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1 Introduction

International treaties on the provision of global public goods are plagued by the fundamental

free-riding problem: each country’s contribution will benefit all countries in a non-exclusive

and non-rival manner. This prisoner’s dilemma aspect and the absence of a supranational au-

thority makes international coordination both crucial and exceptionally difficult to achieve.

Countries may either lack the incentive to sign an agreement and benefit from the signa-

tories’ contributions or they may have incentives not to comply with promises made in an

agreement.

In long-run problems extending over decades or even centuries, such as mitigating anthro-

pogenic climate change, a second problem arises. Even if the free-riding problem has been

solved, little is achieved if the international community fails to agree on a subsequent agree-

ment when the first has expired. With respect to anthropogenic climate change, this is

precisely the problem we face today. Although the end of the Kyoto Protocol is nigh,1 the

international community failed to agree on a subsequent international agreement to reduce

greenhouse gas emissions both in December 2009 in Copenhagen and a year later in Cancún.

In this paper we propose and analyze a treaty design involving refunding, which we call

a refunding scheme (henceforth RS). The main idea of the RS is that all countries pay

an initial fee into a global fund that is invested in long-run assets. Countries maintain

full sovereignty over how much emissions they abate each year and what policy measures

they use to do so. At the end of each year, part of the fund is paid out to countries in

proportion to the relative GHG emission reductions they have achieved in that year. We

show that a suitably selected RS establishes a sustainable solution to the free-rider problem,

so the fund will never be exhausted. A sustainable solution can be achieved in two ways.

Emissions can be at the socially optimal level in each period (first-best sustainable solution)

or emissions converge to their socially optimal level in the long run (second-best sustainable

solution). In the latter case, the refund is equal to the interest earned on the fund. Both

these sustainable solutions share one property: once the refunding scheme is established, no

further coordination is required, except in administering the system, measuring reductions,

and investing and distributing money. By construction, both schemes will last forever, as

the fund will never be exhausted.

Our main formal results are as follows: First, the globally optimal solution minimizing

the discounted values of global abatement costs and global damages prescribes uniquely

1In the Kyoto Protocol – the first international treaty on reducing greenhouse gas emissions with binding
emission targets – the industrialized countries of the world, so called Annex B countries, committed
themselves to a reduction of greenhouse gas (GHG) emissions by 5.2% against 1990 levels over the period
from 2008 to 2012.
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determined emission abatement efforts for each period and each nation such that the global

stock of GHGs converges to a steady state called long-run desired stock. If there is no treaty,

countries will choose levels of GHG that fall considerably short of the globally optimal

solution, while the stock of GHGs converges to a steady state well above the long-run

desired stock.

Second, we show that initial fees and a feasible sequence of refunds can be devised in such a

way that the RS implements socially optimal abatement levels in each period. We call this

treaty the first-best sustainable RS. We also explore the potential of a particularly simple

RS. In each period, the interest yields of the initial fees invested at a constant interest

rate are refunded to the countries. We determine the amount of initial fees that induces

convergence to the long-run desired stock. We call such a scheme second-best sustainable

RS, as although countries do not choose socially optimal abatement levels in all periods, in

the long run the abatement levels and also the stock of GHGs will converge to the social

optimum. Both treaties provide a sustainable solution for the climate change problem. The

main intuition is as follows: Nations are free to choose low or even zero abatement levels

in one or more periods, but then they will forfeit refunds for that period. If the initial fees

are sufficiently large, countries will choose high abatement levels, thereby benefiting from

correspondingly large refunds. In the first-best sustainable RS, refunds can be adjusted

so that countries choose socially optimal abatement levels in each period, whereas in the

second-best sustainable RS, initial fees are chosen in such a way that the countries’ emission

abatement levels will converge to the socially optimal levels in the long run.

Third, as the initial amount of money the countries have to pay may be quite large, especially

in the case of the second-best sustainable RS, we show that the same solution can be obtained

if countries periodically pay a fixed amount into the fund, which will be smaller, the shorter

the duration is between two payments made by a nation. Additionally, we suggest different

ways of financing the initial fees that are neutral to tax payers and international capital

markets.

Fourth, as countries may want to renounce paying the initial fee and not sign the treaty,

initial participation requires that countries be pivotal for the formation of the RS. That

is, if any country defects, the treaty will fail.2 Then initial participation will be part of a

subgame perfect equilibrium.

2In practice, of course, only industrial countries will be called upon to set-up the climate fund. But even
the participation of industrial countries remains a thorny issue, as we will discuss further in Section 6.
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The starting point for our scheme and its analysis is the large body of game-theoretic lit-

erature on the formation of international and self-enforcing environmental agreements3 as

there is no supranational authority to ensure participation and compliance. This literature

has provided valuable insights into the potentialities and limitations of international envi-

ronmental agreements. The literature also suggests that a large coalition will achieve only

modest abatement efforts or will fail to enter into force (Asheim et al. 2006). Our approach

complements this literature by suggesting a procedure that enables a coalition to achieve

its emission reduction objectives after the coalition has been formed. We suggest that even

large coalitions can achieve substantial emission reductions if they are able to set up an

agency that has the power to administer a refunding scheme on which coalition members

have previously agreed.4

The paper is organized as follows: In the next section, we set up our model, for which in

Section 3 we derive the social optimum and the decentralized solution as benchmark cases.

The refunding scheme is introduced in Section 4, where the existence of the first- and second-

best sustainable RS is also established. In Section 5 we illustrate our model numerically. In

Sections 6 and 7 we discuss practical aspects of the RS, such as initial participation and

how to raise initial fees. Section 8 concludes.

2 The Model

We consider a world with n ≥ 2 identical countries characterized by an emission function E,

an abatement cost function C, and a damage function D over a finite time horizon T . As we

consider T to be arbitrarily large, we shall also investigate the limit T → ∞. Throughout

the paper countries are indexed by i and j, and time is indexed by t.

Emissions of country i in period t are assumed to equal “business-as-usual” emissions ǫ (i.e.,

emissions arising if no abatement effort is undertaken) minus emission abatement ai
t:

E(ai
t) = ǫ − ai

t , with ai
t ∈ [0, ǫ] , i = 1, . . . , n , t = 1, . . . , T . (1)

3Non-cooperative and cooperative approaches have been pursued. Notable contributions are Barrett (1994),
Barrett (1999), Barrett (2003), Carraro and Siniscalco (1992), Carraro and Siniscalco (1993), Chander and
Tulkens (1992), Hoel (1992), and Tulkens (1979). The earlier literature is comprehensively summarized by
Finus (2001). Pioneering in the modelling of coalition structures are Bloch (1997) and Yi (1997), further
developed by Finus and Rundshagen (2009).

4Taking up a suggestion by Gersbach (2005), Gersbach and Winkler (2007) focus on refunding schemes
in a two-period setting in which participating countries pay emission taxes into a global fund. In this
paper, we examine a refunding scheme in which countries only pay initial fees and focus on the long-run
properties of such a scheme.
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We assume that emission abatement ai
t is achieved by enacting some national environmental

policy, which induces convex abatement costs in country i:5

C(ai
t) =

α

2

(

ai
t

)2
, with α > 0 , i = 1, . . . , n , t = 1, . . . , T . (2)

Global emissions, which are the sum of the emissions by all countries, accumulate the stock

of greenhouse gases, st, according to the following equation of motion:

st+1 = (1 − γ)st +
n
∑

i=1

E(ai
t) , with 0 < γ < 1 , t = 1, . . . , T , (3)

where γ denotes the constant and positive natural decay rate of greenhouse gases in the

atmosphere. The initial stock of greenhouse gases is denoted by s1.

The global stock of greenhouse gases in period t, st, gives rise to strictly increasing and

strictly convex damage for each country i:

D(st) =
β

2
s2

t , with β > 0 , t = 1, . . . , T . (4)

Finally, countries are assumed to discount outcomes in period t with the discount factor

δt−1 with 0 < δ < 1.

