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TNIK signaling imprints CD8+ T cell memory
formation early after priming
Carla A. Jaeger-Ruckstuhl 1,2,3,4,7, Magdalena Hinterbrandner1,2,3,7, Sabine Höpner1,2, Colin E. Correnti5,

Ursina Lüthi1,2, Olivier Friedli3,6, Stefan Freigang 6, Mohamad F. Al Sayed1,2,3, Elias D. Bührer1,2,3,

Michael A. Amrein 1,2,3, Christian M. Schürch 1,2,6, Ramin Radpour 1,2, Carsten Riether 1,2 &

Adrian F. Ochsenbein1,2✉

Co-stimulatory signals, cytokines and transcription factors regulate the balance between

effector and memory cell differentiation during T cell activation. Here, we analyse the role of

the TRAF2-/NCK-interacting kinase (TNIK), a signaling molecule downstream of the tumor

necrosis factor superfamily receptors such as CD27, in the regulation of CD8+ T cell fate

during acute infection with lymphocytic choriomeningitis virus. Priming of CD8+ T cells

induces a TNIK-dependent nuclear translocation of β-catenin with consecutive Wnt pathway

activation. TNIK-deficiency during T cell activation results in enhanced differentiation towards

effector cells, glycolysis and apoptosis. TNIK signaling enriches for memory precursors by

favouring symmetric over asymmetric cell division. This enlarges the pool of memory CD8+

T cells and increases their capacity to expand after re-infection in serial re-transplantation

experiments. These findings reveal that TNIK is an important regulator of effector and

memory T cell differentiation and induces a population of stem cell-like memory T cells.
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During an acute infection, naive CD8+ T cells (TN) are
activated, expand, and differentiate into effector cells that
mediate host defense and pathogen clearance. These

terminally differentiated effector cells (TEFF) are usually short-
lived. A minor sub-fraction of activated CD8+ T cells develops
into memory CD8+ T cells that persist. CD62L(L-selectin)hi C–C
chemokine receptor type 7 (CCR7)hi central-memory T cells
(TCM) are localized primarily in secondary lymphoid organs and
have a high proliferative capacity. In contrast, CD62LlowCCR7low

effector-memory T cells (TEM) have a high migratory potential,
immediate cytotoxic capacity, and provide a first line of defense
against reinfection1.

T-cell differentiation is regulated by several transcription fac-
tors. B lymphocyte-induced maturation protein 1 (BLIMP-1), T-
box transcription factor (T-BET), Runt-related transcription
factor 3 (RUNX3), and NOTCH2 are involved in effector CD8+

T-cell differentiation2–6. In contrast, DNA-binding protein inhi-
bitors (ID2/ ID3), forkhead box O1 (FOXO1), and T-cell-specific
transcription factor 1 (TCF-1) drive memory formation7–10.
Importantly, also T-cell receptor (TCR) signaling, cytokines, co-
stimulatory signals, and environmental cues determine T-cell
expansion and differentiation4,11–18.

In addition, co-stimulatory receptors including members of the
tumor necrosis factor receptor (TNFR) superfamily such as
TNFRSF7 (CD27), TNFRSF9 (4-1BB) and TNFRSF4 (OX40)
promote the initial expansion and generation of effector T cells,
and are implicated in memory formation. TNFR signaling is
mediated via TNFR-associated factors (TRAFs). Seven different
TRAF proteins have been identified so far19. TRAF2 plays a
central role in the signal transduction of the majority of TNFRs20.
Upon activation, TRAF2 is recruited to TNFR intracellular dead
domains (DD) or TRAF-interacting motifs (TIM), and regulates
NF-kB, MAP kinase, and pro-survival signals21. The TRAF2- and
NCK-interacting kinase (TNIK) is an important downstream
adaptor molecule of TRAF2. TNIK was identified as activator of
T-cell factor-4 (TCF-4)22, a transactivator of the Wnt pathway.
TNIK-Wnt signaling is an important oncogenic pathway, and
leads to the development of colorectal cancer and the main-
tenance and expansion of leukemia stem cells23–26. However, the
role of TNIK in the regulation of CD8+ T-cell biology has not
been studied so far.

We therefore developed an inducible TNIK-deficient mouse to
study T-cell activation and memory formation during an acute
lymphocytic choriomeningitis virus (LCMV) infection. We
document that TNIK regulates CD8+ T-cell fate by activating
Wnt and other stemness-related pathways and by promoting
symmetric over asymmetric cell division. TNIK-deficient T cells
preferentially differentiated into short-lived effector cells, while
memory T-cell formation was impaired. TNIK-deficient CD8+

T cells lost the capacity to expand in response to antigenic re-
stimulation in serial re-transplantation experiments. Moreover,
we document that CD27 signaling induces Wnt pathway activa-
tion in T cells via the downstream mediator TNIK. These results
indicate that TNIK signaling during CD8+ T-cell priming
imprints memory formation by regulating T-cell differentiation
toward memory T cells.

Results
TNIK is dispensable for primary T-cell responses. We first
determined the expression of TNIK in different CD8+ T-cell
subsets in LCMV gp33 TCR transgenic mice by ImageStream X.
TNIK was expressed at lowest levels in naive p14 T cells
(TN; CD62L+CD44−), and its expression increased upon LCMV
infection in effector p14 T cells (TEFF; CD62L−CD44+). Highest
levels of TNIK were found in central memory p14 T cells (TCM;

CD62L+CD44+) with slightly lower levels in effector-memory
T cells (TEM; CD62L−CD44+) (Fig. 1a). Previous studies
demonstrated that TNIK acts as Wnt pathway activator and
important scaffolding molecule for nuclear trans-localization of
active β-catenin22,26–28. We found that TNIK is preferentially
localized in the cytoplasm of naive p14 T cells, whereas its nuclear
expression is increased in effector and memory T cells. Active β-
catenin had a very similar expression and distribution pattern as
TNIK with a higher nuclear expression in antigen-experienced
p14 T cells, especially in TEFF and TEM (Fig. 1a, b).

To evaluate the role of TNIK in CD8+ T cells during an acute
viral infection in vivo, we generated a tamoxifen inducible TnikF/F;
UBC-Cre+ mouse (Supplementary Fig. 1a, b). Knockout efficiency
was controlled in PBMCs pre and post treatment on DNA,
RNA, and protein level (Supplementary Fig. 1c–e). TNIK deletion
(TnikΔ/Δ) did not affect steady-state cellularity of T-cell subsets in
blood and spleen (SPL) when compared with littermate controls
(TnikWT) 10 days after treatment with tamoxifen (Supplementary
Fig. 1f, g). Infection of TnikWT and TnikΔ/Δ mice induced a similar
expansion of LCMV gp33-specific CD8+ T cells in the blood and
spleen 8 days post infection (p.i.) (Fig. 1c–e). Gp33-specific TnikWT

and TnikΔ/Δ CD8+ T cells differentiated into TEFF cells, expressed
comparable levels of Tcf1, granzyme B, and similarly lysed gp33-
pulsed target cells in vitro (Fig. 1f–i). We next analyzed early
memory and effector fate commitment of gp33-specific TnikWT and
TnikΔ/Δ CD8+ T cells on days 4, 6 (Supplementary Fig. 2a–c) and
8 p.i. (Fig. 1i, j). Frequencies of short-lived effector cells (SLECs;
KLRG1+CD127−) and memory precursor effector cells (MPECs;
KLRG1−CD127+) in the spleen were comparable (Fig. 1j; Supple-
mentary Fig. 2b). Moreover, T-bet and Eomesodermin (Eomes), two
key drivers of cytolytic function29,30, were similarly expressed on
days 4, 6 (Supplementary Fig. 2c) and 8 p.i. (Fig. 1k). These
experiments indicate that T-cell activation increases the expression
and nuclear translocation of TNIK and β-catenin. However, TNIK
deficiency does not impair CD8+ effector T-cell generation.

