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Abstract

Background: This study aims to identify robust radiomic features for Magnetic Resonance Imaging (MRI), assess
feature selection and machine learning methods for overall survival classification of Glioblastoma multiforme
patients, and to robustify models trained on single-center data when applied to multi-center data.

Methods: Tumor regions were automatically segmented on MRI data, and 8327 radiomic features extracted from
these regions. Single-center data was perturbed to assess radiomic feature robustness, with over 16 million tests of
typical perturbations. Robust features were selected based on the Intraclass Correlation Coefficient to measure
agreement across perturbations. Feature selectors and machine learning methods were compared to classify overall
survival. Models trained on single-center data (63 patients) were tested on multi-center data (76 patients). Priors
using feature robustness and clinical knowledge were evaluated.

Results: We observed a very large performance drop when applying models trained on single-center on unseen
multi-center data, e.g. a decrease of the area under the receiver operating curve (AUC) of 0.56 for the overall
survival classification boundary at 1 year. By using robust features alongside priors for two overall survival classes,
the AUC drop could be reduced by 21.2%. In contrast, sensitivity was 12.19% lower when applying a prior.

Conclusions: Our experiments show that it is possible to attain improved levels of robustness and accuracy when
models need to be applied to unseen multi-center data. The performance on multi-center data of models trained
on single-center data can be increased by using robust features and introducing prior knowledge. For successful
model robustification, tailoring perturbations for robustness testing to the target dataset is key.
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Background
During the past decade, pattern recognition of medical
imaging data has been successfully applied to a wide
range of disease types. Publicly available datasets, espe-
cially in oncology, such as the cancer imaging archive
(TCIA) [1], have been vital for this development, to en-
able machine learning (ML) researchers and clinicians to
investigate imaging features and perform radiomics ana-
lyses [2]. Notable examples of radiomics based on im-
aging studies in oncology include treatment outcome
prediction, lung cancer phenotyping, and identifying
pseudo-progresson in patients with Glioblastoma multi-
forme (GBM) [3–5]. Most studies focus on the accuracy
of predictive models on a given dataset. However, next
to accuracy, we postulate that robustness of imaging fea-
tures to factors such as variability in imaging protocols,
different vendors, inter-rater tumor segmentation vari-
ability, patient motion, and overall image quality is
fundamental for a successful translation of these tech-
nologies to the clinical workflow.
Several factors negatively affect the robustness of im-

aging features. These include differences in imaging pro-
tocols across vendors, image reconstruction processes,
and image quality (e.g., [6, 7]). However, since multi-
center data is not readily available, new ML models are
usually developed and tested on single-center data where
such factors are not observed. We note that ML includes
the branch of Deep Learning. Hence, in order to assess
the robustness of imaging features for real-world scenar-
ios, we propose to simulate the variability of imaging pa-
rameters, as seen in multi-center datasets. In the
following, we refer to such simulated variability as per-
turbations, which are designed based on recommended
imaging protocols for GBM patients [8].
GBM is the most frequent primary brain tumor in

humans and ranks highest on the World Health Or-
ganization’s grading scheme [9]. Due to its rapid
growth and infiltrative nature, the median overall sur-
vival is only 14 months. The current standard-of-care
is maximum safe resection, followed by chemo- and
radiotherapy [10].
In this study, we propose and make available (Code

at https://github.com/ysuter/gbm-robustradiomics), a
feature robustness analysis pipeline to analyze the ro-
bustness of radiomic features derived from multise-
quence MRI for the task of overall survival (OS)
prediction of GBM patients. We leverage state of the
art in OS prediction from the Brain Tumor Segmen-
tation Challenge (BraTS), which since 2017 includes a
sub-challenge for OS prediction [11], as well as other
published body of work, e.g., [12–16] presenting a
variety of metrics, class boundaries and validation
schemes. Due to the inter-relation among imaging
features, feature selection methods, and prediction

models, we perform a high-throughput benchmark
analysis, utilizing a single and multi-center dataset,
along with a scheme to simulate common perturba-
tions such as variability of the imaging protocol,
inter-rater tumor segmentation variability (from where
imaging features are typically derived), and k-space
undersampling employed for faster image
reconstruction.
Our study setup consists of three parts: (a) feature ro-

bustness analysis on single-center data, (b) analysis of
feature selector and machine learning techniques using
robust features, and (c) multicenter performance analysis
of OS prediction using the found combination of chosen
robust features and ML model, and integrated clinical
prior knowledge. Figure 1 shows an overview of the ex-
perimental setup.
In the next sections, we describe the main components

of the proposed robustness analysis approach, single and
multi-center data used for evaluation, as well as our
main findings.