3 Social Optimum and Decentralized Equilibrium

Before we introduce the refunding scheme (RS) in the next section, we characterize the global

social optimum and the decentralized solution when no international agreement has been

reached. As is well-known, the latter is inefficient because the emissions of each individual

country impose negative externalities on all other countries that an individual country does

not take into account when choosing the extend of its emission abatement.

Both the global social optimum and the decentralized outcome are important benchmarks in

evaluating the performance of potential international agreements. While the decentralized

outcome is realized if no agreement takes place, the social optimum is the ultimate goal an

international agreement seeks to implement. Obviously, any agreement has to outperform

the decentralized outcome in order to be seriously considered, and it is the “better,” the

closer its outcome is to the global social optimum.

5This is a standard short-cut way of capturing aggregate abatement costs in country i (see, e.g., Falk and
Mendelsohn 1993).
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3.1 Global social optimum

Consider a global social planner seeking to maximize global welfare, i.e., seeking to minimize

the net present value of total global costs consisting of global costs of emission abatement

and the sum of national environmental damages stemming from the pollution stock.

To solve the social planner’s problem, we introduce the following recursive value function

in period t:

Vt(st) = max
{ai

t}n

i=1







δVt+1(st+1) −
n
∑

j=1

α

2

(

aj
t

)2
− nβ

2
s2

t







, (5)

where Vt(st) represents the negative of the total global costs accruing from period t onwards

discounted to period t. The social global planner’s problem is to maximize (5) for t = 1, . . . , T

subject to equation (3) and VT +1(sT +1) ≡ 0. Assuming an interior solution6, i.e., ai
t ∈ (0, ǫ)

for all i = 1, . . . , n and t = 1, . . . , T , the following first-order conditions are necessary for a

global optimum:

αai
t = −δV ′

t+1(st+1) , t = 1, . . . , T . (6)

Differentiating Vt(st) with respect to st and applying the envelope theorem yields

−V ′
t (st) = nβst − δ(1 − γ)V ′

t+1(st+1) , t = 1, . . . , T . (7)

Recursive evaluation of equation (7) implies that the negative of the first derivative of the

value function, −Vt
′(st), equals the net present value in period t of all future damages from

one additional marginal unit of the pollution stock st summed up over all countries. Then

first-order condition (6) says that in the global social optimum the costs of abating an

additional marginal unit of emissions have to equal the net present value of all mitigated

future damages caused by this additional marginal unit by decreasing the pollution stock

st. As abatement in period t only influences the damages in the period t + 1 and the world

ends after period T , abatement in the terminal period does not pay off, implying ai
T = 0.

According to the following proposition, there exists a unique global optimum:

Proposition 1 (Global Social Optimum)

For any time horizon T ≤ ∞ there exists a unique social global optimum characterized by

identical sequences of emission abatements for all countries i in all periods t, ai
t
⋆

= a⋆
t , and

a sequence for the greenhouse gas stock s⋆
t (i = 1, . . . , n; t = 1, . . . , T ).

6Interior solutions a
i
t > 0 are guaranteed by the quadratic abatement cost and damage functions.

5



The proof of Proposition 1 is given in the Appendix. The proof is constructive in the sense

that we not only show the existence and the uniqueness of the social global optimum but

also determine closed-form solutions for the sequences a⋆
t and s⋆

t . As we are particularly

interested in the long run, we state the following corollary:

Corollary 1 (Global Social Optimum in the Long Run)

For T → ∞ the sequences of emission abatement and the greenhouse gas stock in the global

social optimum converge to their steady state levels

aSO =
n2βδǫ

αγ [1 − δ(1 − γ)] + n2βδ
, (8a)

sSO =
nαǫ [1 − δ(1 − γ)]

αγ [1 − δ(1 − γ)] + n2βδ
. (8b)

The proof of Corollary 1 is given in the Appendix.

3.2 Decentralized solution

Next we examine a decentralized system in the absence of an international treaty, where

a local planner in each country (e.g., a government) seeks to minimize the total local costs

consisting of local abatement costs and local environmental damages. We are looking for

subgame perfect Nash equilibria in pure strategies for this game.

We solve the game by backward induction, starting from period T . It is useful to consider

a typical step in this procedure. To this end, suppose that there exists a unique subgame

perfect equilibrium for the subgame starting in period t+1 with a stock of greenhouse gases

st+1. For the moment, this is assumed to hold in all periods t + 1 and will be verified in the

proof of Proposition 2. Other details of the history of the game apart from the level of the

greenhouse gas stock st+1 do not matter, as only st+1 influences the payoffs of the subgame

starting in period t + 1 and the equilibrium is assumed to be unique.

Given the unique subgame perfect equilibrium for the subgame starting in period t + 1 with

the associated equilibrium payoff W i
t+1(st+1), country i’s best response in period t, āi

t, is

determined by the solution of the optimization problem

V i
t (st)|A−i

t = max
ai

t

{

δW i
t+1(st+1) − α

2

(

ai
t

)2
− β

2
s2

t

}

, (9)

subject to equation (3), W i
T +1(sT +1) ≡ 0, and given the sum of abatement efforts by all

other countries A−i
t =

∑

j 6=i aj
t .
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As we will show in the proof of Proposition 2, country i’s optimization problem in period t

is strictly concave. Thus, differentiating equation (9) with respect to ai
t and restricting our

attention to interior solutions, we obtain an implicit function for country i’s best response

αāi
t = −δW i

t+1
′
(s̄t+1) , (10)

where s̄t+1 = (1 − γ)st + nǫ − āi
t − A−i

t . In addition, applying the envelope theorem to

equation (9) yields

−V i
t

′
(st)|A−i

t = βst − δ(1 − γ)W i
t+1

′
(s̄t+1) . (11)

We observe that W i
t (st) = V i

t (st)|Â−i
t with Â−i

t =
∑

j 6=i âj
t denoting the sum of emission

abatement in period t in the subgame perfect Nash equilibrium for all countries j 6= i.

Recursive evaluation of equation (11) implies that the negative of the first derivative of the

payoff function in period t, −W i
t

′
(st), equals the net present value of all future damages in

country i from one additional marginal unit of the pollution stock st in period t. Then, the

best-response function (10) says that country i’s costs of abating an additional marginal

unit of emissions have to equal the net present value of all mitigated local future damages

caused by this additional marginal unit by decreasing the pollution stock st. Note that

country i’s best-response function only depends on the sum of the emission abatement of

all other countries A−i
t and not on the contribution of individual countries aj

t .

The following proposition establishes the existence and uniqueness of a subgame perfect

Nash equilibrium:

Proposition 2 (Decentralized Solution)

For any time horizon T < ∞, there exists a unique subgame perfect Nash equilibrium char-

acterized by identical sequences of emission abatements for all countries i in all periods t,

âi
t = ât, and a sequence for the greenhouse gas stock ŝt (i = 1, . . . , n; t = 1, . . . , T ).

The proof of Proposition 2 is given in the Appendix. In the proof we also determine closed-

form solutions for the sequences ât and ŝt.

Again, we are interested in the long run and take the limit for T → ∞. The reason is that

this equilibrium approximates the equilibrium for very large, but still finite time horizons

T .7

7In infinite horizon models, further equilibria and even a continuum of equilibria can occur (Tsutsui and
Mino 1990, Rowat 2007). However, it can be shown that the equilibrium we achieve by taking the limit
T → ∞ is the unique Markov perfect equilibrium in affine strategies (Lockwood 1996).
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Corollary 2 (Decentralized Solution in the Long Run)

For the limit T → ∞, the sequences of emission abatement and the greenhouse gas stock

in the unique subgame perfect Nash equilibrium of the decentralized solution for finite time

horizons T converge to the steady state levels

aDS =
nβδǫ

αγ [1 − δ(1 − γ)] + nβδ
, (12a)

sDS =
nαǫ [1 − δ(1 − γ)]

αγ [1 − δ(1 − γ)] + nβδ
. (12b)

The proof of Corollary 2 is given in the Appendix.

From Corollaries 1 and 2 we observe that aSO > aDS and sSO < sDS, which reflects

the well-known underprovision of emission abatement in the decentralized case due to the

incentives for each country to free-ride on the emission abatements of all other countries. As

these incentives increase with the number of countries n, the underprovision of abatement

becomes more severe, the higher n is.