TNIK is required for CD8+ T-cell memory formation. We next
evaluated the relevance of TNIK for CD8+ T-cell memory for-
mation after LCMV infection. The frequency of gp33-specific
CD8+ T cells in the blood of TnikWT and TnikΔ/Δ mice was
comparable up to 80 days p.i. (Fig. 2a). However, the expression
of Tcf1, an essential transcription factor for T cell self-renewal,
was lower in TnikΔ/Δ TCM and TEM gp33-specific memory subsets
compared to TnikWT T cells (Fig. 2b). Indeed, the number of
gp33-specific CD8+ T cells in the spleen was significantly reduced
in TnikΔ/Δ compared to TnikWT mice (Fig. 2c). In addition, sig-
nificantly more memory cells were of TEM phenotype with a
consequent reduction in the frequency of TCM cells in gp33-
specific TnikΔ/Δ mice (Fig. 2d). Fewer TnikΔ/Δ memory CD8+

T cells produced IFNγ, TNFα, and IL-2 after re-stimulation
in vitro with PMA/Ionomycin (PMA/I). A similar trend was
observed after in vitro re-stimulation with gp33 peptide (Fig. 2e).
The mean fluorescence intensity for IFNγ, TNFα, and IL-2 was
not different between TnikWT and TnikΔ/Δ CD8+ T cells, indi-
cating that the production of these cytokines is independent of
TNIK expression (Supplementary Fig. 2d).

To assess the re-expansion capacity of LCMV-specific memory
T cells, we adoptively transferred (AdTf) FACS-purified gp33-
specific Cd45.2+ TnikWT and TnikΔ/Δ memory T cells into naive
Cd45.1+ recipients prior to infection with 200 pfu LCMV
(Supplementary Fig. 2e). The re-expansion of AdTf TnikΔ/Δ

CD8+ memory T cells 4 days p.i. was significantly reduced
(Fig. 2f). Together, these data indicate that TNIK signaling
contributes to the generation of functional CD8+ T-cell memory
after LCMV infection.
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To distinguish whether TNIK was required for memory
imprinting early after activation or during the memory phase
and secondary expansion, we conditionally depleted TNIK 20 days
after LCMV infection (TnikΔ/Δ20, Supplementary Fig. 3a). Only
mice with efficient and durable excision of TNIK were included in
the experiment (Supplementary Fig. 3b). TNIK depletion after the

initial cytotoxic CD8+ T cell (CTL) priming phase neither
changed the frequency of gp33-specific or Tcf1+ TCM and TEM

CD8+ T cells in blood nor the number of gp33-specific CD8+

T cells in the spleen (Supplementary Fig. 3c–e). Moreover, the
frequencies of gp33-specific TCM and TEM cells were comparable
in TnikWT and TnikΔ/Δ20 mice 80 days p.i. in the spleen
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Fig. 1 TNIK is dispensable for effector T-cell response. a, b Naive (TN) or activated AdTf p14 T cells isolated from the spleen 6 or 40 days p.i. with 104 pfu
LCMV-WE were FACS-sorted, stained for TNIK and β-catenin, and analyzed by ImageStream X (day 6 p.i.: TEFF, day 40 p.i.: TCM, TEM). Single-cell images:
nuclear (DAPI) stain, nuclear (Nucl.) vs cytoplasmatic (Cyto.) distribution of TNIK or β-catenin, and overlay (merge). Dotplots: Mean TNIK or β-catenin
intensity of TN (n= 8638), TEFF (n= 1252), TCM (n= 630), TEM (n= 1308) and % nuclear localization of n= 2–3 sample replicates per cell subset. Scale
bar 10 μm. c Tamoxifen-induced systemic deletion: TnikF/F;Ubc-Cre(TnikΔ/Δ) and control-treated TnikWT/WT;Ubc-Cre (TnikWT) mice were infected i.v. with
200 pfu LCMV-WE. d–j Day 8 p.i.: d frequency of gp33-Tet+ cells per CD8+ T cells in blood, e CD8+ T-cell numbers in the spleen and frequency of gp33-
Tet+ cells per CD8+ T cells in the spleen, f effector phenotype (TEFF, CD44+CD62L−) of gp33-Tet+ CD8+ T cells, g frequency of Tcf1 exrepssing TEFF cells,
h histogram and ΔMFI of granzyme B expression in gp33-Tet+ CD8+ T cell, i lysis of gp33 peptide pulsed MC57 target cells by TnikWT and TnikΔ/Δ CD8+

T cells at different effector/target ratios (E:T), j frequency of memory precursor effector cells (MPECs; CD127+KLRG1−) and short-lived effector cells
(SLECs; CD127−KLRG1+) within gp33-Tet+ CD8+ T cells, k histograms and ΔMFI of intracellular Eomes/T-bet staining in gp33-Tet+ CD8+ T cells.
Depicted: TnikWT (black lines/circles), TnikΔ/Δ (red lines/circles), isotype controls (iso; dashed lines). d–f, h–k Data are representative for one out of two
(n= 5) independent experiments. Data are displayed as means ± SEM. Statistics: two-tailed Student's t test, nonsignificant P > 0.05, *P < 0.05,
***P < 0.001, ****P < 0.0001. Also see Supplementary Figs. 1 and 2. Source data are provided as a Source Data file.
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(Supplementary Fig. 3f). Memory CD8+ T cells from TnikΔ/Δ20

comparably produced IFNγ, TNFα, and IL-2 after in vitro re-
stimulation, and expanded similarly in response to LCMV after
AdTf into secondary recipients (Supplementary Fig. 3g, h). To
evaluate secondary effector and memory fate, mice were re-
challenged with recombinant vaccinia virus expressing LCMV-
glycoprotein G2 (rVV-G2) 30 days post LCMV infection.
Secondary TnikΔ/Δ but not TnikΔ/Δ20 effectors showed lower

fraction of Klrg1+Tcf1+ gp33-specific CD8+ T cells compared
with TnikWT 4 days after rVV-G2 infection (Fig. 2g; Supple-
mentary Fig. 3i). Frequencies of CD127+Tcf1+ and maintenance
of Tcf1high gp33-specific CD8+ T cells were reduced in both
TnikΔ/Δ and TnikΔ/Δ20 mice after antigen re-challenge (Fig. 2h–j;
Supplementary Fig. 3j–l). We conclude that TNIK deletion after
priming (Δ/Δ20) does not impact primary memory formation
and expansion after antigen re-challenge, but affects secondary
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Fig. 2 Deletion of Tnik before priming impairs CD8+ T-cell memory formation. a Gp33-Tet+ CD8+ T-cell frequency in blood of 200 pfu LCMV-WE-
infected TnikWT and TnikΔ/Δ mice. b Frequency of Tcf1 expressing TCM (CD44+CD62L+) and TEM (CD44+CD62L−) gp33-Tet+ CD8+ T cells in blood on
day 30 p.i. Mice were killed on day 90 p.i. c CD8+ T cells and gp33-Tet+ CD8+ T cells in the spleen. d Dotplots and bar graphs showing distribution of
gp33-Tet+ CD8+ TCM and TEM cell subsets in the spleen. e Frequencies of INFγ, TNFα, or IL-2-producing CD8+ T cells after re-stimulation with PMA/
Ionomycin or gp33 peptide. f AdTf of 3 × 104 FACS-purified gp33-Tet+ CD8+ T cells from spleens of day 90 memory mice (Cd45.2+) injected into
congenic recipient mice (Cd45.1+) prior to reinfection with 200 pfu LCMV-WE. Dotplots and bar graphs show relative distribution of endogenous vs AdTf
CD8+ T cells 4 days p.i. Frequencies of Tcf1+Klrg+ and Tcf1+CD127+ per gp33-Tet+CD8+ T-cell subsets in blood or spleen (g) 4 days or (h) 38 days post
rVV-G2 re-challenge. i, j Histogram and ΔMFI of Tcf1 expressing gp33-Tet+ CD8+ T cells in blood and spleen day 38 post re-challenge. Depicted: TnikWT

(black lines/circles), TnikΔ/Δ (red lines/circles), isotype controls (iso; gray lines). a, d–f Data are representative for one out of two independent
experiments (n= 3–4), c for three pooled independent experiments (n= 15–16), b, g–j for one experiment (n= 3–7). Data are displayed as means ± SEM.
Statistics: a two-way ANOVA, b–j two-tailed Student's t test, nonsignificant P > 0.05, *P < 0.05, **P < 0.01, ***P < 0.001. Also see Supplementary Fig. 2.
Source data are provided as a Source Data file.
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memory generation. This indicates that TINIK is required for
memory formation during primary and secondary T-cell
stimulation and expansion.

