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ABSTRACT
Introduction  Tuberculosis (TB) transmission is difficult 
to measure, and its drivers are not well understood. The 
effectiveness of infection control measures at healthcare 
clinics and the most appropriate intervention strategies 
to interrupt transmission are unclear. We propose a novel 
approach using clinical, environmental and position-
tracking data to study the risk of TB transmission at 
primary care clinics in TB and HIV high burden settings in 
sub-Saharan Africa.
Methods and analysis  We describe a novel and 
rapid study design to assess risk factors for airborne 
TB transmission at primary care clinics in high-burden 
settings. The study protocol combines a range of different 
measurements. We will collect anonymous data on the 
number of patients, waiting times and patient movements 
using video sensors. Also, we will collect acoustic sound 
recordings to determine the frequency and intensity 
of coughing. Environmental data will include indoor 
carbon dioxide levels (CO

2 in parts per million) and 
relative humidity. We will also extract routinely collected 
clinical data from the clinic records. The number of 
Mycobacterium tuberculosis particles in the air will be 
ascertained from dried filter units using highly sensitive 
digital droplet PCR. We will calculate rebreathed air 
volume based on people density and CO

2 levels and 
develop a mathematical model to estimate the risk of 
TB transmission. The mathematical model can then be 
used to estimate the effect of possible interventions such 
as separating patient flows or improving ventilation in 
reducing transmission. The feasibility of our approach was 
recently demonstrated in a pilot study in a primary care 
clinic in Cape Town, South Africa.
Ethics and dissemination  The study was approved by 
the University of Cape Town (HREC/REF no. 228/2019), the 
City of Cape Town (ID-8139) and the Ethics Committee of 
the Canton Bern (2019-02131), Switzerland. The results 
will be disseminated in international peer-reviewed 
journals.

INTRODUCTION
Tuberculosis (TB), caused by the bacterium 
Mycobacterium tuberculosis (Mtb), remains a 

major global public health problem, partic-
ularly in the context of HIV and drug resis-
tance. Sub-Saharan Africa is one of the most 
heavily burdened regions globally, although 
control measures have been in place since the 
beginning of the 20th century.1 Over a century 
of investment in TB control has reduced TB 
mortality, but effective strategies are urgently 
needed to reduce TB transmission.2 Drivers 
of the TB epidemic in sub-Saharan Africa are 
HIV-infection and the resulting immunode-
ficiency (the strongest risk factor),1 delayed 
diagnosis and treatment as well as undetected 
and untreated cases of TB or drug-resistant 
TB. These factors allow patients with infec-
tious TB to transmit Mtb to the community.3–5 

Strengths and limitations of this study

►► We describe the protocol for a prospective study 
design to studying tuberculosis (TB) transmission in 
primary care clinics in high TB/HIV-burden settings.

►► This rapid approach will combine a wide range of 
different measurements, including patient wait-
ing times and movements, acoustic recording of 
coughing, measurement of carbon dioxide levels as 
a natural tracer gas, air humidity and semiquantita-
tive detection of Mycobacterium tuberculosis (Mtb) 
particles in the air.

►► We will develop a mathematical model which will 
integrate the collected data to estimate the risk of 
TB transmission, identify key drivers of transmis-
sion and evaluate the impact of infection control 
measures such as improved ventilation or wearing 
masks.

►► The main limitation of this study design is the lack 
of direct observation of transmission events and the 
reliance on the number of Mtb particles in the air as 
a proxy for TB transmission.

►► Study limitations pertain to the need for stable elec-
tricity and WiFi for data collection.
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There are still many gaps in our knowledge on TB trans-
mission such as the factors and locations associated with 
the risk of transmission, the effectiveness of infection 
control measures at clinics in high-burden settings and 
the most appropriate intervention strategies to interrupt 
transmission.5–7

For TB transmission to occur, infected individuals 
must expel Mtb bacilli from their respiratory tract, and 
an uninfected individual must inhale aerosols containing 
live bacilli to become infected. Transmission of Mtb is 
difficult to measure due to the lack of an in vitro test assay. 
The preferred approach is to measure presumptive trans-
mission resulting in secondary cases as determined by 
molecular/genomic epidemiology. TB transmission has 
traditionally been investigated using contact tracing, anal-
yses of geo-temporal clustering and molecular typing.8 9 
However, molecular methods require resource-intensive 
culturing of strains and measure only transmission 
resulting in secondary cases. Furthermore, contact tracing 
is difficult to implement in resource-limited settings and 
may not be an effective control strategy in endemic areas 
where casual contacts are increasingly recognised as an 
important contributor to transmission.10 New approaches 
are therefore urgently needed.