4 Refunding Scheme

In the following, we introduce a refunding scheme (RS) and analyze its potential for im-

proving on the decentralized solution. The essential idea is that a global fund be established

that refunds interest earnings to member countries in each period, proportionally to their

relative emission reductions.

4.1 Rules of the RS

We consider a three-step procedure. First, participating countries negotiate the parameters

of the RS. In particular, this includes duration T of the treaty, the level of an initial fee

f i
0 payable into a global fund by each participating country, and reimbursements Rt for all

periods t = 1, . . . , T − 1. Second, in each period t = 1, . . . , T − 1 the fraction Rt of the fund

is reimbursed to the participating countries in proportion to the emission reductions they

have achieved relative to overall emission abatements in this period. The remaining assets

of the fund are invested at the constant interest rate ρ per period, and the returns add to

the global fund in the next period t+1. Finally, in period T the fund is equally redistributed

to the participating countries.

8



Thus, the fund at the end of period t reads

ft = (1 + ρ)ft−1 − Rt , t = 1, . . . , T − 1 , (13)

with an initial fund f0 =
∑

i∈S f i
0, where S denotes the set of countries participating in

the RS. Note that fT = 0, or equivalently RT = (1 + ρ)fT −1. In addition, the refund ri
t a

member country i receives in period t yields

ri
t =











Rt
ai

t
∑

j∈S
aj

t

, t = 1, . . . , T − 1 ,

Rt

|S| , t = T .
(14)

A set of initial fees f i
0 ≥ 0 and refunds Rt ≥ 0 is feasible if ft ≥ 0 for all t = 1 . . . , T holds.

In order to analyze the potential of an RS to mitigate climate change, we proceed as follows:

First, assuming that all countries participate in the RS in step one, we show that for any

feasible set of initial fees f i
0 and refunds Rt and any time horizon T < ∞ there exists a

unique and symmetric subgame perfect Nash equilibrium for steps two and three. Second, we

show that there exists a feasible set of initial fees f i
0 and refunds Rt for which the subgame

perfect Nash equilibrium resembles the global social optimum. This is called a first-best

sustainable RS. Third, we show that a refunding scheme in which all returns of the fund are

fully redistributed in each period converges to the social global optimum in the long run for

an appropriate choice of initial fees f i
0. This treaty is called second-best sustainable RS.

4.2 Subgame perfect equilibrium

Given that all n countries have joined the RS and given an arbitrary but finite time horizon

T and a feasible set of initial fees f i
0 and refunds Rt, we now analyze the subgame perfect

equilibria of the RS. We assume that all countries set a sequence of local abatement efforts

ai
t so as to minimize local abatement costs and environmental damages and to maximize

refunds ri
t.

Proceeding as in Subsection 3.2, we assume momentarily that there exists a unique subgame

perfect equilibrium for the subgame starting in period t+1 with a greenhouse gas stock st+1.

Thus, we can write W i
t+1(st+1) for country i’s equilibrium payoff for this subgame. Then

country i’s best response in period t, āi
t, is determined by the solution of the optimization

problem

V i
t (st)|A−i

t = max
ai

t

{

δW i
t+1(st+1) − α

2
(ai

t)
2 − β

2
s2

t + ri
t

}

, (15)

9



subject to equation (3), W i
T +1(sT +1) ≡ 0, and given the sum of the abatement efforts of

all other countries A−i
t =

∑

j 6=i aj
t . In the proof of Proposition 3 we will establish that

the optimization problem of country i in period t is strictly concave. Thus, differentiating

equation (15) with respect to ai
t and restricting our attention to interior solutions, we obtain

an implicit function for country i’s best response

αāi
t = −δW i

t+1
′
(s̄t+1) +

∂ri
t

∂ai
t

∣

∣

∣

∣

∣

ai
t=āi

t

, (16)

where s̄t+1 = (1 − γ)st + nǫ − āi
t − A−i

t and

∂ri
t

∂ai
t

=















Rt
A−i

t

(ai
t + A−i

t )2
, t = 1, . . . , T − 1 ,

0 , t = T .

(17)

Applying the envelope theorem yields equation (11), as in the decentralized solution. Thus,

the best response function (16) implies that country i’s costs for abating an additional

marginal unit of emissions have to equal the net present value of all mitigated local future

damages caused by this additional marginal unit by decreasing the pollution stock st plus

the refunds induced by abating this additional marginal unit. In case of the RS as well, the

best-response function of country i only depends on the sum of the emission abatement of

all other countries A−i
t and not on the contribution of individual countries aj

t , j 6= i.

Again, we can show the existence and uniqueness of a subgame perfect Nash equilibrium:

Proposition 3 (Refunding Scheme)

Given a time horizon T < ∞ and a feasible set of initial fees f i
0 and refunds Rt, there exists

a unique subgame perfect Nash equilibrium characterized by identical sequences of emission

abatements for all countries i in all periods t, ãi
t = ãt, and a sequence for the greenhouse

gas stock s̃t (i = 1, . . . , n; t = 1, . . . , T ).

The proof of Proposition 3 is given in the Appendix.

4.3 First-best sustainable RS

We now show that there exists a feasible set of initial fees f i
0 and refunds Rt such that the

unique Nash equilibrium of Proposition 3 is identical to the global social optimum charac-

terized in Proposition 1. We call a treaty that exhibits this property first-best sustainable

refunding scheme.
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To prove the existence of a first-best sustainable RS, we first look for the sequence of refunds

Rt that ensures that the unique Nash equilibrium under the refunding scheme equals the

outcome of the social global optimum. In a second step, we calculate the minimal initial

fund f0 for which this sequence of refunds is feasible.

From equation (A.31) in the proof of Proposition 3, we know that in the unique and sym-

metric subgame perfect Nash equilibrium the following condition for the refund in period t,

Rt, holds:

Rt =
n2ãt

n − 1

[

αãt + δW ′
t+1(s̃t+1)

]

, (18a)

where ãt and s̃t denote the levels of abatement and the pollution stock in period t in the

subgame perfect Nash equilibrium. Recursively applying condition (A.33), we can rewrite

equation (18a) to yield

Rt =
n2ãt

n − 1







αãt − δβ
T
∑

k=t+1

[δ(1 − γ)]k−(t+1)s̃k







. (18b)

Inserting the sequences a⋆
t and s⋆

t of the global social optimum, as characterized by Propo-

sition 1, yields the sequence of refunds R⋆
t for which the unique subgame perfect Nash

equilibrium of the RS and the social global optimum coincide:

R⋆
t =

n2a⋆
t

n − 1







αa⋆
t − δβ

T
∑

k=t+1

[δ(1 − γ)]k−(t+1)s⋆
k







. (19)

To determine the minimal initial global fund f⋆
0 for which the sequence of refunds R⋆

t is

feasible, we re-write the recursive equation (13) to yield

f0 =
T
∑

t=1

[

Rt

(1 + ρ)t

]

+
fT

(1 + ρ)T
. (20)

Thus, the minimal fund necessary to support the sequence of refunds R⋆
t is given by

f⋆
0 =

T −1
∑

t=1

[

R⋆
t

(1 + ρ)t

]

. (21)

Note that it is optimal to empty the fund as early as period T −1, as the equal distribution of

the remainder of the fund in period T does not influence the countries’ abatement decisions

in the last period. Hence R⋆
T = 0.

As a consequence, the following proposition holds:
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Proposition 4 (Existence of First-best Sustainable RS)

For any time horizon T < ∞, the unique and symmetric subgame perfect Nash equilibrium

of the RS coincides with the social global optimum for f0 ≥ f⋆
0 and Rt = R⋆

t (t = 1, . . . , T ),

where f⋆
0 and Rt = R⋆

t are given by equations (21) and (19).

Proposition 4 says that for any initial global fund equal to or exceeding f⋆
0 the social global

optimum can be implemented by setting Rt = R⋆
t . Note that the levels of abatement a⋆

t and

the greenhouse gas stock s⋆
t are analytically solvable, as shown in the proof of Proposition

1. As a consequence, the levels of the minimal initial global fund f⋆
0 and the sequence of

refunds R⋆
t are also analytically solvable.