Lack of TNIK in CD8+ T cells impairs memory formation.
TNIK is expressed in various immune cells, including CD8+

T cells, CD4+ T cells, dendritic cells (DCs), B cells, natural killer
cells, and innate lymphoid cells (Supplementary Fig. 4a). To
analyze the CD8+ T cell intrinsic role of TNIK, we generated p14
TCR transgenic mice harboring a constitutive Tnik deletion
(Supplementary Fig. 1a). Purified splenic Cd45.1+ Tnik−/− (KO)
and Cd45.2+ TNIK competent (WT) p14 T cells were adoptively
co-transferred (AdCoTf) at a ratio of 1:1 into Cd45.1+.2+-reci-
pient mice 1 day prior to infection with 104 pfu LCMV (Fig. 3a).
KO p14 T cells expanded more rapidly reaching >60% of total
p14 T cells day 3 p.i. in the spleen. However, the WT to KO p14
T cells ratio was equilibrated on days 7 and 10 p.i. (Fig. 3b).
Importantly, more KO p14 T cells underwent apoptosis com-
pared to controls, most significantly during the early contraction
phase (Fig. 3c; Supplementary Fig. 4b). In contrast, in vivo Brdu
incorporation and CFSE dilution assays did not reveal a sig-
nificant difference in cell proliferation (Supplementary Fig. 4c, d).
Seven days p.i, KO and WT p14 T cells produced similar levels of
the effector cytokines IFNγ, TNFα and IL-2 after in vitro re-
stimulation with gp33 and expressed comparable amounts of
granzyme B and Eomes. The differentiation into MPECs and
SLECs was comparable 10 days p.i. (Supplementary Fig. 4e).
However, the expression of T-bet was significantly higher in KO
vs WT p14 T cells (Fig. 3d–f).

AdTf KO and WT p14 T cells expanded comparably at day 6 p.i.
when injected into different recipients. TNIK-deficiency in p14
T cells resulted in an impaired memory formation with reduced
frequencies of p14 T cells in blood and spleen (Fig. 3g–i).
Nevertheless, the virus was completely eliminated by day 60 p.i.
(Supplementary Fig. 4f, g). The majority of KO and WT memory
p14 T cells produced IFNγ and TNFα after in vitro re-stimulation
with gp33. However, the production of IFNγ per cell was lower in
the absence of TNIK (Supplementary Fig. 4h).

To evaluate the re-expansion capacity of memory T cells upon
antigen re-exposure, we FACS-purified and CFSE-labeled KO and
WT memory p14 T cells from primary recipients for AdTf into
secondary recipients. Secondary recipients were subsequently
infected with 104 pfu LCMV. CFSE dilution analysis of AdTf
cells in the spleen 3 days p.i. revealed that memory KO p14 T cells
re-expand slower than WT p14 T cells, resulting in a significantly
lower frequency and number of KO p14 T cells in the spleen
(Fig. 3j, k). Sixty days after LCMV infection of secondary recipient
mice, KO and WT p14 T cells were FACS-purified from the
spleen, and injected at identical numbers into tertiary recipient
mice, followed by LCMV infection (Supplementary Fig. 4i). Again,
KO p14 T cells expanded less than WT p14 T cells (Fig. 3l).

Thus, while primary peak expansion (day 6 p.i.) of WT and KO
p14 T cells was comparable, the capacity to re-expand after a
second and third antigen re-challenge dropped significantly
(Fig. 3m). Ki67 and AnnexinV staining of the transferred p14
T cells again revealed that the reduced frequency of gp33-specific
CD8+ T cells is mainly due to an increase in apoptosis, but not
proliferation (Supplementary Fig. 4j, k). These data indicate that
TNIK deficiency leads to increased apoptosis of activated T cells
during primary infection and impaired formation of functional
T-cell memory.

TNIK regulates differentiation and metabolic reprogramming.
To characterize the molecular pathways involved in TNIK sig-
naling, we performed next-generation RNA-sequencing (NGS)

analysis of WT vs KO naive, effector (D6 p.i.), and memory (D80
p.i.) p14 T cells. Principal component analysis (PCA) revealed
that the replicates of naive, effector (D6), and memory (D80) p14
T cells were clustering together. In addition, the analysis indicated
that effector and memory populations have a more similar gene
expression signature compared to naive T-cell subsets (Supple-
mentary Fig. 5a). In D6 and D80 p14 T cells, a total of 289 and
638 genes were differentially expressed in KO vs WT p14 T cells,
respectively (Supplementary Data 1 and 2). Differential gene
expression was confirmed by RT-qPCR of selected genes (Sup-
plementary Fig. 5b). Forty-six particular genes were differentially
expressed in both effector and memory p14 T cells. These genes
were mainly involved in processes regulating metabolism and cell
cycle. Interestingly, genes that were higher expressed in KO vs
WT p14 T cells D6 p.i. were expressed at lower levels in D80 KO
vs WT p14 T cells and vice versa (Supplementary Fig. 5c, d).

Of the differentially expressed genes in D6 p14 T cells, a total
of 112 genes were downregulated, and 177 genes upregulated in
KO vs WT p14 T cells (Supplementary Fig. 5e). Gene ontology
(GO) enrichment analysis revealed that most differentially
expressed genes (DEG) were assigned to changes in metabolism,
stemness, cell cycle, cell death, immune signaling, and
transcription-related processes (Fig. 4a). Gene set enrichment
analysis (GSEA) revealed that D6 KO p14 T cells express genes
involved in glucose metabolism and oxidative stress response at
higher levels than D6 WT p14 T cells, whereas genes involved in
fatty acid (FA) metabolism and β-oxidation were expressed at
lower levels (Fig. 4b; Supplementary Fig. 5f). From the 80
metabolism-related DEGs in D6 KO vs WT p14 T cells
(Supplementary Fig. 5g), 26 were related to catabolic and
anabolic processes, mitochondrial biogenesis, oxidative stress,
and/or protein synthesis. Key regulatory genes promoting
mitochondrial damage and depolarization, oxidative stress, or
anabolism (Noa1, Eif4g1, Polg, Idh2) were increased in D6 KO
p14 cells, whereas genes triggering catabolic processes (Etfa,
Acadsb) were decreased (Fig. 4c).

Moreover, the driver of terminal effector differentiation
Notch131 as well as its positive regulators Lfng and Aak132,33

were expressed at significantly higher levels in D6 KO vs WT p14
T cells. Similarly, Ddx6 involved in differentiation34 and LIgl2
involved in asymmetric cell division35,36 were expressed at higher
levels in KO p14 T cells (Fig. 4d; Supplementary Fig. 5h).
Transcriptional regulators determining T-cell development and
function such as Dnmt1, Hdac7, and Pml37,38 and cell cycle-
related genes were predominantly increased in KO vs WT p14
T cells (Fig. 4d). Moreover, D6 KO p14 T cells showed a pro-
apoptotic gene signature (Fig. 4e; Supplementary Fig. 5i). GO
analysis revealed that TNIK influences activation of CD8+ T cells
and cytokine signaling (Fig. 4a). In accordance, genes set
enrichment revealed a higher expression of genes involved in
PI3K/Akt and TNF signaling in D6 KO vs WT p14 T cells.
Similarly, immune-related genes were mainly expressed at higher
levels in D6 KO vs WT p14 T cells (Fig. 4f; Supplementary Fig. 5j,
k). In conclusion, NGS analysis revealed that TNIK deficiency in
effector CD8+ T cells leads to increased proliferation, differentia-
tion toward effector cells, apoptosis, and a metabolic reprogram-
ming towards increased glycolysis.