Materials and methods
Data
Single-center data
The records of 91 patients with newly diagnosed GBM
who underwent preoperative MRI between August 2008
and December 2013 and treated with resection and
temozolomide-based chemoradiation [17] were reviewed
retrospectively. Patient inclusion criteria were 1) patho-
logically confirmed primary GBM, 2) known OS, 3) pre-
operative MRI with postcontrast T1-weighted (T1c), T1-
weighted (T1), T2-weighted (T2), and T2 fluid-attenuated
inversion recovery (FLAIR) images. Patients with un-
known OS time (n = 3) and missing or low-quality pre-
operative MRI sequences (n = 25) were excluded, with a
remaining study population of 63 patients (mean age:
62.75 years, standard deviation 9.96 years, mean OS: 22.77
months, standard deviation: 14.74months). We selected a
subset of 19 patients with homogeneous acquisition
parameters for robustness testing. After robustness test-
ing, the full dataset with 63 patients was used to assess the
performance of feature selectors and ML model
combinations.
The ethics committee approved the study and waived

written informed consent.

Public multi-center data (BraTS TCIA)
To date, the only publicly available high-grade glioma
dataset with survival information is the BraTS dataset
[18], which consists of pre-treatment MRI data with pa-
tient age, survival, and extent-of-resection information.
Due to our interest in the acquisition parameters, we
consider the subset originating from the TCIA database
[1, 19], where this information is available. The data for

Suter et al. Cancer Imaging           (2020) 20:55 Page 2 of 13

https://github.com/ysuter/gbm-robustradiomics


the survival prediction task includes MRI data from
seven different centers, two different vendors, and
eight MRI models, comprising 76 patients (mean
age: 59.46 years, standard deviation: 13.19 years,
mean OS: 14.78 months, standard deviation: 11.98
months). These images have already been skull-
stripped, resampled to 1 mm voxel size, and all MRI
sequences co-registered to the T1c sequence, accord-
ing to [18].

The OS and age distributions of both datasets are visu-
alized in the supplementary material, Figure S1.

Pre-processing and automated tumor segmentation
All single-center images were skull-stripped and
resampled to match the BraTS data. Automated tumor
segmentation was performed using BraTuMIA [20, 21].
BraTuMIA outputs labels for contrast-enhancement,

necrosis, non-enhancing tumor, and edema. Since

Fig. 1 Pipeline for the proposed radiomic feature robustness assessment. A set of single-center MRI images is selected. After pre-processing and
automated tumor segmentation, the images are artificially perturbed. For each perturbation type, the robustness is metered by the intraclass
correlation coefficient (ICC(2,1)). Measuring agreement and not only consistency of underlying features is key for transferring trained machine
learning (ML) models to a different dataset. Redundant features are removed from the robust features. Subsequently, combinations of feature
selectors and ML models are tested on different survival class boundaries. The best performing model is tested on a multi-center dataset (TCIA
subset of BraTS)
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previous studies use different tumor labels (e.g., [13]).
We combined the four labels to yield eight single and
combined labels: contrast-enhancement (cet), non-
enhancing tumor (net), necrosis (nec), edema (ed), whole
tumor (wt, all labels combined), core (all labels except
edema), necrosis and non-enhancement combined (net_
ncr), and non-enhancement combined with the edema
(net_ed).