Mtb is carried in airborne particles (called infectious 
droplets), which are generated when people with TB 
cough, sneeze or shout.5 Indoor carbon dioxide (CO2) 
levels can be used to assess the amount of exhaled air in a 
room and the amount of rebreathed air.11–13 Humidity is 
associated with Mtb survival in the air.14 Viable Mtb parti-
cles have been captured from contaminated air.11 15–17 We 
describe a unique study design to assess risk factors for 
airborne TB transmission in primary care clinics in high 
TB/HIV-burden settings. The approach combines a range 
of relevant measurements, including data on patient and 
infrastructure, movements of patients through the facility, 
coughing, environmental indoor CO2 levels and concen-
tration of Mtb particles in the air.

We hypothesise that (1) exposure to Mtb particles at 
the clinic can be estimated by studying the patient flow 
and CO2 levels; (2) the number of individuals present, 
the rebreathed fraction and the frequency of coughs 
influence exposure to Mtb; (3) clinics with small and 
crowded waiting rooms, low ventilation and subop-
timal patient separation have an increased risk of TB 
transmission.

METHODS
Study design
Longitudinal study with data collection at the levels 
of the patients, the clinic and the environment. Data 
collection will take place for over 4 weeks. Figure  1 
shows the floor plan of an exemplary primary clinic with 
the planned study activities, including the recording of 
patient movements, coughing, CO2 levels and Mtb parti-
cles in the air.

Study setting and study population
The study will take place at several antiretroviral therapy 
(ART) or primary care clinics in countries participating 
in the International Epidemiology Database to Evaluate 
AIDS (IeDEA) in Southern Africa collaboration with a 
high TB and HIV burden.18 These clinics are located in 
urban and peri-urban communities with predominantly 
young and black African residents. TB and HIV are both 
prevalent in these communities.

Patient-level variables
Video sensor data
A person-tracking sensor system developed by Xovis 
(Zollikofen, Switzerland and Cambridge, Massachusetts, 
USA; see www.​xovis.​com) will be used to monitor the 
clinic attendees’ movements. The data will be used to 
calculate waiting times, the number of people in different 
locations and the average distance between people, and 
to identify highly frequented areas. Several sensors will be 
installed to cover the clinic area, calibrated and validated. 
Sensors with overlapping ranges will be combined for the 
seamless coverage of people’s movements over large areas 
(figure 2). The raw data consist of the person’s height, 
time, date and the position (x–y coordinates) for each 
unique individual during the duration of their stay within 
the clinic. The data are captured every 0.25 s. The raw 
data are then parsed by a python script to calculate the 
height, total movement and observation time at different 
locations, and to visualise hotspots.

The sensors have four levels of privacy. In our study, 
privacy will be set to level 2, which means that the data 
are a fully anonymised stream of the coordinates of 

Figure 1  Floor plan of the pilot primary care clinic in Cape 
town, South Africa, indicating study measurements. Mtb, 
Mycobacterium tuberculosis; TB, Tuberculosis.
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moving dots. These dots will be linked probabilistically 
to the anonymised clinical data thus excluding any risk of 
re-identification. Further, the images of tracked individ-
uals taken by the sensors will not be stored (see also the 
data privacy and security statement by Xovis).19 20