To functionally validate the suggested metabolic differences, we
performed a Seahorse assay of naive and in vitro-activated WT
and KO p14 T cells. We found that naive WT p14 T cells have
increased maximal respiratory capacity, spare respiratory capa-
city, ATP-linked respiration, glycolytic capacity and glycolytic
reserve capacity compared with KO p14 T cells (Fig. 4g). After
3 days of in vitro activation using mature bone marrow-derived
DCs from H8 transgenic mice (H8-DCs; Supplementary Fig. 5l),
which constitutively present gp33-41 on major histocompatibility
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complex class I, KO p14 T cells had a higher spare respiratory
capacity and higher glycolytic switch capacity compared to WT
p14 T cells (Fig. 4h; Supplementary Fig. 5m). We therefore
conclude that TNIK-deficiency compromises intrinsic steady-
state metabolic fitness of T cells. The increased glycolytic capacity
after activation may be an indication of preferential effector T-cell
differentiation, resulting in reduced memory maintenance.

In the memory phase, 303 genes were downregulated and 335
upregulated in KO vs WT p14 T cells (Supplementary Fig. 6a).
These genes were associated to similar GO clusters as D6 effector
T cells (Fig. 5a). Memory T cells use basal extracellular glucose to
support FA β-oxidation and oxidative phosphorylation for
survival and homeostasis39. GSEA revealed a significant enrich-
ment of basal glucose metabolism and enrichment of FA
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metabolism and β-oxidation in D80 WT vs KO p14 T cells
(Fig. 5b; Supplementary Fig. 6b). Seventy-eight out of the 220
metabolic-related differentially expressed genes were involved in
catabolic and anabolic processes, mitochondrial biogenesis,
oxidative stress, and protein synthesis (Fig. 5c; Supplementary
Fig. 6c). The majority of genes regulating FA β-oxidation and
lipid metabolism (Noa1, Acads, Map3k14, Pck2, Sp2, and Acp6)
were downregulated in D80 KO vs WT p14 T cells (Fig. 5c).

In addition, genes involved in T-cell memory formation and
maintenance such as the nuclear LEF1 transactivators Calcoco1
and Ep300 that are involved in the Wnt pathway and Bcl11b, a
transcription factor supporting memory differentiation and
maintenance40, were increased in WT vs KO memory p14
T cells (Fig. 5d). Genes involved in proliferation (mitotic
centrosome formation: Cdk5rap2, G1 cycle-dependent cell
growth: Cdk6, actin dynamics: Rapgef1) were decreased in KO
vs WT D80 memory p14 T cells. In contrast, cell cycle arrest
regulators (Cdk5) and associated repressors (Cdk5rap1) were
increased in D80 KO vs WT p14 T cells (Fig. 5d). Similarly, genes
associated with immune activation such as Furin, a regulator of
the transcription factors AP-1, NFAT, and NK-κB, and Nfkb2,
Rora, Stat5a, Lamp1 (CD107α), Elf4, Cd74 were expressed at
higher levels in WT memory p14 memory T cells. In contrast, the
transcription factor Batf regulating effector fate41, Socs4, impair-
ing T-cell development and homeostasis, and the NFκB inhibitor
Prmt2, were increased in D80 KO vs WT p14 T cells (Fig. 5e). In
conclusion, TNIK-deficient memory T cell display reduced gene
signatures in basal metabolic activity, cell cycling, and immune
effector function.

TNIK regulates Wnt signaling and cell division. Our gene
expression analysis and the functional data indicate that TNIK
signaling in CD8+ T cells reduces terminal differentiation to
effector T cells and favors memory commitment early after
priming. To study the signaling pathways in more detail, we
stimulated p14 T cells with H8-DCs and assessed RNA expression
3–96 h later. TNIK has been shown to activate Wnt signaling in
cancer stem cells by enhancing nuclear localization of β-
catenin25,26,42. Furthermore, Wnt signaling represses Notch sig-
naling43 and is of importance for T-cell memory formation44. We
therefore analyzed Wnt target genes early after T-cell activation.
Tcf7, Lef1, Myc, Ctnnb1, Runx1, and the stemness-related gene
Msi2 were expressed at significantly lower levels in KO vs WT
p14 T cells (Fig. 6a; Supplementary Fig. 7a). Lef1 gene expression
was significantly higher in AdTf WT vs KO p14 T cells 48 h p.i.,
confirming our in vitro data (Supplementary Fig. 7b). However,
Wnt target genes were not differentially expressed in the NGS
analysis of KO vs WT p14 T cells day 6 p.i., suggesting that Wnt
target genes may be induced very early after T-cell stimulation.
Notch1 expression and the expression of genes associated with
T-cell effector function (Ifng, Tbx21, Prdm1) were expressed at

higher levels in KO p14 T cells 48–96 h after T-cell activation
(Fig. 6b; Supplementary Fig. 7c).

In contrast to our in vivo experiments after LCMV infection
(Supplementary Fig. 4c, d), KO p14 T cells proliferated slightly
more than WT p14 T cells early after activation (Fig. 6c). It is well
accepted that a proliferating stem cells can divide symmetrically
or asymmetrically to control self-renewal and differentiation45.
This concept has recently been extended to T cells. Activated
T cells undergoing cell division were shown to generate daughter
cells with effector and memory fate by asymmetric segregation of
cellular determinants46–48. We therefore analyzed symmetric
division (SD) vs asymmetric division (AD) by Numb segregation
48 h after activation of p14 T cells in vitro and 96 h after LCMV
immunization in vivo. TNIK-deficiency significantly enhanced
AD in vitro and in vivo (Fig. 6d–f). We therefore hypothesize that
the increased frequency of AD versus SD in TNIK-deficient
T cells may increase the pool of effector-committed cells and
reduce the pool of stem cell/naive-like T cells (TN, TEM, TSCM)
(Fig. 6g).

CD27/TNIK/Wnt signaling favors symmetric cell division.
TNIK interacts with TRAF2, a key mediator of TNFR
signaling20,25,26. We therefore analyzed whether CD27 signaling
activates the Wnt pathway via TNIK and favors SD to enrich for
memory T cells. H8-DCs that were used for p14 T-cell activation
expressed the CD27 ligand CD70 (Supplementary Fig. 5l).
Blocking CD27 signaling by the monoclonal αCD70 antibody
(mAb) FR70 in vitro reduced SD to a level comparable with TNIK
KO p14 T cells. Importantly, FR70 did not further reduce SD in
KO p14 T cells, indicating that CD27 signaling induces SD via
TNIK (Fig. 7a). Similarly, in vivo FR70 treatment reduced nuclear
β-catenin localization in WT but not in KO p14 T cell day 6 p.i,
indicating that Wnt pathway activation is mediated via CD27/
TRAF2/TNIK (Fig. 7b). These results suggest that CD27/TNIK
signaling induces Wnt pathway activation, SD and favors mem-
ory T-cell differentiation. As shown on day 6 p.i., FR70 treatment
increased the expression of Eomes and favored differentiation to
SLECs in WT, but not KO p14 T cells (Fig. 7c, d).

Asymmetric division gives rise to daughter cells with distinct
metabolic characteristics which determines their fate47. We next
asked whether CD27 signaling during priming of naive human
CD8+ T cells (TN) may regulate early metabolic reprogramming via
even partitioning of the mitochondria to counteract a qualitative
split of daughter cells (effector vs memory differentiation). We
therefore activated TN cells with αCD3/VAR (Varlimumab; αCD27
agonist Ab) or αCD3/αCD28 Ab (TGN1412). αCD3/VAR activa-
tion significantly increased symmetric segregation of mitochondria
compared to activation via αCD3/αCD28 (Fig. 7e, f; Supplementary
Data 3). Importantly, CD3/VAR-activated TN cells maintained
highest TCF-1 expression (Fig. 7g). We next analyzed whether the
CD27/TNIK pathway activates Wnt signaling in human CD8+