Class boundaries for OS survival prediction
Previous studies use a variety of OS class boundary defini-
tions: Either a data-driven boundary defined by the distri-
bution on a given dataset, or a clinically-motivated
definition based on the median survival. Accordingly, we
tested classification into two and three OS classes to en-
sure comparability to previous research.
To keep the analysis concise, we report the experiments

for three OS classes in the supplementary material.
To test classification into two OS classes, we tested

four different class boundaries: 304.2 days (10 months),
365 days (1 year), 425.8 days (15 months), and 540 (18
months). The 10 and 18months class boundaries are
used in the BraTS OS prediction challenge [11], and the
1 and 2 year OS is often reported in risk stratification
studies and clincal reports (e.g., [10, 13])

Radiomic features
We selected imaging features that cover widely applied
types in previous studies. We analyzed all 120 features
provided by PyRadiomics [22], extracted on the pre-
processed MRI images. It includes shape (n = 26), first-
order (n = 19), gray level co-occurrence matrix (GLCM,
n = 24), gray level size zone matrix (GLSZM, n = 16), gray
level run length matrix (GLRLM, n = 16), neighborhood
gray-tone difference matrix (NGTDM, n = 5), and gray
level dependence matrix (GLDM, n = 14) features [22].
Tumor location is known to affect the survival time of

patients (e.g., [23]). In order to include this information,
we registered each case to an atlas image [24], and com-
puted the centroids for each segmentation label, result-
ing in n = 8 features per case.
End-to-end deep learning (DL) has been attempted for

OS prediction in patients with GBM but showed un-
stable results [25]. We included deep features proposed
by Lao et al. [13], where a convolutional neural network
(CNN) pre-trained on the ILSVRC-2012 dataset [26] is
used to extract features from the two fully-connected
layers, resulting in n = 8192 deep features.
The last feature type considered in our study charac-

terizes the shape of the contrast-enhancing tumor.
Pérez-Beteta et al. [15] demonstrated the predictive per-
formance of pre-treatment tumor geometry. This class
of shape features (n = 7) is hereafter referred to as en-
hancement geometry.

All previously described radiomic features were ex-
tracted from all four MRI sequences and all eight seg-
mentation labels.

Feature robustness
We evaluated a wide range of perturbations that affect
the MRI image quality to an extent expected in a multi-
center setting. To define the range of perturbations, we
rely on the imaging guidelines in [8] and visual inspec-
tion by a neuroradiologist:

� Voxel size and axial slice spacing, with variations
generated according to a reference MRI imaging
protocol, as presented in [8] for GBM patients.

� K-space subsampling: Randomly masking the image
in the frequency domain using 80 to 100% of the k-
space information, with the range selected by visual
assessment.

� Inter-rater manual segmentation variability: Elastic
deformation of all labels, such that the inter-rater Dice
coefficient [27] matches the reported variability in [18]
(supplementary material, Table S1 and Figure S2).

� Additive Gaussian noise, with its level set such that
the signal-to-noise ratio (SNR) does not exceed the
mean SNR of the single-center data plus one stand-
ard deviation (supplementary material, Figure S3).

� Quantization / binning of gray values: High-order
radiomics features require histogram quantization/
binning. We varied the bin width for higher-order
PyRadiomics features within the recommended
range in the PyRadiomics package documentation.
Since consistent binning is straightforward in an
image processing pipeline, no feature was excluded
based on this perturbation.

These perturbations are visualized in Fig. 2 and de-
tailed in Table 1.To ensure reproducibility, we provide
all PyRadiomics feature extraction settings files and Py-
thon code used to generate perturbations (https://github.
com/ysuter/gbm-robustradiomics).
Since the radiomic features were extracted on all

four MRI sequences and eight tumor labels, the ro-
bustness evaluation amounted to more than 16.4 × 106

tests.
Ensuring absolute agreement and not only consistency

across perturbations is key for a robust feature set,
therefore the Intraclass Correlation Coefficient ICC(2,1)
was chosen for robustness evaluation. The cut-off for
the lower bound of the 95% confidence interval of the
ICC(2,1) was set at 0.85, indicating good reliability ac-
cording to [28], and following the publication of Lao
et al. [13]. We consider a feature robust if it reaches this
threshold for all tested perturbations.
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Feature selectors and ML methods
Machine learning models with high-dimensional feature
spaces and only a few training samples suffer from the
curse of dimensionality [29], which considerably in-
creases the likelihood of poor performance when the
ML model is used in practice. We chose thirteen feature
selection and twelve ML methods from the literature
(see supplementary material, sections S5, S6, and Table