Patient and clinic data
We will extract clinical data from the electronic patient 
registry for all patients who visited the clinics during the 
4 weeks of data collection. The data will include date and 
time of registration, age, sex, height (used for linkage 
with video sensor data), HIV status, presumptive TB (‘TB 
suspects’), mode of TB diagnosis (sputum smear micros-
copy, Xpert MTB/RIF, mycobacterium culture), TB diag-
nostic test results, date of TB treatment start and current 
anti-TB treatment regimen. We will not extract any 
personal data, such as names or social security numbers. 
The clinic-level data will include information such as 
the setting (urban or rural), level of care, the number 
of patients seen each year, availability of adult and paedi-
atric care, TB control measures (natural ventilation, use 
of masks, separation of patients with TB or coughers) and 
the floor plan of the clinics. The data will be collected 
using the web-based REDCap Data Entry System (​www.​
redcap.​org).21

Definitions
Presumptive TB refers to a patient who presents with clin-
ical symptoms or signs suggestive of TB. A bacteriologi-
cally confirmed TB case is a person for whom a biological 
specimen is positive by smear, microscopy, culture or 
rapid diagnostic such as Xpert MTB/RIF or line probe 
assay.22

Environmental variables
Co2, relative humidity and temperature monitoring
We will use CO2 monitors (Digital CO2 Monitor Carbon 
Dioxide Metre XE-2000, XEAST, Guangdong, China) 
which include the COZIR-A sensor for ambient CO2 
levels of 0%–1% (Gas Sensing Solutions, Cumber-
nauld, Scotland). The monitors will record indoor CO2 

concentrations (in parts per million (ppm)), tempera-
ture and relative humidity at minute intervals. Data from 
the five monitors are stored and exported in serial digital 
format.15 16 At each clinic we will install five monitors to 
cover the most visited spaces and a control area outside 
the clinic (figure  1). The monitors auto-calibrate over 
time to a standard minimum value of 400 ppm. This value 
is close to the average monthly outdoor carbon dioxide 
concentration measured at Cape Point, South Africa 
(405.48 ppm in December 2018).23 Monitors will be run 
for 1 week before the start of the study to allow them to 
calibrate and to confirm that they delivered comparable 
data.

Cough monitoring
We will install a microphone (RØDE NT-USB, Sydney, 
Australia) near the ceiling to continuously record the 
sounds in the waiting room (figure  1). CoughSense, 
a deep learning cough detection algorithm based on 
MXNet, an open-source deep-learning software frame-
work, was developed to classify audio signals as coughing 
or other sounds.24 The algorithm uses spectrograms 
extracted from the raw audio for classification. The model 
was trained and tested using multiple audio recordings 
obtained through clinical and ambulatory deployments. 
We will identify audio records with cough sounds and 
calculate the cough frequency, intensity and duration. 
The cough data will be linked with the CO2 data and 
video sensor data by time and date. Finally, we will proba-
bilistically link the video sensor data (ie, the moving dots) 
with the clinical data by the height of the patient, time 
and date of the visit.

Bio-aerosol sampling and molecular detection
We will collect Mtb particles from the air using mobile 
bio-aerosol sampling devices (Dry Filter Unit (DFU)1000, 
Lockheed Martin Integrated Systems, Gaithersburg, 
Maryland, USA). The DFU 1000 is a portable biological 
air sampler. Ambient air is drawn through 1 µm polyester-
felt filters at a rate of ~1000 L/min via an electrical blower. 
The DFU is a useful collection system for low concentra-
tion aerosols, capturing particles of 1 µm or larger, and 
allowing easy access for the retrieval of filters. One DFU 
will be placed in the waiting room and the other in the 
TB treatment room (figure 1). Each DFU collects air for 
7 hours (two periods of 3.5 hours) every day onto two 
filters. Due to logistical and human resource limitations, 
we will be able to change filters only two times per day. 
Therefore, we decided to run the mobile bio-aerosol 
sampling devices during the busiest time at the clinic, 
between 07:00 and 14:00 . All other data will be collected 
from 07:00 to 16:00 .