4.4 Second-best sustainable RS

As it may be difficult to agree ex ante on both an initial global fund f0 and a sequence of

refunds Rt, we now analyze a simplified version of the RS in which the total initial fund f0

is invested and the refunds in each period equal the interest payments per period

Rt = ρf0 ≡ R , t = 1, . . . , T − 1 . (22)

Then, the fund in period t is given by the initial fund, i.e. ft = f0 for all periods t =

1, . . . , T − 1. Note that in the last period, the remainder of the fund is redistributed equally

to the participating countries, so that fT = 0 or RT = (1 + ρ)f0.

We show that under these conditions we can construct an RS for which the level of the

greenhouse gas stock, s̃t, converges to the global social optimal level s⋆
t in the long run. We

call such a treaty second-best sustainable refunding scheme as the global social optimum is

only reached in the limit t → ∞.

First, we calculate the long-run levels of abatement and the greenhouse gas stock under

the RS that correspond to a particular level of the global fund f0. Again, we analyze the

unique Nash equilibrium of the RS for T < ∞ in the limit T → ∞, which approximates the

equilibrium of arbitrarily large but still finite time horizons T .

12



Proposition 5 (RS in the Long Run)

For the limit T → ∞, the sequences of emission abatement and the greenhouse gas stock in

the unique subgame perfect Nash equilibrium of the RS for finite time horizons T converge

to the steady state levels

aRS =
nβδǫ +

√

n2β2δ2ǫ2 + 4γRn−1
n2 [1 − δ(1 − γ)]{αγ[1 − δ(1 − γ)] + nβδ}

2{αγ[1 − δ(1 − γ)] + nβδ} , (23a)

sRS =
n

γ
(ǫ − aRS) . (23b)

The proof of Proposition 5 is given in the Appendix.

Second, comparing the steady state levels (aRS , sRS) with the corresponding levels in the

global social optimum (aSO, sSO), we obtain

Corollary 3 (Second-best Optimal Level of the Global Fund f)

The steady state of the RS (aRS , sRS) coincides with the steady state of the global social

optimum (aSO, sSO) if and only if

fSB
0 =

αn5β2δ2ǫ2

ρ{αγ[1 − δ(1 − γ)] + n2βδ}2
. (24)

Proof: Solving aRS = aSO for the fund fSB
0 yields (24). �

Proposition 5 together with Corollary 3 immediately imply

Corollary 4 (Existence of Second-best Sustainable RS)

Given that a treaty with an initial global fund fSB
0 has been signed, it holds that

lim
t→∞

s̃t = sRS = sSO . (25)

Corollary 4 shows that there exists a RS that induces a convergence to the socially desired

stock of greenhouse gases in the long run. Hence, the second-best sustainable RS provides a

sustainable solution for the provision of the global public good of mitigating climate change

in the long run. However, the path of abatement levels does not, in general, coincide with the

socially optimal level. Although this difference in abatement levels between the second-best

sustainable RS and the social global optimum vanishes over time, it may be substantial in

the short run. The following proposition examines this difference:

13



Proposition 6 (Difference Second-best Sustainable RS – Social Optimum)

In the linear approximation around the steady state of the second-best sustainable RS, the

following statements hold:

(i) The difference in the levels of the greenhouse gas stock between the second-best sus-

tainable RS and the social global optimum is given by

∆st = s̃t − s⋆
t = (s1 − sSO)

[

νt−1
2 − λt−1

2

]

, (26)

with

ν2 =
1

2



1 − γ +
α(2n − 1) + n2βδ

α(2n − 1)δ(1 − γ)
−
√

(

1 − γ +
α(2n − 1) + n2βδ

α(2n − 1)δ(1 − γ)

)2

− 4

δ



 ,

(27a)

λ2 =
1

2



1 − γ +
α + n2βδ

αδ(1 − γ)
−
√

(

1 − γ +
α + n2βδ

αδ(1 − γ)

)2

− 4

δ



 . (27b)

(ii) We have

∆st







< 0 , if s1 < sSO ,

> 0 , if s1 > sSO .
(28)

Proposition 6 says that (at least in a sufficiently small neighborhood around the steady

state) the saddle point path of greenhouse gas emissions in the second-best sustainable RS

is below (above) the global social optimum if the initial stock of greenhouse gases is below

(above) the long run steady state. Thus, the second-best sustainable RS induces inefficiently

high (low) abatement levels for s1 < sSO (s1 > sSO).

5 Numerical Illustration

To give an idea of the order of magnitude needed for the initial fund f0 to implement the

first- and second-best sustainable RS, we run a little numerical exercise. However, due to

the highly stylized model, the results are rather a numerical illustration than a quantitative

analysis.

Following similar numerical illustrations, such as those provided by Goulder and Mathai

(2000), we adopt the slightly more complex but also slightly more realistic stock equation
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by Nordhaus (1994):

st+1 = (1 − γ)st + θ
n
∑

i=1

(ǫi
t − ai

t) , (29)

where st denotes the CO2 stock above the preindustrial level of 278 ppm, γ = 0.008, and

θ = 0.64. Thus, only the fraction θ accumulates the atmospheric stock. Moreover, we assume

time-dependent business-as-usual emissions ǫi
t. Global business-as-usual emissions rise ex-

ponentially from approximately 8 GtC (3.75 ppm) in 2010 until they peak at 26 GtC (12.2

ppm) in 2125 and flatten out to 18 GtC by 2200.8 As countries are identical, all countries ex-

hibit the same business-as-usual emissions, which are 1/n-th of the global business-as-usual

emissions.

Of course, our assumption of identical countries drastically oversimplifies real-world affairs.

For the numerical illustration, we assume that the world’s economic activity is symmet-

rically distributed among ten identical countries. This is driven by the observation that

the ten largest economies emitted more than 70% of global greenhouse gas emissions in

2006. This ratio is likely to rise further.9 Thus, an international agreement among the 10

largest greenhouse gas emitters would essentially solve the problem of anthropogenic cli-

mate change. The parameters α and β are calibrated such that (a) the CO2 stock in the

global social optimum equals 2.5 times the preindustrial concentration (which is close to

the optimal scenario in Nordhaus 1994) and (b) a doubling of the CO2 concentration in

the atmosphere against preindustrial levels amounts to environmental damages of 1.33% of

world GDP per year (Nordhaus 1994, Goulder and Mathai 2000). According to the CIA

World Factbook this equaled 6.5 · 1013 US $ in 2007. The values of the interest rate ρ and

the discount factor δ are in line with Nordhaus (1994). Table 1 summarizes the parameter

values used for our numerical example.

Figure 1 illustrates the business-as-usual path and shows total abatement, relative abate-

ment, marginal abatement costs, the atmospheric stock for the decentralized solution, the

first-best, and the second-best sustainable RS. In addition, yearly total refunds in % of 2007

world GDP are shown for the first-best and the second-best sustainable RS. Figure 1 gives

rise to the following observations: First, we see that with respect to abatement levels and

atmospheric CO2 concentrations the decentralized solution falls dramatically short of the

social global optimum (which is identical to the first-best sustainable RS).

Second, we observe that while in the long run the second-best sustainable RS converges

to the social global optimum, abatement levels and marginal abatement costs differ dra-

8This business-as-usual emission scenario is similar to Goulder and Mathai (2000).
9The ten economies are China, USA, European Union, Indonesia, India, Russia, Brazil, Japan, Canada,

and Mexico.
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Figure 1: Global business-as-usual emissions in ppm are shown in the top left corner. Total
abatement in ppm (top right), relative abatement (middle left), marginal abate-
ment costs in US $ per tC (middle right) and the atmospheric stock in ppm above
preindustrial level (bottom left) for the decentralized solution (green), the fist-best
sustainable RS (blue) and the second-best sustainable RS (magenta). The bottom
right corner shows total yearly refunds in % of world GDP for the first-best sus-
tainable RS (blue) and the second-best sustainable RS (magenta).
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Parameter Value Units

Initial stock (above pre-industrial level) s1 112 ppm

Abatement cost parameter α 2.21757 · 1012 $/a
(ppm/a)2

Damage cost parameter β 9.94312 · 106 $/a
ppm2

Decay rate of GHGs γ 0.008

Discount factor δ 0.952381

Fraction of GHGs that accumulates st θ 0.64

Interest rate ρ 0.05

Number of countries n 10

Table 1: Summary of the parameter values used in the numerical example

matically for the first 125 years. Compared to the social global optimum, the second-best

sustainable RS is in fact overambitious with respect to emission reductions. This is in line

with Proposition 6, as the initial atmospheric CO2 concentration is below the long run lev-

els. As a consequence, the initial fund of the second-best sustainable RS amounts to 71.6 %

of the world GDP in 2007 compared to 10.8 % for the first-best sustainable RS. Thus, from

the current perspective the second-best sustainable RS seems rather unattractive.