S2). The feature selection methods tested include ReliefF
(RELF), Fischer Score (FSCR), Gini index (GINI), Chi-
square score (CHSQ), joint mutual information (JMI),
conditional infomax feature extraction (CIFE), double
input symmetric relevance (DISR), mutual information
maximization (MIM), conditional mutual information
maximization (CMIM), interaction capping (ICAP), t-
test score (TSCR, only for binary classification),

Fig. 2 Perturbations applied to the single-center data to simulate expected multi-center data quality. Top row: left: Inter-rater simulation by deforming
the labels from the automated tumor segmentation; middle: Additive Gaussian noise to match SNR range, measured on a healthy white matter
segmentation; right: Adjusting the bin width within the range in the PyRadiomics documentation. Bottom row: K-space subsampling (left original,
right subsampled, contrast increased for both for visualization); middle: Voxel size changed isotropically; right: Variations in axial slice spacing

Table 1 Overview of perturbations applied to simulate multi-center data. Perturbation types and ranges vary with labels and MRI
sequences according to the recommendation in [8]

Perturbation Sequences Segmentaion
Labels

Perturbation assessment
or range

Number of perturbations
per sequence/label

Additivie Gaussian noise All – Match SNR range 10 per sequence

Histogram binning All – PyRadiomics recommended range (30–130 bins) 54 per sequence

Inter-rater simulation – All Match Inter-rater DICE in [18] 10 per label

Voxel size All – 1–1.5 mm, isotropically 10 per sequence

Slice spacing FLAIR, T2 – 1-4 mm, imaging recommendations in [8] 10 per sequence

T1, T1c – 1–1.5 mm, imaging recommendations in [8] 10 per sequence

K-space subsampling All – Random subsampling, factor 0.8–1.0 21 per sequence
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minimum redundancy maximum relevance (MRMR),
and mutual information feature selection (MIFS). The
ML methods Nearest Neighbors, Support Vector Classi-
fiers (SVC) with linear and radial basis function (RBF)
kernels, Gaussian processes, decision trees, random for-
ests, multilayer perceptrons, AdaBoost, naïve Bayes,
quadratic discriminant analysis (QDA), XGBoost, and lo-
gistic regression were included. We remark that we
tested all combinations of feature selectors and ML
models (i.e., 13 × 12 = 156 combinations, 144 for three
OS class experiments, since the t-test score is only ap-
plicable for binary classification).
The feature selection step was included in the cross-

validation to avoid data leakage and overestimating the
single-center performance.
Following [13], we further excluded features with zero

median absolute deviation (MAD) and a concordance
index (C-index) of 0.55 or lower, regarded as non-
predictive features. This threshold setting was chosen
considering a tradeoff between only retaining the most
predictive features and reducing the curse of dimension-
ality (see supplementary material, Figure S4).
Detailed information regarding the image acquisition

parameters, image pre-processing, and perturbations is
available in the supplementary material.

Clinical and data-driven prior knowledge for feature set
reduction
We tested two priors to decrease the features set size
further: A sequence prior by only using the T1c and
FLAIR MRI since these two sequences are predomin-
antly considered by neuroradiologists when assessing
pre-operative data. A second prior, referred hereafter as
hand-picked, was introduced by limiting the features to
the most robust features types as observed during the
robustness analysis: Pyradiomics-derived tumor shape,
enhancement geometry, centroids, and patient age.

Statistical analysis
The performance of the ML approaches was measured
by the area under the receiver operating characteristics
curve (AUC), balanced and unbalanced accuracy, sensi-
tivity, specificity, F1 score, and precision. The best per-
forming model for every OS class boundary was selected
based on the AUC. All metrics were recorded during a
10-fold stratified cross-validation [30] on the single-
center dataset. All performance metrics are reported as
the mean across all splits.

