mass (Lambrechts & Johansen
2014) (see also Ataiee et al. 2018; Bitsch et al. 2018):

Miso = 20
(

H/R
0.05

)3

· M⊕ . (23)

The pebble isolation mass is the mass required to perturb the
gas pressure gradient in the disc. Thus the gas velocity be-
comes super-Keplerian in a narrow ring outside the planet’s or-
bit reversing the action of the gas drag. The pebbles are there-
fore pushed outwards rather than inwards and accumulate at the

outer edge of this ring stopping the core from accreting solids
(Paardekooper & Mellema 2006). Consequently the planet be-
gins to accrete gas more efficiently. Therefore the calculation
of the envelope structure (presented in Sect. 2.4) starts at the
min(Miso, 3M⊕).

2.4. Gas accretion model

The computation of gas accretion is similar in both planetesi-
mal and pebble models. The internal structure of the planetary
envelope is computed by solving the following equations :

∂m
∂r

= 4πr2ρ , (24)

∂P
∂r

= −Gm
r2 ρ , (25)

and:
∂T
∂r

=
T
P

dP
dr
∇ , (26)

which represent the mass conservation, the equation of
hydrostatic-equilibrium and energy transfer respectively
(Bodenheimer & Pollack 1986; Alibert et al. 2005; Mordasini
et al. 2012b; Alibert 2016; Coleman et al. 2017). The pressure
P and temperature T depend on the mass m included in a
sphere of radius r. The density ρ(P,T ) follows Saumon et al.
(1995) and the temperature gradient depends on the stability
of the zone against convection: for convective zones, it is
assumed to be given by the adiabatic gradient. Therefore
∇ =

dln(T)
dln(P) = min(∇ad,∇rad) where

∇ad =
dln(T)
dln(P)

, (27)

∇rad =
3

64πσG
κLP
T 4m

, (28)

with κ (Bell & Lin 1994) being the full interstellar opacity (see
however Sect. 4) and L being the luminosity of the planet com-
puted by energy conservation and including the solid accretion
luminosity, the gas contraction luminosity and the gas accretion
luminosity (Mordasini et al. 2012b,a; Alibert et al. 2013).

The mass of the envelope is then determined by iteration.
Comparing the envelope masses between two iterations provides
the gas accretion rate (Alibert et al. 2005). For runaway gas ac-
cretion (Pollack et al. 1996), the maximum accretion rate is lim-
ited by what can be provided by the disc:

Ṁgas,max = Ṁdisc = 3πνΣ . (29)

2.5. Planet migration

As planets grow, they interact gravitationally with the surround-
ing gas, exchange angular momentum and migrate through the
disc. Low-mass planets that are embedded in the disc feel a
torque arising from the gravitational interaction between the
planet and the disc. This process is called type I migration. The
torque felt by the planets is the composition of the Lindblad
torque ΓL and the corotation torque Γc (Paardekooper et al. 2010,
2011)

Γtot = ΓL + Γc . (30)

The Lindblad torque is a torque exerted by density waves on
the planet. The presence of the planet creates these waves in the
disc at locations called Lindblad resonances. On the other hand
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the corotation torque corresponds to an exchange of angular
momentum between the planet and the neighbouring gas
situated in the corotation region of the planet. The two torques
depend on the local gradients of surface density, temperature
and entropy. In locations where a strong negative temperature
gradient is present, the planet is expected to migrate outwards.
These regions of outward migration lie where |Γc| > |ΓL|.

Higher mass planets on the other hand are able to open a gap
in the disc (Lin & Papaloizou 1986). This slows down their mi-
gration towards the star. The gap opening depends on the scale
height and viscosity of the disc. A gap opening criterion is pro-
vided by Crida et al. (2006):

P =
3
4

H
rH

+
50

qRe
≤ 1 , (31)

where q = Mp/M? is the mass ratio and Re is the Reynolds num-
ber given by Re = r2

pΩ2
K/ν. If the planet fulfils this criterion, it

starts to migrate towards the star in the so-called type II migra-
tion regime on a time-scale that is a function of the viscosity of
the disc ν (Mordasini et al. 2009):

τII =
2a2

p

3ν
×max

1,
Mp

2Σgasa2
p

 . (32)

The maximum term allows the so-called planet dominated
regime to be taken into account. This regime is a consequence
of the decrease in the gas disc mass and the slowing down of
migration as the planet becomes more massive.

2.6. Long-term evolution

Once the gas disc has disappeared, the planets enter the evolution
stage. At this point both gas accretion and disc-driven migration
cease. We take the outcomes of our populations as initial condi-
tions for this long-term evolution. Our aim is to obtain the den-
sity of the planets. To get realistic radii in addition to the known
masses we use the evolution model of Mordasini et al. (2012a,b)
including atmospheric loss due to photoevaporation (Jin et al.
2014). The outer radius of the numerical envelope structure ex-
tends to very low densities. Therefore, we follow the prescription
of Hansen (2008) to calculate what radius would be observed by
a generic transit observation.

3. Comparisons between the models

In order to perform a proper comparison between the two sep-
arate models of solid accretion, all the other components of the
simulated planet growth should be similar: e.g. the disc model,
the accretion of gas and the migration of the planet. Therefore
we complete tests to consolidate both models and make sure that
they are identical in these aspects.

3.1. Disc model

Our first test case aims at comparing the evolution of the
protoplanetary discs. The same physical disc model (following
Hueso & Guillot 2005) is used in both codes but since we use
two distinct numerical implementations, a proper comparison
is necessary to make sure that the same initial conditions
lead to identical results. Here, we focus on two quantities:

Table 1. System properties used in all test cases.

System properties Values
Disc mass 0.017 M�

Slope 0.9
α 0.002

Ztot 0.01
µ 2.27

Inner edge of the disc 0.1 AU
Outer radius of the disc Rd 1000 AU
Cut off radius of the disc 30 AU

Photo-evaporation rate Ṁw,ext 1 × 10−7 M�/year
R∗ 2 R�
M∗ 1 M�
T∗ 4480 K

10 1 100 101 102 103

r (au)

101

102

T 
(K

)

Pebble
Planetesimal

Fig. 1. Temperature profile comparison between the two codes
for our nominal disc (Table 1). The blue dotted lines show the
result using the planetesimal accretion code and the underlying
red lines represent the results using the pebble accretion code.
The outer most blue line at the top of the plot hides a red line
below: they represent the initial profile. The disc evolves for 4.99
Myr and each line corresponds to the output each 100’000 years.

the gas temperature and surface density. The temperature
profile allows us to check that the vertical structure is giving
identical results and the surface density is a key quantity for the
formation of planets. The simulations ran for 4.99 Myr, until
the dissipation of the gas disc. The lines on Figs. 1 and Fig. 2
represent the outcomes every 105 years. The outcome of the
temperature comparison is represented in Fig. 1, where we see
the superposition of the temperature evolution in both codes.
The results obtained using the pebble accretion code are hidden
behind the results of the planetesimal accretion code. They are
indeed in very good agreement because they differ less than 1 %.

The surface density comparison is shown in Fig. 2. We see
that the initial profile is exactly the same for both codes. The
physical description of the disc is identical in the two models.
However the numerics used to solve the equations are not im-
plemented exactly the same way. Therefore, as the disc evolves,
some divergences appear mainly after a few thousands of years
of evolution. The general agreement is however good: in the in-
ner disc, the biggest difference we observe is 5 g/cm2, which is
less than 1%, and in the outer disc 1 g/cm2. We can therefore
conclude that the two discs evolve in a very similar fashion.
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Fig. 2. Surface density comparison between the two codes.
Again here the red lines show the result using the pebble ac-
cretion code and the dotted blue lines give the outcome using
the planetesimal accretion code.The disc evolves for 4.99 Myr
and each line corresponds to the output each 100’000 years.

3.2. Accretion of gas

We now consider a planet in the disc. Its location is fixed at 5.2
AU to avoid the influence of migration. We also set the solid
accretion rate to 10−4 M⊕/yr to prevent the influence of how
solids are accreted and to only compare the accretion of gas.
The initial mass of the core is 0.01 M⊕ and it is introduced in
the disc after 0.1 Myr of evolution to allow the disc to reach
a quasi-steady state. To exclude any influence of the disc, we
establish values for the planet boundary conditions that are fixed
in time to make sure that the gas accretion and envelope struc-
tures are as similar as possible. We choose a temperature T of
60 K and a surface density Σ at the planet location of 200 g/cm2,
which are typical values for a location of 5.2 AU in a classic disc.

As explained in Sect. 2.4, the gas accretion rate onto the
planet is given by the difference in envelope mass between
two time-steps. We however distinguish two regimes: when the
planet is attached to the gas disc and when it undergoes runaway
gas accretion. In the second case, the accretion of gas is limited
by what the disc can provide. In Fig. 3 we show a comparison
of the gas accretion implementations. The two envelope masses
are represented as a function of time. The previously mentioned
runaway gas accretion phase starts, in our example, after ∼ 0.47
Myr (see Fig. 3). As shown in the zoomed area, the envelope
masses are only differing by less than 0.1 %. We attribute this
difference to the two distinct codes that may not converge to the
exact same solution after the same number of iterations.

3.3. Planet migration

In our previous tests (see Sect. 3.2), the planet location was
fixed. We now want to include the effect of migration because as
they grow the planets migrate through the disc and the surround-
ing conditions are not identical at all locations. It is therefore
crucial to control that for a given scenario (fixed masses and
identical initial locations), an embryo would follow the same
path independent of the accretion model. Using the same disc as
previously introduced (see Table 1), our first comparison is in
the form of a migration map to underline the migration regimes

0 106 2×106 3×106 4×106 5×106

t (yr)

100

101

102

103

104

105

106

M
 (M

)

Total Mass (Pebble)
Envelope Mass (Pebble)
Total Mass (Planetesimal)
Envelope Mass (Planetesimal)

4.00×106 4.05×106
7400

7500

Fig. 3. Gas accretion comparison for the two models. The out-
comes of the pebble accretion model are shown in red: the solid
line is the total mass and the dotted one is the envelope mass.
The results of the planetesimal accretion code are represented in
blue: the dashed line gives the total mass and the dashed-dotted
line the envelope mass.The zoomed box helps understanding the
behaviour of the envelope growth in a linear scale.

the planet may undergo. The maps are given in the upper two
plots of Fig. 4 and are taken after 0.1 Myr of disc evolution.
The regions in red in these two plots indicate where the planet
migrates outwards. When located in the green areas the planet
migrates inwards either through type I or type II migration
depending on how massive they are. The black line indicates
the transition masses and locations between the two migration
regimes. In Fig. 4 the upper plot shows the migration map for
the planetesimal accretion code, while the middle one shows the
map for the pebble accretion code. The bottom graph highlights
the differences between the two outcomes: the darker the map,
the more similar they are. We observe two main differences: the
first one along the outward migration regions and the second
one along the inner edge of the disc. Even though it is not
visible on the two upper plots, the outwards migration regions
are shifted depending on the model. These differences may be
consequences of gradients that appear in the migration formulae
for type I migration. Indeed the surface density gradient, as well
as the temperature gradient, are used in the computation of the
Lindblad and corotation torques. Computing gradients with two
different solvers can thus lead to divergences in the outcomes
and the discs evolving slightly differently also impacts on the
migration maps.

We then compare the migration of single planets with
fixed masses. In order to test different types of migration we
use multiple initial locations and 3 distinct masses (1 M⊕, 10
M⊕ and 100 M⊕) to account for the three following migration
regimes: type I, fast type I and type II respectively. The outcome
of the comparison is shown in Fig. 5.

In the upper plot we see the migration of a 1 M⊕ planet
for different starting locations. As can be noticed in Fig. 4
(bottom plot), this particular mass lies in the region where
the two outcomes of the codes differ the most, especially for
locations below 1 AU. Furthermore the migration timescales
(see the colour code in Fig. 4, upper two plots) for a 1 M⊕ are
the most diverse. Indeed, depending on the location the planet
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Fig. 4. Map highlighting the different migration regimes after 0.1
Myr of disc evolution. In the upper two plots the red zones shows
the outward migration regions. The type I and type II migra-
tion regime are distinguished by the solid black line: above it the
planets migrate with type II migration and below they undergo
type I migration. These two plots are computed with the plan-
etesimal accretion code (most upper plot) and the pebble accre-
tion code (middle plot) respectively. The third and bottom plot is
the relative difference we observe between the two upper plots.
The darker the outcome the more similar they are.

may either migrate fast inwards or slowly inward, as well as
outwards or experience zero migration regions. Focusing first
on the outermost planet, with an initial location of ∼ 50 AU, it is
in a region where the migration timescale is large, leading to a
relatively slow migration. We therefore see that it remains near
its initial location and end up around 40 AU after 4 Myr of disc
evolution.

The planet starting at ∼ 18 AU as well as the one starting at
∼ 6 AU migrate relatively fast towards the inner edge of the disc
until they reach ∼ 0.6 AU where they cross a high migration
time-scale region, leading to a slower migration regime. This
makes them stay nearly in the same location for 500’000 years.
The planet starting at ∼ 2 AU experiences quite early on this
slow migration regime as well and therefore ends up on a track
similar to those of the two previous cases (Coleman & Nelson
2016b). When these three planets reach regions below 1 AU the
two outcomes of the codes very slightly differ. As we see in Fig.
4 (bottom plot), those are the regions where the outcomes of the
codes differ the most, impacting here on the migration tracks.

As for the planet starting at ∼ 0.6 AU, it starts further inside
from the regions where the outcomes diverge and therefore the
two tracks are matching each other. This planet first experiences
outward migration and then ends up in a zero migration area,
which moves itself, making the final location of this planet only
∼ 0.3 AU far from its original one.

In the center plot of Fig. 5, the 10 M⊕ planets experience
fast type I migration. Independent of their starting locations,
they all migrate very quickly (less than 1 Myr) to the inner edge
of the disc because their mass (10 M⊕) lies in the range where
type I migration is very efficient (see Fig. 4, colour code of the
upper two plots). These planets are indeed not big enough to
open a gap in the disc and therefore migrate with the type I
regime, where the migration rate is proportional to the mass.
Furthermore the disc is dense at the begining of its evolution,
which favours a rapid drift. Comparing the behaviour of the
planets for both models we get a very good agreement.

In the bottom plot of Fig. 5, the migration of a 100 M⊕ planet
is presented. Being more massive these planets usually open a
gap and migrate in type II mode. Looking back at Fig. 4, we see
that a planet with a mass of 100 M⊕ lies above the black line
splitting type I and type II migration, meaning that it would mi-
grate in type II for all locations below ∼ 20 AU. The planets of
the lower panel of Fig. 5 can then be split into two groups: the
inner three planets and the two outer ones. Looking at the three
inner planets first, we see that they directly migrate in type II
due to their mass and locations. This prevents them from quickly
migrating to the inner edge of the disc like the 10 M⊕ planets.
It therefore takes them ∼ 2 Myr to reach the inner edge even
though they are initially located quite close to the star. On the
other hand the outer most planets first migrate in fast type I be-
cause of their location until they reach regions where they can
undergo the type II regime leading to a slow migration towards
the inner edge of the disc. Comparing the two models we again
obtain very similar results.

3.4. Combined effect of growth and migration

We now finally combine the effect of gas accretion and migra-
tion by looking at the mass growth of a single planet that mi-
grates in a disc. For this test we use our nominal disc (Table 1),
and insert a 0.01M⊕ planet at 40 AU at the beginning of the disc
evolution. As in the previous tests the accretion rate of solids is
fixed to avoid any influence of the way solids are accreted (see
Sect. 3.2). In order to trigger efficient gas accretion, we reduce
exponentially the accretion rate of solids after 20 kyr of disc evo-
lution. The results are presented in Fig. 6 where we see that the
two codes give very similar results for the masses as a function
of semi-major axis. The inset on the top right shows the tempo-
ral growth of the planet envelopes, which are also matching very
well. This test is the closest to a real simulation we could pro-
duce without any impact of the solid accretion models. Given the
excellent similarity between the results in this test we can now
explore the effects of the two solid accretion models knowing
that the other components of the computation are very similar
and will not induce differences.
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Fig. 5. Migration of three different fixed-mass planets for differ-
ent locations (0.6 AU, 1.8 AU, 5.5 AU, 17 AU and 50 AU). The
upper plot shows the migration of a 1 M⊕ planet, the middle one
a 10 M⊕ planet and the bottom one a 100 M⊕ planet. The solid
red lines give the outcomes of the pebble accretion code and the
dashed blue lines represent the results of the planetesimal accre-
tion code.

4. Population synthesis outcomes

4.1. Initial conditions

We use the nominal model outlined in Sect. 3.3, with the disc
model being similar to that of Hueso & Guillot (2005) and de-
scribed in Sect. 2.1. The accretion of gas onto the planet fol-
lows the equations introduced in Sect. 2.4. The opacity of the
planetary envelope is reduced by a factor fopa = 0.003 because
observations hint that the grain opacity is smaller than the full
interstellar one (Mordasini et al. 2014). The accretion of solids
differs between the two models: either planetesimals with radii
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Fig. 6. Mass of a migrating planet as a function of its location.
A solid red line represents the pebble accretion code and is hid-
den behind the dashed blue line which gives the result of the
planetesimal accretion code. The small window on the top right
shows the mass of the envelope growing with time using the two
codes.

of 1 km (see Sect. 2.2) or pebbles (mm to cm size) are accreted
(see Sect. 2.3). While growing, as explained in Sect. 2.5, the
planet interacts with the disc and starts migrating through the
disc.

We run simulations of single planet per disc to avoid the
chaotic effects of N-body simulations and allow a proper com-
parison of the two models. The embryo is inserted at different
times of the disc evolution (0 Myr, 0.2 Myr, 0.5 Myr and 1 Myr)
to explore the impact on the resulting populations (10’000 plan-
ets per starting time). Its location is randomly chosen from a
uniform distribution in logarithmic space between 0.1 and 50
AU and the initial mass of this inserted body is 0.01 M⊕.

With our populations we aim at taking a wide range of discs
into account. We randomly draw masses from the distribution of
inferred Class I gas disc masses by Tychoniec et al. (2018) and
multiply them with another random value drawn from the dis-
tribution of spectroscopic metallicities obtained by Santos et al.
(2005) to obtain dust disc masses. The exponential cut-off radius
of the gas disc profile is a function of the gas disc mass follow-
ing Andrews et al. (2010) and the cut-off radius for the planetes-
imal disc (where applicable) is half of the former (Ansdell et al.
2018). The subsequent disc evolution is then governed by α (see
Table 1) and photo-evaporation (see Sect. 2.1). To have disc life-
times matching the lifetime distribution inferred from observa-
tions of disc fractions in stellar clusters (e.g. Mamajek 2009), we
linearly scale the external photo-evaporation by a third random
number drawn from a log-normal distribution (see Mordasini
et al. 2015). The total amount of solids is randomly drawn from
the aforementioned distribution, but from this amount of solids,
part of it forms the bodies that can be accreted, while the rest
remains as dust. We present here two scenarios of how the total
solid mass is distributed: either 90% forms the accretable bodies
with 10% of the mass in dust (ε = 0.9 case) or 50% forms the
accretable solids with 50% remaining dust (ε = 0.5 case).

For purpose of simplicity for the comparison we do not
use here the full versions of the two models (as would be
done for example for the planetesimal accretion model in
Emsenhuber et al. in prep). For instance for both the pebble and
the planetesimal accretion models the radius of the solid core
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of the planet is calculated using a fixed density of 5.5 g/cm3,
which is a simplification compared to what is used by Mordasini
et al. (2012b,a). This facilitates the analysis by avoiding second
order effects on the gas accretion via an otherwise emerging
core contraction luminosity. The potential feedback of the
composition of the accreted solids is therefore lost. For this
reason, we only track the composition in terms of silicates and
water ice. The separation of the icy and rocky population, given
by the water ice line, is calculated using the midplane pressure
and temperature at the starting time of the simulation.

We stress that for a detailed comparison with observations,
the interactions between the growing planets are important
(Alibert et al. 2013) and the populations presented here are
intended to simulate realistic conditions for the different solid
accretion mechanisms, but are not meant to be compared to the
observed population of planets. We leave this for future studies.

4.2. Mass vs semi-major axis

Fig. 7 shows the mass of the formed planets as a function of their
final locations for different starting times. The two columns on
the left differ from those on the right by the amount of solids used
to form the bodies that can be accreted by the planet (ε). Within
these two partitions the respective left column of the panels gives
the output for the pebble accretion model and on its right are the
results for the planetesimal model. The colour code expresses
the gas fraction of each planet. Focusing first on the case where
ε = 0.9 (left two columns of Fig. 7) we immediately see that dif-
ferent types of planets are formed by the two models. Using the
planetesimal accretion model, more giant planets2 are produced
than with the pebble model, independent of the starting time.
The pebble model indeed only produces giants for the tini = 0
Myr case. For this specific starting time it also only produces
very few planets with masses between ∼ 80 M⊕ and ∼ 1000 M⊕
compared to the planetesimal scenario. Finally most of the gi-
ants, albeit very few in number, are very massive. This is due to
the fact that planets growing by pebble accretion only start ac-
creting gas efficiently when solid accretion is stopped. Thus if
the planets have a massive enough core and are located in the
outer disc, they may undergo type II migration and have time to
accrete a considerable gaseous envelope.

A general behaviour observed for both models is that the
starting time impacts the mass of the formed planets: the earlier
the embryo is inserted the more massive the planets. The vari-
ability in the starting times however impacts the planets formed
by pebble accretion more. Indeed the growth of the planets in the
pebble model depends on the pebble front. This growth front is
the place where the dust particles have grown to pebble size and
start migrating towards the star. It moves outwards with time and
induces a pebble flux. When the pebble front reaches the outer-
most radius of the disc, the pebble flux drops to zero. If this hap-
pens at times earlier than tini then no growth occurs. In the model
the time at which the growth radius reaches the outer edge of the
disc scales with the metallicity and can therefore strongly vary.
The average time is however around ∼ 300′000 years. Therefore,
especially for later starting times, some planets do not grow at
all because there is no flux of pebbles anymore (see the bottom
panels of Fig. 7). This starting time effect has less impact in the
planetesimal model, where some growth is always possible, un-

2 We consider that a giant planet is a planet with a mass higher than
100 M⊕.

less the planet is located very far away from the star where the
planetesimal accretion rates are extremely small, or there are no
planetesimals in the planet’s feeding zone.

Another important feature in the tini = 0 case is the faster
growth inside the snowline in the pebble model compared to
the planetesimal one. The Stokes number of pebbles is reduced
when crossing the ice line because of ice sublimation (Ida &
Guillot 2016). This impacts on the accretion rate of pebbles,
which is divided by a factor ∼ 2 (Lodders 2003). However,
even with this accretion reduction, the pebble flux reaching an
embryo located inside the ice line remains significantly larger
compared to the planetesimal accretion rate on an embryo
inside the ice line in the same disc. The planetesimal rate is
considerably reduced in these regions due to the proximity to the
star and the resulting smaller feeding zone, which is a function
of the Hill radius. The semi-major axis versus mass distribution
of the intermediate mass planets is in all cases distinctly shaped
by migration, as can be seen by the over-densities of planets in
regions of outward migration that are clearly visible.

Moving to the two right columns of Fig. 7, where ε = 0.5,
some general conclusions drawn for the ε = 0.9 case also apply:
the transition in the envelope masses occurs for smaller masses
using the planetesimal model and the early starting times help
to form more massive planets. The amount of giant planets
formed by the planetesimal accretion model is however strongly
reduced compared to the ε = 0.9 case. This is caused by the
decrease in the available solids to form the massive cores that
are needed to grow into giants. For the pebble model going from
ε = 0.9 to ε = 0.5 does not have such a dramatic impact on the
abundance of giant planets. The abundance of giants is indeed
more impacted by the pebble isolation mass, which acts as a
threshold for the planet to reach larger masses. If the planets do
not reach Miso, they won’t accrete an envelope, independently
of the ε value. However the general tendency for both models in
the ε = 0.5 case compared to the ε = 0.9 case is that the planets
are less massive (this will be further discussed in Sect. 4.3).

Taking a closer look at the colour code we see that the
transition between practically no envelope (orange dots) and a
small envelope (pink dots) looks different in the two models.
While for the planetesimal model the transition between a total
solid core (orange dots) and a body with a small envelope (pink
dots) is smooth, in the pebble formation model, we see a clearer
distinction. This is due to the gas accretion starting only when
the planets reach the pebble isolation mass. The distinction we
see, which has a diagonal shape between ∼ 0.2 and 2 AU for
masses between ∼ 1 and 5 M⊕, is therefore an imprint of Miso.
Focusing on the ε = 0.5 case for the planetesimal model, we see
a few planets with masses around 1 M⊕ and semi-major axis
between 0.2 and 0.4 AU that have higher gas mass fractions (see
the concentration of purple dots while the background is orange
in the right column of Fig. 7). These planets experience outward
migration and, since they already emptied their feeding zone,
start accreting gas as soon as their semi-major axis increases. In
the ε = 0.9 case we do not see this feature appearing because
the planets were massive enough to accrete a more significant
envelope.