However, it is possible, or even plausible, that countries may fail to reduce greenhouse gas

emissions in the near future. Countries might also become more ambitious with respect to the

long-run level of greenhouse gases in the atmosphere. For example, limiting global warming

to a maximum of 2 ◦C roughly translates into a long-run concentration of greenhouse gases

in the atmosphere amounting to 450 ppm. In both cases, the greenhouse gas concentration

will move above the long-run level of the socially optimal stock. Then the second-best

sustainable RS would ensure achievement of the long-run goal at lower abatement costs

than the first-best sustainable RS. Third, we observe that while the total initial fund in the

case of the first-best sustainable RS is also substantial (almost 11 % of world GDP), the

yearly refunds for the first-best sustainable RS start at a moderate level of around 0.3 % of

world GDP in 2010 and rise to around 3.75 % in 2170.

6 Initial Participation

So far, we have focused on the capacity of an RS to induce countries to follow (first-best

sustainable RS) or to converge to (second-best sustainable RS) a socially optimal abatement

path. To achieve this, all countries have to agree on the appropriate parameters (initial fees

and, in the case of the first-best sustainable RS, a sequence of refunds in all periods) and

on initial monetary commitments. We observe that a sustainable RS, as developed in this

17



paper, transforms the intertemporal climate-policy problem into a standard, static public-

goods problem. Once all countries have made their initial contribution, a first-best allocation

(or at least a long-run convergence to it in the case of the second-best sustainable RS) is

ensured for all later occasions, as countries would be worse off by forfeiting refunds. In the

following, we discuss how solution procedures developed in the literature on the private

supply of public goods can be applied to motivate countries to make initial payments.

6.1 The ideal solution

At the initial level, when countries are pondering whether to sign the treaty and to pay

the initial fee, the free-rider problem remains present. Especially if the number of countries

n is large, each country may be better off by not signing the treaty. If all other countries

participate, the country would benefit from all other countries’ abatement efforts, without

having to pay the initial fee and to compete for refunds.

To solve this free-rider problem, the RS could be incorporated in a two-stage game. In

the first stage, countries decide whether to participate in a sustainable RS by paying the

initial fee f i
0. The treaty only becomes effective if all countries sign and pay the initial fee.

Otherwise, the treaty is cancelled and initial fees already paid are returned. If all countries

have signed, we can proceed to the second stage, in which the treaty is executed as outlined

in Section 4.

It is straightforward to see that it is a weakly dominant strategy for all countries to sign the

treaty and pay the initial fee. All countries are better off with the social global optimum

achieved if the treaty becomes effective than they are with the decentralized solution that

results if the treaty is cancelled.10

6.2 Difficulties in achieving initial participation

In practice, the preceding conceptual solution has to be supplemented by additional consid-

erations. This holds, in particular, when countries are not identical, as this paper assumes.

Making larger countries pivotal

The ideal solution lies in making countries – and in particular large countries – pivotal for

the formation of the RS. In order to achieve such a scenario, about ten to twenty of the

10While an improvement on the decentralized solution is obvious for the first-best sustainable RS, it is not
clear a priori whether the second-best sustainable RS will improve on the decentralized solution in initial
periods. However, there always exists a time period at which the second-best sustainable RS will be a
Pareto improvement over the decentralized system for the entire remaining lifetime.
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largest greenhouse gas emitters must coordinate on the agreement that the RS will fail if

any of them defects.11

Sequential procedures

As full participation by all countries at once is unlikely, it is useful to resort to sequential

procedures where a subset of countries makes a start and the others follow later (see An-

dreoni 1998, Lange 2006, Varian 1994). For the RS we might envision four steps. First, as

suggested in the last paragraph, a set of large and mainly wealthy countries could initiate

the system by paying initial fees. Second, smaller rich countries could follow, which would

increase the initial wealth. In the third and fourth steps, larger and smaller developing

countries could be invited to join the RS. Regarding the payment of initial fees, they should

be treated differently, as we will discuss next.

Renouncing initial fees for developing countries

Developing countries lack the necessary wealth to pay the initial fees.12 To induce partici-

pation, payment of initial fees could be forgone. Indeed, the RS works in the same way if

a subset of k countries (1 < k < n) pays an initial fee equal to f⋆
0 /k and n countries are

eligible to the refunds. Once the RS has been initiated, incentives to abate are indepen-

dent of initial contributions. In such circumstances, developing countries would voluntarily

join the system, as they can always choose the same emission reduction policy under the

RS as without, but they can benefit from the refunds if it is in their interest. Indeed, the

prospect of earning refunds will motivate them to abate much more. Moreover, the discrim-

ination of initial fees is a powerful tool in implementing transfers to the RS. If countries are

heterogeneous, that may be necessary to render the RS a Pareto improvement.

7 Raising Initial Fees

The sustainable refunding scheme relies on the payment of initial fees. As such fees tend to

be quite large, especially in the case of the second-best sustainable RS, we outline two ways

in which such fees might be financed.

11In practice countries must be mutually stubborn and insist on full participation by this core group before
going ahead.

12On average, the economic and social consequences of climate change also tend to be more severe in
developing countries.
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7.1 Repeated payments

Paying the initial fees in full at the beginning of the treaty is not necessary. We can also

achieve the first- and second-best sustainable RS by repeatedly paying a smaller amount of

money.

Proposition 7 (RS with Repeated Payments)

(i) For every time span ∆ > 0 there exists a sequence of fees ft(∆) defined by

ft(∆) =
∆
∑

τ=1

R⋆
t+τ

(1 + ρ)τ
(30)

such that this RS implements the same solution as the first-best sustainable RS with

initial payments larger or equal to f⋆
0 if ft(∆) is paid into the fund at times t =

0, ∆, 2∆, . . ..

(ii) For every time span ∆ > 0 there exist fees f(∆) defined by

f(∆) =
(1 + ρ)∆ − 1

(1 + ρ)∆
fSB

0 (31)

such that this RS implements the same solution as the second-best sustainable RS with

initial payments fSB
0 if f(∆) is paid into the fund each ∆ periods.

The proof of Proposition 7 is given in the Appendix.

With the repeated payments scheme we face a trade-off between high initial fees and the

property of the sustainable RS to transform an intertemporal climate-policy problem into

a static public-goods problem. In particular, if the time span ∆ is short, the solution of the

climate-change problem relies on the repeated commitment of all countries, as the initial

participation problem would have to be solved whenever new payments have to be made.

Therefore ∆ should not be too small.13

7.2 Borrowing and capital markets

If the repeated solution to the initial participation problem turns out to be a major obstacle

to international cooperation, raising the initial fees by allowing countries to borrow money

may be more advisable. Countries could then borrow either from the international capital

market or directly from the administering agency of the RS. As the administering agency

13Sustained participation can also be fostered by not completely depleting the fund and hence making exit
costly.
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invests the wealth of the climate fund on the international capital market, both ways by

countries to borrow are equivalent when capital markets are perfect, as the following propo-

sition shows:

Proposition 8 (Borrowing Initial Fees)

Suppose capital markets are perfect and all countries borrow the entire amount of the initial

fees f i
0 required for the sustainable RS. Use µ (0 ≤ µ ≤ 1) to denote the fraction of f i

0

borrowed from the international capital market, implying that the remainder (1 − µ)f i
0 is

borrowed from the administering agency running the RS. Then the following statements

hold:

(i) For all values of µ, borrowing by countries does not affect international capital markets.