T cells after in vitro re-stimulation. To this end, we FACS-purified

Fig. 4 Gene expression and metabolic flux analysis of TnikWT and Tnik−/− p14 TEFF cells. a GO enrichment analysis of the biological pathways
significantly affected in D6 KO vs WT p14 T cells. b Gene set enrichment analysis (GSEA) of glucose metabolism and oxidative stress. c Gene network and
canonical pathway analysis highlighting the regulation and interrelation of metabolic assigned processes. d Heatmap of differentially expressed genes
assigned to clusters in KO vs WT effector p14 T cells. e GSEA of the apoptosis pathway and heatmap of differentially expressed genes in the cell death
cluster. f GSEA of the PI3K/Akt pathway activation and heatmap of differentially expressed genes in the immune-related signaling cluster. Highlighted
genes in the clustered heatmaps are discussed. g, h Extracellular metabolic flux analysis of (g) naive or (h) 3 days activated (H8-DCs) WT and KO p14
T cells. Glycolysis (ECAR) and mitochondrial respiration (OCR) were assessed in response to injections of indicated compounds (top), and parameters of
glycolysis and OXPHOS were calculated (bottom). Bas, basal glycolysis and respiration; Cap, glycolytic capacity; Res, glycolytic reserve capacity; Max,
maximal respiration; SRC, spare respiratory capacity; ATP, ATP-linked respiration; G, glucose; O, oligomycin; F, FCCP; R/A, rotenone/antimycin A; 2-DG,
2-deoxyglucose. Depicted: WT p14 (black circles), KO p14 (red circles). Data are displayed as means ± SEM. Statistics: g, h two-tailed Student's t test,
nonsignificant P > 0.05, *P < 0.05, **P < 0.01. Also see Supplementary Fig. 5 and Supplementary Data 1. Source data are provided as a Source Data file.
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CD27+ and CD27− subpopulations from an in vitro expanded
HIV-1 gag-specific CD8+ T clone49 (Fig. 7h). Purified CD27+ and
CD27− T cells were activated with αCD3 mAb in the presence of
blocking αCD27 mAb or IgG control. Absence of CD27 on T cells
or the addition of αCD27 mAb significantly reduced nuclear
localization of TNIK and β-catenin (Fig. 7i). A TCF-1/LEF7
reporter assay confirmed a significantly higher Wnt activity in
CD27+ T cells compared with CD27− T cells (Fig. 7j). Taken
together, CD27 co-stimulation supports early metabolic fitness via
the TNIK/Wnt signaling pathway in murine and human CD8+

T cells.

Discussion
An acute infection leads to an increased demand of different
immune cells. Myeloid cells are produced in the bone marrow50

by hematopoietic stem cells (HSCs) and the process of differ-
entiation versus self-renewal during emergency hematopoiesis is

tightly regulated51. In contrast, CD8+ T cells serve the increased
demands during a viral infection by clonal expansion52. Similarly
to HSCs, the balance between differentiation to full effector cells
and the maintenance of cells with the capacity to persist long-
term is crucial to eradicate the pathogen and to allow memory
formation. Indeed, it became increasingly recognized that con-
served pathways regulate HSC and T-cell maintenance, introdu-
cing a new identity of memory T cells with stem-cell-like
features53.

TNIK regulates stemness in small intestine crypts and supports
colorectal cancer formation54. Similarly, TNIK signaling induces
proliferation and self-renewal of leukemia stem cells25,26. Here,
we document that TNIK favors the generation of memory T cells
during CD8+ T-cell activation while reducing differentiation to
effector cells. TNIK-deficient effector T cells were characterized
by an increased apoptotic rate and glycolysis. In contrast, TNIK-
deficient memory T cells expanded less efficiently upon
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are provided as a Source Data file.
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reinfection, and lost the capacity to expand and engraft in serial
re-transplantation experiments, a classical assay used to assess
stem-cell function of HSCs55.

Upon activation, TNIK is recruited to the nucleus to complex
with TCF-4/β-catenin and induce the canonical Wnt signaling
pathway22,56. We documented a reduced expression of Wnt tar-
get genes in TNIK KO p14 T cells early after activation in vitro
and 48 h after infection in vivo. In contrast, Wnt pathway acti-
vation was not detected in the NGS analysis at the peak of the
T-cell expansion in vivo. This may indicate that TNIK-Wnt
activation is a very early event after T-cell activation. Alter-
natively, high abundance of effector cells day 6 p.i. may prevent
the detection of differently regulated genes in the low abundant
memory T-cell precursors by using bulk RNAseq. However,
Notch1 and other molecules associated with differentiation to
effector cells such as Lfng and Aak1 are upregulated in TNIK KO
effector p14 T cells. Notch and Wnt pathways are highly con-
served interrelated signaling pathways that reciprocally control
cell fate57. In CD8+ T cells, Notch signaling promotes effector
differentiation while inhibiting the signaling pathways promoting
memory T-cell formation6. Moreover, Notch activates the PI3K/
Akt/mTOR pathway that is critical for metabolic conversion to
glycolysis, allowing rapid proliferation and acquisition of effector
function by T cells47. Importantly, GSE analysis of TNIK-
deficient effector cells revealed a significantly higher expression of
genes involved in the PI3K/Akt pathway, suggesting that Akt and
mTOR kinases contribute to the increased glycolysis.

Wnt signaling favors the differentiation into memory precursor
cells10. The Wnt target genes Tcf7 and Lef1 are preferentially
expressed in TN and in TCM, but not in TEFF cells58. Moreover,
activation of the Wnt pathway in vitro suppressed the antigen-
induced expression Eomes and inhibited differentiation to effec-
tor T cells. This arrested differentiation favored the generation of
TCM and T memory stem cells that are characterized by a high
proliferative capacity upon TCR re-stimulation53,59. Further,
Tcf7-deficient mice lack CD8+ memory precursor T cells, and
Tcf7-deficient T cells have an impaired capacity to expand
upon reinfection44. Interestingly, the phenotype of TNIK-
deficient CD8+ T cells is very similar to these earlier results
analyzing the Wnt pathway in T-cell memory formation. TNIK
signaling reduced the expression of Eomes and the differentiation
to SLECs in vitro, and KO p14 T cells had a severe impairment in
secondary expansion.

We recently showed that TNIK signaling favors symmetric
(SD) over asymmetric (AD) cell division in leukemia stem cells25.
Whether memory T cells emerge in a linear path from effector
cells or whether memory precursors are induced early after
activation is still a matter of debate60–62. Several studies docu-
mented an asymmetric segregation of cellular components such
as IFNγ receptor, mammalian target of rapamycin complex 1
(mTORC1) kinase, and the transcription factor c-Myc in the first
cell division steps, supporting an early divergence of effector and
memory T-cell precursors47,48,63. We now document that absence
of TNIK increases the frequency of T cells undergoing AD in the
first three division steps after activation. This promotes differ-
entiation to effector cells and a higher glycolytic activity. Term-
inally differentiated effector cells usually kill target cells an then
undergo apoptosis. Indeed, we documented an increased apop-
tosis rate of CD8+ T cells after expansion in the absence of TNIK.

Since TNIK is a downstream adaptor molecule of TRAF264, we
analyzed whether the TRAF2 signaling TNFR CD27 induces
TNIK/Wnt signaling. The importance of the CD27/TNIK/Wnt
signaling pathway has been documented before in leukemia stem
cells25,26. Similarly, CD27 co-stimulation induced nuclear TNIK
translocation and Wnt pathway activation in murine and in
human CD8+ T cells. This suggests that the CD27/TNIK/Wnt

pathway favors memory formation early after CD8+ T-cell acti-
vation. In addition, CD27 signaling favored symmetric cell divi-
sion and improved the metabolic capacity of the daughter cells by
regulating the partitioning of the mitochondria. However, it is
well documented that CD27 signaling in memory CD8+ T cells is
involved in the maintenance of T-cell memory and potentiates
autocrine IL-2 production and re-expansion capacity49,65,66.
Importantly, TNIK depletion day 20 p.i. did not alter the re-
expansion capacity of CD8+ T cells but secondary mem-
ory maintenace. This suggests, that CD27 ligation on memory
T cells supports re-expansion independently of TNIK, most likely
by activating NFκB and c-Jun N-terminal kinases67,68.

In summary, this study identifies TNIK as an important reg-
ulator of effector and memory T-cell differentiation early after T-
cell priming and provides a link between TNFR signaling and the
Wnt pathway in T cells.