In Fig. 8 we focus on the situation where the embryos are
inserted at tini = 0 Myr for the ε = 0.9 case and define it as
our nominal case. The outcomes in terms of mass of the popu-
lation of planets formed by pebble accretion are represented as
a function of the population formed by planetesimal accretion.
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Fig. 7. Mass as a function of semi-major axis of all planets in all populations using ε = 0.9 (left two columns) or ε = 0.5 (right two
columns). In these two blocks the left column always gives the results for the pebble accretion model and the right one the product
of the planetesimal accretion model. Each line represents a starting time. The colour code expresses the gas fraction for each planet
at the end of the formation stage.

The colour code gives the initial location of the embryos. We
clearly see on this plot that the giant planets formed by planetes-
imal accretion remain around super-Earth masses in the pebble
accretion model. We also see through the colour code that these
planets initially formed between ∼ 1 to 10 AU. On the other hand
planets starting further out did not grow much in the planetesi-
mal model, while they reach 10 to 30 M⊕ when growing by peb-
ble accretion. Some of them even grow into giant planets (see the
planets on the top left of the figure). This hints on the impact that
the starting locations have in both models: growing in the inner
disc is more favourable to planetesimal accretion while starting
in the outer regions of the disc is beneficial to pebble accretion.
Indeed in the outer regions of the disc Miso is larger, allowing
the planets growing by pebble accretion to have more massive
cores, which can trigger efficient gas accretion. This may lead to
gap opening and prevent the planet from being lost to the star.

4.3. Populations analysis

In order to further compare the two accretion models and espe-
cially increase the visibility in the overpopulated regions of the
scatter plots, we present the same results with mass distributions.
We focus on the case where tini = 0 Myr (Fig. 7, top line) because
it is the case where the pebble model is able to form giant plan-
ets. In Fig. 9 we look at the types of planets formed depending on
the partition of solids: either ε = 0.9 or ε = 0.5. Looking first at
the red lines (pebble model) we see that the ε = 0.9 case (solid
line) forms more super-Earth mass planets while the ε = 0.5
(dotted line) case forms less massive planets. This is due to the
lack of solid material available for accretion by the embryos.
However more 50 M⊕ planets form in the ε = 0.5 case because
the planets grow more slowly and therefore, if they reach Miso,
they do it at a later stage of the disc evolution, when migration is
less efficient. This gives them more time to accrete gas while mi-
grating towards the star. In the ε = 0.9 case they did not accrete
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Fig. 8. Mass of the planets formed by pebble accretion as a func-
tion of the mass formed by planetesimal accretion for our nom-
inal case (ε = 0.9, tini = 0 Myr. The colour code gives the ini-
tial location of the embryos. The two red circle indicate the two
cases that are discussed in Sect. 4.4. The point size is scaled with
the max(Mp,peb,Mp,plan) for better visibility in the small mass
ranges.

as much gas and migrated into the star. Comparing the amount
of giant planets (in the zoomed box) we see that there is a shift in
the masses but the total number of these types of planets is still
relatively low. The decrease in the amount of pebbles therefore
mainly acts on the less massive planets for the pebble model.

For the planetesimal accretion model (blue lines) we obtain
similar results to the pebble model. With ε = 0.5 (dashed-dotted
line), there are more low mass planets and less super-Earth
mass planets. The amount of giant planets, however, strongly
decreases compared to the ε = 0.9 (dashed line) case because
there are fewer available solids to form planetesimals and a
large amount of planetesimals is needed to form giants.

Fig. 9 also provides information to compare the two models
with each other. We focus on the ε = 0.9 case. First, we clearly
see that the behaviours of the two lines are slightly shifted but
both show a bump around super-Earth mass planets. The pebble
model however forms more of them compared to the planetesi-
mal model. This is due to the isolation mass: for low Miso, when
the solid accretion is stopped, gas accretion remains very slow.
Therefore these super-Earth mass planets do not accrete large en-
velopes and stay in the mass range where type I migration is effi-
cient. They thus migrate into the inner 1 AU of the disc and then
get trapped at zero migration regions, migrating with them as the
regions migrate over time (Coleman & Nelson 2014). This re-
sults in planets not accreting a significant gaseous envelope and
consequently remain at super-Earth masses. In the planetesimal
model on the other hand the planets continue to accrete solids
while they start accreting gas. The transition between solid and
gas accretion is therefore more smooth. This helps growing to
larger masses than super-Earth because the accretion onto the
planets depends on the Hill radius, and thus the more massive
the planets, the larger their Hill radii, the more they accrete.
Additionally the onset of gas accretion increases the planetes-
imal capture radius (Inaba & Ikoma 2003) which leads to further
growth.

We highlight the larger masses in a zoomed area on the right
of the plot, which helps in comparing the amount of giant plan-
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Fig. 9. Kernel density estimate for starting time tini = 0 Myr.
The red lines are for the pebble model and the blue lines for the
planetesimal model. We show here the results for the two parti-
tions of the amount of solids: solid and dashed lines are used
when ε = 0.9 while dotted and dashed-dotted lines are used
when ε = 0.5 .The kernel density estimates were obtained us-
ing a Gaussian kernel with a Normal reference rule bandwidth
(Scott 1992).

ets. As mentioned in Sect. 4.2, the pebble model does not pro-
duce many planets between ∼ 80 M⊕ and ∼ 1000 M⊕ compared
to the planetesimal model. Going back to Fig. 8 this hole in the
mass range of the planets formed by pebble accretion is even
clearer, while in the planetesimal accretion case we see that all
types of masses form. This is due to the fact that if a planet be-
comes massive enough, it crosses the fast type I migration bot-
tleneck by opening a gap in the disc and can then migrate with
type II migration, which is much slower than type I. The rare gi-
ant planets in the pebble case are bound to become very massive
because they reach this regime earlier when there is still a lot of
gas to accrete. Planets growing by planetesimal accretion reach
type II migration over a larger range of times. Therefore it results
in a larger spread in final masses for the giant planet population.
When looking at larger masses, both models predict the forma-
tion of some very massive planets (> 1000 M⊕). Additionally,
the decrease in the numbers of super-Earths to Neptunes is much
sharper in the pebble model because of the very few planets with
masses between 80 and 1000 M⊕.

We now look at some final properties of the formed bodies.
In Fig. 10 we provide a cumulative distribution of the ice mass
fractions for our nominal case (ε = 0.9 and tini = 0 Myr). We
focus on bodies with masses higher than 1 M⊕ and orbits inside
1 AU to take into account planets that may be observed by tran-
sit measurements. We therefore concentrate here on bodies that
are mainly composed of solids and do not discuss the amount of
water in the envelopes. We consider the bodies (planetesimals or
pebbles) accreted by the embryo outside the ice line to be com-
posed of 50% ice and 50% rock and the embryo itself as well,
if formed outside the ice line (Lodders 2003). If these bodies
are accreted inside the ice line, the ice sublimates and therefore
the solids are only made of rock. The same applies for the em-
bryo, if initially located inside the ice line, it is 100% rocky. The
two models produce quite different results. Focusing on the red
line first (pebble model) we see that either the embryo is fully
rocky, or made of 50% ice and 50% rock. There are barely any
planets with an intermediate composition. This is due to the fast
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Fig. 10. Cumulative distribution of the ice mass fractions in the
solid core of the planets for our nominal case (ε = 0.9, tini = 0
Myr). The red line provides the pebble accretion model results
while the blue one gives the planetesimal accretion model re-
sults. We focus here on masses higher than 1 M⊕ and semi-major
axis below 1 AU.

accretion of solids: pebbles are very efficiently accreted by the
growing embryo and therefore the accretion of solids mainly oc-
curs near the initial location, before any migration of the form-
ing planets. The location where the planet reach Miso is indeed
on average more than 80% alike the initial location of the planet.
Furthermore the migration of the ice line is negligible over the
time the embryo accretes pebbles. This "in-situ" solid accretion
results in solid cores that are either completely formed outside
the ice line or completely formed inside. Barely any embryo mi-
grates during its solid accretion phase to be able to obtain an in-
termediate composition. Computing the same figure for ε = 0.5
or for a later tini would not impact on the sharp profile of the ice
compositions. However it would increase the amount of planets
with a solid composition only. But the sharp transition between
a solid composition and a 50% ice composition would remain
because of the fast growth by pebble accretion compared to the
ice line migration timescale.

For the planetesimal model (blue line) we also focus on bod-
ies with masses higher than 1 M⊕ and orbits inside 1 AU and
find that the rocky bodies are dominant. Compared to the pebble
model their abundance is even higher. No planets have a 50% ice
and 50% rock composition unlike the pebble model because the
forming planets have a slower growth and start migrating while
accreting solids. This impacts on the intermediate compositions.
∼ 40 % of the planets have ice mass fractions between ∼ 0.05
and ∼ 0.25. Because the planetesimal accretion rate is lower
than the pebble one, the growth of the core takes more time.
Therefore the growing embryos start to migrate while accreting
planetesimals, allowing them to cross the ice line while accret-
ing solids, resulting in reduced ice fractions. Schoonenberg et al.
(2019), as well as Coleman et al. (2019), discuss the theoretical
water content of the planets in the frame of the Trappist-1 sys-
tem. Combining the effect of planetesimal and pebble accretion
Schoonenberg et al. (2019) obtain a water fraction of the order
of 10 %. This result is closer to the planetesimal accretion sce-
nario result we obtain in the present work. As for the values we
present for planets formed by pebble accretion, they are in agree-
ment with Coleman et al. (2019).
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Fig. 11. Gas mass fraction as a function of the core mass for the
ε = 0.9 case. Again here the pebble model results are in red,
while the planetesimal model outcomes are in blue. The upper
plots shows the results for our nominal case (tini = 0 Myr) and
the bottom one for tini = 1 Myr. We therefore see here that the
starting time of the embryo does not impact on the general out-
come.

Another interesting result is the distribution of gas mass
fractions. We represent this distribution as a function of the
core mass in Fig. 11 for our nominal case as well as for
tini = 1 Myr. We see that the envelope fraction for a given
core is generally higher using the pebble accretion model.
The two plots underline that the results are alike and therefore
independent of tini. The divergence is due to the components
of the luminosity of the planets that strongly differ in the two
models. At this stage of the formation the total luminosity
is dominated by its solid accretion component because the
cores mainly accrete solids. Thus when planets formed by
pebble accretion reach their isolation mass and stop accreting
solids, the solid accretion luminosity is strongly reduced. This
therefore induces an increase of the gas accretion luminosity
which will engender efficient gas accretion (in agreement with
Alibert et al. 2018). On the other hand, at the same formation
stage, planets growing by planetesimal accretion continues
to accrete planetesimals whilst simultaneously accreting
gas, which supplies considerable solid accretion luminosity.
This leads to a smaller gas accretion luminosity and there-
fore less gas accretion. This translates here in higher gas mass
fractions for a given core mass using the pebble accretion model.

As gas mass fractions are not directly observable we take
a look at the resulting densities and whether the differences
between the models are still present after the long-term evo-
lution phase (Sect. 2.6) The composition of the planets is a
good indicator of the differences between the two models. Fig.
12 highlights these divergences with the density of planets
represented as a function of their final location. The colour
code gives the ice mass fraction in the core to indicate the core
composition. The horizontal line we see on both plots for a
density of 5.5 g/cm3 is an imprint of the fixed core density
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Fig. 12. Density of the planet as function of the final location
of the planets for the ε = 0.9 case and starting time tini = 0
Myr. The colour code expresses the ice mass fraction in the core.
The upper plots provides the results of the planetesimal accre-
tion model and the bottom one the ones of the pebble accretion
model.

we use in our models. Therefore these planets have practically
no envelopes and were represented with orange dots in Fig. 7.
In Fig. 12 the colour code is impacted by the ice line: if the
planets grow inside the ice line, they are mainly rocky and are
therefore represented by green dots, while if they grow further
outside they have a 50 % ice composition and are characterised
by purple dots. The colour code description is indeed similar to
that provided for Fig. 10: there is no planet with intermediate
compositions for the pebble model, while the planetesimal
model shows many of them.

Fig. 12 shows that for locations beyond ∼ 3 AU, the pebble
model only predicts rocky bodies with density of 5.5 g/cm3.
This means that these planets do not have an envelope. This is
an imprint of our pebble accretion model where gas can only
be accreted once the planets reach the isolation mass. This is
very different from the planetesimal accretion model where we
see many planets located outside 3 AU with density smaller
than 5.5 g/cm3 which means that they accreted an envelope.
This feature was also visible in the two top left panels of Fig. 7,
which represent our nominal cases.

What is however interesting to point out with Fig. 12 is the
outcomes for planets located inside 3 AU. There both models
predicts the formation of planets with envelopes. Therefore most
of them have densities smaller than 5.5 g/cm3. In the pebble ac-
cretion model the high gas mass fractions we obtain in Fig. 11
even lead to some very low density planets (ρ < 0.5 g/cm3). The
planetesimal accretion model is not forming planets with such
low densities. This means that if these intermediate mass gas-
rich planets would be observed, the pebble accretion scenario
could help understanding their formation.
On the other hand some very massive planets (> 1000 M⊕) have

densities larger than 5.5 g/cm3. This is due to the decrease in
radius that happens with such high masses (Mordasini et al.
2012a). Focusing on these dense planets we discuss first the ones
formed by planetesimal accretion. They have intermediate core
compositions because they accreted solids while migrating and
crossed the ice line as they grew. Furthermore they reach such
high masses because when they accrete gas it augments the col-
isional probability (Inaba & Ikoma 2003) and therefore also in-
creases the solid accretion (see further discussion in Sect. 4.4).
On the other hand the dense planets formed by pebble accre-
tion all have a 50% ice composition because they accreted all
their solid material outside the ice line. Their growth in the outer
disc was quick and nearly in-situ, and since the isolation mass is
bigger in these regions of the disc, they formed massive cores.
These massive cores lead to efficient gas accretion and helps in
forming very massive planets, leading to these high densities.

4.4. Growth tracks

One of the conclusions of the previous section is that the type
of planets formed differs between the two models. For instance
we saw in Fig. 9 that hardly any giants formed through the
accretion of pebbles. To illustrate the different formation path
we look at two different disc cases (see Fig. 13). In the first
disc case, disc a, the planetesimal accretion model forms a giant
planet. We compare its tracks with the the ones of the planet
formed by pebble accretion that grew in the same disc. The
initial conditions for the two simulations of disc a are therefore
the same. In the disc b, the pebble model forms a giant planet.
We also compare its tracks with the ones of the planet formed
by planetesimal accretion for the same initial conditions. The
outcomes of the two cases are highlighted with red circles in
Fig. 8. The disc initial conditions are similar between disc a and
b, except for the photoevaporation rate, which impacts on the
disc lifetime. Disc b has a slightly longer lifetime because the
photoevaporation rate is smaller than the one in disc a. The top
panel of Fig. 13 shows the migration of the planets with time
while the bottom one provides the masses as a function of time.

We focus first on disc a where the planetesimal model forms
a giant planet. The initial location of the planet is ∼ 8 AU. For
the pebble case (disc a, red line) we see that since the planet
grows very rapidly, it starts migrating efficiently early in its evo-
lution. The planet indeed quickly reaches ∼ 10 M⊕ by only ac-
creting solids while type I migration has a big impact on its loca-
tion. Thus, when it is massive enough to accrete gas efficiently,
it is already around 2 AU and therefore continues to migrate to
the inner edge of the disc without any time to accrete a con-
siderable envelope. Approaching the inner edge of the disc then
hampers the accretion of gas on to the planet since the planet’s
Hill sphere is significantly reduced, and small amounts of gas
accretion are sufficient to supply the luminosity generated by
the planet (Coleman et al. 2017). On the other hand, the em-
bryo formed through planetesimal accretion (disc a, blue line)
grows more slowly because of the lower planetesimal accretion
rate compared to the pebble one. Furthermore it is only once the
planet starts accreting gas efficiently (just before 4 × 105 years)
that inward migration becomes important. Because the planet is
already quite massive (∼ 40 M⊕) it accretes gas efficiently and
quickly opens a gap in the disc. This allows the planet to start
migrating in the type II regime, which is slower than type I, re-
sulting in the formation of a giant planet.

Looking now at disc b, where the pebble model forms a
giant, we see that the outcomes are very different for the two
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models. The initial location for these planets is ∼ 47 AU.
Focusing first on the planet formed by pebble accretion (disc
b, red line) we see that it does not start accreting pebbles at
the very beginning of the simulation. The planet mass remains
constant for ∼ 50′000 years. This is a consequence of the growth
front of pebbles (rg) not reaching the location of the embryo
before this time. When rg finally reaches the initial location of
the planet, the latter grows and rapidly attains its isolation mass
(∼ 20 M⊕). In the meantime the planet migrates with type I
migration, but since the growth to the isolation mass is quite
rapid, the fast migration does not occur for too long to be an
issue for the future planet growth. Thus the planet is massive
enough to accrete gas efficiently while undergoing type II
migration. The planet therefore accretes its large envelope while
slowly migrating towards the central star and ends up forming a
giant planet located around 2 AU. In these regions of the disc
the accretion of planetesimals is more difficult than the one of
pebbles. Indeed the pebble surface density in these locations
is higher than the planetesimal one because the planetesimal
surface density profile is steeper than the one of the gas disc (see
Sect. 2.2, Drążkowska & Alibert 2017; Lenz et al. 2019) while
the pebble surface density profile undergoes a similar slope to
the one of the gas. Additionally, planetesimal accretion becomes
very inefficient due to the collisional timescale increasing with
the semi-major axis. The result thus shows that the planet
formed by planetesimal accretion (disc b, blue line) does not
grow much and remains as a failed core (Mordasini et al. 2009)
near its initial location. The two results are divergent and we
see that the starting locations plays an important role in the
outcomes of the simulations within the two accretion models, as
we already discussed with Fig. 8 in Sect. 4.2.

In order to gain a feeling of how planets behave depending
on their initial locations we use our nominal disc (given in Table
1) and increase the initial amount of solids to Z = 0.1 to ensure
growth and choose different starting locations for the planets (1,
2, 5, 10 and 20 AU). Starting the embryos at 0 Myr we obtain the
growth tracks provided in Fig. 14. The red lines give the pebble
accretion model results while the blue ones represent the plan-
etesimal accretion model outcomes. We immediately see that the
two models produce very different tracks – as already concluded
with Fig. 13. However, we see that using the pebble model, type I
migration is very efficient and planets with masses around ∼ 10
M⊕ migrate directly to the inner edge of the disc without any
chance of accreting significant amounts of gas. These planets
indeed reach their isolation masses rapidly (see the red dots on
the tracks, indicating the time evolution), essentially growing al-
most in-situ. They are then not massive enough to trigger effi-
cient gas accretion which can aid them in avoiding fast type I
migration. On the other hand, what prevents planets formed by
planetesimal accretion to also have this behaviour is that they
accrete solids more slowly (see the blue dots on the tracks, in-
dicating the time evolution) and start migrating while accreting
solids. Consequently they reach the outward migration regions
(∼ 1 AU and ∼ 3 AU), which prevents them from directly falling
into the star. This puts them in a favourable location given their
mass to accrete gas efficiently. Additionally, when they accrete
gas, the planetesimal accretion rate increases due to gas drag
that enlarges the collisional probability described by Inaba &
Ikoma (2003). This leads to a significant increase in solid accre-
tion while gas accretion is also occuring. This is in strong con-
trast to the pebble accretion model where, when planets reach
the pebble isolation mass and gas accretion becomes efficient,
the solid mass does not increase anymore.
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Fig. 13. Growth tracks and migration tracks as a function of time
for two disc cases. In the disc a the planetesimal accretion model
forms a giant planet while in the disc b the pebble accretion
model does. The upper plot shows the migration of the planets
with time and the bottom plot the mass of the planets with time.
Again the red lines represent the pebble model results and the
blue lines the planetesimal model results.

5. Discussion and conclusion

This work provides a comparison between two planet formation
scenarios: pebble accretion and planetesimal accretion. Using
two distinct codes we utilise the same disc model, gas accretion
model and migration model. A proper testing can only be
done if the initial conditions are identical, which is why we
compare the implemented disc model, the accretion of gas and
the migration regimes. The comparison yielded convincing
results (Fig. 6), allowing the two solid accretion models to be
adequately compared.

Using a population synthesis approach we then compute sim-
ulations of single planet per disc to avoid the chaotic effects of
the use of an N-body integrator. We leave the interactions be-
tween several planets in a common disc for future work. The
embryos in our simulations are inserted at different starting times
(0, 0.2, 0.5 and 1 Myr) with initial locations uniform in loga-
rithm between 0.1 and 50 AU. We choose two scenarios to split
the amount of solids available in the disc: either we use 90%
of this amount to form the accretable bodies (planetesimals or
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Fig. 14. Growth tracks of planets in the same disc for a starting
time of tini = 0 Myr. The initial locations are 1, 2, 5, 10 and
20 AU. The red solid lines give the pebble model outputs while
the blue dashed lines represent the planetesimal results. The dots
indicates the growth evolution after 10’000 years, 30’000 years,
0.1 Myr, 0.3 Myr and 1 Myr. The disc lifetime for this simulation
is 2 Myr.

pebbles), or we use 50%. The rest of the solids remains as dust
and contributes to the opacity of the disc. For the envelope cal-
culation the grain opacity is reduced by a factor fopa = 0.003
because grain-free opacities are more relevant for the envelope
calculation than interstellar medium-like opacities (Mordasini
et al. 2014). This reduction is applicable to our pebble accre-
tion model because the planets formed by pebble accretion only
accrete solids for masses below Miso. At this point, they have
practically no envelope because of the high solid accretion lu-
minosity that prevents gas accretion. This therefore avoid for the
pebbles to evaporate inside the envelope and for them to impact
on the grain opacity. We investigated the influence of a change
of opacity in the envelope for planets below Miso and did not
obtained a significant impact.3

A general observation is that the outcome of the popula-
tions (Fig. 7) is very different depending on the accretion model.
Indeed the planetesimal accretion model forms a larger amount
of giant planets. The pebble model produces a few giants mainly
when the embryo is inserted at tini = 0 Myr and they are very
massive (more than a thousand Earth masses). The starting time
indeed has a big impact for the pebble accretion model. The
earlier the embryo is inserted, the more massive the planets.
Furthermore for later starting times, some planets may not grow
at all because of the absence of pebble flux when the pebble
front reaches the outer edge of the disc. On the other hand, for
the planetesimal accretion scenario, the initial starting time plays
a less important role since growth is possible at any time. The
growth of the planets in the planetesimal model is more influ-
enced by the location because if the planet is located far away
from the star, planetesimal accretion rates are extremely low.

The impact of the splitting in the amount of solids appears
mainly when using the planetesimal accretion model (Fig.
9). The amount of giant planets is clearly reduced when less
solids are available to form the planetesimals since a large

3 Note that in our previous work (Brügger et al. 2018), we reduced
the opacity also above Miso, which is why there was a change in the
mass functions.

amount of planetesimals is needed to grow large cores. Figure 9
reveals a gap in the mass distribution of planets around Jupiter
masses when using the pebble accretion model. Comparing the
mass distributions of the two models, more super-Earth mass
planets are formed by the pebble model and the decrease from
super-Earth to Neptunes is much sharper in this model as well
because of the very few planets with masses between 80 and
1000 M⊕ formed by pebble accretion.

We then compare the ice mass fractions (Fig. 10) and see
that using the pebble accretion model the resulting planets are
either fully rocky or with a 50% rock 50% ice composition. Few
intermediate compositions are formed because the planets grow
fast and nearly in-situ. On the other hand the planetesimal model
does produce a significant number of planets with intermediate
compositions because the planets formed by planetesimal accre-
tion grow slower while migrating.

Focusing on the gas mass fraction (Fig. 11) we find that
the pebble model forms planets with higher gas mass fractions
for a given core mass compared to the planetesimal model.
We show that this result is independent of the starting time
of the embryo but is influenced by the contributions to the
luminosity of the planets. Planets formed by pebble accretion
have a low solid accretion luminosity once they reach their
isolation mass because solid accretion is stopped. This results
in a high gas accretion luminosity (Alibert et al. 2018), which
triggers efficient gas accretion (Coleman et al. 2017). Planets
formed by planetesimal accretion on the other hand accrete gas
while still accreting solids, leading to a lower gas accretion
luminosity. This finally translates into gas mass fractions for a
given core mass that are higher for planets formed by pebble
accretion. This difference in the gas mass fractions is not always
retained over the Gyr evolution after the disc dispersal due to
efficient photo-evaporation of the atmosphere. However some
differences between the models are still present after the long-
term evolution. Intermediate mass planets formed by pebble
accretion indeed reach densities as low as 0.2 g/cm3, where the
lower limit reached by planets formed by planetesimal accretion
is 0.5 g/cm3 (Fig. 12). Therefore only the pebble model could
form such gas-rich intermediate mass planets.