Results
Feature robustness
Figure 3 shows the mean of the lower bound of 95%
confidence level of the ICC(2,1) across MRI sequences
and tumor labels per radiomic feature type. The

corresponding table with the mean and standard devi-
ation is included in the supplementary material, Table
S3. The first-order features from PyRadiomics are most
robust against noise and inter-rater variations but have a
low agreement if the voxel size or slice thickness is
changed. GLCM, GLRLM, GLDM, GLSZM, and NGTD
M, describe texture information in the MRI image and
show similar behavior. Changes in the binning of gray
values used to derive higher-order features have a high
negative impact on the agreement, resulting in low ro-
bustness levels. Since the gray value binning can be eas-
ily controlled and replicated in practice if the whole
processing pipeline is well-documented, no feature was
excluded based on robustness against gray level bin per-
turbations. For higher-order features, robustness against
noise, k-space subsampling and inter-rater variations of
the segmentations, yielded ICC scores around 0.75.
Shape-related feature types (PyRadiomics shape and

enhancement geometry) and location features are robust
against voxel size, slice spacing changes, and inter-rater
variability, with the highest ICC scores across features.
The robustness of features extracted from the two last

layers of the pre-trained deep learning model is almost
identical (mean ICC values 0.70 and 0.69, and mean
standard deviation 0.28 and 0.29 respectively). The ICC
was lowest for the voxel size perturbations (ICC = 0.48)
and the highest for k-space subsampling (ICC = 0.86).
Overall, deep features yielded higher robustness levels
than texture-based features, derived from GLCM, GLRL
M, GLDM, GLSZM, and NGTDM, but yielded lower
ICC values than shape and first-order features.
Only considering the overall robustness of feature clas-

ses across labels and MRI sequences is too crude if we
want to select individual robust features. Therefore, we
considered the robustness of each feature individually.
This evaluation for all tested perturbations is available in
the supplementary material, Figure S5, and Table S3.
Combining all described feature types on all tumor la-

bels and MRI sequences, a total of 265,604 features were
analyzed. With the ICC threshold set to 0.85, 11,306 fea-
tures (42.5%) remain after robustness testing. The num-
ber of robust features for different ICC threshold
settings is reported in the supplementary material Figure
S6. Features with zero MAD across our training popula-
tion were removed and considered non-informative, as
proposed by [13]. This resulted in a further reduction of
features, resulting in 5009 features. An observation we
made here was that the deep features were very sparsely
populated with non-zero values (47% non-zero for the
pre-operative single-center data). If these features are to
be used in a machine learning model, only selecting fea-
tures with a reasonable variability across subjects have to
be considered. Based on this observation, we removed
all features that are non-zero for only one patient. With
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this reduction, the set of features further reduced
to 3351 features. Since this set still was high-
dimensional, we further reduced the number of
features by only considering predictive features
with a concordance-index higher than 0.55, being
less restrictive than [13], since this step was
followed by feature selection. With this last con-
straint, the final set comprises 564 features (0.21%
from original feature set), divided into 558 deep,
one GLSZM, four shape features, and the age of
the patient. Since the number of features was still
higher than the number of samples, a feature se-
lection step had to be included before the ML al-
gorithms were added.

Feature selection and machine learning models
We tested the performance of popular and widely used
feature selection methods and ML models on different
OS class boundaries similar to [31]. The results for all

OS boundaries and classification metrics are included in
the supplementary material (Table S4, Figure S7).
The best performing algorithm for each OS class

boundary was trained on the whole single-center dataset
and applied to the unseen multicenter data (BraTS
TCIA).

Performance using non-robust features
We observed a major decrease in accuracy (average drop
of 48%) and AUC (52% average reduction) when apply-
ing the single-center models using non-robust features
were used for unseen multi-center data. Figure 4,
Table 3, and Table 2 summarize the performance with
single-center and multi-center data.
The highest AUC achieved was 1.0 for three out of four

tested class boundaries (304.2, 425.8, and 540 days) on
single-center data, but dropped below 0.51 when the
models were applied to the multi-center BraTS data. The
top balanced accuracy was 0.95 with an OS boundary of

Fig. 3 Robustness of radiomic features against perturbations, measured by the intraclass correlation coefficient (ICC(2,1)). The values shown are
averages of the lower bound of the 95th percentile of the ICC(2,1) across all segmentation types, MR sequences and features within a given class.
Only relevant results are shown, e.g. not showing noise impact for shape features, since no intensity information was used for this feature
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540 days, which dropped to 0.55 on multi-center data.
Sensitivity was at 100% for the 304.2 days OS boundary
and dropped slightly to 0.98 on multi-center data. The
specificity, on the other hand, varied greatly between OS
boundaries, ranging from 0.25 for the OS boundary at
304.2 days and 0.97 for OS classification at 425.8 days.