Methods
Mice. C57BL/6J mice (BL/6, Cd.45.2+) were obtained from Charles River
Laboratories. Cd45.1+ congenic BL/6 mice, p14 TCR transgenic, and H8 gp33-
transgenic mice were provided from the Institute for Laboratory Animals (Zürich,
Switzerland). Inducible and constitutive TNIK knockout mice were generated and
maintained locally. A TNIK knockout first allele (KOMP Repository; Project ID:
CSD39738) was inserted into embryonic stem (ES) cells by homologous recom-
bination. ES cells were injected into blastocystes and implanted into foster mother.
Founder mice were bred and backcrossed to a C57BL/6J background. Founder
mice were further crossed with Flp+/+ mice, where the non-expressing allele was
converted into a conditional allele upon recombination of the FRT sites. Mice
harboring the floxed Tnik allele TnikF/F were used for Cre-recombination-based
generation of inducible or constitutive knockout mice. By crossing TnikF/F with
inducible promotor driven B6.Cg-Tg(UBC-cre/ESR1)1Ejb/J mice (Ubc-CreERT2;
Jackson Laboratory), TnikF/F;UBC-Cre or littermate controls TnikWT/WT;Ubc-Cre
were generated. Genotyping primers (Supplementary Table 1) were designed by
KOMP Repository (Design ID: 49289). Per oral (p.o.) administration of tamoxifen
(200 mg kg−1 day−1) on 5 consecutive days allowed Cre-mediated TNIK deletion.
By crossing TnikF/F with C57BL/6-Tg(Zp3-cre)93Knw/J mice (Jackson Labora-
tory), constitutive Tnik−/− or littermate controls Tnik+/+ were generated. P14
TCR mice were crossed with Tnik−/− mice. Based on SNP analysis, in house
generated TNIK mice were 97.65–99.97% C57BL/6 background. All mice used in
this study were maintained under specific pathogen-free conditions and entered the
experiment at the earliest age of 6 weeks. Animal experiments received ethical
approval by the local experimental animal committee of the Canton of Bern, and
were performed according to Swiss laws for animal protection. All mouse illus-
trations are creatd with Biorender.com.

Cell lines. The human lymphoblastoid B-cell line TM-LCL was generated in the
Lab of Dr. Phil Greenberg at the Fred Hutchinson Cancer Research Center, Seattle,
USA. The murine fibrosarcoma cell line MC57 was purchased from ATCC.

Human samples. Human HIV-1 Gag-specific CD8+ T-cell clones were generated
at the Fred Hutchinson Cancer Research Center, Seattle, USA, via in vitro
expansion of peripheral blood mononuclear cells (PBMCs) with UV-inactivated
vac/gag-infected PBMC-derived stimulator cells49,69. Human naive CD8+ T cells
were derived from healthy donor PBMCs and isolated following the instructions of
EasySep Human Naive CD8+ T Cell Isolation Kit (STEM CELL). All uses of
human material have been approved and reviewed by the Institutional Review
Office at the Fred Hutchinson Cancer Research Center. All recruited volunteers
provided written informed consent to participate as donors of peripheral blood
mononuclear cells.

Viral infection. LCMV strain WE was provided by R.M. Zinkernagel (University
of Zürich, Zürich, Switzerland) and propagated on L929 fibroblasts70,71. TnikF/F;
Ubc-Cre mice and littermate controls were infected with 200 plaque-forming units
(pfu) LCMV-WE. Alternatively, 1 × 105 MACS-purified p14 CD8+ T cells from
p14;Tnik−/− mice or littermate controls were adoptively transferred to congenic
BL/6 recipients. Eighteen hours later, mice were infected with 104 pfu LCMV-WE.
Re-challenge experiments were performed using 2 × 106 pfu recombinant vaccinia
virus expressing LCMV-glycoprotein G2 (rVV-G2)72. Alternatively, FACS-purifed
gp33-specific CD8+ or p14 T cells were AdTf into secondary recipient mice fol-
lowed by infection with 200 or 104 pfu LCMV-WE, respectively.

Plaques-forming assay. LCMV virus titers were determined by plaque-forming
assay on adherent MC57 fibroblast cell lines. After absorbance of virus from liver
homogenates, adherent cells were fixed with PBS 4% PFA, permeabilized with 0.5%
Triton X-100 balanced salt solution, and stained with anti-LCMV antibody73.
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Serial re-transplantation and reinfection. Memory mice were harvested ≥ 40 days
p.i., and splenic CD8+ T cells were MACS-purified using LS-MACS columns. Gp33
epitope-specific polyclonal CD8+ T cells or monoclonal p14 CD8+ T cells were
FACS-sorted using tetramers or anti-TCR Vα2 antibody, respectively. For first
reinfection, 3 × 104 tetramer-specific CD8+ memory T cells or 1 × 105 p14 memory
T cells were adoptively transferred into secondary congenic recipient mice. For
secondary infection, 3 × 104 p14 cells were re-transferred. In first and second re-
infection, mice were injected with 104 pfu LCMV.

Antibodies and flow cytometry. Quantitative flow cytometric analysis was per-
formed using standard procedures. The following anti-mouse antigen-specific
fluorochrome-conjugated antibodies were used: CD8 (53-6.7), CD19 (6D5), CD4
(GK1.5), CD11c (N418), CD80 (16-10A1), CD86 (GL1), CD45.2 (104), CD45.1
(A20), CD62L (MEL-14), CD44 (IM7), KLRG1 (2F1/KLRG1), CD127 (A7R34),
CD70 (FR70), TCR Vα2 (B20.1), CD107α (1D4B) (BioLegend). For intracellular
staining TNFα (MP6-XT22), IFNγ (XMG1.2), IL-2 (JES6-5H4), Eomes (Dan11-
mag) (eBioscience), T-bet (4B10), GranzymeB (2E7) (BioLegend), Tcf7/Tcf1 (533-
966) (BD Pharmingen)-directed antibodies, and the corresponding isotype controls
were used. The following anti-human antigen-specific fluorochrome-conjugated
antibodies were used: CD27 (MT-271), CD8 (HIT8a), and Tcf7/Tcf1 (533-966).
Fluorescent-labeled tetramers with H-2Db LCMV gp33-41 (KAVYNFATC) were
purchased from MBL International Corporation. Data acquisition was performed
using a LSR Fortessa or a LSR II SORP (BD Biosciences) flow cytometer. Cell-
sorting was performed using FACS Aria or FACS Aria III (BD Bioscience). Ana-
lysis was done using FlowJo (V.10.0.8, TreeStar, Inc.) software. For in vitro sti-
mulation of human CD8+ T cells, αCD3 antibody (OKT3, BioXCell), anti-human
CD27 antibody (Varlimumab, 1F5, produced at FHCRC), and anti-human CD28
antibody (TGN1412, produced at FHCRC) were used. For in vitro blocking, anti-
human CD27 antibody (1A4CD27, Beckman Coulter) was used. For flow imaging
and immunofluorescence, primary rabbit-α-TNIK (Santa Cruz Biotechnology),
rabbit-α-Numb (Abcam), mouse-α-active-β-catenin (Merck Millipore), mouse-α-
alpha tubulin (Abcam) and secondary goat-α-rabbit Alexa Fluor 546, goat-α-rabbit
Alexa Fluor 647 (Abcam), goat-α-mouse Alex Fluor 546 (Invitorgen), and bioti-
nylated goat-α-rabbit (Invitrogen) were used. For in vitro blocking of
CD27 signaling, CD70 (FR70; BioXCell) or control rat IgG (SIGMA) was used.

Chemicals, peptides, and recombinant proteins. See Table 1 for a list of used
reagents.