(ii) For µ = 0, the first- and second-best sustainable RS can be implemented without the

flow of money.

Proof: Recall that perfect capital markets imply that countries may borrow or lend freely

at the per-period interest rate ρ. To see part (i), observe that borrowing by countries in-

creases demand for capital on the international capital market by a total of µf0. As the

administering agency lends a total of (1 − µ)f0 to the countries, it can invest µf0 in the

capital market and thus supply increases by the same amount. Hence, the equilibrium in

the capital market is not affected.14 Part (ii) follows from the observation that in the (first-

best and second-best) sustainable RS the initial fee f i
0 is the net present value of all future

refunds the country receives in the unique subgame perfect equilibrium. So in each time

period t, the net present value of the two claims exactly offset each other. No actual money

flow is necessary in the polar case µ = 0. �

Proposition 8 says that raising the money needed for the initial payments is no problem

under the assumption of perfect capital markets. In practice, two types of deviations from

perfect capital markets have to be taken into account. A country may default against the

administering agency or default in general. First, if µ is small, countries might be tempted

to renounce high abatement efforts and to default on their interest-rate obligations to the

administering agency. The country would lose all claims to refunds. However, as such refunds

are small when abatement efforts are small, such a strategy may be profitable. For say µ = 0,

a country could choose to default against the administering agency and could free-ride on

the abatement efforts of other countries even if it has signed the treaty and has borrowed

from the administering agency. Such considerations suggest that countries should borrow

mainly on the international capital market.

14As the administering agency needs to invest its wealth in the capital market, borrowing by countries to
pay the initial fee does not crowd out private investments.
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Second, if countries borrow a large amount on international capital markets, the default

risk may rise if outstanding government debt is already at a high level. If the country

needs to pay a larger interest rate than the risk-free rate, as investors demand a positive

risk premium, further borrowing may increase the default risk as refunds are insufficient

to cover interest-rate payments. In such cases, it is useful for part of the initial fund to be

raised by taxes so as to foster abatement. Then the additional interest-rate burden can be

kept smaller than refunds, thereby keeping or reducing default risk on capital markets.

8 Conclusion

The RS provides a simple blueprint for an international treaty on climate change. It is

governed by a very small number of parameters. The RS is no panacea, as free-rider problems

have no perfect solutions, but it might be wiser to focus attention on systems like the RS

than on Kyoto-style treaties in which little can be done to induce countries to fulfill their

promises.

The practical implementation of the refunding schemes developed in this paper requires

a variety of additional considerations. In the last two sections, we have discussed how to

achieve initial participation, and we have outlined several ways of raising initial fees. Other

issues, such as governance of the administering agency, uncertainty regarding damage and

abatement costs, or heterogeneous countries will need thorough investigation in future re-

search.
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Appendix

Proof of Proposition 1

We show existence and uniqueness of the social global optimum by solving the optimization

problem (5) for any time horizon T .

In each period t, the right-hand side of equation (6) is identical for all countries i. This

implies that abatement in period t is equal among all countries, i.e., ai
t = at for all i ∈

{1, . . . , n} and t = 1, . . . , T . We rewrite (6) to yield

V ′
t+1(st+1) = −α

δ
at . (A.1)

Inserting into (7), we eliminate the value function and obtain

at−1 = δ(1 − γ)at +
nβδ

α
st . (A.2)

Equation (A.2) together with the equation of motion (3) yields the system of linear first-

order difference equations

(

a⋆
t+1

s⋆
t+1

)

=





α+n2βδ
αδ(1−γ) −nβ

α

−n 1 − γ





(

a⋆
t

s⋆
t

)

+





− n2βǫ
α(1−γ)

nǫ



 (A.3)

the general solution of which is given by

(

a⋆
t+1

s⋆
t+1

)

=

(

aSO

sSO

)

+ B1(T )v1λt
1 + B2(T )v2λt

2 , (A.4)

where (aSO, sSO) are the stationary states obtained by setting a⋆
t+1 = a⋆

t = aSO and s⋆
t+1 =

s⋆
t = sSO, hence

aSO =
n2βδǫ

αγ [1 − δ(1 − γ)] + n2βδ
, (A.5a)

sSO =
nαǫ [1 − δ(1 − γ)]

αγ [1 − δ(1 − γ)] + n2βδ
, (A.5b)

and vi and λi, i = 1, 2 are the Eigen vectors and the Eigen values, respectively, of the 2 × 2

matrix in (A.3). Bi(T ), i = 1, 2 are constants that have to be determined in such a way

that the initial and final conditions are satisfied.
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Calculating Eigen values and vectors yields

λ1/2 =
1 + δ(1 − γ)2 + n2βδ

α ±
√

[

1 + δ(1 − γ)2 + n2βδ
α

]2
− 4δ(1 − γ)2

2δ(1 − γ)
(A.6a)

v1 =





1
n

1−γ−λ1



 , v2 =





1
n

1−γ−λ2



 . (A.6b)

Setting C = 1 − δ + δγ2 + n2βδ
α and D =

[

1 + δ(1 − γ)2 + n2βδ
α

]2
− 4δ(1 − γ)2, the Eigen

values read

λ1/2 = 1 +
C ±

√
D

2δ(1 − γ)
. (A.7)

As C, D > 0 and
√

C > D, we obtain λ1 > 1 > λ2 > 0.

Then the general solution is given by

a⋆
t = aSO + B1(T )λt

1 + B2(T )λt
2 , (A.8a)

s⋆
t = sSO +

nB1(T )

1 − γ − λ1
λt

1 +
nB2(T )

1 − γ − λ2
λt

2 . (A.8b)

We determine B1(T ) and B2(T ) from the initial greenhouse gas stock, s1, and the terminal

condition for emission abatement, aT = 0:

B1(T ) =

(1 − γ − λ1)

[

−naSO

λT
1

− λT −1

2

λT
1

(1 − γ − λ2)(s1 − sSO)

]

n

[

(1 − γ − λ1) − λT −1

2

λT −1

1

(1 − γ − λ2)

] , (A.9a)

B2(T ) =

(1 − γ − λ2)

[

(1 − γ − λ1)(s1 − sSO) + naSO

λT −1

1

]

n

[

(1 − γ − λ1)λ2 − λT
2

λT −1

1

(1 − γ − λ2)

] . (A.9b)

Inserting back into equations (A.8) yields the unique global social optimum. �

Proof of Corollary 1

For large T we obtain for B1(T ) and B2(T ) from the proof of Proposition 1

B∞
1 ≡ lim

T →∞
B1(T ) = 0 , B∞

2 ≡ lim
T →∞

B2(T ) =
(1 − γ − λ2)(s1 − sSO)

nλ2
, (A.10)
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implying for the solution (A.8) in the limit case T → ∞

a⋆
t = aSO +

(1 − γ − λ2)(s1 − sSO)

n
λt−1

2 , (A.11a)

s⋆
t = sSO + (s1 − sSO)λt−1

2 , (A.11b)

which we can also write as a policy rule at(st):

a⋆
t (s⋆

t ) = aSO +
(1 − γ − λ2)(s⋆

t − sSO)

n
. (A.12)

From the proof of Proposition 1 we know that 0 < λ2 < 1. Thus we obtain from (A.11)

lim
t→∞

a⋆
t = aSO , lim

t→∞
s⋆

t = sSO . (A.13)

�

Proof of Proposition 2

Before we show the existence of a unique and symmetric subgame perfect Nash equilibrium

by backward induction, note that the optimization problem of country i in period t is strictly

concave if and only if

δW i
t+1

′′
(st+1) − α < 0 . (A.14)

Starting in period T , recall that W i
T +1(sT +1) ≡ 0, which implies that āi

T = 0 is the best re-

sponse of all countries independently of the emission abatement choices of all other countries.