Importance of priors for feature set reduction
We observed that overall, trained ML models predomin-
antly selected deep features from the T1 and T2 MR im-
ages. This is likely due to the abundance of these feature
types during the feature selection process (see supple-
mentary material, Figure S6). However, since these se-
quences are rarely considered by neuroradiologists
assessing GBM pre-operative images, we designed a se-
quence prior to only select robust features from the T1c
and FLAIR MR images. Figure 4 shows the results of this
experiment. Overall, such sequence prior enabled an in-
crease in model accuracy on all but the class boundaries
with the highest OS (i.e., 540 days). The performance
drop on this class boundary may be partly attributed to
the higher median survival and different survival time
distribution on the single-center compared to the multi-

center BraTS dataset (full dataset information in the
supplementary material, Table S5).
We tested a second prior only using the robust feature

classes alongside the patient age. Tables 2 and 3 com-
pare the performance of robust features with these
priors with the performance obtained when using the
full feature set with non-robust features. Using the se-
quence prior, the average AUC could be improved by
21.1% compared to using the non-robust feature on the
unseen multi-center data. The use of the hand-picked
(data-driven) prior also improved the balanced accuracy
by 14.5% when compared to using the full feature set.
While the specificity drop can be greatly improved by
using both priors (sequence prior: 40.37%, hand-picked
feature prior: 38.35%), the sensitivity decreased for the
two OS classification experiments (sequence prior: −
12.19%, hand-picked prior: − 9.81%). The confidence in-
tervals for all metrics can be found in Table 3 and Fig. 5.

Discussion
Previous studies demonstrated how selected perturba-
tions affect radiomic features, e.g., [32–35], or assessed
the performance of feature selection techniques together
with a wide range of ML methods (e.g., [31]). In this

Fig. 4 Performance comparison single- versus multi-center for two overall survival classes. Shown for non-robust feature sets, robust features with
sequence prior, and hand-picked feature selection. The results show the trade-off between single-center performance and the drop when moving to
multi-center data. Introducing priors helped reduce performance drop. The arrows indicate whether a prior increased performance on multi-center
data when compared to the non-robust features. The benefit of robust features highly depends on the class boundary used, since different feature
selections and machine learning methods were used. The supplementary material contains corresponding plots for further classification performance
metrics, as well as the results for the experiments with three overall survival classes
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study, we combine multiple image degradation methods
in order to robustify a radiomic signature for the appli-
cation of GBM survival classification. Since previous
studies tested machine learning methods for this task on
many different OS class boundaries, we conducted a

high-throughput analysis with over 16.4 × 106 tests on
feature robustness and evaluated 156 combinations of
popular feature selectors and machine learning tech-
niques for seven overall survival class boundaries. Add-
itionally, we tested the value of introducing priors based

Table 2 Comparison of best-performing feature selectors (by AUC). Due to the high class imbalance for class boundaries at high
and low overall survival values, the balanced accuracy is reported. The single-center metrics are listed as the mean across splits of
stratified 10-fold cross-validation. A large performance drop can be observed when the model is tested on unseen multi-center data

Prior Center Robustness Class Boundary Selector ML model AUC Bal. Acc.