However the planets formed by pebble accretion do not
grow to giants because of their too efficient migration (see
Fig. 13). They indeed grow quickly to their isolation mass and
therefore reach in the early evolution of the disc the mass range
where type I migration is decisive. Migration is very efficient
in a dense disc and the planet reaches the inner regions of the
disc very quickly, without enough time to accrete a significant
envelope (Coleman & Nelson 2014, 2016b). On the other hand,
planets formed by planetesimal accretion have a slower growth
rate. Furthermore when they start accreting gas, they are still
accreting solids, which slows their accretion of gas due to an
increased solid accretion luminosity (Alibert et al. 2018). Thus
the transition between pure solid accretion and gas accretion is
not abrupt, helping them to become massive enough to open
a gap in the disc. This therefore reduces their migration rate,
allowing them more frequently to accrete gas efficiently and
grow to giant planets.

The lack of giant planets formed by the pebble accretion
model is interesting to compare with Brügger et al. (2018). A
substantial amount of giants was obtained when reducing the
opacity in the planetary envelope. However in Brügger et al.
(2018) the disc profile is different (as mentioned in Sect. 2.1),
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leading to a higher surface density in the outer regions and there-
fore a higher flux of pebbles. The variability in the amount of
solids (ranging between 0.011 and 0.11) is also a key factor for
the formation of giants. In the present work we focus on a dis-
tribution with a mean value around Ztot = 0.02, which lies in the
lower range of what was used in the previous work and there-
fore the amount of giant planets is affected. For similar amounts
of solids, the same types of planets as in the present work were
obtained.

For the planetesimal accretion model the amount of giant
planets is impacted by the size of the planetesimals. We focused
in this work on 1 km sized planetesimal, which helps the for-
mation of giants compared to bigger sizes (Fortier et al. 2013).
This highlights that both scenarios require specific conditions to
form giants. A hybrid approach (Alibert et al. 2018) might help
to overcome the difficulties linked to each model.

Our work underlines the impact of the different accretion
scenarios: pebble accretion or planetesimal accretion. We should
however keep in mind that we focus on single planet populations
and therefore the consequences of mutual interactions between
the planets are not taken into account. We leave this improve-
ment for future studies.
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5.5. Letter II: A water budget dichotomy of rocky

protoplanets from 26Al-heating

Since the introduction of planetary orbital migration (Sect. 4.3), it was specu-
lated that close-in planets might be commonly water-rich (Kuchner, 2003; Ida &
Lin, 2004a). Especially around lower-mass stars, planets with lower masses undergo
fast type I migration and develop into potentially habitable water worlds (Alibert &
Benz, 2017). Those planets would have signi�cant water mass fractions of up to 50 %
and commonly on the order of 10 %.
However, the observational data now starts to show that most Earth-mass planets

are in fact of a mainly rocky composition. Small water contents cannot be excluded,
but water mass fractions on the order of 10 % are not found in close-in, Earth-mass
planets in (a) the Solar System, (b) around the low-mass star TRAPPIST-1 (Grimm
et al., 2018), and (c) in the statistical mean of the exoplanetary population. The
last point (c) is true if the interpretation of the statistically signi�cant radius valley
(Fulton et al., 2017) can be attributed to photo-evaporative mass loss (Owen & Wu,
2013; Lopez & Fortney, 2013; Jin et al., 2014). Then, the location of the radius
valley in the radius-period plane can only be explained by rocky compositions (Jin
& Mordasini, 2018).
Therefore, there is compelling evidence that either planetary orbital migration from

outside the snowline is not responsible for the delivery of the bulk of the planetary
mass to close-in regions or that an additional physical ingredient is missing. In the
letter by Lichtenberg et al. (2019) (Letter II), we explore the e�ect of radioactive
heating on the planetesimal composition and �nally the resulting planetary compo-
sition in the statistical population synthesis framework. The e�ect the decay of 26Al
was found to dominate and in�uence planetesimals with sizes larger than 10 km in
the most early stages of the disk (Lichtenberg et al., 2016). These calculations were
extended and tabulated by Tim Lichtenberg and collaborators at the ETHZ.
The contribution to Letter II by the University of Bern group including myself

are the calculation of planetary population syntheses incorporating 26Al-heating. I
implemented a module to decrease the ice mass in the planetesimal disk. This module
reads in the tables provided by Tim Lichtenberg and accordingly removes ice from
the planetesimal disk as a function of time since the calcium-aluminium-rich inclusion
formation. The details can be found in the methods section of the following letter.
Apart from the dehydration module, the Bern model of planet formation was used

in its nominal mode. To explore a part of the large parameter space, we varied the
stellar mass, and correspondingly the initial disk masses and sizes, as well as the
initial planetsimal size.
We �nd that 26Al-heating leads to a signi�cant and observable decrease in the

planetary water-mass content. Especially for stars with higher 26Al fractions, all
planetesimals can dry-out which removes most of the ice that would have been ac-
creted by embryos otherwise. The process is most e�cient for large planetesimals.
However, planet growth timescales increase for larger planetesimals, which is a long
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standing problem in planet formation.
In the future, a planetesimal formation model should be coupled to the 26Al-heating

module to explore if a realistic planetesimal formation pathway could concentrate
planetesimals to grow larger planets while still forming planetesimals rapidly enough
to keep the 26Al-heating signi�cant.
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In contrast to the water-poor planets of the inner Solar 
System, stochasticity during planetary formation1,2 and order-
of-magnitude deviations in exoplanet volatile contents3 sug-
gest that rocky worlds engulfed in thick volatile ice layers4,5 
are the dominant family of terrestrial analogues6,7 among 
the extrasolar planet population. However, the distribution 
of compositionally Earth-like planets remains insufficiently 
constrained3, and it is not clear whether the Solar System 
is a statistical outlier or can be explained by more general 
planetary formation processes. Here we use numerical mod-
els of planet formation, evolution and interior structure to 
show that a planet’s bulk water fraction and radius are anti-
correlated with initial 26Al levels in the planetesimal-based 
accretion framework. The heat generated by this short-lived 
radionuclide rapidly dehydrates planetesimals8 before their 
accretion onto larger protoplanets and yields a system-wide 
correlation9,10 of planetary bulk water abundances, which, for 
instance, can explain the lack of a clear orbital trend in the 
water budgets of the TRAPPIST-1 planets11. Qualitatively, our 
models suggest two main scenarios for the formation of plan-
etary systems: high-26Al systems, like our Solar System, form 
small, water-depleted planets, whereas those devoid of 26Al 
predominantly form ocean worlds. For planets of similar mass, 
the mean planetary transit radii of the ocean planet popula-
tion can be up to about 10% larger than for planets from the 
26Al-rich formation scenario.

In the early Solar System, the decay heat from the short-lived 
radionuclide 26Al ≈ .∕t( 0 72 Myr)1 2, Al26  powered the interior evolu-
tion of planetesimals, the seeds and building blocks of the rocky 
planets, and led to silicate melting12,13 and degassing of primordial 
water abundances8,14. Here, we explore the systematic effects of 26Al 
on rocky planetary systems using numerical models of planetary 
formation15 with 26Al-induced water loss from planetesimals during 
the main accretion phase14. We generate synthetic planet popula-
tions with internal structures defined by the planets’ composition, 
which result in statistical variations of planetary water abundance 
and (transit) radius.

In the models presented, initially Moon-sized protoplanets grow 
from the accretion of planetesimals (1–100 km in size) and gas, and 
migrate within the protoplanetary disk of G- or M-type systems (see 
Methods). The initial locations of the embryos and the starting disk 
structures and boundaries are randomized to reflect the diversity 
found in observed young planetary systems16. Planetesimals are set 
to be dry within the snowline and icy outside, with a decreasing 

water mass fraction over time, calculated from planetesimal interior 
models that account for the dehydration from internal radiogenic 
heating of 26Al. Here, we account for accretion of planetesimals only, 
and ignore the potential contribution from smaller particles, such 
as pebbles17–19. The heating rate in the planetesimal interior is con-
trolled by the amount of 26Al incorporated during planetesimal for-
mation, which may vary substantially between planetary systems20,21. 
We account for this variability by generating synthetic planet popu-
lations with different planetesimal radii, rplts = 3, 10 and 50 km, and 
initial 26Al abundances of 26Al0 ∈ [0.1, 10]26Al⊙, with 26Al⊙ the Solar 
System’s ‘canonical’ (26Al/27Al)0 at the time of calcium–aluminium-
rich inclusion (CAI) formation, and compare them to a nominal 
case without 26Al-heating (for further details on the models, see 
Methods). For each combination of rplts, 26Al0 and stellar type (G or 
M), we performed 30,000 single-planet simulations1,15, resulting in a 
statistically representative set of 540,000 individual simulations over 
18 parameter sets (Fig. 1).

The effects of 26Al0 and rplts on the retention of water within plan-
etesimals and resulting planet populations from a given set of ini-
tial conditions are shown in Fig. 1. Planetesimals with larger rplts and 
higher 26Al0 dehydrate faster, and up to 100% for extreme values. 
Rooted in our conservative choice for dehydration (see Methods), the 
total water loss divides the parameter range into two distinct regimes. 
The first consists of almost pristine water–rock ratios for small plan-
etesimals with low 26Al0. However, for 26Al0 ≳ 26Al⊙ and planetesimals 
with rplts ≳ 10 km, water loss is nearly complete (Fig. 1a,b).

For distinct combinations of 26Al0 and rplts, we simulate the influ-
ence on the expected planet population for planet masses MP ∈ [0.1, 
10] MEarth (Fig. 1c). Because the timescale for water loss caused by 
26Al-heating is significantly shorter than the accretion timescale, 
sufficiently 26Al-enriched planetesimals are mostly dry when they 
accrete onto protoplanets. Therefore, the final water mass fractions 
for the planets are correlated with the retained water fraction in 
planetesimals, owing to 26Al-heating. The planet desiccation caused 
by the accretion of ever-more dehydrated planetesimals reduces 
the inherent scatter and range in fH O2

 in the synthetic planet pop-
ulations (cf. Figs. 1c and 2a,b). For fixed planetesimal radius and 
increasing 26Al0, accreting planets receive more relative mass con-
tribution from dry objects and end up water-depleted relative to 
nominal conditions.

In the Solar System, the initial planetesimal size frequency 
distribution is expected to have been dominated by bodies with 
rplts ≳ 30–50 km22. For such bodies, the equilibrium between radio-
genic heating and surface cooling stabilizes internal temperatures 
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for an extended timespan at spatially isothermal conditions13. 
Therefore, the fractional dehydration in Fig. 1b flattens above 
rplts ≳ 50 km and becomes nearly independent of planetesimal size. 
For rplts = 50 km, dehydration is dominantly controlled by 26Al0 and 
generates a dichotomy between planets in 26Al-enriched (top black 
and red histograms, Fig. 2) versus non-enriched systems (top blue 
histogram, Fig. 2). M and G stars overall display a similar trend, but 
M stars form smaller planets on average, owing to their lower initial 
budget of planet-forming material.

The emerging trend from our simulations is illustrated in Fig. 3, 
with a clear distinction between planetary systems that are signifi-
cantly enriched (26Al0 ≳ 26Al⊙) and those that are not. In general, 26Al 
is expected to be abundant but inhomogeneously distributed within 
young star-forming regions20,23. According to our simulations,  

planets in enriched systems grow from ever-more dehydrated plan-
etesimals and form desiccated planets in their terrestrial planet 
zone. Depending on the initial planetesimal sizes, final planet water 
fractions are up to two orders of magnitude below the initial plan-
etesimal water mass fractions, and are strongly correlated with the 
efficiency of dehydration during accretion (Fig. 1).

The bulk volatile mass fraction has the greatest influence on the 
structure and mass–radius relation of a rocky planet24,25. Therefore, 
we anticipate the resulting smaller radii (from lower water mass 
fraction) for higher 26Al levels to be reflected in the galactic exo-
planet population. For deviations in planet bulk water fractions 
predicted here, the thickness of the volatile layer on top of the sili-
cate mantle constitutes several per cent of the radius4,5,24,26. We cal-
culate this deviation in our synthetic populations by translating the 
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Fig. 1 | Dehydration of icy planetesimals from 26Al-heating and resulting influence on planet water abundance. a, Time-resolved water retention for 
planetesimals of 3, 10 and 50 km radius with 26Al0 ∈ [0.1, 10]26Al⊙. Brighter colours indicate stronger water depletion. The degassing saturation, when the 
lines become horizontal, results from the rapid decay of 26Al. b, Final state of water retention. The initial abundance 26Al0 at planetesimal formation can 
be translated into time after the formation of CAIs for Solar System objects. The orange line depicts the approximate lowest-mass planetesimals inferred 
for the early Solar System planetesimal population22. c, Distribution and shift in planet bulk water abundances for specific planetesimal configurations 
from a,b, for planet masses MP ∈ [0.1, 10]MEarth and fH O2

 > 0. The legend for the violin distributions is given in the upper-right box. Each configuration 
shows the statistical distribution of fH O2

 in a synthetic planet population generated from our model. The white dot in the grey bar in the middle of each 
violin histogram represents the median of the entire (combined G- and M-star) planet population, the horizontal grey bar the interquartile range (middle 
50% of the population within the bar, upper and lower 25% outside the bar), again combined. The vertical solid and dashed lines in the upper and lower 
violin histograms represent the median and interquartile range, respectively, for the G- or M-star planet population in isolation. The water retention in 
planetesimals from a,b is correlated with the final retained water in c (colour scales in b,c are equal).
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derived planetary masses and compositions into a mean radius in 
a given mass bin (Fig. 4) using interior structure models that are 
sensitive to the total planet mass, its water and (captured) hydro-
gen/helium mass fraction, and the surface pressure (see Methods). 
For the entire populations of planets among G and M stars, the 
radius deviation reaches 2% for 1 × 26Al⊙, and can go up to about 
4% for Mars-sized planets for 10 × 26Al⊙ or rplts = 50 km, respec-
tively. If we only consider planets that accrete a minimum amount 
of water (planets that receive some mass contribution from beyond 
the iceline), with 10 × 26Al⊙, or 1 × 26Al⊙ with rplts = 50 km, the mean-
radius shift can reach about 10%. Planetary systems with high 26Al0 
(26Al0 ≳ 1–10 × 26Al⊙) form water-depleted planets with system-wide 
smaller radii than for the non-enriched population.

Such deviations are expected to be measurable by the planned 
PLATO mission27, which will aim to characterize a statistical 
ensemble of planetary radii in the rocky planet regime. The intrin-
sic compositional scatter in the inferred mean densities from 
known exoplanets suggests a large stochastic component in the 
planet formation process. Yet, recent analyses of data based on 
Kepler multi-planet systems provided strong evidence for intra-
system correlation between planetary radii9,10. Therefore, in the 
exoplanet census probed so far, the fate and long-term structure of 

planets seems to be dominated by physical and chemical effects on 
a system-to-system level, rather than emerging from intra-system 
stochasticity during accretion, such as impact stripping28,29. With 
future access to a statistical ensemble of low-mass planet radii from 
exoplanet-focused missions, the highly 26Al-enriched systems, such 
as the Solar System, where planetary radii deviate by several per 
cent from the population of 26Al-poor systems, may stick out from 
the mean of the population and provide clues about the underlying 
26Al distribution of planetary systems.

For example, the system-wide water depletion of the TRAPPIST-1 
planets11,30 is consistent with desiccation induced by 26Al ≳ 26Al⊙ 
(Fig. 2). The atmospheres of the TRAPPIST-1 planets seem to be 
secondary31, and may have lost several Earth ocean equivalents of 
water32. However, to account for the consistency of especially the 
outermost planets e–h with near Earth-like volatile abundances and 
lack of an orbital trend in water budget11, an order-of-magnitude 
depletion mechanism, such as suggested here, must affect all of the 
planets. Therefore, the retrieved low water mass fractions of the 
TRAPPIST-111,30 planets are unexpected from formation and evo-
lution models1,6,25,33,34, and present a severe challenge for current 
planet formation scenarios. The 26Al desiccation mechanism that 
we put forward achieves system-wide water depletion for G and M 
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 decreases systematically. For MP ≥ 0.1 MEarth and rplts = 50 km, the fH O2

 histogram on top shows a difference of approximately one order of magnitude 
between planets formed devoid of 26Al and with 26Al ≳ 26Al⊙. Only the latter cases increasingly populate the terrestrial planet regime with � Of wt( %)H O2

.  
The populations with 26Al0 = 0 (blue points) only rarely and stochastically form planets with low water mass fractions, which are due to rapid inward 
migration. The clustering for 26Al0 = 0 at the maximum water mass fraction is inherited from the chosen initial composition of planetesimals beyond 
the snowline (Methods). It is important to note that the areas of clustering locate the maximum water mass fractions for a given planet mass within a 
synthetic population, that is, planets that are formed entirely beyond the snowline. For example, all planets from the synthetic population with rplts = 3 km, 
and 26Al0 = 10 × 26Al⊙, show water mass fractions fH O2

 ≲ 15 wt% for MP ≥ 0.1 MEarth. G stars (a) on average form higher-mass planets than M stars (b) 
because of their higher initial total mass budget in the disk. The TRAPPIST-1 planets (the labels b to h in b refer to the planets TRAPPIST-1 b to TRAPPIST-1 
h) are shown as inferred previously11 for the planet masses from ref. 30 (light green) and with potential systematic shifts in the data accounted for (dark 
green). They are consistent with being formed in a planetary system with 26Al0 ≳ 26Al⊙ and rplts ≳ 10 km and plot in sparsely populated regions of the 26Al = 0 
planet populations. The ellipses give the statistically inferred values (the 1-σ confidence levels) for planetary masses and water mass fraction of the planets 
TRAPPIST-1 b to TRAPPIST-1 h.
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stars without the need to fit specific accretion dynamics, as it has 
been proposed25,34. However, because the TRAPPIST-1 system is 
just the first of perhaps many such systems, coordinated observa-
tional efforts will be required to establish population characteristics 
for similar systems, in order to distinguish between 26Al desicca-
tion and migration-driven mechanisms25,34 as the origin of the 
TRAPPIST-1 planet compositions.

For accretion scenarios in which planetesimals represent the pri-
mary carrier of water, our models suggest that planetary systems 
with 26Al abundances similar to or higher than the Solar System 
generically form terrestrial planets with low water mass fractions, 
with O≲f wt( %)H O2

. This effect is more pronounced for planets 
further out from their host star, as embryos in these regions grow 
preferentially from water-rich solids. For a non-uniform distri-
bution of 26Al in Milky Way star-forming regions, the systematic 
water depletion in 26Al-enriched systems suggests the existence of 
two qualitatively distinct classes of planetary systems: water-poor 
(26Al-rich) and water-rich (26Al-poor) systems, with a systematic 
mean-radius deviation for sub-Earth terrestrial planets between 
these classes. The resulting shape of the distribution of dry and wet 
planetary systems depends on the genuine, but unknown, distribu-
tion of 26Al levels21 among planet-forming systems and the nature 
and timing of protoplanet accretion. If rocky planets grow primarily 
from the accumulation of planetesimals, then the suggested devia-
tion between planetary systems should be clearly distinguishable 
among the rocky exoplanet census. If, however, the main growth 
of rocky planets proceeds from the accumulation of small particles, 
such as pebbles, then the deviation between 26Al-rich and 26Al-poor 
systems may become less clear, and the composition of the accreting 
pebbles needs to be taken into account. Therefore, in future work, 
models of water delivery and planet growth need to synchronize the 
timing of earliest planetesimal formation35, the mutual influence of 
collisions36 and 26Al dehydration, the potential growth by pebble 
accretion17–19, and the partitioning of volatile species between the 
interior and atmosphere of growing protoplanets37 in order to fur-
ther constrain the perspectives for rocky (exo-)planet evolution38.

Methods
Planetesimal dehydration. We model water loss from instantaneously formed 
planetesimals composed of a rock–ice mixture using numerical models that employ 
a conservative finite-differences, fully staggered grid method coupled to a marker-
in-cell approach39,40. The thermo-chemical evolution of planetesimals is computed 
in a two-dimensional infinite cylinder geometry on a Cartesian grid, solving the 
Poisson, continuity, Stokes and energy conservation equations. We assume the 
planetesimals to be accreted with the temperature of the protoplanetary disk 
beyond the water snowline, T0 = 150 K, which is kept constant during the evolution 
of the planetesimal using the free-surface ‘sticky-air’ method41. Heating is provided 
by the decay of 26Al, which defines the radiogenic heat source term over time

τ τ= ∕ − ∕ ∕H t f E t( ) ( Al Al) exp( ) (1)Al Al
26 27

0 Al Al Al26 26 26 26

where fAl is the chondritic abundance of aluminium42, 26Al0 = (26Al/27Al)0 is the ratio 
of 26Al to stable 27Al at the time of planetesimal formation, = .E 3 12 MeVAl26  is the 
decay energy43 and τ = .1 03 MyrAl26  is the mean lifetime. We ignore any potential 
heat contribution from 60Fe, which may further boost radiogenic heating rates in 
extrasolar systems20,44. If the planetesimal interior reaches temperatures beyond the 
rock disaggregation threshold45 at a silicate melt fraction of ϕ ≳ 0.4, where the rock 
viscosity drops by more than ten orders of magnitude, we approximate the thermal 
conductivity in the soft turbulence limit46 with

α ρ η= ∕ . ∕ Δ∕k q gc T( 0 89) ( ) (2)eff
3 2

liq p
2

s num

with the convective heat flux q, the temperature difference across nodes ΔT, silicate 
density ρs, thermal expansivity of molten silicates αliq, silicate heat capacity cp, local 
gravity g(x, y), and lower cut-off viscosity ηnum. For numerical values used and 
further details and references on the code, see ref. 13. The initial planetesimal water-
to-rock ratio beyond the snowline is expected to be between about 0.05  
(refs. 33,47), the water content of carbonaceous chondrites, and about 0.5, as 
suggested by equilibrium condensation calculations42. Here, we adopt a value  
closer to the upper estimate, = .f 0 3H O,init2

, but our calculations only marginally 
depend on the adopted value.
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that formed entirely inside of the water snowline. For varying selection 
criteria, the planet radii per mass bin for 26Al-enriched systems deviate 
from non-enriched systems by up to about 10%.
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In general, during heat-up of a primordial water ice–rock mixture, ices melt 
and react with the ambient rock. The liquid water undergoes pore water convection 
and escapes quickly once the gas phase is reached8, but a small fraction of water 
may be trapped in hydrous silicate phases. Therefore, we numerically account 
for dehydration of parts of the planetesimal interior at a conservative upper limit 
of T ≥ Tdry = 1,223 K, the upper limit of the amphibolite stability field, when any 
possibly remaining hydrous silicate phases break down. At these high temperatures, 
exsolved water vapour is lost quasi-instantaneously because planetesimals of this 
size cannot preserve an outgassed atmosphere. We do not resolve potential earlier 
water loss from degassing48, residual volatiles above Tdry (ref. 49), or ice sublimation 
during late and optically thin disk stages50. Using these assumptions, we compute 
the expected ratio of dehydrated to primordial water–rock mixture at time  
t due to degassing,

∕ = − ∕f t f X t X( ) 1 ( ) (3)H O H O,init dry plts2 2

with the dry fraction, Xdry(t), of the total planetesimal interior, Xplts, and the initial 
water-to-rock ratio, = .f 0 3H O,init2

. Under these conditions, a planetary system in 
the planet formation model is represented by an initial 26Al0 that corresponds to the 
time of planetesimal formation. If the 26Al content may vary spatially within  
the disk, as has been suggested51,52, the Solar System itself would be represented  
by a sub-canonical (26Al0 ≤ 26Al⊙) value, similar to the effects of delayed 
planetesimal formation (Fig. 1b; cf. ref. 36 for a discussion of the effects on 
planetesimal evolution).

Planet formation. We compute the formation of planets and generate our 
synthetic planet populations using an updated version of the model of ref. 53. The 
computer code numerically treats the structure and evolution of the protoplanetary 
disk, the dynamical properties and accretion rate of planetesimals onto accreting 
protoplanets, the planetary envelope structure and disk–planet interactions15,54–56. 
Here, we provide a brief summary of the most important code modules used  
in this work.