As a consequence, âT = âi
T is the unique and symmetric Nash equilibrium for the subgame

starting in period T given the level of the greenhouse gas stock sT . The equilibrium pay-off

W i
T (st) = V i

T (sT )|Â−i
T is identical for all countries and is strictly concave:

WT (sT ) ≡ W i
T (sT ) = −β

2
s2

T ⇒ W ′′
T (sT ) = −β . (A.15)

Now assume there exists a unique and symmetric subgame perfect Nash equilibrium for the

subgame starting in period t + 1 with a greenhouse gas stock of st+1 yielding symmetric

equilibrium pay-offs Wt+1(st+1) = W i
t+1(st+1) with W ′′

t+1(st+1) < 0. Then the optimization

problem in period t is strictly concave for all countries i, implying there exists a unique best

response āi
t for all countries i given the emission abatements of all other countries j 6= i,

which is given implicitly by

αāi
t = −δW i

t+1
′
(s̄t+1) . (A.16)
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As the right-hand side is identical by assumption for all countries, so is the left-hand side

as well. This implies that emission abatement in equilibrium is symmetric and unique,

ât = âi
t. As a consequence, the equilibrium pay-off is also identical for all countries i,

Wt(st) = W i
t (st). Differentiating (11) with respect to st, we obtain

V i
t

′′
(st)|A−i

t = δ(1 − γ)2W i
t+1

′′
(s̄t+1) − β . (A.17)

As W i
T

′′
(st) = V i

t
′′
(st)|Â−i

T , this implies that the equilibrium pay-off W i
t (st) = Wt(st) is

strictly concave. Working backwards to t = 1 yields a unique symmetric sequence of emission

abatements âi
t = ât and the corresponding sequence of the greenhouse gas stock ŝt (i =

1, . . . , n; t = 1, . . . , T ) that constitute the unique and symmetric subgame perfect Nash

equilibrium of the decentralized system.

As the subgame perfect Nash equilibrium is symmetric and unique, we obtain the following

system of first-order difference equations from equations (10), (11) and (3):

(

ât+1

ŝt+1

)

=





α+nβδ
αδ(1−γ) − β

α

−n 1 − γ





(

ât

ŝt

)

+





− nβǫ
α(1−γ)

nǫ



 . (A.18)

Following the same solution technique as described in the proof of Proposition 1, we derive

for the sequences of emission abatement and the greenhouse gas stock in the subgame perfect

Nash equilibrium

ât = aDS + B1(T )µt
1 + B2(T )µt

2 , (A.19a)

ŝt = sDS +
nB1(T )

1 − γ − µ1
µt

1 +
nB2(T )

1 − γ − µ2
µt

2 , (A.19b)

where (aDS , sDS) denote the steady state of (A.18) given by

aDS =
nβδǫ

αγ [1 − δ(1 − γ)] + nβδ
, (A.20a)

sDS =
nαǫ [1 − δ(1 − γ)]

αγ [1 − δ(1 − γ)] + nβδ
, (A.20b)

µ1 and µ2 equal

µ1/2 =
1 + δ(1 − γ)2 + nβδ

α ±
√

[

1 + δ(1 − γ)2 + nβδ
α

]2
− 4δ(1 − γ)2

2δ(1 − γ)

= 1 +
1 − δ + δγ2 + nβδ

α ±
√

[

1 − δ(1 − γ)2 + nβδ
α

]2
+ 4δ2(1−γ)2βn

α

2δ(1 − γ)
,

(A.21)
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which immediately implies µ1 > 1 > µ2 > 0, and B1(t) and B2(T ) depend on the time

horizon T and the initial stock of greenhouse gases s1

B1(T ) =

(1 − γ − µ1)

[

−naDS

µT
1

− µT −1

2

µT
1

(1 − γ − µ2)(s1 − sDS)

]

n

[

(1 − γ − µ1) − µT −1

2

µT −1

1

(1 − γ − µ2)

] , (A.22a)

B2(T ) =

(1 − γ − µ2)

[

(1 − γ − µ1)(s1 − sDS) + naDS

µT −1

1

]

n

[

(1 − γ − µ1)µ2 − µT
2

µT −1

1

(1 − γ − µ2)

] . (A.22b)

�

Proof of Corollary 2

For large T we obtain for B1(T ) and B2(T ) from the proof of Proposition 2

B∞
1 ≡ lim

T →∞
B1(T ) = 0 , B∞

2 ≡ lim
T →∞

B2(T ) =
(1 − γ − µ2)(s1 − sDS)

nµ2
, (A.23)

implying for solution (A.19) in the limit case T → ∞

ât = aDS +
(1 − γ − µ2)(s1 − sDS)

n
µt−1

2 , (A.24a)

ŝt = sDS + (s1 − sDS)µt−1
2 , (A.24b)

which we can also write as a policy rule at(st):

ât(ŝt) = aDS +
(1 − γ − µ2)(ŝt − sDS)

n
. (A.25)

From the proof of Proposition 2 we know that 0 < µ2 < 1. Thus, we obtain from (A.24)

lim
t→∞

ât = aDS , lim
t→∞

ŝt = sDS (A.26)

�

Proof of Proposition 3

Again, we start by noting that the optimization problem of country i in period t is strictly

concave if and only if

δW i
t+1

′′
(st+1) − α +

∂2ri
t

(∂ai
t)

2
< 0 , (A.27)

27



with

∂2ri
t

(∂ai
t)

2
=











−2Rt
A−i

t

(ai
t+A−i

t )3
, t = 1, . . . , T − 1 ,

0 , t = T .
(A.28)

Solving for the subgame perfect Nash equilibria by backward induction, we start in period

T . By virtue of the first-order condition (16), W i
T +1(sT +1) ≡ 0 implies that āi

T = 0 is the

best response for all countries independently of the emission abatement choices of all other

countries. As a consequence, ãT = ãi
T is the unique and symmetric Nash equilibrium for the

subgame starting in period T , given the level of the greenhouse gas stock sT . The equilibrium

pay-off W i
T (sT ) = V i

T (sT )|Ã−i
T is identical for all countries and is strictly concave:

WT (sT ) ≡ W i
T (sT ) = −β

2
s2

T +
RT

n
⇒ W ′′

T (sT ) = −β . (A.29)

In addition, W ′
T (sT ) = −βsT < 0.

Now assume there exists a unique and symmetric subgame perfect Nash equilibrium for the

subgame starting in period t + 1, with a greenhouse gas stock of st+1 yielding symmetric

equilibrium pay-offs Wt+1(st+1) ≡ W i
t+1(st+1) with W ′

t+1(st+1) < 0 and W ′′
t+1(st+1) < 0.

Then the optimization problem in period t is strictly concave for all countries i, implying

there exists a unique best response āi
t for all countries i given the emission abatements of

all other countries j 6= i, which is given implicitly by

αāi
t − Rt

A−i
t

(āi
t + A−i

t )2
= −δW ′

t+1(s̄t+1) . (A.30)

As the right-hand side is identical by assumption for all countries, so is the left-hand side

as well. This implies that emission abatement in equilibrium is symmetric, ãt ≡ ãi
t for

all i = 1, . . . , n. Summing up over all n countries and multiplying by the total amount of

abatement At (which is strictly positive, as corner solutions are ruled out) yields a necessary

condition that has to hold in the subgame perfect Nash equilibrium

αÃ2
t + δnW ′

t+1(s̃t+1)Ãt − (n − 1)Rt = 0 . (A.31)

This equation yields a unique solution, as total emissions have to be non-negative and, in

addition, W ′
t+1(st+1) < 0 holds:

Ãt =
−δnW ′

t+1(s̃t+1) +
√

(δnW ′
t+1(s̃t+1))2 + 4α(n − 1)Rt

2α
. (A.32)

We already know that emission abatement levels in the subgame perfect Nash equilibrium
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are symmetric, so this implies unique and symmetric abatement levels ãt = Ãt/n and also

identical equilibrium pay-offs for all countries i, Wt(st) = W i
t (st). The envelope theorem

yields equation (11), from which we obtain

W ′
t(st) = V i

t
′
(st)|Ã−i

t = −βst + δ(1 − γ)W ′
t+1(s̄t+1) < 0 . (A.33)

In addition, differentiating with respect to st, we observe

W ′′
t (st) = V i

t
′′
(st)|Ã−i

t = δ(1 − γ)2W ′′
t+1(s̄t+1) − β < 0 , (A.34)

implying that the equilibrium pay-off Wt(st) is strictly concave.