As previously described,17 duplicate filters from each 
sampling session will be transferred to 50 mL Falcon 
tubes and vortexed in sterile phosphate buffered saline 
(with 0.05% Tween 80). Following centrifugation at 3750 
rpm for 15 min, filters will be removed and the pellet 
subjected to DNA extraction. DNA from Mtb cells will 

Figure 2  Output from video sensors with moving dots 
showing the tracked persons. The numbers in the dots 
indicate the height of patients. The different sectors covered 
by the sensors are merged images from the pilot study.
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be extracted using an in-house lysis buffer with subse-
quent pelleting (centrifugation 13 000 rpm for 10 min) 
of DNA and resuspension in 50 µl of Tris-EDTA buffer 
(10 mM Trist, 1 mM EDTA, pH 8.0). Given that droplet 
digital PCR (ddPCR) is relatively robust against inhibi-
tors, no further DNA purification will be required. The 
primer/probe combinations and reaction conditions for 
Mtb-specific ddPCR have been described.16 Samples with 
known amounts of purified Mtb DNA (0.01 ng and 0.001 
ng) will be included to serve as positive and nuclease-free 
water as negative control. The data generated from the 
ddPCR reaction will be analysed via the Umbrella pipe-
line,25 using wells with a minimum of 10 000 droplets.

Statistical analyses
We will describe the data and examine associations 
between sources of data and then use results to parame-
terise a mathematical model (table 1). The statistical anal-
ysis will quantify the joint association between the clinical 
and environmental variables and the number of Mtb 
particles measured by the mobile aerosol sampling. To 
this end, we will use Poisson regression, with the number 
of Mtb particles by the period of time as the dependent 
variable, considered as a proxy measure for the risk of TB 
transmission. As this variable is measured by periods of 

3.5 hours, the other variables will be aggregated over the 
same periods. We will consider all combinations of inde-
pendent variables, including second-order interactions, 
and compare the model using standard model selection 
methods. We will use variable selection methods in a 
Bayesian framework, including the deviance information 
criterion and the leave-one-out information criterion.26

We will operationalise the variables as follows:
1.	 Patient data: Numbers and characteristics of patients 

consulting the clinic overall will be summarised using 
descriptive statistics.

2.	 Video sensor data: Raw data about individuals’ move-
ments will be transformed into waiting times until 
medical consultation, number of individuals in the dif-
ferent locations, highly frequented areas in the clinic 
and the average distance between patients (ie, cluster-
ing). We will link each tracked individual to the clinical 
data collected from the clinic’s database (ie, TB/HIV 
diagnosis), using the order of arrival and time of reg-
istration.

3.	 CO2 data: Measurements of CO2 concentration at the 
different locations in the clinic (waiting room, registra-
tion desk, TB treatment room), together with estimates 
in outdoor air, will be used to estimate the proportion 

Table 1  Description of the measurements

Data source Parameter Description Unit Measurement taken by

CO2 monitor CO2 Observed CO2 concentration in the indoor air per minute and 
a control in the outdoor air. Based on CO2 levels and people 
density, we will calculate rebreathed air volume, which is used as 
a proxy for airborne TB transmission.16

ppm Minute and date

Relative humidity Data on the effects of relative humidity on the survival of airborne 
bacteria are inconsistent.28 37 However, a recent study found that 
relative humidity above 65% is associated with Mtb survival in the 
air.14

% Minute and date

Temperature Temperatures above 24°C are required to reduce airborne 
bacteria survival.28 37

°C Minute and date

Cough 
recording

Frequency One of the typical symptoms of TB is coughing; coughing is also 
the main way of transmission.

n Minute or day and date

Duration Duration of each cough is different from healthy and people with 
TB or other lung diseases30

s Cough by minute and 
date

Intensity Intensity of each cough is different from healthy and people with 
TB or other lung diseases.30

dB Cough by minute and 
date

Mobile aerosol 
sampling

Mtb DNA copies Detection of Mtb particles in the air by filter or per day (07:00 to 
14:00).17

Copies per 
microliters

Filter (ca.3.5 hours 
sampling) or per day

Video sensor Number of 
people

From the raw data (x–y coordinates) we can calculate the number 
of people at a given location by 0.25 second and by minute.

n of people 0.25 s or min and by 
date

Time spent at a 
given location

From the raw data (x–y coordinates) we can calculate for each 
person their time spent at different locations.

min Minute and date

Patient charts Number of 
registered 
patients

All patients who are visiting the clinic are registered. n of 
registered 
patient