The protoplanetary disk model relies on the Shakura–Sunyaev57 disk viscosity 
approximation (αdisk = 2 × 10−3) and computes the surface density evolution over 
time by solving the radial diffusion equation,
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with the surface density Σ, orbital radius r, effective viscosity ∼ν and gas accretion 
onto embryos Q̇planet, calculated from removing gas in an annulus centred on the 
embryo with a width of one Hill radius,

= ∕ ∕R a M M[ (3 )] (5)H planet planet star
1 3

with the planet semi-major axis aplanet, planet mass Mplanet and star mass Mstar. 
Mass loss due to internal (extreme ultraviolet) photoevaporation Σ̇w

58 is set ∝r−5/2 
outside a gravitational radius of about 5 astronomical units (au), and external (far 
ultraviolet) photoevaporation59 is constant outside about 140 au, with the total 
mass loss being a free model parameter. The parameters used to represent the 
planetesimal disk rely on the initial central temperature and pressure from the gas 
disk model to compute the location of the water snowline, thereby neglecting radial 
drift of planetesimals and that of the snowline60. Drift timescales for planetesimals 
larger than 1 km exceed the disk lifetime by orders of magnitude61.

We consider rocky planetesimals ρ ρ= =−
−( 3, 200 kgm )plts dry rock

3  inside, and 
rock-ice aggregates ρ ρ ρ= + −− f f( [1 ])plts ice,init H O H O,init rock H O,init2 2 2

 beyond the 
snowline, which are fixed in radius and accrete onto the planetary embryo that 
is embedded in the disk in a single simulation. The residual water mass fraction, 
f t( )H O2

, of the accreting planetesimals is computed from the internal evolution 
(see section ‘Planetesimal dehydration’ above) and is translated to a decreasing 
planetesimal density, ρ − t( )plts ice , and disk solid surface density, Σplts–ice(t), by 
reducing the planetesimal density as

ρ ρ ρ= + −− t f t f( ) ( ) [1 ] (6)plts ice H O H O rock H O,init2 2 2

In this formulation, lost water is assumed to be replaced by pore space, and the 
planetesimal radius stays constant. The solid surface density available for embryos 
to accrete beyond the iceline thus changes with

Σ Σ= + −− −t f t f( ) ( ( ) [1 ]) (7)plts ice H O H O,init plts ice,init2 2

In our nominal model, a single embryo of initially lunar mass, M = 0.0123 
MEarth, is placed randomly between specific inner and outer bounds within the 
protoplanetary disk (see section ‘Parameter space’ below), with a dry composition 
inside the snowline, and wet outside. It starts accreting solids (planetesimals) 
and gas, and may migrate in the type I and II regime, depending on the embryo 
mass and physical structure of the disk at a given orbit62. The solid accretion 

rate63,64 takes into account the captured atmosphere. Planetesimal excitation and 
damping is computed by taking into account self-interactions and damping by gas 
drag65. We ignore water loss due to collisions, which may further reduce the water 
inventory29,66–68 dependent on the frequency of such interactions, and accretion of 
smaller solid particles17,18,69 (‘pebbles’) that may shift the ratio of dry to wet accreted 
primitive materials70. Gas accretion due to planetary contraction is considered 
using a dust opacity reduction factor of 0.01 compared with interstellar values71,72.

G star settings are identical to the Sun’s values. The properties for the M-star 
runs are scaled down. We choose a fixed mass of Mstar = 0.2 M⊙ for the M stars. The 
radius of the star is set to

= ∕ ⊙
.

⊙R M M R( ) (8)star star
0 945

with luminosity73

= . ∕ ⊙
.

⊙L M M L0 628( ) (9)star star
2 62

and temperature

π σ= ∕T L R(4 ) (10)star star star
24

with stellar radius Rstar, stellar mass Mstar and Stefan–Boltzmann constant σ. The 
disk dimensions, exponential cut-off radius and the embryo placement boundaries 
(see ‘Parameter space’) are reduced to account for the lower masses and sizes of 
M-star disks. Thus, initially all embryos form closer to the star than for the G-star 
populations. The initial disk mass follows the scaling law74

∝ ∕ ⊙
.M M M( ) (11)disk star

1 2

with the internal photoevaporation rate adapted to match similar mean lifetimes 
compared to the G-star simulations. In reality, these could be anti-correlated 
with stellar mass75, which would increase the efficiency of the 26Al-dehydration 
mechanism for M stars owing to longer accretion timescales.

Interior structure and evolution. The interior structure and the long-term 
evolution of the planets is calculated as described in ref. 76 by solving the classical 
one-dimensional radially symmetric interior structure equations of mass 
conservation, hydrostatic equilibrium and energy transport77
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where rp is the radial distance from the planet’s centre, m the enclosed mass, P the 
pressure, ρ the density and G the gravitational constant. The intrinsic luminosity of 
a planet is assumed to be constant as a function of the planet radius. The gradient 
∇ depends on the process by which the energy is transported (radiative diffusion 
or convection). These calculations yield the radii of the planets given their mass 
and bulk composition, namely the mass fractions of iron, silicates, water and H/
He, as an output from the planet formation and planetesimal dehydration models. 
For the H/He envelope, the equation of state of ref. 78 is used to solve the structure 
equations, while for the solid part of the planet, including the water content, the 
modified polytropic equations of state of ref. 79 are used. The transit radius is 
estimated as in ref. 80.

The loss of the primordial H/He envelope by atmospheric escape is considered 
in the energy- and radiation-recombination-limited approximation as described 
in ref. 81 and results in the loss of the primary atmosphere for low-mass planets at 
smaller orbital distances. Because of the limited water solubility in silicate mantles, 
the radius of planets without primordial H/He envelopes depends strongly on the 
water mass fraction82, and thus reveals the dehydration pattern caused by different 
abundances of 26Al. Here, we do not treat interior-atmosphere exchange during 
early magma ocean phases that may further fractionate the volatile distribution 
within the body, in particular for close-in planets37.

Parameter space. From γ-ray observations, there is evidence for a widespread 
and heterogeneous distribution of 26Al in the Galaxy21. Observational evidence 
from young star-forming regions and theoretical work suggest a non-uniform 
enrichment pattern among planetary systems20,21,23,44,83–87 with order-of-
magnitude deviations from the Solar System’s ‘canonical’ 26Al value88 of 
26Al⊙ = (26Al/27Al)0 = 5.25 × 10−5. To account for these variations, we consider values 
in the range 26Al0 ∈ [0.1, 10]26Al⊙. In addition to initial 26Al abundance, the radii of 
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planetesimals during accretion yield different thermal evolutionary sequences and 
thus dehydration patterns13,14. Here, we test values in the range rplts ∈ [1, 100] km. 
However, we note that from asteroid-belt inferences and numerical studies 
of the streaming instability mechanism, radii larger than about 30–50 km are 
expected17,22,89,90,91. All parameter models not listed in the Methods are identical to 
those used in ref. 13 and ref. 14. In the planet formation model, the innermost disk 
radius is of the order 0.1 au and can vary over time. Disk lifetimes are distributed 
around 5 Myr, which is controlled by the photoevaporation rate65 and in agreement 
with current disk surveys92,93. The initial embryos are placed within the boundaries 
of [0.05, 40] au for G stars and [0.086, 23.4] au for M stars. We vary in a Monte 
Carlo fashion54 the disk mass, lifetime, dust-to-gas ratio and exponential cut-off 
radius76 to represent the diversity found in nature16,94.

Software. We acknowledge the software usage of Matplotlib95, SciPy96, NumPy97, 
pandas98 and seaborn99 in this work.

Code and data availability
The data that support the plots within this paper, precompiled versions of the 
custom computer codes used, and other findings of this study are available from 
the corresponding author upon reasonable request.
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5. Planetary population synthesis

5.6. Paper III: NGPPS IV. Planetary systems

around low-mass stars

Exoplanetary research has the tendency to shift towards low-mass stars because it is
observation-driven and the observations favor detection of planets around low-mass
stars at a given stellar magnitude. This shift is currently more pronounced, due to
commissioned instruments that are more sensitive to red and near-infrared light. This
is true for the transit method with TESS and for radial velocity with CARMENES
(Quirrenbach et al., 2014) and NIRPS (Bouchy et al., 2017). In the introduction of
the paper below, we make this point clearer.
However, there is an additional bene�t of the study of planets around low-mass

stars to consider: Whenever a parameter is varied in a theoretical framework, its
in�uence is best studied if the lever is largest. Therefore, it is theoretically insightful
to study planet formation in conditions that are very di�erent from each other. For
ultra-late type M dwarfs with masses around 0.1 M�, the disk conditions and the
parameters directly linked to the stellar mass are an order of magnitude di�erent
from the Solar-mass case. Hence, we are able to learn more about planet formation if
we have the opportunity to compare theoretical models to observations under those
di�erent conditions.
The paper titled The New Generation Planetary Population Synthesis (NGPPS):

IV. Planetary systems around low-mass stars (Burn et al., in prep.) introduces the
model data for di�erent stellar masses and a �rst analysis is included. A planet
population synthesis is performed using 50 embryos per disk for �ve di�erent stellar
masses. The dataset that is produced is far from being exhausted by the analysis
in this paper. Especially the comparisons of planetary system architectures is only
done super�cially using simple period ratios between planets. However, many more
system-wide quantities could be de�ned and compared. This will be addressed in
future works belonging to a series of papers.
The NGPPS series presents a major update of the planetary population synthesis

models compared to the previous generation (Mordasini et al., 2012c; Alibert et al.,
2013; Fortier et al., 2013). The series is structured as follows. NGPPS I (Emsenhuber
et al., submitted) gives a complete description of the model. NGPPS II (Emsenhuber
et al., in prep.) shows �rst synthetic populations of planets around Solar-mass stars
and discusses the in�uence of the number of embryos. The nominal population in
NGPPS II is a population with 100 embryos per disk, which is time-consuming to
calculate. In NGPPS III (Schlecker et al., submitted), the observed relation between
super-earths and cold-jupiters in the same system (Zhu & Wu, 2018; Barbato et al.,
2018; Herman et al., 2019; Bryan et al., 2019) is discussed within the context of the
populations presented in NGPPS II. Together with the paper shown here, these four
works form the �rst block of NGPPS papers that will be published together. In the
future, there will be works comparing the populations with the data from Kepler
(Mishra et al. in prep), exploring the unconstrained parameter space (Mordasini et
al. in prep) and focusing on system-wide properties (Mishra et al. in prep).
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ABSTRACT

Context. Previous theoretical works concerning planet formation around low-mass stars were often addressing large planets or indi-
vidual systems. However, present-day surveys are discovering many planets down to Earth-size around low-mass stars. A picture of
very different kinds of planetary systems around low-mass stars currently emerges.
Aims. We investigate and compare the planetary population for these different conditions. The goal is to understand planet formation
around stars with lower stellar masses and identify differences in the statistical distribution of modeled planets.
Methods. We use the Generation III Bern model of global planet formation and evolution to calculate synthetic populations of up
to 50 planets per modeled system varying the central star from solar-like stars to ultra-late M dwarfs. This model includes planetary
migration, N-body interactions between embryos, accretion of planetesimals and gas, and long-term contraction and loss of the
gaseous atmospheres. A linear scaling of the protoplanetary disk mass with stellar mass is assumed. Additionally, we compare the
unbiased model data to inferred observational trends.
Results. We find that temperate, Earth-sized planets are most frequent around early M dwarfs (0.5 M�) and more rare for solar-type
stars and late M dwarfs. Furthermore, the planetary mass distribution does not linearly scale with the disk mass. The cause lies in the
growth of gaseous, giant planets, which leads to ejection of planets – reducing the apparent efficiency of solid accretion for higher
stellar masses. We identify a regime of disk parameters that reproduces observed M-dwarf systems such as TRAPPIST-1. However,
giant planets around late M dwarfs like GJ 3512b only form when type I migration is substantially inhibited.
Conclusions. The apparent conversion of solids to planets is larger around lower mass stars. However, this effect is not strong enough
to explain the reported higher occurrence rates of planets around M dwarfs. This points towards an additional cause for this trend,
which most likely lies in the assembly of planetesimals or in the initial disk conditions.

Key words. planetary systems - planetary systems: formation

1. Introduction

M dwarf stars are the most abundant stars in the Milky Way
(Winters et al. 2014) and represent a unique laboratory to test
current planet formation theories. Following the discovery of the
first planet around an M dwarf star (Marcy et al. 1998), they are
now known to be the most frequent host of exoplanets (e.g., Gai-
dos et al. 2016). Currently, the observational sample of planets
around M dwarfs is rapidly increasing, as a number of new de-
tection surveys are being conducted or planned. Programs using
the transit detection method include the space-born TESS, which
is more sensitive towards longer wavelengths than its predeces-
sor Kepler (Ricker et al. 2014) or surveys on the ground, such as
MEarth (Nutzman & Charbonneau 2008), TRAPPIST (Gillon
et al. 2016, 2017), NGTS (Wheatley et al. 2018), SPECULOOS
(Burdanov et al. 2018), or EDEN (Gibbs et al. 2020). In addition
to that, the radial velocity programs CARMENES (Quirrenbach
et al. 2014) or the NIRPS instrument (Bouchy et al. 2017) will
yield many more planet discoveries around low mass stars. To-
gether, they explore a so far barely accessible parameter space
of the planetary population – rocky exoplanets around low-mass

? The data supporting these findings are available online at
http://dace.unige.ch under section “Formation & Evolution”.

stars. The fundamental benefit in the search for habitable planets
around low-mass stars for both transit and radial velocity surveys
lies in the fact that the radius ratio, or respectively the mass ratio,
for Earth-like planets becomes larger for lower stellar masses.
This results in a higher measured signal to noise ratio. Addition-
ally, the temperate zone (Kasting et al. 1993; Tasker et al. 2017)
is located at shorter orbital periods around M dwarfs due to the
lower temperature of the central star. Therefore, less observa-
tion time is needed for the discovery of planets receiving stellar
irradiation fluxes comparable to Earth and are thus the best can-
didates for the search for extraterrestrial life.

Theoretical works addressed planet formation around differ-
ent stellar masses before: Early population synthesis work were
conducted by Ida & Lin (2005) and Alibert et al. (2011) who
mainly focused on the most heavy planets in a system. In con-
trast to these works, Raymond et al. (2007) discuss the formation
of terrestrial planets around low-mass stars after the disk dissi-
pated (i.e., without migration) by injecting on the order of hun-
dred N-body particles – called planetary embryos – into regions
chosen to cover the temperate zone and the water ice line. They
found less planets in the temperate zone with decreasing stellar
mass and mention in their conclusions that disk migration could
help to explain the observed system around the M3 dwarf Gliese
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581 (Bonfils et al. 2005; Udry et al. 2007). This is further sup-
ported in the light of discoveries of systems around even lower
mass stars, such as TRAPPIST-1 (Gillon et al. 2017), or by ob-
servational trends derived from the Kepler sample (Mulders et al.
2015). Overall, that highlights the need to include a migration
mechanism in modern planet formation models to match the ob-
served systems. However, this is still not undisputed as Hansen
(2015) reports in-situ planet formation models around a 0.5 M�
star matching at least the observed planetary periods.

More recently, theoretical planet formation works discuss the
solid delivery process. Whereas Schoonenberg et al. (2019) and
Coleman et al. (2019) focus on the TRAPPIST-1 system in the
framework of (hybrid) planetesimal and pebble accretion, Liu
et al. (2019) consider distributions of initial stellar and disk prop-
erties in the pebble accretion scenario. Liu et al. (2019) calculate
a population of single planets, that is, neglecting N-body interac-
tions, around stars with masses from 0.1 M� to 1 M�. Being sim-
ilar to the approach of this work, this will be a useful reference
to compare the resulting planetary population based on accreting
pebbles compared to planetesimal accretion, which is consid-
ered to be the dominating solid mass delivery mechanism here
(see also Brugger et al. in prep; Coleman et al. 2019). We cau-
tion that for smaller rocky planets, the scenario of a single planet
forming in the disk gives different results compared to simula-
tions taking into account the interaction and growth competition
between planets (Alibert et al. 2013). Miguel et al. (2020) focus
on forming rocky planets around stars of masses up to 0.25 M�
by accreting planetesimals (following Ida & Lin 2004a) and ex-
plicitly exclude the accretion of gaseous envelopes. In contrast,
we will discuss the growth of atmospheres around small planets
in this paper and, by including gas accretion, the formation of
giant planets is facilitated, which are observed at stellar masses
larger than 0.3 M�. This extends the parameter space in which
our model covers all known, basic physical processes of planet
formation to the range 0.1 M� to 1 M�.

A preceding synthetic population of planets around a 0.1 M�
star was presented in the letter of Alibert & Benz (2017), who
found more water-rich compositions of planets forming around
very low-mass stars compared to those around solar-type stars.
We would like to stress that we did use an updated version of our
population synthesis model compared to Alibert & Benz (2017)
and Alibert et al. (2011), which changes to some degree the con-
clusions, as will be addressed in detail. These updates are pre-
sented as part of a a series of papers: In Emsenhuber et al., in
prep (Paper I), the updated model is described in detail and in
Emsenhuber et al., in prep (Paper II), the statistical properties of
the populations around solar-type stars are discussed.

2. Formation models

We use the Generation III Bern model of planet formation and
evolution. It originates from the model of Alibert et al. (2004a,b),
which was extended to incorporate the long-term evolution of
planets (Mordasini et al. 2012b,a) and N-body interactions (Al-
ibert et al. 2013; Fortier et al. 2013). The third generation em-
ployed here combines the two branches and is described in detail
in Paper I. We compute a population of planets given a variety
of initial disk conditions which are based on the observed pop-
ulation of disks. This approach is called planetary population
synthesis (Ida & Lin 2004a,b, 2005; Mordasini et al. 2009a,b;
Benz et al. 2014; Mordasini et al. 2015; Mordasini 2018).

Here, we briefly summarize the relevant physical processes
included in the Bern model. For a detailed complete descrip-
tion, we refer to Paper I. The protoplanetary disk is modeled

following the viscous α disk model (Shakura & Sunyaev 1973;
Pringle 1981). In addition to energy dissipation due to shear, the
disk is heated by irradiation by the star. To describe this, we fol-
low Hueso & Guillot (2005); Nakamoto & Nakagawa (1994),
who give analytic expressions for the disk midplane temperature
assuming an isothermal disk in the vertical direction. Different
to those two works, we consider the starting time of our disk
to be after significant infall of gas onto the disk has stopped.
The final phase of the disk’s life is dominated by disk photo-
evaporation. We model internal photo-evaporation by the star
following Clarke et al. (2001) and use a simple prescription to in-
clude external photo-evaporation due to the radiation by nearby
stars (Matsuyama et al. 2003).

To model planetary growth by planetesimal accretion, proto-
planetary embryos with an initial mass of 0.01 M⊕ are injected
at random locations in the diks (see Sect. 2.3.4). The embryos
are gravitating bodies tracked by the MERCURY N-body code
(Chambers 1999). They can accrete planetesimals inside their
feeding zone from a statistically described planetesimal disk, for
which the eccentricity- and inclination-distributions are evolved
(Fortier et al. 2013). The graviational forces of the planetesimal
disk onto the embryos is not taken into account. In addition to
gravitational forces of the central star and other embryos, the
planets are subject to the torque of the gasoeous disk (see Sect.
2.1.1).

Concurrently, the Bern model solves the one dimensional
internal structure equations (Bodenheimer & Pollack 1986) for
each embryo at every timestep for the solid core and the gaseous
envelope assuming hydrostatic equilibrium. The energy input
of the accreted planetesimals is assumed to be deposited at the
core-envelope boundary of the embryo. To accrete gas, the em-
bryo has to cool and contract by radiating away the potential
energy of accreted planetesimals and gas. This then determines
the envelope mass. The cooling becomes efficient at ∼10 M⊕,
which can then lead to a planet undergoing runaway gas accre-
tion (Mizuno 1980; Pollack et al. 1996). As a consequence, the
planet contracts and is thus considered detached from the disk. In
this stage, gas accretion is limited by what the disk can provide
(Machida et al. 2010). This transition roughly coincides with the
time the planet changes the migration regime (type I to type II)
(Alibert et al. 2004b).

After the gaseous disk is gone, we keep running the N-body
integration up to 20 Myr to track dynamical instabilities occur-
ring just after the dissipation of the disk. After that, only the
evolutionary calculations are performed, which include the con-
tinuation of solving the internal structure equations – thus track-
ing the long-term contraction of planets –, the evaporation of
atmospheres as well as tidal migration (see Sect. 2.1.2). At all
times, but of higher significance in the evolution phase, the star is
evolving in radius and luminosity following Baraffe et al. (2015).
This leads to an evolving radiative energy input to the planetary
structure.

In general, we choose the nominal physical parameters and
processes of Paper I and Paper II but extend the explored param-
eter space to lower stellar masses. Apart from the different initial
disk conditions described in Sect. 2.3, the stellar mass directly
enters in different important processes:

– the stellar luminosity and radius as well as the stellar evolu-
tion changes following the model of Baraffe et al. (2015)

– the evolution of the protoplanetary disk is modified for lower
mass stars, as the viscous heating (which depends on the Ke-
plerian frequency, Pringle 1981) and the irradiation depend
on the mass, radius and effective temperature of the cen-
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tral object (Hueso & Guillot 2005; Nakamoto & Nakagawa
1994)

– the radius of disk-embedded planets is equal (for not too
low masses) to a fraction of the Hill radius (Mordasini et al.
2010), which depends on the mass of the central body as
RH = a

(
M

3M?

)1/3

– the evolution of the planetesimal disk (in terms of e and i)
is a function of the planetesimals’ Hill radii (Adachi et al.
1976; Inaba et al. 2001; Rafikov 2004)

– similarly, the accretion rate of planetesimals scales linearly
with the planet’s and the planetesimals’ mutual Hill radius
(Fortier et al. 2013)

– the fraction of ejected planetesimals is a function of the es-
cape speed from the primary (vesc,? =

√
2GM?/a) (Ida &

Lin 2004a)
– the computation of the planetary orbital evolution due to

disk-planet interactions is modified for low mass stars (see
Sect. 2.1.1)

– the tidal interaction with the star changes depending on the
radius and mass of the star, leading to different disk-free mi-
gration (see Sect. 2.1.2).

2.1. Orbital evolution

2.1.1. Disk migration

Planets embedded in a disk will be subject to torques of the disk
feedback. Depending on the mass of the planet, the migration
regime is classified as type I and type II for no gap opening or
gap-opening, respectively. As described in detail in Paper I, we
follow Coleman & Nelson (2014) for the type I and Dittkrist
et al. (2014) for the type II regime.

For type I, the formulas for planets on circular orbits follow
Paardekooper et al. (2011). Therefore, an overall factor

Γ0 =

(
M

M?H

)2

Σga4Ω2
K (1)

can be identified to get a grasp of the general scaling of the total
torque Γ with the stellar mass (∝ M−1

? ) at fixed semi-major axis
and gas surface density. However, the corotation torque, which
causes the outward migration regions, scales differently due to
the stellar mass appearing in the formulas for non-linear corota-
tion torque via the Keplerian rotation (Paardekooper et al. 2011).
Additionally, the migration rates depend on the temperature and
pressure structure in the disk which are influenced by the stellar
mass. To discuss the detailed scaling of type I migration ana-
lytically is out of the scope of this work. Thus, we qualitatively
compare the resulting migration maps of a fiducial disk with a
power law slope of 0.9, a gas surface density of 200 g cm−2 at
5.2 au and an exponential cut-off radius at 30 au (see Paper I for
the initial surface density profile). This translates to a total disk
mass of 0.02 M�.

Figure 1 shows the resulting migration map where the migra-
tion rate ȧ/a ∝ Γ/

√
M? ≈ M−1.5

? is encoded in color. The impact
of the stellar mass on migration is apparent: A decrease of the
stellar mass leads to an increase of the migration rate for the
same disk (top and central panel). We observe that the outward
migration region is shifted towards the star by about 1 au.

In this work, we will assume that the disk mass scales lin-
early with the stellar mass (see Sect. 2.3.1). Therefore, we in-
cluded in the bottom panel of Fig. 1 the case of a disk with
a mass that is reduced by 10 % compared to the other two de-
picted disks. According to the scaling with Γ0 we expect migra-
tion rates that are more similar to the top panel than the middle
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Fig. 1. Migration rate for three different stellar masses and disks. On the
top panel a disk with a total mass of 0.02 M� around a solar mass star
after an evolution of 100 kyr is displayed; the central panel shows the
same disk at the same time, but the stellar mass is reduced to 0.1 M�;
and the timescales of a disk with ten times less mass around a 0.1 M�
star can be seen in the bottom panel. Regions with most saturated colors
(blue or red) are regions where migration is fastest. With scaled disk
mass, the outward migration zones (red) move to lower planet masses
and closer orbits. This generally causes an earlier inward migration.

panel (ȧ/a ∝ Σg/M1.5
? ), which broadly holds in the type I regime

wherever corotation torques are weak. The outward migration
regions are further shifted towards the star compared to larger
disk case, which impacts the resulting population of planets by
a large degree since the individual planet tends to pile up at the
outer edge of outward migration zones, which only change on
typical timescales of the disk evolution (∼Myr).