ImageStream X analysis. FACS-sorted cells were fixed in 4% paraformaldehyde
(PFA) kept for 10 min at 4 °C. Alternatively, 72 h anti-CD70 (FR70, 20 μg ml−1) or
IgG-treated in vitro bone marrow-derived H8-DC activated p14 cells were fixed in
freshly prepared Fix/Perm reagent provided by the FoxP3 staining kit (Thermo
Scientific) for 1 h at 37 °C. Then, cells were washed 2 × 5min with 1× Wash Buffer
(Dako) or 1× Perm/Wash buffer (Thermo Scientific). Fc receptor blocking was
performed (Innovex biosciences) for 30 min at RT. After another washing step,
cells were incubated with the primary anti-TNIK (D-16, Santa Cruz Biotechnol-
ogies), anti-β-catenin (Merck Millipore), anti-α-tubulin (Abcam), or anti-Numb
(Abcam) antibodies in diluent (Dako) or in 1× Perm/Wash buffer (Thermo Sci-
entific) overnight at 4 °C. The next day, another washing step was performed in 1×
Wash Buffer (Dako) or 1× Perm/Wash buffer (Thermo Scientific) prior to incu-
bation with the secondary antibody for 1 h at RT in the dark. Cells were then
washed again twice in PBS. Lastly, DAPI (Roche) nuclear staining was performed,
incubating the cells for 5 min at RT in the dark. After the last washing step in PBS,
cells were acquired at the ImageStream X Mark II imaging flow cytometer (Amnis)
and analyzed using INSPIRE and IDEAS software. Dividing CD8+ T cells were
extracted using a Mitosis Analysis Wizzard provided by IDEAS software. Selected

dividing cells were double proved by two independent researchers according to
nuclear DAPI stain. Using an intensity mask for Numb, symmetric (<1.8-fold)
versus asymmetric (>1.8-fold) segregation was determined in dividing cells.
Dividing cells that failed intensity calculation were assigned manually.

Immunofluorescence staining of human T-cell clones. FACS-sorted cells were
put on glass slides, fixed in 4% PFA, and treated with blocking solution. Staining
was performed for 2 h at RT using primary anti-TNIK (D-16, Santa Cruz Bio-
technologies) and anti-β-catenin (Merck Milllipore) antibodies. After washing, cells
were stained with the corresponding biotinylated secondary antibodies (Invitro-
gen). Following a Streptavidin labeling step for 1 h at RT, detection of biotinylated
secondary antibody was enabled. Lastly, DAPI (Roche) nuclear staining was per-
formed. Nuclear/cytoplasmic localization of TNIK and β-catenin was visualized by
an Eclipse E800 fluorescence microscope and Nikon DS-Ri1 camera NIS Elements
BR 3.0/3.2 software.

Live imaging of mitochondrial separation. In total, 2 × 106 CD8+ TN cells were
activated with plate coated αCD3 (5 μg ml−1) and αCD27 (VAR; 5 μgml−1) or
αCD28 (2 μg ml−1) agonistic antibody in vitro. After 2.5 days of activation, cells
were washed in pre-warmed CTL media [RPMI, 10% heat-inactivated human AB
sera, 2% L-glutamin (4 mM), 1% penicillin/streptomycin, 0.01% β-mercaptoethanol
(0.5M)] supplemented with 50 Uml−1 human IL-2. Cells were then incubated with
Image-iTTM TMRM Reagent (Thermo Fisher) and NucBlueTM Live Ready-
ProbesTM Reagent (Thermo Fisher) for 30min at 37 °C under standard culture
conditions. Subsequently, images were aquired with EVOS M5000 Imaging System
using a 40X objective. TMRM apportioning in deviding daughter cells was visually
assessed.

Human CD8+ T-cell clone expansion. Human HIV gag-specific CD8+ T-cell
clones were cultured as previously described49. In vitro re-expansion was per-
formed in CTL media supplemented with 50 Uml−1 recombinant human IL-2,
0.03 μg ml−1 OKT3 and irradiated lymphoblastoid feeder cells (LCL). Half-media
change was performed on days 1, 5, 7, and 10 after activation. FACS-sorted CD27+

and CD27− CD8+ T cells were further used for experiments and cultured in the
presence of 0.3 μg ml−1 αCD3 (OKT3) and 10 μg ml−1 CD27 blocking mAb or
isotype control.

Proliferation assay and cell cycle analysis. In vivo proliferation assay: FACS-
sorted p14 memory T cells were labeled with 5 μM carboxyfluorescein succinimidyl
ester (CFSE) for 10 min at 37 °C, and washed twice with PBS (5% FCS). In total,
7 × 105 labeled p14 cells were transferred into congenic recipient mice that were
infected with 104 pfu LCMV-WE 18 h later. Frequency of transferred T cells was
analyzed 3 days p.i. Alternatively, BrdU (2 mg 200−1 μl−1) was injected (i.p.) into
LCMV-immunized mice to determine 3 h incorporation rate and cell cycle state of
expanding p14 T cells using the APC BrdU Flow Kit (BD Biosciences) and 7AAD
labeling.

In vitro proliferation assay: In all, 105 CFSE-labeled naive WT/KO p14 cells
were co-cultured with bone marrow-derived H8-DCs that were generated as
previously described74.

Ex vivo proliferation: Intracellular staining was performed using the
Ki67 staining kit (BD Bioscience).

Cytokine release assay. In vitro: Splenocytes were incubated for 4–5 h at 37 °C
with Phorbol-12-myristate-13-acetate (PMA, 100 ng ml−1) and Ionomycin (1000
ng ml−1) or MHC-I-specific LCMV-glycoprotein peptides gp33 (aa 33-41,
KAVYNFATC) was purchased from NeoMPS SA. Protein accumulation in the

Table 1 Chemicals, peptides, and recombinant proteins.

Product Provider

LCMV-gp33-41 (KAVYNFATC) tetramer H-2 Db MBL, Woburn, MA, USA
LCMV-gp33-41 (KAVYNFATC) peptide NeoMPS SA, Strasbourg, France
rhIL-2 Prospec, Israel
rmIL-2 Prospec, Israel
Phorbol-12-myristate-13-acetate (PMA) Sigma Aldrich, St. Louis, MO, USA
Ionomycin Santa Cruz Biotec., Dallas, TX, USA
Brefeldin A Sigma Aldrich, St. Louis, MO, USA
DAPI Roche, Basel, Switzerland
Tamoxifen Sigma Aldrich, St. Louis, MO, USA
Phosphatase inhibitor Thermo Fisher, Waltham, MA, USA
Streptavidin BD Biosciences, San Jose, CA, USA
Fc receptor blocking reagent Innovex Biosciences, Richmont, CA, USA
Image-iTTM TMRM reagent Invitrogen, Life Technologies, CA, USA
NucBlueTM Live ReadyProbesTM Reagent Thermo Fisher, Waltham, MA, USA
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endoplasmatic reticulum was induced by Brefeldin A (5 μg ml−1, Sigma Aldrich).
Culture media was supplemented with rmIL-2 (12.5 Uml−1).

Ex vivo: Brefeldin A (1.25 mg) was injected i.v. 6 h before analysis. Staining for
cell surface antigens was performed for 30 min at 4 °C. After an additional washing
step, cells were permeabilized using BD Cytofix/Cytoperm solution (BD
Bioscience) for 30 min at RT in the dark. Intracellular staining was performed in
BD Perm/Wash buffer (BD Bioscience) for 30 min at 4 °C.

Cytotoxicity assay. In total, 1 × 104 gp33-peptide pulsed MC57 target cells were
co-incubated with CD8+ effector T cells from day 8 LCMV-infected mice at
indicated ratios (1:3, 1:10, 1:30, and 1:90) in a 96-V-bottom plate. Cultures were
incubated for 4–5 h at 37 °C. In all, 96-well plates were centrifuged, and super-
natants were transferred into non-transparent 96-well plates. Resazurin reaction
mixture was added (1:1) to cell supernatants. The plate was incubated for 10 min at
37 °C protected from light. Fluorescence reaction was recorded using a microplate
reader (TecanReader). Killing efficiency of effector T cells was calculated and
normalized to non-lysate-treated conditions. Maximal killing efficiency (100%) was
set by lysate control measurements.