Minute and day

Number of 
presumptive 
TB and of TB 
patients

From all registered patients we will know the number of 
presumptive TB cases and the number of patients with TB.

n of 
presumptive 
TB and TB 
patients

Minute and day

dB, decibel; Mtb, Mycobacterium tuberculosis; n, number; ppm, parts per million; s, second; TB, tuberculosis.
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of air in the different locations that was expired by 
individuals, the rebreathed fraction.12 We will use a 
modified Wells-Riley model appropriate for non-steady 
states conditions of ventilation and number of individ-
uals to describe and calculate the shared rebreathed 
air in the different locations in either litre/minute or 
litre/day and the air exchange (litre/hour per per-
son). Table 2 describes the parameters to calculate the 
shared rebreathed air and the air exchange.13 16 27 28

The proportion of rebreathed air (f) will be calculated 
from the excess CO2 measured indoors, divided by the 
exhaled CO2 (Ca):

	﻿‍ f =
(
C−Co

)
Ca ‍� (1)

(see table 2 for definitions of parameters in this and 
the following equations).
Before we can calculate the rebreathed air volume 
(RAV) we will need the rebreathed proportion from 
other people (ƒo). Therefore, we need to know the 
number of people (n) present at each time point at 
the clinic:

	﻿‍ fo = f ×
(
n−1

)
n ‍� (2)

Finally, we can calculate the RAV for each minute by 
multiplying ƒo and the minute respiratory volume (8 
L/min, (p)) as:

	﻿‍ Rebreathed air volume
(
RAV

)
=
(
pfo

)
‍� (3)

In the next step, we aim to calculate the ventilation 
rate (air exchange). The indoor CO2 generated rate is 
the product of the average volume of gas exhaled per 
person (0.13 L/s per person, (V)) and the CO2 concen-
tration of the exhaled air:

	﻿‍

Indoor CO2 generation rate in l/s

per person
(
G
)

= VxCa ‍�
(4)

The ventilation rate is expressed as:

	﻿‍

Ventilation rate in l/s per person(
Q
)

= G
C−Co ‍�

(5)

To calculate the air exchange per hour (Equation 6) 
we need to know the volume of air in a given location.

4.	 Relative humidity and temperature: We will describe chang-
es in relative humidity and temperature over the day.

5.	 Cough sounds: Frequency, intensity, duration of record-
ed coughs per time period.29 30

6.	 Detection of Mtb in bio-aerosol sampling: The number of 
Mtb genome copies present in each sample.

Mathematical modelling
A mathematical model (figure 3) will integrate all sources 
of data to model the risk of TB transmission and identify 
key drivers of transmission.13 27 31 32 We hypothesise that 
the number of individuals present, the rebreathed frac-
tion and the frequency of coughs will have the greatest 
influence on the risk. As we do not observe transmission 
events, we will use yu, the number of Mtb genomes counted 
by the bio-aerosol sampling for each 6 hour period u, as 
the dependent variable. The model will describe yu as a 
Poisson process with time-dependent intensity λt (also 
called a Cox process). This intensity can be interpreted 
as a proxy for the (unobserved) risk of TB transmission. 
We will model λtu using 10 min time periods t within u. 
In a first simple model, λtu will integrate multiple inde-
pendent variables xtu: the number of individuals in the 
waiting room during time t, the rebreathed fraction and 

Table 2  Description of the variables to calculate the 
shared rebreathed air volume and air exchange as well as 
the parameters to construct the mathematical transmission 
model

Parameter Description Value

C Observed CO2 
concentration in the indoor 
air per minute

Observed

Co CO2 concentration in the 
outdoor air per minute

400–420 ppm23

Ca CO2 concentration in the 
exhaled air

38 000–40 000 ppm13 38

f Proportion of rebreathed air Equation

n Number of people recorded 
at the location

Observed

fo Rebreathed proportion from 
other people

Equation

p Minute respiratory volume 8 L/min38

RAV Rebreathed air volume Equation

V Average volume of gas 
exhaled per person

0.13 L/s per person16

G Indoor CO2 generation rate 
(L/s per person)