For type II migration, we follow Dittkrist et al. (2014). Thus,
the overall torque is proportional to ΩKν. The alpha-viscosity
ν = αc2

s/ΩK is sensitive to the temperature structure of the disk
via the isothermal sound speed cs. Whereas, the temperature dif-
fers due to the change of direct illumination by the star due to the
different stellar radius and temperature as well as a lower viscous
dissipation rate Ėvisc = 9

4 ΣνΩ2
K ∝ νM?. We observe a more pro-

nounced transition from type I to type II regimes in the bottom
panel of Fig. 1, which can be explained by the much cooler disk
and the different scaling of the two regimes. The transition from
type I to type II thus becomes more relevant in the low mass star
disks. We use the gap opening criterion of Crida et al. (2006),
which takes into account the stellar mass to transition from type
I to type II (see Paper I).

Overall, disk migration can be faster around low mass stars,
but for typical disk masses, we expect generally slower migra-
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tion in type I and type II regimes and outward migration zones
to lie closer to the star.

2.1.2. Tidal evolution

At very small separations, planet-star tidal interactions may be
important, and cause planet migration in the absence of a disk.
Using a simple model for tidal evolution taking into account the
tides evoked in the star (Benítez-Llambay et al. 2011), the semi-
major axis evolves as

da
dt

= −


9
2

√
G

M?

R5
?M
Q′?

 a−11/2 , (2)

where the radius R? of the star evolves with time (Baraffe
et al. 2015). In lack of an appropriate scaling law, we followed
Benítez-Llambay et al. (2011) in fixing the specific tidal parame-
ter, accounting for the tidal dissipation rate in the star, Q′? = 106

for all stellar masses and times (see Ogilvie 2014, for an in-depth
review).

2.2. Transit radii

To better compare observed radii measured by transit surveys
with radii of synthetic planets, we calculate "transit radii" of the
modeled planets. For that, we can use the internal structure data
of each planet. Simply taking the numerical outer boundary of
the structure would lead to severely overestimated radii. There-
fore, an estimate for the radius of a planet that casts a shadow
when passing in front of its host star needs to be used.

Hansen (2008) found that the optical depth along a chord is
enlarged by a factor γ

√
2πR/H0 compared to the optical depth

integrated radially outwards from a radius R, where γ is a factor
relating the radiative optical depth to the thermal optical depth
(Jin et al. 2014, Table 2) and H0 is the local scale height in the
envelope at a given radial location.

We chose an optical depth τ = 2/3 in our grey atmosphere
to get the transit radius and note that for a percent-level compar-
ison to a particular observation, a non-grey atmosphere and the
instrument specific wavelength band would have to be included.
For planets without an envelope structure, the transit radius is
equal to their composition-dependent core radius calculated us-
ing a three layer model (iron, silicates and ice) (Mordasini et al.
2012b).

2.3. Monte Carlo parameters and their scaling with M?

Owing to the statistical approach of Population Synthesis, we
treat the initial conditions as random variables that we draw
from probability distributions for each simulation. For consis-
tency within the paper series, we employ the values from Paper
II for solar-type stars.

Figure 2 shows, for each host star mass bin, the probability
distributions of the initial conditions used in this study. While
the distribution of the metallicity remains the same, all other pa-
rameters scale with stellar mass. The disk lifetimes tdisk, which
show similar distributions for all M?, are also shown (see de-
tailed discussion in Sect. 2.4.1).

We follow Paper II in setting the radius of planetesimals to
300 m and initializing the gas surface density profile as (Veras &
Armitage 2004)

Σg(t = 0) = Σg,0

(
r
r0

)−βg

exp


(

r
Rdisk

)βg−2
(
1 −

√
rin

r

)
(3)

Table 1. Model Parameters

Parameter Symbol Value

Disk Viscosity α 2 × 10−3

Power Law Index (Gas) βg 0.9(a)

Outer edge of planetesimal disk Rdisk/2(b)

Power Law Index (Solids) βs 1.5(c)

Radius of Planetesimals 300 m
Number of Planet Seeds 50

Mass of Planet Seeds 0.01 M⊕
Embryo placement time 0 yr

Envelope opacity reduction 0.003(c)

N-body integration time 20 Myr
(a) Andrews et al. (2010);
(b) Ansdell et al. (2017);
(c) Dra̧żkowska & Alibert (2017); Lenz et al. (2019);
(d) Mordasini (2014)

where r0 = 5.2 au is the reference distance, βg = 0.9 the power-
law index (Andrews et al. 2010), Rdisk the cutoff radius for the ex-
ponential decay and rin is the inner edge of the disc. The chosen
fixed values are summarized in Table 1. Before discussing the
individual choice of distributions for the observation-informed
parameters, we note that the solar-type initial conditions of Pa-
per II include a steeper slope for the planehtesimal disk βpls than
te gas disk (βpls = −1.5 instead of -0.9). This is motivated by
results from planetesimal formation models (Dra̧żkowska et al.
2016; Dra̧żkowska & Alibert 2017; Schoonenberg & Ormel
2017; Lenz et al. 2019). We assume that this steepening is valid
for all stellar masses and adopt a βpls = −1.5 for all simulations
(except in Appendix A).

2.3.1. Disk mass

The initial gas disk mass for solar type stars is based on the Class
I disk observations Tychoniec et al. (2018) (see Paper II). Regret-
tably, Tychoniec et al. (2018) do not split their sample of Class
I disks into different stellar masses, but they do mention that
they observe a weak correlation with the bolometric luminos-
ity which can be seen as a proxy for the stellar mass. However,
the non-triviality of the mass luminosity relation for very young
protostars makes inferring the slope of this weak correlation a
task outside the scope of this work. Nevertheless, the scaling of
disk mass with stellar mass can be inferred from recent ALMA
measurements. For more evolved disks, Pascucci et al. (2016),
Barenfeld et al. (2016), as well as Ansdell et al. (2017) found
a dust mass dependency on stellar mass, which is steeper than
linear. Testi et al. (2016) and Sanchis et al. (2020) extended the
observations to the brown dwarf regime and found statistically
consistent results.

While Barenfeld et al. (2016) did not yet find a clear dif-
ference in slopes of the dust mass to stellar mass relation when
comparing their results for Upper Sco with disk masses for the
younger Lupus cluster, Ansdell et al. (2017) and Pascucci et al.
(2016) report a time dependency of the slope by enlarging the
sample to more stellar clusters. These latter findings point to-
wards a stellar mass dependent time evolution of the dust and,
therefore, do not constrain the initial dust mass well. Tentatively
interpolating back this steepening of the disk mass to stellar mass
relation to time zero, we adopted a linear dependency of the disk
mass on the stellar mass Mgas ∝ M?. This is in line with previous
theoretical works (slopes of 0.5 to 2 in Raymond et al. 2007).
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Fig. 2. Distribution of initial conditions for different M?. All parameters scale with host star mass, except for [Fe/H] which is distributed equally
for all masses. The initial solid mass content is computed from [Fe/H] and Mgas, which leads to similar distributions for Mgas and Msolid. Besides
the Monte Carlo parameters drawn in the simulations, we show the distributions of disk lifetimes tdisk. These are similar for all M? (compare Sect.
2.4.1).

As in Paper II, we then multiply the gas disk mass with spec-
trally measured metallicities (Santos et al. 2003) to get the initial
dust disk mass, which is available to form planetesimals. We as-
sume no dependency of the metallicity on the stellar mass. Addi-
tionally, an efficiency of transforming the dust to planetesimals
of 100 % is chosen. The planetesimal surface density is reduced
at radii closer to the star if for a given element no chemical
species containing it can condense out at the local disk tempera-
ture (see Thiabaud et al. 2014). This leads to sharp transitions in
the surface density profile of solids, most prominently the water
ice line, whose location depends on the temperature at time zero
of the simulation.

2.3.2. Disk radius

Although it is near-impossible to measure the initial radius of
the gaseous disk, trends about the disk size of – notably evolved
disks – in terms of disk mass were already found by Andrews

et al. (2010). The scaling relation of disk mass to stellar mass
follows Md ∝ R1.6

disk, which was recovered later (Andrews et al.
2018). A direct correlation of dust disk radii with stellar mass
using ALMA data could not be found by Ansdell et al. (2018)
who advocate more high resolution CO line observations to give
clearer constraints. What became clear thanks to the ALMA
measurements, is that dust radii are smaller than gas radii by
about a factor of 0.5 (Ansdell et al. 2016). We use these con-
straints to get the gas disk size out of the gas disk mass (see
Sect. 2.3.1) without introducing more scatter and the planetesi-
mal disk mass extends to half the radius of the gas disk.

2.3.3. Inner edge

The numerical inner edge rin is a free parameter of our model.
The physical motivation for an inner edge is a magnetospheric
cavity (Bouvier et al. 2007), where ionized material of the disk
is lifted by the magnetic field lines from the midplane and ac-
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creted onto the star. This typically happens at the corotation ra-
dius (e.g. Günther 2013), where the magnetic field rotates at the
same speed as the gas. It is therefore reasonable to not extend
the modeled disk closer to the star than its corotation radius. The
order of percent sub-Keplerian speed of the gas disk is negli-
gible for this consideration and thus we take rin at the location
where the Keplerian orbital period is equal to a rotation period
drawn from measured distributions as the inner disk edge. Other
processes that occur in the innermost regions of the disk are va-
porization of silicates and ionization of the disk gas, which are
not covered here.

Rotation periods of young stars can be derived from peri-
odic variations of objects in young stellar clusters, such as the
Orion Nebula Cluster (Herbst et al. 2002), NGC 6530 (Hender-
son & Stassun 2011), NGC 2264 (Lamm et al. 2005; Affer et al.
2013; Venuti et al. 2017), NGC 2362 (Irwin et al. 2008) and
NGC 2547 (Irwin et al. 2007). Irwin et al. (2008) as well as Hen-
derson & Stassun (2011) discuss an increasingly steep slope in
the rotation period versus stellar mass diagrams with increasing
age. However, for the youngest clusters (Orion and NGC 6530)
no decrease of the rotation period with decreasing stellar mass
is found (Henderson & Stassun 2011). Therefore, this feature
can be attributed to a faster spin-up of low mass stars and is not
an initial condition to planet formation. As initial condition, we
therefore choose the same rotation periods for all stellar masses.
Thus, the inner edge of the disk scales ∝ M1/3

? .
Despite the long history of observations, the exact distribu-

tion of classical T Tauri rotation periods is still subject to a lot
of statistical noise. Venuti et al. (2017) used data from 38 days
of CoRoT observations to constrain the rotation periods in NGC
2264, which has an estimated age of ∼3 Myr. They, like other
authors (e.g. Henderson & Stassun 2011), recover, that stars that
still show signs of accretion, that is classical T Tauri stars, have
slower rotation periods than diskless stars. In Fig. 3, we show
the data of Venuti et al. (2017) in two mass bins for diskless
and disk-bearing stars. No clear difference is found between the
different masses in the case of disk-bearing stars. Therefore, we
adopted a distribution of rotation periods used to constrain the
inner edges following the full T Tauri sample of Venuti et al.
(2017), i.e. a log-normal distribution with a mean of 4.74 days.

2.3.4. Initial embryos

Initial seeds for planetary growth, called embryos, are placed
randomly starting from the inner edge of the disk rin out to an up-
per limit. In Paper II, the upper limit is chosen to be 40 au, which
we adopt for the solar-mass populations. This outer edge is then
multiplied with (M?/M�)1/3. Therefore, it is kept at fixed orbital
period. Many timescales relevant to planet formation scale with
the orbital period, which motivates to keep it the same for better
comparability amongst the populations.

The locations of the initial embryos are drawn from a log-
uniform distribution between these two boundaries and if a
planet would be placed within 10 Hill radii of an already placed
embryo, a new location is drawn, since embryos should not be
closer than that at the end of runaway growth (Kokubo & Ida
1998; Chambers 2006).

As in Paper II, the initial mass of the embryo is set to be
10−2 M⊕. This mass is not scaled with the stellar mass, which is
a choice that changes the initial mutual Hill spacing with varying
stellar mass and thus the gravitational interactions between the
embryos (see Sect. 4.5).
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Fig. 3. Cumulative distribution of rotation periods of disk-bearing and
diskless stars in NGC 2264 (estimated age ∼3 Myr) found by Venuti
et al. (2017). An error function corresponding to the normal distribu-
tion with the indicated mean and standard deviation was fitted to the
logarithm of the rotation periods of all T Tauri stars (dash-dotted line).
This distribution defines the co-rotation radius, which we set as the in-
ner disk edge.

2.4. Disk observables

2.4.1. Disk lifetime

Although the disk lifetime is not a direct Monte Carlo variable,
the photo-evaporation parameter Ṁwind was chosen such that rea-
sonable lifetimes result, as can be seen in Fig. 4. By construc-
tion, the lifetimes of the different stellar mass bins are similar.
Disk lifetimes obtained from observed fractions of disk-bearing
stars in young stellar clusters (Strom et al. 1989; Haisch, Jr. et al.
2001; Mamajek et al. 2009; Fedele et al. 2010; Ribas et al. 2014;
Richert et al. 2018) are sensitive to the pre-main-sequence evolu-
tion model of the stars used to determine the cluster age (Richert
et al. 2018). Therefore, a larger uncertainty than the empirical
scatter results. In Fig. 4 we show the results of Richert et al.
(2018), who used three different pre-main-sequence evolution
models to get typical disk lifetimes varying by more than a fac-
tor of two. For comparison of the modeled disks’ lifetimes to
measurements, it is necessary to estimate the time during which
a simulated disk would be detected by typical survey used to
get the observational data. We follow Kimura et al. (2016) to
consider a disk as dispersed at the moment the disk becomes
transparent (optical depth smaller than unity) everywhere in the
region it is hotter than 300 K. This is a broad estimate for near in-
frared observations, which are the basis of disk lifetimes studies.
For low-mass stars, this observable disk lifetime significantly
differs from the numerical lifetime determined by a surface den-
sity close to zero everywhere.

2.4.2. Accretion rates

Similar to the lifetimes, stellar accretion rates have to be matched
by the simulated disks. The process driving accretion rates in the
simulations is the viscous evolution. Numerically, we take the
disk gas mass that viscously spread into the innermost numerical
cell as gas accretion onto the star Ṁacc. In general, this flux is not
constant everywhere in the disk due to not being in equilibrium
at all times (equation 25 in Mordasini et al. 2012b).
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Fig. 4. Fraction of disk-bearing stars as a function of time. Both obser-
vational data assembled by Richert et al. (2018) as well as the synthetic
lifetimes for different stellar masses are shown. The age determination
of clusters is sensitive to the employed pre-main-sequence model. The
observational data and an exponential fit to it is shown using the age
scale of Siess et al. (2000) as well as fits to the same cluster data but us-
ing the dating of Feiden (2016) and the MIST collaboration (Choi et al.
2016).

In Fig. 5, we show the resulting Ṁacc of our synthetic pop-
ulations for the different stellar masses at two different times.
This can be compared to the Lupus data obtained by Alcalá
et al. (2017). For planet formation, the most important stages
are early in the disk evolution when most of the mass is still
present. Therefore, a comparison to clusters older than Lupus (1
to 3 Myr) would not be as relevant.

We find mass accretion rates on the same orders of mag-
nitude as were observed in Lupus. The intrinsic scatter of the
synthetic populations seems to be lower than in the observed
sample. This can be attributed to choosing a single viscous α
value (2 × 10−3). Furthermore, the evolution with time seems to
be rather rapid compared to observations, given that at 3 Myr a
lot of the more massive stars already accreted most of the disk
mass. For the simulations, time since the start of the simulation
was chosen. However, realistic cluster ages include the early star
formation stages beforehand which can attribute to a shift of a
few 100 kyr.

The scaling of Ṁacc with stellar mass in the synthetic work is
more shallow than the fitted observational data. However, there
is still a lot of noise in the data.

Given the relatively simple 1D disk model we use and for the
purposes of getting realistic initial conditions for planet forma-
tion, the match in accretion rates we get is sufficient. An in-depth
comparison of disk properties to disks resulting from population
synthesis work will be addressed in a future paper.

3. Results

3.1. Types of planets

As a first step to explore the synthetic populations of planets
around different host star masses, we categorize the planets into
the following groups:

– Planets with masses larger than Earth (M > 1 M⊕)
– Earth-like planets defined as planets with masses ranging

from 0.5 M⊕ to 2 M⊕
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Fig. 5. Stellar accretion rates of observations and synthetic populations
as a function of stellar mass. For the synthetic datapoints at two dif-
ferent times, the mean of the distribution is plotted and the standard
deviation is indicated with error bars. The observational data and the
broken power-law fit with its estimated errors is taken from Alcalá et al.
(2017) for the Lupus cluster (estimated age of 1 to 3 Myr). The break
for this particular fit was fixed at 0.2 M�.

– Super Earths (2 M⊕ to 10 M⊕)

– Neptunian planets (10 M⊕ to 30 M⊕)

– Sub-Giants (30 M⊕ to 100 M⊕)

– Giant planets (100 M⊕ to 300 M⊕).

Additionally, we classify planets with masses from 0.3 M⊕ to
3 M⊕ at orbital separations that would allow for the presence of
liquid water on the planets’ surfaces as temperate zone planets
(see Sect. 3.1.4). For that, we follow Kopparapu et al. (2014) and
use the maximum and runaway greenhouse limits for the temper-
ate zone. For simplicity, the reported dependence of the zone on
the planetary mass is not taken into account. Instead, the limits
used are the ones calculated for masses of 1 M⊕. We note, that
the parameters in Kopparapu et al. (2014) differ on a ∼5 % level
compared to the parameters in Kopparapu et al. (2013b,a). Fur-
thermore, the authors suggest to not use the moist greenhouse
limit presented in Kopparapu et al. (2013b) due to large differ-
ences to other works, which is why we chose the runaway green-
house limit as the inner boundary.

Compared to the analysis performed in Paper II, the cate-
gories are identical with the exception of the temperate zone.
This change is introduced, because accounting consistently for
the scaling of the temperate zone with stellar mass requires the
use of a more complex model.

The resulting fraction of systems containing each planetary
type is shown in Table 2 and and their mean multiplicity per
system is shown in Table 3. Additionally, a visual representa-
tion of the same data including the occurrence rate (which is
the product of the former two) is shown in Fig. 6. To get an
idea of the dynamics, the eccentricities of the different types
can be found in Table 4 and the host star metallicity [Fe/H]
in Table 5. The metallicity is calculated based on the drawn
dust to gas ratio fdg (see Sect. 2.3.1) which then translates to
[Fe/H] = log10

(
fdg/(Fe/H)�

)
, where (Fe/H)� = 0.0149 (Lod-

ders 2003).
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Fig. 6. Fraction of systems, multiplicity, and occurrence rate as a function of the stellar mass for five planet-mass categories. To highlight the
skewedness of the distribution, the 68 % confidence interval around the median value (x-marker) is shown for the multiplicity (central panel). To
better distinguish the markers for the different planetary categories, they are slightly shifted in x-direction.

Table 2. Fraction of systems with specific planetary type for the differ-
ent stellar mass populations with 50 embryos

Stellar mass (M�)
Type 0.1 0.3 0.5 0.7 1.0

M > 1 M⊕ 0.44 0.77 0.88 0.91 0.95
Earth-like 0.70 0.89 0.90 0.89 0.84
Super-Earth 0.19 0.53 0.70 0.78 0.79
Neptunian 0.01 0.07 0.17 0.23 0.27
Sub-Giants 0.00 0.01 0.03 0.04 0.09
Giants 0.00 0.00 0.02 0.09 0.17
Temperate zone 0.34 0.62 0.63 0.52 0.43

3.1.1. Earths and super-Earths

We find that in our synthetic populations, Earth-like planets are
most common around stars with a mass of 0.5 M� and – opposite
the initial solid mass trend – get less frequent around stars with
masses above 0.5 M�. In contrast, the frequency-peak for Super
Earths lies at the highest stellar mass bin (1.0 M�). However, the
frequencies of super-Earths are very similar for the two highest
stellar mass bins pointing to a flattening of the curve, similar to
the Earth-like planet case.

Most of the Earth-like planets and super-Earths are on rela-
tively circular orbits. However, the eccentricity scatter is of the
same magnitude as the mean. A trend towards lower eccentrici-
ties for higher stellar masses can be seen.

In terms of host star metallicities, there seems to be a high
metallicity required to form Earth-like planets or super-Earths
around the very low mass stars, whereas for stellar masses larger
than 0.5 M�, the mean metallicity of Earth-like planet and super-
Earth hosts is close to the mean of the whole population. This
outcome indicates that growth to these masses is not limited by
the available amount of solids.

3.1.2. Neptunian planets and sub-giants

Whereas the frequency of Neptunian planets in our simulations
is similar for stellar masses of 0.7 M� and 1.0 M�, it declines
more sharply towards the 0.3 M� and 0.1 M� bins, where these
kind of massive planets become very rare. Most commonly, a

Table 3. Multiplicity of specific planetary types for all populations

Stellar mass (M�)
Type 0.1 0.3 0.5 0.7 1.0

M > 1 M⊕ 3.04 5.32 6.27 6.79 7.01
Earth-like 4.31 5.47 5.64 5.14 4.89
Super-Earth 1.89 3.14 3.77 4.36 4.77
Neptunian 1.00 1.14 1.29 1.39 1.33
Sub-Giants nan 1.00 1.17 1.27 1.21
Giants nan nan 1.36 1.41 1.49
Temperate zone 1.24 1.49 1.70 1.70 1.92

Neptunian planet is the only one of its kind in a system and its
orbit is quite eccentric, which holds for all stellar mass bins.

The orbits of sub-giants are even more eccentric. This pic-
ture emerges where enough statistics are available, hence not for
the single sub-giant that formed around a 0.3 M� star. For stellar
masses larger than 0.3 M�, sub-giants are present in 5 % to 10 %
of the systems.

For both sub-giants and Neptunian planets, the mean metal-
licity of their host stars decreases with increasing stellar mass.

3.1.3. Giant planets

The observed giant planet occurrence rate drops with decreas-
ing stellar mass (Endl et al. 2006; Butler et al. 2006; Johnson
et al. 2007, 2010; Gaidos et al. 2013; Montet et al. 2014). Laugh-
lin et al. (2004) explain this by the growth being limited by the
available solid mass, which is lower for decreasing stellar masses
(see Sect. 2.3.1). As can be seen in Table 2, we recover this trend
in our simulations, where no planets with masses above 100 M⊕
form around stars with masses below 0.5 M�. At this transition
stellar mass, the synthetic population with nominal parameters
contains only 2 giant planets. For the 0.1 M� population, we find
planetesimal isolation masses (Lissauer & Stewart 1993) of up
to 30 M⊕ at around 10 au, but only 1 M⊕ at 1 au. This increase
in the planetesimal isolation mass with a is present, despite the
steeper planetesimal surface density slope (see Sect. 2.3.1) be-
cause the isolation mass scales ∝ (a2Σpls)3/2 and the nominal
slope of Σpls is -1.5. However, at large separations, the accretion
rates are too low to reach the isolation mass during the typical
disk lifetimes and for close-in planets there is not enough mate-
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rial in the feeding zone. We note, that in appendix A, we explore
a set of parameters, which is more likely to form giant planets.

Table 4. Mean eccentricities of different planetary types for all popula-
tions

Stellar mass (M�)
Type 0.1 0.3 0.5 0.7 1.0

M > 1 M⊕ 0.07 0.05 0.05 0.04 0.04
Earth-like 0.07 0.05 0.05 0.04 0.04
Super-Earth 0.08 0.06 0.05 0.04 0.03
Neptunian 0.08 0.10 0.11 0.10 0.09
Sub-Giants nan 0.03 0.16 0.16 0.14
Giants nan nan 0.17 0.14 0.16
Temperate zone 0.11 0.07 0.05 0.03 0.02

Table 5. Mean metallicity [Fe/H] of stars hosting specific categories of
planets

Stellar mass (M�)
Type 0.1 0.3 0.5 0.7 1.0

M > 1 M⊕ 0.10 0.02 -0.01 -0.01 -0.01
Earth-like 0.04 -0.01 -0.03 -0.03 -0.04
Super-Earth 0.16 0.07 0.02 0.00 -0.02
Neptunian 0.32 0.14 0.12 0.10 0.08
Sub-Giants nan 0.32 0.20 0.15 0.09
Giants nan nan 0.09 0.15 0.15
Temperate zone 0.06 -0.01 -0.06 -0.08 -0.12

3.1.4. Earth-mass planets in the temperate zone

An interesting pattern can be seen for the fraction of systems
with Earth-sized planets in the temperate zone: The stellar mass
with the most temperate, Earth-mass planets is 0.5 M�, but the
multiplicity keeps increasing with stellar mass. Despite that, the
occurrence rate (i.e. the fraction multiplied with the multiplicity)
retains a peak at 0.5 M�.