Extracellular metabolic flux analysis. The metabolic activity (glycolysis and
mitochondrial respiration) of p14 T cells was determined using a Seahorse XFe96
Analyzer (Agilent) according to the manufacturer’s instructions. FACS-purified
naive (3 × 105 per well) or in vitro-activated (2 × 105 per well) WT and KO p14
cells were seeded onto Cell-Tak (Corning, no. 354240) pre-coated Seahorse 96-well
plates (Agilent, no. 102416-100) by centrifugation. The following compounds were
injected during the experiment at the indicated time points: oligomycin (2 μM,
Sigma Aldrich, O4876), FCCP (Carbonyl cyanide-4-(trifluoromethoxy) phe-
nylhydrazone, 1.5 μM, Abcam, ab120081), rotenone (1 μM, Sigma Aldrich, R8875),
antimycin A (1 μM, Sigma Aldrich, A8674), glucose (10 mM, Sigma Aldrich,
G7021), and 2-deoxy-glucose (100 mM, Sigma Aldrich, D3179). OCR and ECAR
values represent the averages of 7–10 replicates from two independent experiments,
and are depicted as mean+/− SEM. Parameters of glycolysis and OXPHOS were
calculated according to the manufacturer’s instructions.

Western blotting analysis. Total cellular extracts from organ lysates were pre-
pared in lysis buffer supplemented with proteinase inhibitor (Roche) and phos-
phatase inhibitor (Thermo Scientific). Protein samples were denaturated at 95 °C
for 5 min and loaded on Mini-proteanTGX precast gels (BioRad) for SDS-PAGE.
The gel was blotted onto the polyvinylidene difluoride membrane (BioRad). After
incubation with the primary polyclonal rabbit-α-mouse TNIK antibody (Thermo
Scientific) at 4 °C overnight, horseradish peroxidase (HRP)-conjugated goat-anti-
rabbit IgG (Thermo Scinentific) was used for primary antibody labeling. Alter-
natively, monoclonal HRP-conjugated anti-mouse β-actin antibody was used
(SIGMA). Specifically labeled protein bands were detected with Clarity Western
ECL Blotting Substrate using enhanced chemiluminescence (BioRad).

Lentivirus-based reporter assay. The Tcf/Lef reporter assay was performed as
described by Reya et al.75. Briefly, human HIV-specific CD8+ T cells were cultured in
a 96-well U-bottom plate in CTL media without antibiotics and transduced with
TCF/LEF lentiviral particles expressing firefly-luciferase or negative control lentiviral
particles ([25 MOI], Cignal Lenti TCF/LEF reporter [luc] kit; SABioscience) for 24 h
at 37 °C in the presence of 2 Uml−1 human recombinant IL-2 and 8 μg ml−1 Sur-
eEntry transduction reagent (SABioscience). Cells were then washed and cultured in
CTL media for 4 days. Luciferase activity was quantified by an Infinite 200 micro-
plate reader (Tecan) upon addition of Luficerin reagent (Steady-Glo Luciferase Assay
System;Promega) following the manufacturers instructions. CD27+/CD27− lumi-
nescence ratio was calculated and normalized to the negative control condition.

RT-qPCR. RNA was extracted from FACS-purified p14 T cells using NucleoSpin
RNA kit (Macherey-Nagel, USA), and cDNA was synthesized using High Capacity
cDNA Reverse Transcription Kit (Applied Biosystems, USA) for quantitative real-
time (qRT) PCR. The real-time primers (Supplementary Table 1) were designed
using Primerquest Software (Integrated DNA Technologies). For qRT-PCR ana-
lysis, the synthesized cDNAs was amplified with specific gene primers using Fas-
tStart Universal SYBR Green 2× Master Mix (Roche). Raw values were normalized
to a reference gene (GAPDH). Real-time PCR reactions were performed in two
independent biological replicates, and including RNAse-free H2O controls using
ABI Prism 7900 Sequence Detection System (Applied Biosystems). The fold dif-
ference for each sample was calculated by the comparative Ct method.

Next-generation sequencing. The total RNA was extracted from WT and KO p14
T cells of naive, D6, and D80 immunized mice using the RNeasy Micro Kit
(QIAGEN AG, Switzerland) according to the manufacturer’s instructions. The total
RNA was quality-checked on the Bioanalyzer instrument (Agilent Technologies,
USA) using the RNA 6000 Pico Chip (Agilent, USA) and quantified by Fluoro-
metry using the QuantiFluor RNA System (Promega, USA).

Libraries were generated from 10 ng of the total RNA using the SmartSeq2 Kit
(Takara Bio, Japan). Libraries were quality-checked on the Fragment Analyzer
(Advanced Analytical, Ames, IA, USA) using the High Sensitivity NGS Fragment
Analysis Kit (DNF-474, Advanced Analytical). Samples were pooled to equal
molarity. Each pool was quantified by PicoGreen Fluorometric measurement in
order to adjust to 12pM and used for clustering on the HiSeq 2500 instrument
(Illumina, San Diego, CA, USA). Samples were sequenced single-reads 50 bases
using the HiSeq SBS Kit v4 (Illumina, USA) and primary data analysis was
performed with the Illumina RTA v1.18.66.3.

RNA-seq analysis to access differentially expressed genes. The RNA-seq data
were analyzed using the ArrayStar software v.13 (DNASTAR, USA). The level of gene
expression was assessed after Reads Per Kilobase Million (RPKM) normalization and
log2 transformation. The dataset was analyzed by two-way ANOVA. A volcano plot
was generated to illustrate differentially expressed genes of WT and KO p14 T cells of
D6 and D80 immunized mice by plotting P-value versus fold change. Genes with
significant difference in their expression at P < 0.05 and fold differences ≥1.5 were
selected. The heatmaps were generated according to the standard normal distribution
of the values, and data were clustered using the standard Euclidean’s method based on
the average linkage. RNA-seq based expression profile of TNIK in selected immune
cell subsets was assessed using Gene Skyline platform.

Gene set enrichment, gene ontology, and pathway analysis. Gene set enrich-
ment analysis (GSEA) was performed using the GSEA software v3.0 (Broad-
institute, USA). Gene networks and canonical pathways representing differentially
expressed genes were identified using the Ariadne Genomics Pathway Studio
software and mammalian database (Elsevier). The gene ontology (GO) enrichment
takes a list of significantly expressed genes at different treatment conditions and
groups them into functional hierarchies. The enrichment scores were calculated
using chi-square test comparing the proportion of the gene list to the proportion of
the background in the group. A value of 3 or higher corresponded to a significant
over-expression (P < 0.05). Depicted: normalized enrichment score (NES) for the
gene set. Peak at the beginning/end suggests significant enrichment in KO or WT,
respectively. Value of each gene’s correlation with the phenotype, KO.

In silico pathway analysis was performed using the Ariadne Genomics Pathway
Studio software (Elsevier). This analysis predicts potential biological processes,
pathways and molecules affected by differentially expressed genes. The functional
analysis identified direct interactions between differentially expressed genes in
order to facilitate an understanding beyond their regulatory networks.

Statistical analysis. Statistical analysis was performed using GraphPad Prism
software v7.0 (GraphPad, USA). The data were analyzed using one-way or two-way
ANOVA or Student’s t test (one-tailed, two-tailed). Significant differences in
Kaplan–Meier survival curves were determined using the log-rank test (two-tailed).
Data are represented as means ± standard error of the mean (SEM) as indicated in
the legend. P < 0.05 was considered statistically significant. *P < 0.05, **P < 0.01,
***P < 0.001, and ****P < 0.0001. Ns denotes nonsignificant.

Software. PRISM software was used for the statistical analysis and data visualization
(http://www.graphpad.com). Flow cytometric data was analyzed using FloJo 9 and 10
(http://www.flowjo.com). ImageStream X analysis was performed using Amnis
IDEAS software (http://www.emdmillipore.com). For bioinformatics analysis of the
RNA-seq data ArrayStar Software v13 (http://www.dnastar.com), Ariadne Genomic
Pathway Studio software (http://www.ariadnegenomics.com) and Gene set enrich-
ment analysis software v3.0 (http://software.broadinstitute.org/gsea) were utilized.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The NGS data are available in the NCBI GEO database under the accession code:
GSE127734. Gene Skyline platform of Immunological Genome Project (http://rstats.
immgen.org/Skyline/skyline.html) was used for RNA-seq analysis. The source data are
provided as a Source Data file. All other data and reagents will be made available by the
corresponding authors upon reasonable requests.
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