Equation

Q Ventilation rate (L/s per 
person)

Equation

vol Volume of the room Calculated

Figure 3  Model structure. Mtb, Mycobacterium tuberculosis; TB, tuberculosis
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the number of coughs. The model will be estimated in a 
Bayesian framework using Stan, a probabilistic program-
ming language.33

We will use several metrics to assess the goodness of fit 
of the model. We will then add more complexity to the 
model by integrating other independent variables such 
as the characteristics of the patients, shared rebreathed 
air (CO2 monitors),12 13 15 16 patient flow (clustering of 
individuals, movements of patients) and other potential 
drivers (intensity/frequency/duration of coughs).29 30

Having developed the model of the risk of TB transmis-
sion, we will evaluate the possible effect of interventions 
such as limiting the number of patients in the waiting 
room, separating coughers or increasing ventilation. All 
analyses will be performed in R (V.3.6.0) or Stata (V.15.1, 
Stata Corporation, Texas, USA).

Reporting
The results from this study will be reported following the 
recommendations of the Strengthening the Reporting of 
Observational Studies in Epidemiology statement.34

Pilot study
We conducted a pilot study in Cape Town (South Africa) 
to examine the feasibility of our approach (figure  1). 
The pilot study took place at a primary care clinic, which 
incorporates HIV counselling and testing, and a TB clinic 
for the diagnosis and management of TB. The clinic is 
situated in Masiphumelele, a large settlement of formal 
and semiformal housing in Cape Town, which has previ-
ously been described.35 36 The clinic is open on workdays 
from Monday till Friday from 07:00 till 16:00. We studied 
clinic activities for over 4 weeks on workdays between July 
25 and August 23 2019.

Data collection was successful overall, however, we 
experienced several power cuts during the pilot study. An 
important lesson learnt is that power banks for laptops 
and WiFi routers are needed, as well as Uninterruptible 
Power Supply (UPS) and access to a generator as back-up 
for the DFU and CO2 monitors.

Patient and public involvement
We discussed the aims and study design with local clinic 
staff, colleagues at the University of Cape Town and 
public health specialists early on in the planning phase 
and developed the specific objectives and data collection 
procedures in collaboration with them. Patients were not 
involved in the design, recruitment or conduct of the 
study. We will make the results of this study available to 
the participating clinics and the public health authorities.

DISCUSSION
TB control is particularly relevant for sub-Saharan Africa, 
which carries a disproportionally large portion of the 
global burden of both TB and HIV. There is an urgent 
need to understand the drivers of TB transmission to 
reduce TB incidence using new intervention approaches.1 

A better understanding of transmission, coupled with a 
rapid test system are likely to contribute to improving TB 
control in clinic settings. This project will provide new 
insights into the complex TB transmission framework 
at a primary care clinic in an endemic setting using clin-
ical data, CO2 levels, cough analyses, video tracking and 
Mtb particles sampled from the air. Although the large-
scale implementation and evaluation of interventions are 
beyond the scope of this study, the results will generate 
new hypotheses and opportunities for public health inter-
vention studies (eg, randomised controlled or cluster-
randomised trials).

Importantly, with mathematical models based on real-
life data, we can evaluate the likely effect of interventions 
thus improving intervention studies and inform help with 
logistical and infrastructural planning of primary care 
clinics to reduce the transmission risk. Having established 
feasibility in one clinic in South Africa, we are planning 
to collect data in several countries in sub-Saharan Africa. 
The results from this broader study have the potential to 
inform national and international guidelines to reduce 
TB transmission at healthcare centres.

Strengths and limitations
This is a novel and rapid approach to studying TB trans-
mission combining a wide range of different measure-
ments, which goes beyond the traditional methods such 
as contact tracing, geo-temporal clustering or molecular 
genotyping. It will lead to a comprehensive transmission 
model to measure the effects of various interventions 
in the clinic setting, paving the way for future studies. 
Study limitations pertain to the need for stable electrical 
power and WiFi for over 24 hours for data collection at 
the primary care clinic, which is often an issue in low-
income and middle-income countries. We will address 
this problem by using UPS power stabilisers with access to 
generator back-up power.
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