The temperate zone (Kopparapu et al. 2014) for the different
stellar mass bins is moving with time based on the luminosity
and the radius evolution of the star, for which we use the evo-
lutionary tracks of Baraffe et al. (2015). We do not model the
intrinsic scatter of rotational periods of the stars, therefore all
stars with the same mass have identical luminosities and radii
at all times. The resulting temperate zone limits after 5 Gyr of
evolution are:

– 0.03 au to 0.06 au for 0.1 M�
– 0.11 au to 0.21 au for 0.3 M�
– 0.20 au to 0.38 au for 0.5 M�
– 0.39 au to 0.72 au for 0.7 M�
– 0.96 au to 1.70 au for 1.0 M�.

Thus, the temperate zone moves with increasing stellar mass
from orbital periods on the order of days for 0.1 M� stars to or-
bital periods on the order of years for solar-type stars. In our sim-
ulations, this implies that the zone is displaced from close to the
former inner edge of the disk to the proximity of the former disk
snowline. In terms of planet formation, at these two regions very
different, important processes shaping the population of planets
occur.

Due to the dynamically distinct locations of the temperate
zone, the respective planets’ eccentricity is not expected to be
similar. Indeed, a trend towards lower eccentricities with increas-
ing stellar mass is recovered (see Table 4). In terms of mean
host-star metallicity, a similar picture as for the Earth-like plan-
ets emerges with increased mean metallicities for low-mass stars
and reduced metallicites for solar-type stars.

3.2. Mass-Distance diagrams

The mass – semi-major axis diagrams of the populations of syn-
thetic planets around stars with masses of 0.1 M� (NGM10),
0.3 M� (NGM14), 0.5 M� (NGM11), 0.7 M� (NGM12) and
1.0 M� (NG75, also discussed in Paper II) are shown in Fig. 7.
Each system starts with 50 embryos which collide over time,
thus the number of points in each of the plots is on the order
of 20’000. The composition, measured by the volatile – or ice –
fraction of the solid core of the planets is color-coded.

General trends for most stellar masses are the more ice-rich
planets at large semi-major axes due to the lower local temper-
atures, the imprint of migration in bringing ice-rich planets at
Earth to super-Earth masses closer to the stars and a distinct
population of giant planets that is separated by a runaway gas
accretion desert (Ida & Lin 2004a) from the rocky population.

Another quite weakly accentuated feature due to little statis-
tics is an under-density due to tidal migration at very close orbits
of a few 10−2 au, where tides push some planets into the star
and leave a void of massive, close-in planets. This can be seen
as a fuzzy diagonal cut-off in the mass – semi-major axis dia-
gram, which increases to higher planetary masses with increas-
ing semi-major axis (Schlaufman et al. 2010; Benítez-Llambay
et al. 2011).

Additionally, all populations show a similar "triangle of
growth" at the very low masses, meaning there is a region where
all embryos, independent on the chosen disk initial conditions,
grow. Thus, there is a blank space in the region from 0.1 au to
10 au at the lowest planetary masses. These are the regions most
favorable for planetesimal accretion where growth timescales are
short and feeding zones are large enough to grow.

Although these features can be seen for the different stel-
lar masses, there are clear differences between the populations,
which show the influence of the reduced stellar and disk mass.
Firstly, the "horizontal branch" (Mordasini et al. 2009a) is lo-
cated at different planetary masses. For lower disk mass, the
planets start migrating at lower planetary masses (see Sect.
2.1.1). Thus, the population of close-in, ice-rich planets extends
to lower masses for the lower stellar mass populations (down to
∼1 M⊕ for NGM10 instead of down to only ∼3 M⊕ for NG75).
However, the scatter is quite large and to access this in a more
quantitative way, more statistics would be needed, especially for
the low stellar mass case, where very few ice-rich planets mi-
grated to the the inner parts of the disk.

Secondly, a reduction of the number of giant planets is clear
with decreasing stellar mass (see also Sect. 3.1.3). Interestingly,
the semi-major axis distribution of the giants differs quite a bit
when comparing the 0.7 M� (NGM12) case with the 1.0 M�
(NG75) case. Giant planets are more frequently scattered for the
more massive case, since there is more often a second or third
giant planet forming, which then leads to more frequent inter-
actions. Therefore, the distribution of giants in NGM12 is more
localized at around 1 au compared to the solar-mass case. In the
lowest stellar-mass population, not a single giant planet was able
to form.
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Fig. 7. Synthetic populations of planets as a function of a and M with
summed-up mass fraction of all ice species in color. Their NGPPS iden-
tifiers are NGM10, NGM14, NGM11, NGM12 and NG75. Some ob-
served planets around very low-mass stars are shown. Planet masses
increase with host star mass, but no giant planets occur for M?<0.5 M�.
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Fig. 8. Kernel-density estimate of the planetary mass distribution for
populations of planets around different stellar masses. The bandwith of
the Gaussian kernel was chosen following the Normal reference rule
(Scott 1992). The population around solar-type stars is shown three
times, once complete, once only including planets that started below
respectively above 2 au.

3.3. Planetary mass distribution

Because some regions at lower planetary masses in Fig. 7 are
saturated with points, we derive kernel-density estimates of the
probability distribution of the synthetic planets’ masses for bet-
ter visibility and comparability. The resulting distribution of
planetary masses for different stellar masses is shown in Fig. 8.
We note that for this rather theoretical analysis, no cut in semi-
major axis was applied.

Starting at low mass planets, a clear over-density close to
0.01 M⊕ is visible. These are the "failed cores" (Mordasini et al.
2009a) that did not undergo significant growth by collisions.
This sub-population lies at large separations and vanishes if the
planets at starting locations further than 2 au are excluded (dot-
ted line). It is obvious from Fig. 8 that a larger set of "failed
cores" remains for lower stellar mass.

Moving to slightly larger masses, a plateau in the likelihood
of simulated planetary masses is found at 0.1 M⊕ to 10 M⊕. The
shape seems to be a combination of multiple distributions and
splitting the population by the initial starting position of the plan-
ets indeed reveals two different cases.

On one hand, planets forming at larger separations from the
star tend to grow more and the distribution is peaked just be-
low 10 M⊕ for the population of planets around solar masses in
addition to the "failed core" peak.

On the other hand, there is the population of embryos lo-
cated close to the star, where the peak is at much lower masses
of ∼0.5 M�. No "failed cores" are included in this sub-population
for all stellar masses.

The mass distribution for the giant planets can be best seen
in the zoom-in box. There, the shapes are influenced by the low-
number statistics and should not be interpreted quantitatively.
Qualitatively, most giants originated from outside 2 au and we
recover that the number of giant planets increases with stellar
mass.
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3.4. Planetary composition and radius

Even though the mass of a planet is the more fundamental pa-
rameter in terms of formation, transit measurements are sensi-
tive to the radius of the planets. Therefore, we use the structure
of the modeled planetary hydrogen-helium envelopes to calcu-
late planetary transit radii following the prescription outlined in
Sect. 2.2.

Figure 9 shows the masses and derived transit radii of the
synthetic planets for the populations NGM10, NGM11 and
NG75 with respective stellar masses of 0.1 M�, 0.5 M�, and
1.0 M�. The red markers show the observational data from the
NASA Exoplanet Archive, where only planets with relative er-
rors in radius, mass and stellar mass less than 15 % are included.
This yields relatively little data for low-mass stars. Addition-
ally, the TRAPPIST-1 system is included with masses based on
Grimm et al. (2018) and the color-coded ice mass fraction de-
rived thereof by Dorn et al. (2018). The masses derived from
TTV measurements might systematically shift due to new data
from upcoming works, allegedly leading to more rocky compo-
sitions (Proposed and in prep. by Agol et al. 2019).

A detailed comparisons to observations is therefore only pos-
sible for the giant planets around solar-mass stars, which is dis-
cussed in Paper II.

The two straight lines at the low-mass end in Fig. 9 cor-
respond to the compositions of pure-rocky or ice-rock mixture
with ∼50 % ice, which is the typical ice fraction of planetesi-
mals outside the water-ice line (Thiabaud et al. 2014; Marboeuf
et al. 2014). Only a small sub-population has ice-fractions in be-
tween the two limiting cases. This group of planets accreted a
significant amount of mass originating from outside and inside
the water-ice line. We see however, that there are more of these
planets for the low stellar mass cases due to fast type I migra-
tion at lower planetary masses. Migration of icy far-out planets
naturally leads to mixed compositions if the embryos reach the
inner regions of the disk. For the solar-mass case, most plan-
ets only migrate at ∼10 M⊕, where they can already accrete a
light envelope, which leads to a significant increase in radius.
For lower-mass disks, migration starts at lower planetary masses,
where no significant envelope can be kept (see Sect. 2.1.1),
thus the 0.1 M� population NGM10 includes more intermediate-
composition planets without hydrogen-helium envelopes.

An additional difference between the three populations are
the low-mass planets with hydrogen-helium envelopes that lie
in Fig. 9 above the straight blue line, which are more common
in NG75 (1.0 M�, bottom panel). These are low-mass planets at
large separations, which can keep their envelope thanks to the
distance to the star. We note that the energy-limited atmospheric
escape mechanism used in this work (see Paper I for a detailed
description) might underestimate the amount of envelope lost for
this kind of regime.

Overall, the resulting planets follow more or less the obser-
vational data – where available – in terms of their mass-radius
distribution with no detected planets being orders of magnitude
outliers. In the future, objects discovered by TESS and char-
acterized by follow-up programs will populate the mass-radius
diagram for low-mass stars and will help to better validate the
internal structure and envelope models.

In general, the statistical distribution of planetary radii in Fig.
10 shows features that are very similar to the features seen in
mass-space distribution (Sect. 3.3). The main difference is that
the planets do not span over many orders of magnitude in radii
due to the degeneracy in the radii of giant planets (maximum at
R ∼13 R⊕). Therefore, the x-axis can be chosen to scale linearly.

Fig. 9. Populations of synthetic planets as a function of planet mass
and planetary transit radius. The total ice mass fraction is shown in
color and observational data from the NASA Exoplanet archive (ac-
cessed 9.12.2019) is over-plotted in red. The especially precise values
for K2-19 b and c are highlighted (Petigura et al. 2019).

The synthetic radius distribution in Fig. 10 is missing the ra-
dius valley at around 2 R⊕, which is found in single-planet popu-
lations (Jin et al. 2014) and in the observed population of planets
(Fulton & Petigura 2018). This radius gap was predicted to be
caused by photo-evaporation (Owen & Wu 2013; Lopez & Fort-
ney 2013; Jin et al. 2014). The reasons for why the radius gap is
not reproduced in the multi-planet simulations despite including
the atmospheric photo-evaporation mechanism could be due to
too efficient envelope stripping for colliding embryos or the not
accurate treatment of hot, water-rich atmospheres (Turbet et al.
2019) and will be explored in future work.

The observed gap shows an interesting stellar mass depen-
dency (Fulton & Petigura 2018), which we can therefore not
compare to observations here. Additionally, the sizes of the
super-Earths (i.e., the planets below the radius gap) and the sub-
neptunes (i.e., above the gap) were individually analyzed in Ful-
ton & Petigura (2018) and both show a trend of increasing mean
size with increasing stellar mass. We note that their sample ex-
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Fig. 10. Occurrence rates (Nplanets/Nsystems) of synthetic planets on orbits
with periods P < 100 days as a function of their transit radii.

tends to only 0.8 M� and not to M dwarfs. There is a clear trend
towards larger mean size for the sub-neptunes around larger stars
in the synthetic data.

An interesting feature at lower radii is that the planet oc-
currence rate (Nplanets/Nsystems) of planets at a specific radius is
higher for lower-mass stars. Mulders et al. (2015) show the same
trend for the observed Kepler sample. However, they find a fac-
tor of 3.5 times higher occurrence rates, whereas we only find
differences on the 10 % level.

3.5. Tidal interaction with the star

While the tidal orbit evolution of the 1.0 M� population is sig-
nificant, we observe only a minimal semi-major axis evolution
of planets around a 0.1 M� star. In contrast to a few lost plan-
ets in the solar-type case, no planet was lost to the star due to
tides in the late M dwarf case. The innermost planets’ orbital pe-
riods after the disk-embedded formation stage are similar in the
different stellar mass bins due to our choice of inner disk edges
(see Sect. 2.3.3) where the planets may stop radial migration in
the disk stage. This leads to a semi-major axis scaling ∝ M1/3

? ,
whereas the radial tidal evolution da/dt ∝ R5

?M−1/2
? a−11/2 (see

Sect. 2.1.2). Taking into account that the stellar radius at later
times is almost proportional to the stellar mass Baraffe et al.
(2015), the tidal evolution thus approximately scales ∝ M8/3

? at
fixed orbital period. Hence, a much slower tidal, radial evolution
for low-mass stars is expected and recovered.

4. Discussion

4.1. Giant planet occurrence for different stellar masses

The best constrained occurrence rates exist for the most readily
observable planets, which are mostly the giant planets. The gen-
eral observed trend is an increasing frequency of giant planets
with stellar mass (Endl et al. 2006; Butler et al. 2006; Johnson
et al. 2007, 2010; Gaidos et al. 2013; Montet et al. 2014). This is
well explained by works on giant planet formation based on the
core accretion paradigm. Adams et al. (2004) report fast external
evaporation of disks around M dwarfs reducing the available gas
to form giant planets. Even without this effect, Laughlin et al.
(2004) found much slower growth timescales at a fixed semi-

major axis around a 0.4 M� star, mainly due to the reduced solid
surface density and the longer orbital timescale, which is also
one of the conclusions of the population synthesis work by Ida
& Lin (2005) and Alibert et al. (2011). The latter stress the im-
portance of the disk mass on the resulting population of planets.
Like our work, these works nominally assumed more heavy pro-
toplanetary disks around more massive stars motivated by mea-
sured stellar accretion rates. In general, we recover the same
trends of low giant planet frequencies around low-mass stars.
The reasons are growth being limited by fast type I migration
and long solid accretion timescales.

More quantitatively, Alibert et al. (2011) were able to ap-
proximate the synthetic giant planets resulting from their singe-
embryo populations around different stellar masses by scaling
the distribution resulting from the 1 M� case. They found plan-
etary masses M ∝ Mγ

? with γ = 0.9 in their nominal case (disk
mass ∝ M1.2

? ). The same can not be recovered in our simulations,
where the giant planet distribution seems to peak at the same
planetary mass for all stellar masses. The overall frequency of
giants is reduced but not their mean mass. However, we stress
that our dataset is much more sparse since only 1000 stars and
only on the order of 100 resulting giant planets were simulated
compared to the 30 000 stars in Alibert et al. (2011). Therefore,
it is possible that some trends are hidden in statistical noise. If
there is indeed no dependency of the mean giant planet mass
on the stellar mass, N-body effects – like the ejection of planets
– might have played an important role in influencing the mass
function in the newer simulations.

Even though giant planet occurrence rates do increase with
stellar mass, quite a number of puzzling, exotic systems with
giant planets in orbit around M dwarfs exist. The first discov-
ery of a planet around an M dwarf was for GJ 876 (Marcy
et al. 1998; Delfosse et al. 1998; Marcy et al. 2001; Rivera
et al. 2005, 2010; Millholland et al. 2018) where now four com-
panions were discovered. Two of them are giant planets (with
masses of 1.95 MJup and 0.6 MJup), orbiting a 0.37 M� star (von
Braun et al. 2013). Other examples are GJ 849 (0.65 M� Stas-
sun et al. 2016) with two giants (Butler et al. 2006) of masses
0.77 MJup and 0.9 MJup (Montet et al. 2014); GJ 179 a 0.36 M�
star hosting a giant planet with a mass of 0.8 M� (Howard et al.
2010); and GJ 317 (0.42 M� Anglada-Escudé et al. 2012) host-
ing a potentially up to 2.5 MJup massive planet and a second giant
with M sin i = 1.6 MJup (Johnson et al. 2007; Anglada-Escudé
et al. 2012).

Below stellar masses of 0.3 M�, no stars hosting giants were
found1 up to the recent discovery of GJ 3512b, a planet with a
minimum mass of 0.463 MJup around a 0.123 M� star (Morales
et al. 2019), which poses the biggest challenge to all current
planet formation scenarios. Additionally, it is quite likely that
a saturnian mass companion leads to an inner cavity in the tran-
sition disk CIDA 1 (Pinilla et al. 2018).

In our nominal populations presented in Sects. 3.1 and 3.2,
we do not find giant planets around stars with masses below
0.5 M� despite sampling also heavy disk masses. As a conse-
quence, to form a planet like GJ 3512b, either the physical pa-
rameters are to be revised in our models or different physical
processes are at work. In appendix A, we explore the former
pathway by running our models with a single embryo per disk.

We find that reducing type I migration would enable the for-
mation of giant planets even around low-mass stars. This hap-
pens in some rare cases, where the disk mass was large and the

1 A lower stellar mass of GJ 317 was reported in Johnson et al. (2007),
but was corrected to higher masses by Anglada-Escudé et al. (2012).
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initial starting location was ideal. Morales et al. (2019) mention
that core accretion formation of GJ 3512b was limited by the fast
type I migration timescales, which we confirm here with explicit
numerical simulations. Removing this limiting factor naturally
leads to more growth. We also find that even higher mass planets
could be produced if the solids are more concentrated. There-
fore, as long as lower migration speeds or migration traps can
not be excluded, the formation of giant planets by core accretion
around very low-mass stars should not be discarded.

Admittedly, this pathway does require more "tuning" of pa-
rameters (i.e. small planetesimal sizes and low type I migra-
tion speeds) than the gravitational instability pathway (Cameron
1978; Boss 1997) which would more naturally produce giant
planets around low-mass stars. For core accretion models, it re-
mains to be checked if planets could be trapped at a fixed sepa-
ration from the star in a sufficiently frequent and efficient way to
explain the aforementioned large planetary to stellar mass ratio
examples. Observations do reveal common ringed structures in
protoplanetary disks (Andrews et al. 2018). Those frequent dust
rings might trace inverted gas pressure gradients which lead to
migration traps.

4.2. Growth regimes

As shown in section 3.3, the components that make up the plan-
etary mass distribution (Fig. 8) are a population of low-mass
"failed cores" at high semi-major axis, intermediate mass planets
mainly growing within the water iceline ("terrestrials"), the more
massive planets ("horizontal branch" planets, Mordasini et al.
2009b) initially growing at larger separations, and a few giant
planets.

In the following, the different origins of the sub-populations
are addressed. The initial embryo mass of 0.01 M⊕ is large
enough to lie in the oligarchic growth regime (Rafikov 2003).
At low masses and large separations, the oligarchic growth
timescale is long. This leads to the aforementioned peak of
"failed cores". As the planet grows, the time needed to double
its mass by planetesimal accretion reduces and additionally, by
Hill radius enlargement, encounters with smaller embryos that
can be accreted become more frequent. Therefore, the mass dis-
tribution at large semi-major axes is not flat, but decreases with
increasing mass.

The distribution peaks at the location of ∼ 10 M⊕. To this
sub-population dubbed "horizontal branch" planets belong the
most massive planets apart from the few giants. In principle, the
upper end of the peak could be due to the onset of rapid gas ac-
cretion and the typical "desert" in the mass distribution (Ida &
Lin 2004a). However, this does not work out in terms of statis-
tics, since the number of planets that actually grow to become a
giant planet is far too little to influence the shape of the distribu-
tion at lower masses.

Indeed, the frequency of horizontal branch planets peaks at
a given mass due to the onset of very rapid type I migration at
these planetary masses. As discussed in Sect. 2.1.1, migration
is a function of the stellar mass, disk mass, and planetary mass.
With the chosen initial scaling of the disk mass proportional to
the stellar mass, the rapid type I migration region is shifted to-
wards lower planetary masses, which explains the different loca-
tions of the drop in the mass distribution.

At the upper end of the distribution lies a very small frac-
tion of planets which can overcome this type I migration barrier.
Then, they undergo runaway gas accretion (Mizuno et al. 1978),
reach the slower type II migration regime and become giants.
A lot of solid mass is required to grow to the type II migration

regime more quickly than type I migration timescales (∼ 104 to
105 yr).

The population of planets which starts close-in – the "terres-
trials" – would have theses short growth timescales. However,
their growth by planetesimal accretion is soon limited by the
amount of mass in their feeding zone. This is due to their much
smaller Hill region. In the simulations, we observe that com-
monly, all the planetesimals within the iceline are either ejected
or accreted after a few 100 kyr. Therefore, the close-in distri-
bution in Fig. 8 does not include planets that stayed at their
initial mass of 0.01 M⊕. However, there are many planets in a
terrestrial-like regime between 0.1 M⊕ and 1 M⊕. The terrestrials
typically also undergo many collisions to grow to Earth masses,
even though the individual embryo’s isolation mass is lower. Ad-
ditionally, outward migration zones help to push the tail of the
distribution into the super-Earth mass range by giving the em-
bryos access to a larger planetesimal reservoir. Despite that, we
find that growing into a giant is not possible for embryos initially
located within the iceline unless they were scattered by a close
encounter to larger separations. For the aforementioned reasons,
it is obvious that the overall masses of the terrestrials is very sen-
sitive to the slope of the planetesimal disk, which was chosen to
be −1.5.

For the different stellar masses, there is always a distinction
between initially close-in and far-out planets. The rough shape
of the distribution stays the same, but the different populations
of planets are influenced differently by the stellar mass. The pop-
ulation of close-in planets that is limited by the available mass
is roughly reduced by half an order of magnitude, whereas the
outer population that is limited by type I migration is linearly
shifted to lower masses by a full order of magnitude.

4.3. Frequency of Earths and super-Earths

For planets with masses below ∼100 M⊕, the best estimates on
their frequency can be gained from transit surveys due to the
large sample. Using the results from Kepler, Dressing & Char-
bonneau (2013) derive an occurrence of about one planet with
orbital period shorter than 50 days and radii from 0.5 R⊕ to 4 R⊕
per cool star (T < 4000 K), while Gaidos et al. (2016) find
around two planets with similar radii and orbital periods up to
180 days per M dwarf. From Fig. 10, it is apparent that more
planets are formed in the synthetic simulations. This has already
been reported in Mulders et al. (2019), who find a five times
too large fraction of synthetic stars with planets compared to the
Kepler sample. This still holds for lower mass stars. The syn-
thetic data on which conclusion is based on, is very similar to
the 1.0 M� dataset shown here.

Planet formation models do more readily yield planetary
masses than radii, as gravity is the dominating force that is act-
ing. Consequently, our results can more readily be compared to
Pascucci et al. (2018) who use the Kepler sample to derive plan-
etary and stellar masses.

They find broken scaling relations in planet to star mass ra-
tios obtained from Kepler and microlensing surveys, which can
be discussed here without the compositional imprints on the
radii. In the Kepler-based data of Pascucci et al. (2018), the po-
sition of the universal peak lies at M/M? = 2.8 × 10−5. Our
synthetic mass function does not show a prominent peak, but
rather the edge of a plateau at comparable ratios (see Fig. 8).
However, if more embryos would have started outside the ice-
line, a peak similar to the dash-dotted line in Fig. 8 should have
been recovered at this location of the plateau-edge. In Fig. 8, the
edge of the plateau is not shifted exactly linearly with the stellar
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mass. Instead, a slight trend towards larger M/M? for lower stel-
lar masses can be seen. In Pascucci et al. (2018), only the most
massive F-stars do show a slightly lower mass ratio peak, while
the peaks around G, K and M dwarfs lie at the same M/M?. This
could partially be due to a more narrow range of stellar masses.

Furthermore, the location of the peak at M/M? = 2.8 × 10−5

from Pascucci et al. (2018) is not well matched by our models.
Instead, plateau edges a factor ∼1.5 lower are found where the
edge of the mass distribution for the 0.1 M� case lies the closest
to the observed peak. This can either point towards migration
in the models becoming too efficient at too low masses, too low
disk masses or a preferred placement of the embryos could be
influencing the results.

From this, we can conclude that if the mass distribution of
planets indeed has a distinct peak and is not the edge of a plateau
it is most likely due to type I migration halting growth and
pushing many planets of similar mass to the observable regime,
which should make out the bulk of the observed data. Thus, this
would point towards more embryo formation at larger distances
and less "terrestrial-like" planet growth, which would be in line
with works that propose that planetesimal formation preferably
occurs outside the water iceline (Dra̧żkowska & Alibert 2017;
Schoonenberg & Ormel 2017). A more quantitative, direct com-
parison to the Kepler sample will be done in a future paper of
this series (Mishra et al. in prep).

4.4. Most common temperate planet hosts

While not the ideal measure to constrain planet formation by
observations, we can still take a look at the number of temperate
planets around stars of different stellar masses. While there are
a wealth of processes neglected to constrain the habitabilty of
these planets (Kaltenegger 2017), constraints on the frequency
of planets on which life similar to Earth has a chance to emerge
is still of interest for the wider community. We choose to take the
approach of checking if liquid water could exist on the surface of
the synthetic planets using the limits of Kopparapu et al. (2014)
and call them temperate planets.