– S Non-robust 304.20 MRMR Gaussian Process 1.00 70%

– S Non-robust 365.00 MIFS MLP 0.98 93%

– S Non-robust 425.80 CIFE Adaboost 1.00 94%

– S Non-robust 540.00 MRMR MLP 1.00 95%

– M Non-robust 304.20 MRMR Gaussian Process 0.50 52%

– M Non-robust 365.00 MIFS MLP 0.42 50%

– M Non-robust 425.80 CIFE AdaBoost 0.49 51%

– M Non-robust 540.00 MRMR MLP 0.51 55%

MR S Robust 304.20 RELF Random Forest 0.76 69%

MR S Robust 365.00 RELF Nearest Neighbors 0.72 52%

MR S Robust 425.80 RELF XGBoost 0.81 71%

MR S Robust 540.00 GINI Decision Tree 0.69 68%

MR M Robust 304.20 RELF Random Forest 0.54 50%

MR M Robust 365.00 RELF Nearest Neighbors 0.57 51%

MR M Robust 425.80 RELF XGBoost 0.49 45%

MR M Robust 540.00 GINI Decision Tree 0.46 43%

H S Robust 304.20 CIFE XGBoost 0.90 75%

H S Robust 365.00 MRMR AdaBoost 0.78 69%

H S Robust 425.80 MRMR AdaBoost 0.82 67%

H S Robust 540.00 GINI AdaBoost 0.74 68%

H M Robust 304.20 CIFE XGBoost 0.66 57%

H M Robust 365.00 MRMR AdaBoost 0.54 58%

H M Robust 425.80 MRMR AdaBoost 0.51 50%

H M Robust 540.00 GINI Adaboost 0.48 43%

Abbreviations: MR sequence prior, H hand-picked, S single-center, M multi-center, Bal. Acc. balanced accuracy, MRMR minimum redundancy maximum relevance,
MIFS mutual information feature selection, CIFE conditional infomax feature extraction, RELF ReliefF, GINI Gini index, CMIM conditional mutual information
maximization, MLP multi-layer perceptron, RBF SVC support vector classifier with radial basis function kernel. The full table with all performance metrics is reported
in the supplementary material

Table 3 Performance drop of models trained on single-center data and applied to unseen multi-center data, using non-robust and
robust featues withs priors, averaged across class boundaries (lower is better). Listed as mean and 95% confidence intervals,
calculated with the adjusted bootstrap percentile (BCa) method. The lowest drop is indicated in bold for each metric. Bal. Acc.:
Balanced accuracy, Acc.: Accuracy

Feature set AUC drop Bal. acc. drop Acc. drop Specificity drop Sensitivity drop F1 drop Precision drop

Non-robust
features

0.52 CI: [0.50,0.56] 0.40 CI: [0.26,0.45] 0.48 CI: [0.33,0.53] 0.80 CI: [0.70,0.88] 0.06 CI: [0.00,0.15] 0.38 CI: [0.24,0.50] 0.54 CI: [0.39,0.63]

Robust features,
sequence prior

0.30 CI: [0.22,0.36] 0.26 CI: [0.03,0.35] 0.37 CI: [0.33,0.43] 0.40 CI: [−0.10,0.75] 0.18 CI: [0.00,0.34] 0.38 CI: [0.24,0.53] 0.51 CI: [0.37,0.65]

Robust features,
hand-picked

0.32 CI: [0.27,0.36] 0.26 CI: [0.18,0.31] 0.33 CI: [0.27,0.37] 0.42 CI: [0.27,0.50] 0.16 CI: [0.02,0.37] 0.35 CI: [0.22,0.54] 0.48 CI: [0.35,0.66]
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on a) clinical practice and b) hand-picking robust non-
intensity features based on literature reports and own
observations.
The results show that very high AUC values can be

achieved in the single-center setting for the non-
robust feature set. Transferring the model to the
multi-center BraTS data caused a large drop in all
assessed performance metrics. Introducing a sequence
prior to using only the T1c and FLAIR images re-
sulted in a lower drop when moving to multi-center
data. The benefit of introducing this prior indicates
that the feature selection techniques may suffer from
the multiple-testing issue. To further reduce the num-
ber of features entering the selection process, we per-
formed another test only using the most robust hand-
picked non-intensity features alongside age (PyRadio-
mics shape features, enhancement geometry, and
tumor centroids). The models trained with this more
restrictive hand-picked feature prior outperformed the
sequence prior for AUC in a single-center setting and
resulted in a higher or equal multi-center perform-
ance for all class boundaries for AUC, balanced ac-
curacy, and F1-score. Higher performance than that
obtained using the sequence prior could be achieved
for accuracy (for three out of four class boundaries),
sensitivity (for two out of four class boundaries), and
specificity (three out of four class boundaries), further
highlighting the importance of incorporating domain
knowledge for the design of robust and meaningful
features, as opposed to utilizing a pure data-driven
feature extraction approach.
The sensitivity drop for longer OS obtained when

using robust features may be partly explained by the

different OS distributions on the single-center train-
ing data (OS: 22.77 ± 14.74 months) and the BraTS
data (OS: 14.78 ± 11.98 months). Therefore, the re-
quirements regarding sensitivity or specificity for a
given application have to be carefully evaluated.