We find in our simulations that most frequently, temperate
planets occur around intermediate stellar masses ∼0.5 M�. As
discussed above, the overall number of planets per star in the
synthetic simulations is higher than observed. Similarly, we get
a higher estimate on the number of planets in the temperate zone
than works based on observational data. Dressing & Charbon-
neau (2015) derive an occurrence rate of 0.09 to 0.33 for small
planets around cool stars (Teff < 4000 K), which is lower than
the occurrence rates of 0.92 and 1.07 (see Tables 2 and 3) for the
synthetic populations with stellar masses of 0.3 M� and 0.5 M�
respectively. Again, the factor of five found by Mulders et al.
(2019) would bring the numbers to a comparable level. This mo-
tivates the existence of a mechanism that inhibits growth of (or
removes all) planets or embryos around four out of five stars.

4.5. Dependence of dynamical results on initial placement

Planetary orbital parameters, such as the eccentricity or the pe-
riod ratio of neighboring planets are influenced by close encoun-
ters between them. The frequency of close encounters in turn
depends sensitively on the initial placement of the synthetic em-
bryos, since placing two embryos in close proximity to each
other might lead to interactions already during the early growth
stage when migration is still negligible.

One measure that can be used to quantify the probability of
dynamical instabilities (i.e. gravitational interactions) is the mu-
tual Hill radius of a pair of planets (Chambers et al. 1996)

RH,mut =

(
M1 + M2

3M?

)1/3 (a1 + a2

2

)
, (4)

where M1, M2, a1, a2 are the masses and semi-major axes of two
planets in a system. Typically, instabilities can occur if two plan-
ets are separated by less than ∼3.5 mutual Hill radii (Chambers
et al. 1996).

We chose the same initial embryo mass for all stellar masses.
Thus, the distance, measured in mutual hill radii, between the
initially placed embryos in the simulations increases with in-
creasing stellar mass. This means that in terms of dynamical
interactions the populations are not starting with the same ini-
tial conditions and thus, no strong conclusions should be drawn
from the nominal populations with 50 embryos each.

This discussion touches the topic of the influence of the ini-
tial number of embryos, which is discussed in Paper II. There, it
is shown that eccentricity and period ratio are quantities sensi-
tive to the number of initial embryos that are placed in the disk.
The scaling of the Hill radius ∝ M1/3

? leads to a factor ∼2 in the
distance between initial embryos measured in mutual Hill radii
between the 0.1 M� population and the 1.0 M� population. Coin-
cidentally, a planetary population was calculated and presented
in Paper II using 100 embryos around a 1.0 M� star (Population
NG76). We are therefore able to compare here the dynamical
outcome between those two populations, which have much more
similar initial dynamical conditions (see Fig. 11, dotted lines).

Due to growth and migration, the systems get more com-
pact over time leading to lower mean distances measured in mu-
tual hill radii (∆̄a/RH,mut) but, sporadically, the measure can in-
crease if collisions or scattering of planets occur. The final state
of the solar-type star population with 100 initial embryos and the
0.1 M� population with 50 embryos is still quite close to each
other. For comparision, the solar-type star population with 50
embryos has a mean over all systems around 27 ∆̄a/RH,mut after
starting at ∼40. This is significantly different to the outcome with
100 embryos, which ends up with more closely packed systems
with a mean over all systems of ∆̄a/RH,mut at ∼20.

In Fig. 11, we can also see a slight trend to more packed
systems for the population of planets around solar-type stars. In-
deed, even though the initial ∆̄a/RH,mut of the population of plan-
ets around solar-type stars is slightly larger than for the popula-
tion around 0.1 M�, the resulting mean ∆̄a/RH,mut is lower. We
argue that this is due to very little growth in some systems around
0.1 M�, which then leads to systems with mean ∆̄a/RH,mut closer
to the higher initial value.

Having established a closer dynamical relationship between
the population with 50 embryos around a 0.1 M� (NGM10) star
and the one with 100 embryos around 1.0 M� (NG76) we can
compare the dynamical evolution of the systems of those two
populations. Figure 12 shows the period ratio of neighboring
planets of any mass and semi-major axis that formed in NG76
(blue line) and NGM10 (brown). An apparent difference is the
number of planets in or close to mean-motion resonances seen as
vertical jumps in the lines in Fig. 12. The total number of plan-
ets close to integer period ratios (within 2 %) is 44.5 % of the
planets in the 0.1 M� population compared to 32.6 % in NG76.
This trend would not have been recovered if we compared the
0.1 M� population NGM10 to the 1.0 M� one (NG75) with also
50 initial embryos but an initially larger separation between them
measured in mutual Hill radii. There, in NG75, a slightly larger
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Fig. 11. Mean distance between all neighboring planets in a system
measured in mutual Hill radii (Chambers et al. 1996). The initial place-
ment corresponds to the dotted lines and the resulting values are shown
using a solid line. The number of injected embryos for the population
of planets around 0.1 M� stars is 50, whereas we insert 100 embryos for
this population of planets around 1.0 M� stars.

number of planet pairs is close to mean-motion resonances than
in NGM10. The trend of less planets close to mean-motion res-
onances with increasing number of embryos was already found
by Alibert et al. (2013) by comparing simulations with up to 20
embryos.

An interesting aspect of the mean-motion resonant chains is
that there are very few planet pairs in second-order mean-motion
resonance. The 5:3 resonance is slightly populated in the 0.1 M�
case, but not in the 1.0 M� case (less than 1 %). From theory, we
know that second order resonances are less frequently produced
in non-eccentric systems and need a more exciting history than
low-eccentricity type I migration into resonant chains (see e.g.
Coleman et al. 2019). It is also noteworthy that the TRAPPIST-1
system planets d and c are close to such a second order reso-
nance. They are close to 5:3 mean-motion resonance, which is
rare in the simulations (3.8 % of the pairs for planet pairs with
masses larger than 0.1 M⊕ and semi-major axes smaller than
0.1 au).

Figure 12 additionally shows the observed Kepler multi-
planetary systems period ratio for reference. We note that the
simple cut in masses at 0.1 M⊕ and periods at 300 days which
we apply for the synthetic systems is not well suited to com-
pare the period ratios to the observed systems. Many planetary
pairs that are more quite distant from the star are included in the
synthetic data. Applying a the realistic bias from Kepler will be
addressed in a future study (Mishra et al., in prep).

The last dynamical property we discuss in this work is the ec-
centricity. Similar to the discussion above, we can also attribute
a large part of a decreasing eccentricity trend with stellar mass in
the nominal population to the initial conditions. Indeed, Fig. 13
shows the nominal 0.1 and 1.0 M� populations with 50 embryos
each (NGM10, NG75), but additionally the population with 100
embryos (NG76). It is apparent that increasing the number of
embryos increases the eccentricity, which is due to an initially
closer setting. Reducing the stellar mass, while keeping the num-
ber of embryos fixed and at the same mass had a similar effect.
Comparing NG76 and NGM10 again, only very small differ-
ences in eccentricities can be found, with a few highly eccentric
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Fig. 13. Cumulative distribution function of the planetary eccentricities
for synthetic populations NGM10 (0.1 M�, 50 embryos, blue), NG75
(1.0 M�, 50 embryos, brown solid) and NG76 (1.0 M�, 100 embryos,
brown dashed). Only planets with masses above 0.1 M⊕ are included.

planets around solar mass stars that are not present in NGM10.
This can be attributed to the systems with giant planets, where
the orbits of the smaller planets in the same system can get very
eccentric.

4.6. Solid mass reservoirs

Planetesimal accretion is a process regulated by the eccentrici-
ties and inclinations of the planetesimals in the proximity of the
growing protoplanet (Ida & Makino 1992a,b; Inaba et al. 2001;
Fortier et al. 2013). For larger eccentricities and inclinations,
lower accretion rates result and if the planet becomes massive
enough, we find that it can even eject a significant amount of
planetesimals completely from the system. The region for which
one protoplanet perturbs the planetesimal disk expands to a few
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Fig. 14. Fraction of final solid mass content in planets in a system
divided by the initial solid mass in the planetesimal disk. The blue
line corresponds to the population around a 0.1 M� star with 50 em-
bryos (NGM10) and the brown line to the population around a 1.0 M�
star with 100 initial embryos (NG76). The dotted histogram shows the
same quantity for the systems with at least one existing giant planet
(M > 100 M⊕) in NG76.

tens of Hill radii. Therefore, indirect growth reduction for the
less massive embryos in this region occurs. This is in line with
the findings of Alibert et al. (2013). A technical difference is that
in our model, the planetesimal surface density inside the shared
feeding zone is not set to its mean value but only to the mean
value over the part of the feeding zone attributed to one growing
embryo (see Paper I). This is different from the treatment in Al-
ibert et al. (2013), where the former mean over the whole merged
feeding zone was used. For the models presented here, this leads
to less transport to the inner regions where planetesimals can get
more easily ejected. Nevertheless, the results are similar.

For an individual embryo, growth by solid accretion to
masses above the classical isolation mass (Lissauer & Stewart
1993) is commonly possible due to migration to non-depleted
regions. In addition to the competition for and excitation of plan-
etesimals, this makes an analytic treatment of solid accretion
even more difficult. Therefore, we take a look the ratio of solids
ending up in the cores of planets in a system to the solids ini-
tially inserted into its planetesimal disk (Fig. 14). We term this
the efficiency of solid accretion.

In Fig. 14, a tail towards very low efficiencies is found in
the population around a 1.0 M� star, which can be attributed to
systems with at least one giant planet (dash-dotted line). The
overall bulk of the distribution without giant planets peaks at a
similar location in the two populations. The reason for the lower
apparent efficiency for the systems with a giant planet is mainly
ejection of planetary embryos, where for NG76 in 219 systems
ejection of planets occurred, with a mean ejected solid mass of
46.7 M⊕ per system with ejection. In contrast to that, in NGM10
ejection of planets occurred in only 38 systems with a mean
ejected solid mass of 0.27 M⊕.

From these results, we can qualitatively conclude that free
floating planets originate predominantly from systems around
stars of higher mass, or at least systems with massive disks. The
dependency is not linear due to gas accretion: Systems with gi-
ant planets that underwent rapid gas accretion eject much more

planetary mass to interstellar space than systems where no sig-
nificant gas accretion occurred. Additionally, we find the bulk of
the ejected mass to be in the form of embryos and not in the form
of ejected planetesimals. This finding is again a function of the
initial number of embryos and should be addressed in detail in
future works.

4.7. The case of TRAPPIST-1

The population of synthetic planets around an 0.1 M� star
(NGM10) provides a dataset well suited for comparison
to the TRAPPIST-1 system (Gillon et al. 2016, 2017).
TRAPPIST-1 is an ultracool dwarf star with an estimated mass of
(0.089 ± 0.006) M� (Grootel et al. 2018). The system is unique
due to the high number of detected transiting planets and their
mass constraints (Grimm et al. 2018). Thus, TRAPPIST-1 pro-
vides a unique opportunity to benchmark planet formation mod-
els against (see also Ormel et al. 2017; Alibert & Benz 2017;
Coleman et al. 2019; Schoonenberg et al. 2019; Miguel et al.
2020).

4.7.1. Statistics of synthetic planets inside 0.1 au

The TTV fits for the TRAPPIST-1 system exclude additional
planets with significant mass for at least the region within 0.1 au
(Grimm et al. 2018). Therefore, it makes sense to take a look at
the properties of the synthetic planets with masses above 0.1 M⊕
within 0.1 au in the synthetic 0.1 M� population NGM10 and
compare them with what we know for the TRAPPIST-1 planets.

In our model results, typically only few planets grow to
0.1 M⊕ masses. The most common number of planets in the
TRAPPIST-1 region (M > 0.1 M⊕, a < 0.1 au) is 1, which oc-
curs in 330 systems. In 182 systems, not a single planet is in
the TRAPPIST-1 region and only 20 % of the systems do have
more than 3 planets there. This low number is mainly due to lit-
tle growth in many systems and further reduced by evolutionary
paths that led to a single massive close-in planet that accreted
all the other embryos. This second scenario is common in disks
with a lot of initial solid mass and supported by fast type I mi-
gration. If the migration speed was reduced, for example by a
lower viscous α, there would be less systems where the growing
embryos are forced by strong disk torques into each others prox-
imity, which then leads to less close encounters and collisions.

In terms of the composition of planets in the TRAPPIST-1
region, they are mostly rocky. Figure 7 highlights a trend to-
wards higher ice mass fractions for larger masses due to in-
creased migration speeds. The statistics of ice mass fractions
of planets in the TRAPPIST-1 zone are shown in Fig. 15. Cur-
rently, the TRAPPIST-1 planets are considered to be quite rocky
(Dorn et al. 2018; Grimm et al. 2018), even though the estimated
masses might change due to the challenging multi-dimensional
TTV fits that have to be calculated.

We find a large rocky population of planets making up about
90 % of the planets and a smaller, more massive, water-bearing
population. This is due to a large amount of accretion inside
the water ice line, similar to Schoonenberg et al. (2019) but in
contrast to the findings of Alibert & Benz (2017), Miguel et al.
(2020) and Coleman et al. (2019) who found mostly water-rich
planets. Coleman et al. (2019) assumed an insignificant amount
of rocky planetesimals initially, while Miguel et al. (2020) get
snowlines much closer to the star which is due to the differ-
ent disk temperature calculations. To estimate disk temperatures,
Miguel et al. (2020) use gas accretion rates Ṁacc on the or-
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ets in the TRAPPIST-1 region (M > 0.1 M⊕, a < 0.1 au). The shown
population of synthetic planets is calculated around a 0.1 M� star with
50 embryos (NGM10). Most planets are purely rocky, but a significant
part shows intermediate and large ice fractions.

der of 10−10 M�/yr which corresponds to a later, cooler stage
in the disk evolution compared to our assumed planetesimal
formation at the beginning of our simulations (where Ṁacc '
2 × 10−9 M�/yr). Additionally, the disks presented here are as-
sumed to be twice as turbulent (α = 2 × 10−3) compared to the
disks in Miguel et al. (2020) (α = 1 × 10−3) leading to hotter
disks. For these two reasons, Miguel et al. (2020) start their sim-
ulation with much less rocky planetesimals compared to our sim-
ulations.

Most similar to our model is the work of Alibert & Benz
(2017). Our results differ from theirs for three different reasons:
(1) Alibert & Benz (2017) found that for more massive disks,
more rocky planets appear, and they scale the disk mass to the
power of 1.3 with the stellar mass. Their "heavy" disk case cor-
responds to our nominal case and already produces ∼20 % rocky
planets. (2) We run simulations with 50 embryos, compared to
Alibert & Benz (2017) who run simulations with 10 embryos.
More embryos lead to more potential accretion close to the star,
since the sum of all feeding zone increases, which is limiting
growth in the inner region. (3) The slope of the planetesimal sur-
face density differs in the two simulations. Whereas we use a
slope of -1.5, Alibert & Benz (2017) used a shallower slope of
-0.9. Therefore, by construction, more rocky material is avail-
able in our new set of simulations. This third point is an addi-
tional relevant difference to the work of Miguel et al. (2020).
Current planetesimal formation models favor steeper slopes, but
potentially less planetesimal formation within the water ice line
(Dra̧żkowska & Alibert 2017; Lenz et al. 2019).

As of now, no clear conclusion should be drawn concerning
the validity of the pathway of rocky planet formation by almost
in-situ accretion which was dominant in our work. Due to the
moving water iceline, the resulting planetary composition is a
strong function of the location and timing of planetesimal for-
mation. This will be addressed in a future paper (Völkel et al,
in prep). For now, we show that if enough planetesimals are as-
sumed to have formed within the water iceline, rocky planets
will form directly. Otherwise, to reproduce the observed pop-
ulation of rocky planets, the planetesimals or the planets have
to desiccate by some additional process (e.g. due to radioactive
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Fig. 16. Disk initial conditions color-coded by multiplicity. We plot only
planets in the TRAPPIST-1 region, i.e. with semi-major axis less than
0.1 au and mass larger than 0.1 M⊕.

heating of planetesimals Lichtenberg et al. 2018 or by ablation
of pebbles in the planetary envelopes Coleman et al. 2019).

4.7.2. Initial condition regime

To compare the simulated systems with TRAPPIST-1, we chose
to take the number Np and the difference to TRAPPIST-1 in
total mass ∆Mtotal (where Mtotal of TRAPPIST-1 is 5.655 M⊕,
Grimm et al. 2018). For both, we only take planets with masses
M > 0.1 M⊕ and semi-major axes a < 0.1 au into account.
This simple approach is a first exploration of the similarity of
TRAPPIST-1 and the synthetic data in terms of the most funda-
mental parameters. A more complex similarity criterion of sys-
tems will be applied in future works following Alibert (2019).
The colors of Figs. 16 and 17 display Np and ∆Mtotal, where one
point corresponds to a synthetic system. It is interesting to show
them as a function of the initial solid mass and the inner disk
edge to determine the most likely initial parameters of the disk
from which the TRAPPIST-1 planets formed. For both, Np and
∆Mtotal, there is a clear correlation with the initial solid mass,
whereas only for the number of planets there seems to be a cor-
relation with the inner disk edge.

For ∆Mtotal, this can be explained by the mass transport via
type I migration. The migration rates and thus the solid mass flux
to the inner region is independent of the inner disk edge. Thus, a
similar fraction of the total solid mass in the disk is transported
inside 0.1 au in all disks. The initial mass in planetesimals inside
0.1 au only varies negligibly with the inner edge.

However, this mass can be distributed very differently to the
planets. In a number of disks at the high-end tail of the solid
masses (Msolid > 60 M⊕), there are only one to four oligarchs that
grew by accreting the rest of the embryos. Due to the higher ini-
tial solid mass, larger planets form which correspondingly have
bigger Hill spheres and interact more often gravitationally with
the other embryos. Consequently, they can be ejected or accreted
by other planets, where both outcomes lead to a smaller number
of planets in a given zone. Therefore, Fig. 16 shows a peak in
Np inside the TRAPPIST-1 zone which is located at moderate,
but above average disk solid masses (10 M⊕ < Msolid < 60 M⊕).
At lower than average disk solid masses, the number of planets
decreases. This s due to planets not growing to masses above
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Fig. 17. Disk initial conditions color-coded by difference of total mass
to the TRAPPIST-1 system. Individual planet masses are only in-
cluded if their semi-major axis is less than 0.1 au and their mass is
larger than 0.1 M⊕. Systems with no planets that lie in this regime are
drawn as empty black circles. The darkest points show systems most
TRAPPIST-1 similar at around 30 M⊕ of initial solid mass.

0.1 M⊕. Thus, they are not identified to lie in the TRAPPIST-1
zone and additionally, very little transport of solid material due
to type I migration takes place.

Overall, a sweet-spot to form a system with a similar
amount of planetary mass at comparable semi-major axes as
TRAPPIST-1 can be located at 30 M⊕ . Msolid . 50 M⊕, which
coincides with the region where seven planets inside 0.1 au
are frequently present given an inner disk edge below at least
0.06 au.

5. Summary and conclusions

In this part of the New Generation Planetary Population Synthe-
sis (NGPPS) series, we employ the Generation III Bern model of
planet formation and evolution introduced in Paper I to explore
the influence of the stellar mass. Populations of synthetic planets
are calculated for a grid of stellar masses (0.1, 0.3, 0.5, 0.7 and
1.0 M�) with an initial number of 50 embryos. While we linearly
scale the gas and solid disk mass with stellar mass, we assume
physical disk boundaries constant in orbital period and keep the
disk lifetime fixed.

This yields a dataset for which we find:

– a larger number of giant planets with larger stellar mass. In
particular, no giant planets formed for M? < 0.5 M�.

– the most frequent temperate planet host to be M dwarfs with
masses of 0.5 M�

– that the planetary mass function does not shift strictly linear
with the stellar mass despite the linear scaling of the gas and
solid disk mass. This is due to more ejected planets for higher
stellar masses because of the growth of giant planets.

– as consequences of the previous point a reduced apparent ef-
ficiency of solid accretion towards higher stellar mass and
most of ejected, free-floating planets originate from stars
with masses of at least a solar mass.

– a strong dependency of the dynamical properties such as pe-
riod ratios and eccentricities on the initial proximity of the
embryos measured in mutual Hill radii (initial spacing)

– a high occurrence of mean-motion resonances due to migra-
tion, which is in contrast to the few observed resonant multi-
planetary systems. For a similar initial spacing, ∼10 % more
pairs are in resonance around ultra-late M-dwarfs compared
to solar-like stars.

– a sweet spot in terms of initial solid mass content (30 to
50 M⊕) and inner disk edge (closer than 0.06 au) to get a sys-
tem like TRAPPIST-1 measured by the observable mass

– a large amount of rocky compositions for planets in the in-
nermost 0.1 au of low-mass stars due to a lot of rocky plan-
etesimal accretion. This is unsurprisingly a strong function of
how many planetesimals and embryos were initially placed
closer to the star than the water iceline.

– a pathway for the core-accretion formation of giants around
very low-mass stars – such as GJ 3512b. For that, it is suffi-
cient to reduce type I migration. Even more giants can form
if planetesimals are initially more concentrated.
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Appendix A: Giant planet formation around
low-mass stars

While explanations through different formation scenarios are
possible, the discovery of the giant planet GJ 3512b around a
very low-mass star (Morales et al. 2019) motivates the varia-
tion of free parameters in order to push the efficiency of core-
accretion planet formation around low-mass stars. A stellar mass
of 0.1 M� was chosen to model conditions similar to GJ 3512b
(M? = (0.123 ± 0.009) M�).

One trivial pathway to form larger planets would be to in-
crease the disk masses. However, this can not be considered a
free parameter since observational data is available. We use the
disk masses derived for the young class I objects from Tychoniec
et al. (2018), which are already larger than those from Williams
et al. (2019). Therefore a further increase would be contradicting
observations. Furthermore, we are not aware of indications for a
shallower than the nominal linear scaling of the disk mass with
the stellar mass.

For these reasons, we test here the influence of the place-
ment of planetesimals and embryos and the impact of reducing
the type I migration speed. Rapid type I migration is well known
to be reducing the efficiency of forming giant planets (Alibert
et al. 2004b; Mordasini et al. 2009b). Therefore, one can explore
the impact of a reduction factor fI = 0.1 for type I migration
rates similar to Mordasini et al. (2009b). Parameter searches like
these that address giant planet formation can be done in the sin-
gle embryo mode, meaning only a single embryo is injected in a
protoplanetary disk and no N-body code takes up computational
time (Alibert et al. 2013, found convergent results with the num-
ber of embryos for high mass planets).

Figure A.1 shows three synthetic populations of planets
where fI = 0.1 for all of them. The number of simulations – thus
also of synthetic planets – is 10000 for each of them. They differ
by the slope βpls of the initial radial planetesimal surface den-
sity profile and the placement of the planetesimals and embryos:
The top panel shows the nominal slope of βpls = −1.5, the cen-
tral panel shows a population of planets where the planetesimals
were placed with a slope of βpls = −2.0 and the bottom one with
βpls = −2.5. In the last case, growth would mainly occur close to
the star due to the mass concentration there. Therefore, the initial
conditions for the population shown on the bottom panel were
further fine-tuned and include an inner edge of the planetesimal
disk at 0.6 au and the same inner boundary for the injection of
planetary embryos. The other two simulations do not differ from
the nominal simulations in terms of the inner edge of the plan-
etesimal disk or embryo placement (i.e. log-uniform from inner
edge to ∼20 au).

Compared to the top panel of Fig. 7, where type I migration
is not reduced, much more massive planets can form with re-
duced migration (Fig. A.1). In very rare cases, the mass of GJ
3512b can already be reached. Similarly efficient in reproducing
GJ 3512b is the central panel with βpls = −2.0 and quite efficient
in producing giant planets is the fine-tuned population shown in
the bottom panel. Giant planets form frequently in the heavier
disks.

In a population where only the planetesimal slope was in-
creased to -2.5 and the placement of planetesimals and embryos
constrained to the region outside 0.6 au but the type I migration
speed was not reduced, more massive planets than in the nom-
inal case can form, but no giant planets were forming. Instead,
the frequency of icy super-Earths was increased drastically.