Limitations
The perturbations selected for this study are motivated by
the imaging recommendations by [8] and were not se-
lected based on the target dataset. Since some of the
BraTS data includes cases acquired ten or more years
prior, image quality is lower than recently acquired MRI
with the latest technology. This leads to better applicabil-
ity for further research with more recently acquired MRI,
but a lack of specificity regarding the expected image qual-
ity on the BraTS data.
Not all perturbations could be selected based on im-

aging recommendations but had to be hand-tuned and
visually inspected. Similarly, the applied k-space sub-
sampling approximates real subsampling during acquisi-
tion since the phase information is already lost.
Furthermore, the sample size was rather small for both

single- and multi-center data, with different overall sur-
vival distributions.

Conclusions
These results demonstrate that if a model is to be
robustified before deploying it on unseen multi-center
data, a trade-off between single-center accuracy and
reduction of performance drop is possible, but as
shown here, it can lead to a performance benefit
when applied to multi-center data, as compared to
using a non-robust set that might seem optimal

Fig. 5 Performance drop comparision across all class boundaries, shown as mean and 95% confidene intervals, calculated with the adjusted
bootstrap percentile (BCa) method. Lower is better. The drop for the models using robust features is lower for all recorded metrics, except for the
sensitivity. Values are reported in Table 3
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during the development phase. Furthermore, we show
that inclusion of prior knowledge, through the selec-
tion of MRI sequences or which type of robust fea-
tures are used, helps to reduce the number of
considered features, and partly alleviates the multiple-
testing problem. The remaining performance drop
calls for adhering to imaging guidelines and great care
when transferring ML models to unseen data. With
the rise of new deep learning techniques such as style
transfer and improved normalization (e.g., [36]), this
issue could hopefully be further alleviated.
We derive the following recommendations for future

work on GBM patient survival classification:

� The choice of OS class boundaries should be clearly
motivated, e.g., data-driven or to ensure comparabil-
ity to previous studies. We encourage testing and
reporting newly proposed techniques on multiple
class boundaries.

� The perturbations considered for feature robustness
testing should be tailored to the target dataset and
in line with imaging guidelines. If the imaging
parameters used for the target dataset are known,
the perturbation types and magnitudes should be
tuned accordingly.

� A broader set of classification performance metrics
should be reported apart from AUC and accuracy,
and along with a description of data distribution.
Not providing a thorough report of metrics and data
distribution can be misleading for other researchers
evaluating the advantages and drawbacks of a given
proposed method.

� With convenient libraries for feature extraction,
selection, and machine learning, great care should
still be taken regarding, e.g., multiple-testing prob-
lems, and introducing prior domain knowledge is
still of high value.

We believe the proposed tool of radiomic feature ro-
bustness testing is applicable to other modalities, out-
comes, and diseases, with certain perturbations being
modality-specific. For CT-based radiomics, we expect
the robustness to profit from the quantitative nature of
the imaging data, in comparison to MRI-based radio-
mics. Nonetheless, considerable variability for CT radio-
mics has been reported recently for inter-vendor, and
intra-subject test-retest studies [37]. For CT-based radio-
mics, e.g., the k-space subsampling perturbation type
can be exchanged with a kernel-based reconstruction
perturbation. Adapting to other diseases may include
switching to other modalities and appropriate outcome
metrics. We recommend a careful evaluation as to how
the physiology of the disease affects radiological findings
from imaging data.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s40644-020-00329-8.

Additional file 1. The supplementary material contains further
information on the data used, methods, software tools and versions, and
additional experiment results to improve reproducibility.
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