Therefore, we conclude that even for ultra-late M dwarfs the
formation of gas-rich giant planets is possible if two conditions

Fig. A.1. Synthetic populations of planets calculated in single-embryo
mode with reduced type I migration ( fI : 0.1) as a function of a and M.
The mass fraction of the summed-up ices is shown in color. The top
panel shows the population of planets with a nominal planetesimal sur-
face density slope βpls, whereas the other two panels have steeper plan-
etesimal surface density slopes as indicated in the top left of the panel.
The bottom panel displays the population of planets, where embryos
and planetesimals are only placed outside of 0.6 au.

are met: a high disk mass from the upper end of the distribution
and reduced type I migration. The latter could be due to, for
example, trapping in ringed disk structures.
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6. Conclusion and outlook

The purpose of this work is to give a broad overview of processes related to planet
formation and planetary compositions as well as put into perspective the work done
over the course of the past four years. The subject of planet formation is quite
interdisciplinary and the number of physical processes involved is large. Therefore,
in-depth introduction to all aspects was not possible. Nevertheless, a way to model
the evolution of a small body crossing the water iceline was developed in detail in
Paper I and an extensive introduction to it was shown in Chapter 2 and 3.
Bodies that drift fast enough towards the central star to cross the co-moving water

iceline are of sizes ranging from centimeters to a few hundred meters. They have lost
all of their initial water content and are assumed to break up a few percent within the
water iceline that would result from stationary bodies. This e�ect is for the �rst time
quantitatively treated in Paper I and is important for works that focus on detailed
calculations of physics occurring at the water iceline or to precisely determine the
composition of growing planets. This is especially true if the population of bodies in
this size-range is numerous.
We found that collisions with small bodies would remove the outermost layers of

fast-drifting bodies; therefore, they should not be covered by a compact, dry dust
mantle as observed on comets. However, the encountered mass and energy resulting
from those collisions is not considerable for the relevant timescales of a few thousand
years.
Of much larger in�uence for the composition of all forming planets could be the loss

of water from large planetesimals due to being heated by the decay of their radioactive
26Al. We estimated that planetesimals of a few tens to hundred kilometer in size
would e�ciently dry-out and the process is quick enough to fundamentally change
the composition of the formed planets around stars with realistic 26Al contents. This
is a possible explanation for the low water content of planets observed by Kepler or
the terrestrial Solar System planets. If planets migrate from the outer regions of the
disk towards the star, they should be born with much larger water mass fractions
than observed.
Moving to planet formation in general, it is particularly important to account for

all observed constraints. One such constraint from meteoritic data precisely dates
the growth stages of Jupiter � given the assumption of a spatial separation of the
meteoritic reservoirs. This implies that the growth of Jupiter needs to be a two-stage
process: Rapid growth by pebble accretion to the pebble isolation mass followed
by a stage of signi�cant planetesimal accretion. The gravitational excitation of the
planetesimal disk � if composed of hundred kilometer sized objects � is large enough to
lead to fragmentation of those bodies in the vicinity of the proto-Jupiter. Therefore,
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6. Conclusion and outlook

we cannot directly infer if planetesimals were born big or small, only that they should
have been small when Jupiter was accreting them.
A project comparing pebble and planetesimal accretion in a statistical framework

showed, that the two accretion models both show rapid growth phases at di�erent
embryo masses and orbital distances. The resulting population of planets should be
distinct and planets that show a very low solid-to-gas mass ratio can only form by
pebble accretion. In both cases, rapid type I migration inhibits growth to larger
masses for the bulk of disks and formation locations.
The same is true for planets that grow around low-mass stars. If type I migration

was reduced, it would even be possible to form giant planets like GJ 3512 b by
core-accretion around very low mass M dwarfs. Under the assumption of nominal
type I migration rates, the growth to giant planets is no longer possible for stellar
masses below 0.5 M�. This �nding was obtained using the newest generation of
planet formation models that couple a wealth of processes of planetary growth and
interactions. This update also allowed us to study lower-planetary masses because
we account for gravitational interactions between the growing embryos. There we
�nd that the properties of the planetary orbits are sensitive to the initial spacing
between the embryos measured by their gravitational force (i.e. in mutual Hill radii).
Furthermore, the absence of giant planets for lower stellar masses leads to less ejection
of planetary embryos. This appears in the statistics as more leftover solid mass
contained in planets compared to the initial disk mass.
We also tentatively addressed the important question of how probable the emer-

gence of planets that could harbor life is around di�erent stellar masses. Because of
an assumed small reservoir of solids around very-low mass stars and due to frequent
ejection of embryos in disks around massive stars, there is an optimal location for
growth to Earth-sized planets in the habitable zone at ∼0.5 M�. However, the fact
that the presence of giants frequently removes planets similar to our Earth implies
that the Solar System with a giant planet and smaller terrestrial planets in the same
system is relatively rare. It is of course interesting to already look at this topic of
potentially habitable planets, but we would like to caution over-interpretation of the
results that depend on many free parameters and do not yet produce a perfect match
to all observational constraints.

A major bene�t of having presented a number of di�erent works and processes
in a single document is to then take a large step back and take a look on the big
picture. The subject of planetary sciences is developing very rapidly and thanks to
the continuous investment into new facilities and missions, this observation-driven
�eld will make substantial progress in the near- and mid-term future.
For theorists, one key aspect is to be ready and having done preparatory work for

upcoming missions. For population synthesis, the microlensing results coming out of
WFIRST will be the major dataset to compare to in the future. Therefore, experi-
ence needs to be gained in applying observational biases that microlensing surveys
have. This can be used to make predictions for the exoplanet yield of WFIRST.
A key ingredient there is that most lens-systems are quite distant from the Solar-
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neighborhood. Therefore, the stellar population that is accessible by WFIRST has
to be taken into account for a proper comparison.
For the current CHEOPS and TESS mission, the focus shifted from detecting

exoplanets to characterizing them. Therefore, the composition of exoplanets can
be constrained. With the works shown in this thesis combined with modeling of
interior structures of exoplanets, the composition of exoplanets can also be explored
theoretically. However, this subject has just started and is far from mature. For the
Bern model, a �rst required step will be to couple the dust transport and growth
module to the chemistry model. This requires accounting for the composition of the
centimeter-sized grains. Other works have shown that the feedback of the dust onto
the gas phase due to sublimation should not be neglected and we have shown here
that the dynamics of drifting objects should be considered.
Another important observational facility of our time is ALMA, which gives us

the opportunity to glance at planet formation as it is happening. The feedback
of accreting planets on the surrounding disk needs to be explored in more detail
using models to make best use of the obtained observational data. Furthermore,
the statistical samples of ALMA are currently being enlarged. This can be used to
constrain the distributions of initial conditions that are used for planet formation
models. However, it has to be kept in mind that all observations are snapshots
at a certain time and not true initial conditions. Therefore, the comparison of the
time evolution of modeled disks to observations of disks and stellar accretion rates
needs to be continuously updated. The latest, realistic photo-evaporation models will
help to narrow down the number of free parameters in search for a unique solution.
The best quantity to compare models to ALMA data is the emitted �ux of radio-
wavelength thermal emission, which needs to be modeled consistently instead of
relying on assumptions about the temperature pro�le in observed disks.
We already learned a lot from ALMA, for example that disks commonly have sub-

structures. Especially rings are very common. Those rings indicate varying pressure
gradients in the disk which should also have an in�uence on the migration of planets.
If planets are trapped in sub-structures, the problem of too e�cient type I migration
might vanish. The fundamental issue is to determine if the structures are caused by
planets or if they are also present in the absence of planets. Only in the latter case,
the �rst generation of formed planets can be stopped.
For planet formation theory, we showed that Jupiter might have formed by a hybrid

pebble and planetesimal accretion process. Indeed, there is no reason that neither
pebbles nor planetesimals exist in disks. For both, there are enough observations
that prove their existence. In our comparison of the two models, we clearly showed
that for equal initial conditions, both pathways can dominate depending on the size
of the embryo and the location in the disk. Therefore, only a hybrid approach will
be able to model the most important growth mode at all times and locations. With
the inclusion of a planetesimal formation module out of a disk of pebbles, a large
step has already been taken in this direction. The results of this model need to be
analyzed carefully in the near future and realistic free parameters for di�erent stellar
masses need to be determined. After extending the model with a chemistry module
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6. Conclusion and outlook

and proving its ability to match the ALMA observations, we will get to a stage
of modeling planet formation with much less free parameters and more predictive
power for future observations. Realistically, it will never be possible to cover the full
complexity of nature; but the path towards it is nevertheless exciting.
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Appendix A.

Derivations and concepts

A.1. Disk gas angular velocity as a function of z

In analytic works related to protoplanetary disks, it is customary to introduce radial
pro�les of the relevant quantities ρ, h, and T to simplify di�erential equations. We
can use the pro�les from Takeuchi & Lin (2002):

ρ(r, z) = ρ0r
pe
− z2

2h(r)2 (A.1)

cs(r)
2 = c2

0r
q . (A.2)

Then, it follows

h(r) =
cs(r)

ΩK,mid(r)
= h0r

(q+3)/2 , (A.3)

where h0, c0 and ρ0 denote the scale height, sound speed and density at a �xed
distance of 1 AU and the radius power law scales in units of 1 AU.
Using this, we can �nd an expression for the angular velocity of the gas Ωg by

inserting these de�nitions into equation (2.16), which we repeat here for better read-
ability:

rΩ2
g =

GM?r

(r2 + z2)3/2
+

1

ρ

∂P

∂r
. (A.4)

To expand equation (A.4) using the pro�les above, we need to calculate the deriva-
tive of P = c2

sρ with respect to r. As a �rst step, we express the more simple
derivatives

∂cs(r)
2

∂r
= qc2

0r
q−1 =

qcs(r)
2

r
(A.5)

∂h(r)

∂r
=
h(r)(q + 3)

2r
(A.6)

∂ρ(r, z)

∂r
=
pρ(r, z)

r
+
ρ(r, z)z2

h3

∂h

∂r
(A.7)

=
pρ(r, z)

r
+
z2(q + 3)ρ(r, z)

2rh2
, (A.8)
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to be able to calculate

∂P

∂r
=
∂c2

s

∂r
ρ(r, z) + cs(r)

2∂ρ

∂r
(A.9)

=
qcs(r)

2

r
ρ(r, z) + cs(r)

2

[
pρ(r, z)

r
+
z2(q + 3)ρ(r, z)

2rh2

]
. (A.10)

Hence, equation (A.4) reads as

rΩg(r, z)2 =
GM?r

(r2 + z2)3/2
+
cs(r)

2

r

[
q + p+

z2(q + 3)

2h2

]
. (A.11)

The �rst term on the right hand side can be Taylor expanded around z = 0 to give

rΩg(r, z)2 =
GM?

r3
r − 3

2

GM?

r3

z2

r2
r +

cs(r)
2

r

[
q + p+

z2(q + 3)

2h2

]
+O

(z
r

)3

, (A.12)

which can be further simpli�ed by substituting c2
s = h2Ω2

K,mid to

Ωg(r, z) = ΩK,mid

√
1 +

h2

r2
(q + p) +

z2q

2r2
+O

(z
r

)3/2

, (A.13)

where the root can now be Taylor expanded to give

Ωg(r, z) ≈ ΩK,mid

(
1 +

1

2

h2

r2

[
q + p+

z2q

2h2

])
. (A.14)

A.2. Derivation of the disk evolution equation

Here, we derive in detail the disk evolution equation due to a given viscosity from �rst
principles. We start, as in the works of Pringle (1981) and Lynden-Bell & Pringle
(1974), by deriving the continuity and the angular momentum conservation equation.
This was �rst done in a analytical work by von Weizsäcker (1948) for a more general
case. Consider a ring of gas, where the inner boundary is at the distance R from the
star, with a small radial extent of ∆r, moving with an angular velocity Ω(r). The
gas mass m contained in this annulus is 2πr∆r · Σ and its angular momentum is
mr2Ω = 2πr∆r · Σ · r2Ω. The rate of change of the mass of the ring is equal to the
�ow from neighboring rings, i.e.

∂

∂t
(2πr∆r · Σ) = vr(r, t)·2πr ·Σ(r, t)−vr(r+∆r, t)·2π(r+∆r)·Σ(r+∆r, t) , (A.15)

where vr is the radial velocity of the gas. In the limit ∆r → 0 we get

r
∂Σ(r, t)

∂t
+

∂

∂r
(rvr(r, t) · Σ(r, t)) = 0 . (A.16)

Note that in this formalism, the velocity vr(r, t) is inside the derivative, such that
the lefthand side cannot be expressed as a material derivative D/Dt, because the
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reference frame does not move with the gas velocity (opposed to the derivation in
Lynden-Bell & Pringle, 1974, but following the one in Pringle, 1981).
For the angular momentum the derivation can be done similarly, but with an

additional term r2Ω, which leads to the angular momentum conservation equation

r
∂

∂t

(
r2Ω · Σ(r, t)

)
+

∂

∂r

(
rvr(r, t) · Σ(r, t) · r2Ω

)
=

1

2π

dG

dr
, (A.17)

where G is the torque and is for a viscous �uid given by

G = 2πr · νΣr
dΩ

dr
r . (A.18)

Thus, we can write equation (A.17) as

d

dt

(
r2Ω · Σ

)
+

1

r

d

dr

(
r3vr · Σ · Ω

)
=

1

r

d

dr

(
r3νΣΩ′

)
, (A.19)

where the prime denotes here and in the following the derivative with respect to r.
To eliminate vr we perform the derivatives in equation (A.19) and substitute ∂Σ/∂t

from (A.16) and get

rΩ

(
− d

dr
(rvrΣ)

)
+

1

r

2rΩ · rvrΣ + r2Ω′ · rvrΣ︸ ︷︷ ︸
(r2Ω)′rvrΣ

+r2Ω
d

dr
(rvrΣ)

 =
1

r

d

dr

(
r3νΣΩ′

)
(A.20)

where we used that Ω is time independent. The �rst and the fourth summand cancel,
which results in an expression for rvrΣ

rvrΣ =
1

(r2Ω)′
d

dr

(
r3νΣΩ′

)
, (A.21)

which can be used in equation (A.16) to get

dΣ

dt
= −1

r

d

dr

(
1

(r2Ω)′
d

dr

(
r3νΣΩ′

))
. (A.22)

By approximating the angular velocity as Keplerian (Ω ≈ ΩK,mid =
√
GM?/r3) we

get

dΣ

dt
= −1

r

d

dr

(
1

√
GM? (r1/2)

′
d

dr

(
r3νΣ(−3/2r−5/2

√
GM?

))
⇒ dΣ

dt
= −1

r

d

dr

(
2r1/2

√
GM?

−3
√
GM?

2

d

dr

(
r1/2νΣ

))
⇒ dΣ

dt
=

3

r

d

dr

(
r1/2 d

dr

(
r1/2νΣ

))
. (A.23)
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A.3. Numerical scheme for disk evolution modeling

Under the assumption of a viscosity ν driving the evolution of the disk, it follows the
derived equation (2.25) derived in Appendix A.2 just above.
The above form is pretty compact but to use it for numerical calculations, it is

useful to take the derivatives with respect to r where possible

dΣ

dt
=

3

r

d

dr

(
r1/2

(
1

2
r−1/2νΣ + r1/2 d(νΣ)

dr

))
(A.24)

dΣ

dt
=

3

r

d

dr

(
νΣ

2
+ r

d(νΣ)

dr

)
(A.25)

dΣ

dt
=

3

r

(
1

2

d(νΣ)

dr
+

d(νΣ)

dr
+ r

d2(νΣ)

dr2

)
(A.26)

dΣ

dt
=

9

2r

d(νΣ)

dr
+ 3

d2(νΣ)

dr2
. (A.27)

In numerical calculations, a logarithmic grid is sometimes used. The variable is then
x = ln r. The �rst derivative is then given by

d

dr
=

1

r

d

dx
(A.28)

and the second derivative by

d2

dr2
=

1

r

d

dx

(
1

r

d

dx

)
=

1

r

d

dx

(
e−x

d

dx

)
=

1

r

(
−e−x d

dx
+ e−x

d2

dx2

)
=

1

r2

(
− d

dx
+

d2

dx2

)
. (A.29)

Substituting these two expressions for the derivatives in equation (A.27) yields

dΣ

dt
=

9

2r2

d(νΣ)

dx
+

3

r2

(
−d(νΣ)

dx
+

d2(νΣ)

dx2

)
(A.30)

=
3

2r2

d(νΣ)

dx
+

3

r2

d2(νΣ)

dx2
, (A.31)

which is the form that can be used, if νΣ is known as a function of x and the radius
r of each logarithmically spaced cell is known.
Central di�erences in space and forward di�erences in time (FTCS) yield a dis-

cretized form of equation (2.25)

� Using the normal radial coordinate r:

Σ(t+ ∆t, r)− Σ(t, r)

∆t
=

9

2 r

(νΣ)(t, r + ∆r)− (νΣ)(t, r −∆r)

2∆r

+ 3
(νΣ)(t, r + ∆r) + (νΣ)(t, r −∆r)− 2(νΣ)(t, r)

(∆r)2
,

(A.32)
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where ∆t and ∆r are the discrete timestep, respectively the spacing between
two lattice points.

� Using a logarithmic radial coordinate x = ln r

Σ(t+ ∆t, x)− Σ(t, x)

∆t
=

3

2 r2

(νΣ)(t, x+ ∆x)− (νΣ)(t, x−∆x)

2∆x

+
3

r2

(νΣ)(t, x+ ∆x) + (νΣ)(t, x−∆x)− 2(νΣ)(t, x)

(∆x)2
,

(A.33)

where ∆x is the spacing between two cells using the logarithmic variable x.

Optimizing the timestep for maximal calculation speed would require di�erent
timesteps for di�erent radii because of the r dependence of each update, which is not
practical. Thus, the use of an implicit scheme could be highly useful.
If we denote the right hand side of equation (A.32) as ∆Σ(t, r) (or analogously

∆Σ(t, x) for equation (A.33)), then we can use as our implicit scheme an update
step, which gives

Σ(t+ ∆t, r)− Σ(t, r)

∆t
= αimpl∆Σ(t+ ∆t, r) + (1− αimpl)∆Σ(t, r) , (A.34)

where we introduced a numerical factor αimpl ≤ 1 to choose how implicit the scheme
should be. Commonly, αimpl = 0.5 is used to follow the trapezoidal rule. Alterna-
tively, αimpl = 1 can be chosen to have a fully implicit update.

A.4. Elliptic integrals

Historically elliptic integrals originate in the problem of giving the arc length of an
ellipse. In the following, notations and de�nitions are taken from Carlson (2010). In
full generality, the integral ∫

r(s, t)dt (A.35)

is called an elliptic integral if s2(t) is a cubic or quartic polynomial in t with simple
zeros1 and r(s, t) is a rational function of s and t containing at least one power of s.
Legendre's integrals are one example of elliptic integral. Assume 1 − sin2 φ ∈

C \ (−∞, 0] and 1 − k2 sin2 φ ∈ C \ (−∞, 0], allowing one of them to be 0, and
1− α2 sin2 φ ∈ C \ {0}. Then

F (φ, k) =

∫ φ

0

dθ√
1− k2 sin2 θ

=

∫ sinφ

0

dt√
1− t2

√
1− k2t2

(A.36)

1A complex number a is a simple zero of f if f can be written as f(z) = (z−a)g(z), where g(z)
is a holomorphic (di�erentiable in a neighborhood of each point in its domain) function such that
g(a) is non-zero.
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and

E(φ, k) =

∫ φ

0

√
1− k2 sin2 θ dθ =

∫ sinφ

0

√
1− k2t2√
1− t2

dt (A.37)

are Legendre's incomplete elliptic integrals of the �rst and second kind. If the up-
per integration boundary φ = π/2, respectively sinφ = 1, the integrals are called
Legendre's complete elliptic integrals of the �rst (F (k)) or second (E(k)) kind.
For an ellipse with semi-major axis a, semi-minor axis b the eccentricity is e =√
1− b2/a2 and the complete elliptic integral of the second kind can be used to

calculate its circumference as

c = 4aE(e) = 4aE(
√

1− b2/a2) = 4a

∫ π/2

0

√
1− (1− b2/a2) sin2 θ dθ . (A.38)

A.5. Analytical accretion rate approximations

For completeness, we restate here the lower-order approximations for the accretion or
collision rate of a target on a circular orbit with an eccentric and inclined projectile.
The derivation of the following expression starts with the collision probability given
by Öpik (1951) in equation (2.136) which we restate for completeness

P =
(rt + rp)

2
(
1 + vesc

v2

)
v

a2π sin(i)|vx|
, (A.39)

where the cross section and the velocity v and its projection on the x-axis have to
be estimated.

One-body accretion rate Greenzweig & Lissauer (1990) chose in a �rst step to
only use s = rt to increase the range of applicability of equation (2.136). This is
their one-body (i.e. the central star) probability and used for the accretion rate in
Greenzweig & Lissauer (1990), eq. 30, which is

dmt

dt

∣∣∣∣
gms

=
Σ(rt + rp)

2ΩK

2π

4
√

1 + I2

I
E(k) , (A.40)

where E(k) is the complete elliptic integral of the second kind (see A.4) with k =√
3/(2
√

1 + I2) and I = sin i/e. To get this result Greenzweig & Lissauer (1990)
integrated over the planetesimal population in the contributing semi-major axes (i.e.
from a/(1 + e) to a/(1− e)). To solve the emerging integral they neglected terms of
order e2.

Two-body accretion rate The two-body accretion rate for high velocities (with
the criteria in equation 2.137) is retrieved by reintroducing the enlarged collision
radius

dmt

dt

∣∣∣∣
gmsmt

=
Σ(rt + rp)

2ΩK

2π

(
1 +

v2
esc

v2

)
4
√

1 + I2

I
E(k) . (A.41)
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For v, Greenzweig & Lissauer (1990) recommend using their derived expression

v =
√
e2 + sin2 i

√
E(k)

K(k)
vk , (A.42)

with K(k) being the complete elliptic integral of the �rst kind instead of more sim-
pli�ed expressions.
This can be used to simplify eq. (A.41) to get the commonly used (e.g. Greenzweig

& Lissauer, 1992; Inaba et al., 2001) expression

dmt

dt

∣∣∣∣
gmsmt

=
Σ(rt + rp)

2ΩK

2π

(
4
√

1 + I2

I
E(k) +

v2
esc

v2
k

4K(k)

e2I
√

1 + I2

)
. (A.43)

Note that the factor vk in the second term that is not present in Greenzweig &
Lissauer (1990, 1992) due to their choice of units.

Low-velocity accretion rates Analytical expressions for the low velocity regime,
i.e. e = i = 0, can be derived as well and are (Greenzweig & Lissauer, 1990)

dmt

dt

∣∣∣∣
gms

(e = i = 0) =
3

2
Σ(rt + rp)

2ΩK (A.44)

dmt

dt

∣∣∣∣
gmsmt

(e = i = 0) =
3

4
Σ(rt + rp)

2ΩK

1 +

√
1 +

16

9

(
atvesc

(rp + rt)vk

)2
 . (A.45)

Note that the two regimes, low-velocity and high-velocity, should be linked by an
intermediate regime
More precision can be reached by including three-body e�ects, but there do no

longer exist analytical solutions to the problem. Therefore, the accretion rates are
nowadays usually explored with numerical simulations (e.g. Inaba et al., 2001)

A.6. Disk mass � Σ0 relation

Consider as given a pro�le as described by Andrews et al. (2009) and stated in
equation (2.74)

Σ(r) = Σ0

(
r

r0

)−β
exp

[
−
(

r

rout

)(2−β)
]
, (A.46)

where we use here the radial distance r0 for which Σ(r0) = Σ0 and was chosen to be
r0 = 5.2 au in the main part of this work.
Then the total mass of the disk is

Mgas =

∫ ∞
0

2πrΣ(r)dr (A.47)

= 2πΣ0

(
1

r0

)−β ∫ ∞
0

r1−β exp

[
−
(

r

rout

)(2−β)
]

dr , (A.48)
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for which we can substitute u = r/rout to get

=
2πΣ0

r−β0

r2−β
out

∫ ∞
0

u1−β exp
[
−u2−β] du (A.49)

and identify d
du

exp
[
−u2−β] = −(2 − β)u1−β exp

[
−u2−β], which solves the integral

to get

=
2πΣ0

r−β0

r2−β
out

2− β

[
−e−u

2−β
]∞

0
(A.50)

⇒Mgas =
2πΣ0

r−β0

r2−β
out

2− β
. (A.51)

This is not always the end of the story. Often, an inner edge rin to the disk is used.
Then, The lower boundary to the integral in equation (A.49) can be replaced by
uin = rin/rout. This correction has a very small in�uence on the total mass for most
pro�les, where rout � rin. Therefore, it is also indi�erent to potential smoothing

terms for the inner edge, such as
(

1−
√
rin/r

)
which is used in the NGPPS series

including Paper III.
However, a more signi�cant di�erence on the order of percent of the mass can be

caused by the introduction of a numerical lower-limit Σmin to the surface density Σ.
In the Bern model, such a limit is set and only the mass above the limit is available for
physical processes. This therefore causes a truncation of the disk where Σ(r) = Σmin.
Any gaseous mass further out is not contained in the physical system. Because of the
geometry of the disk, the amount of neglected mass is not zero despite choosing a low
Σmin. For Σmin = 1× 10−4 g cm−2, this introduces the aforementioned percent-level
decrease in the simulated total mass compared to what results from equation (A.51)
for a given pro�le Σ(r).
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