Working backwards to t = 1 yields a unique symmetric sequence of emission abatements

ãi
t = ãt and the corresponding sequence of the greenhouse gas stock s̃t (i = 1, . . . , n; t =

1, . . . , T ) that constitute the unique and symmetric subgame perfect Nash equilibrium of

the RS. �

Proof of Proposition 5

In the subgame perfect Nash equilibrium, the first-order condition (16) reads

αat = −δW ′
t+1(st+1) +

(n − 1)R

n2at
, (A.35)

where we drop the tilde notation ‘̃ ’ for presentational convenience. Together with equation

(A.33), this implies that the sequences at and st in the subgame perfect Nash equilibrium of

the RS are given by the solution of the following system of first-order difference equations:

R
n − 1

n2at
− αat = δ(1 − γ)(R

n − 1

n2at+1
− αat+1) − δβst+1 , (A.36a)

st+1 = (1 − γ)st + n(ǫ − at) , (A.36b)

with the boundary conditions s1 and aT = 0 for finite time horizons T . Solving equation

(A.36a) with respect to at+1 yields

at+1 =
g(at) − βδ(1 − γ)st +

√

[g(at) − βδ(1 − γ)st]2 + 4αδ2(1 − γ)2Rn−1
n2

2αδ(1 − γ)
, (A.36c)

with g(a) ≡ (α + nβδ)a − R(n − 1)/(n2a) − nβδǫ. Solving for the steady state and taking

into account the fact that negative abatement levels are infeasible yields equations (23).

We now analyze the system dynamics for T → ∞. We show that the system dynamics

splits into three different regimes. (i) For any initial stock s1 there exists a corresponding
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initial level of abatement aSP
1 such that the sequences at and st converge to their steady

state values (aRS , sRS). (ii) If the initial level of abatement is above aSP
1 , then the system

dynamics will converge to the corner solution (ǫ, 0) in which emission abatement is maximal

amax = ǫ, i.e. all emissions are abated, and the greenhouse gas stock converges to 0. (iii)

If the initial level of abatement is below aSP
1 , then the system dynamics will converge to

the corner solution (0, nǫ/γ) in which no emissions are abated and the greenhouse gas stock

converges to its maximum value smax = nǫ/γ.

To see (i), we show that the steady state (aRS , sRS) is a saddle point. Denoting the Jacobian

of the system of difference equations evaluated at the steady state by

J(aRS , sRS) =









∂at+1

∂at
(aRS , sRS)

∂at+1

∂st
(aRS , sRS)

∂st+1

∂at
(aRS , sRS)

∂st+1

∂st
(aRS , sRS)









=





J11J12

J21J22



 , (A.37)

we obtain

J11 =
α + R n−1

n2(aRS)2 + δβn

δ(1 − γ)
(

α + R n−1
n2(aRS)2

) , (A.38a)

J12 = − β

α + R n−1
n2(aRS )2

, (A.38b)

J21 = −n , (A.38c)

J22 = 1 − γ , (A.38d)

where we have derived (A.38a) and (A.38b) by differentiating (A.36a) with respect to at

and st respectively and inserting the steady state. Then the characteristic equation in the

linearization around the steady state reads

ν2 − (J11 + J22)ν + J11J22 − J12J21 = 0 , (A.39)

which yields the eigenvalues

ν1/2 =
J11 + J22 ±

√

(J11 + J22)2 − 4(J11J22 − J12J21)

2
. (A.40)

It can be shown that

J11 + J22 >
√

(J11 + J22)2 − 4(J11J22 − J12J21) > J11 − J22 , (A.41)
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st
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aRS

sRS

amax

smax

I

II

III

IV
a-isoclines-isocline

Figure 2: Phase diagram of the system dynamics of the system of difference equations (A.36)
for T → ∞. The steady state (aRS , sRS) is a saddle point. The a- and s-isoclines
divide the feasible space into four areas I–IV.

implying that

ν1 > J11 > 1 , 0 < ν2 < J22 = 1 − γ < 1 . (A.42)

Thus, the steady state (aRS , sRS) is a saddle point. As a consequence, for any initial value

of the greenhouse gas stock s1 there exists a corresponding initial level of abatement aSP
1

such that the sequences at and st converge to the steady-state values (aRS , sRS).

Figure 2 sketches the system dynamics. The isoclines are given by

at+1 − at = 0 ⇔ at =
nβδst +

√

(nβδst)2 + 4αρf n−1
n2 [1 − δ(1 − γ)]2

2nα[1 − δ(1 − γ)]
(A.43a)

st+1 − st = 0 ⇔ at = ǫ − γ

n
st , (A.43b)

They determine the combinations of st and at for which at+1 − at = 0 and st+1 − st = 0,

respectively, and divide the at-st-plane into four areas. In area I, which is above the a- and

below the s-isocline, at+1 > at and st+1 > st. In area II, given by the segment above both

isoclines, at+1 > at and st+1 < st. Area III is below the a- and above the s-isocline, in which

at+1 < at and st+1 > st hold. Finally, area IV is below both isoclines, so at+1 < at and

st+1 > st. The saddle point path lies in area I for s1 < sRS and in area III for s1 > sRS .

Thus, the saddle point path starts with abatement levels aSP
1 which are below (above) the

steady-state abatement level aRS and increase (decrease) over time to converge to aRS for
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s1 < sRS (s1 > sRS).

We also observe that all, although they may start in area I, II or IV, paths for which

a1 > aSP
1 eventually reach the maximum abatement level at′ = amax = ǫ. In this case

the system dynamics changes regimes, as no abatement levels above ǫ are feasible. As a

consequence, at = ǫ for all t ≥ t′. Then the stock of greenhouse gases, as determined by

equation (A.36b), converges to 0 for t → ∞. In a similar vain, all paths for which the initial

abatement level is smaller than the initial saddle point path abatement level aSP
1 eventually

hit the lower boundary at′ = 0. Again, the system dynamics changes regimes, as abatement

levels below 0 are infeasible, so at = 0 for all t ≥ t′. As a consequence, the greenhouse gas

stock converges to its maximum value smax = (nǫ)/γ for t → ∞.

By assumption, the corner solutions at = 0 and at = ǫ cannot be best responses for any

country i to all feasible greenhouse gas stocks st and any given abatement levels of all other

countries j 6= i. As a consequence, all paths that either converge to (ǫ, 0) or (0, (nǫ)/γ) are

not subgame perfect Nash equilibria, leaving the saddle point path as the only subgame

perfect Nash equilibrium. �

Proof of Proposition 6

For f0 = fSB
0 as given by equation (24), the linear approximation around the stationary

state of the system dynamics of the second-best sustainable RS is given by

ãt = aSO +
(1 − γ − ν2)(s1 − sSO)

n
νt−1

2 , (A.44a)

s̃t = sSO + (s1 − sSO)νt−1
2 , (A.44b)

where ν2 denotes the smaller eigenvalue of the Jacobian (A.37)

ν2 =
J11 + J22 −

√

(J11 + J22)2 − 4(J11J22 − J12J21)

2
. (A.45)

Evaluating ν2 for fSB
0 yields equation (27a). Comparing equation (A.44b) for the greenhouse

gas stock in the second-best sustainable RS with the corresponding equation (A.11b) of the

social global optimum yields equation (26), where (27b) states the corresponding eigenvalue

λ2 in the social global optimum.

It is easy to see that ν2 > λ2 for n > 1 which implies (28). �
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Proof of Proposition 7

(i) A treaty with repeated payments ft(∆) implements the same solution as the first-best

sustainable RS with initial payments f⋆
0 if the same refund R⋆

t is distributed among

the countries in period t. At the end of each ∆-th period, the fund is reduced to zero

and will be refilled by ft+∆(∆). Hence, it must hold that

0 = ft+∆ = (1 + ρ)ft+∆−1 − R⋆
t+∆ . (A.46)

Inserting recursively back to period t and solving for ft, we obtain the amount of

money that should be in the fund in period t, which equals (30).

(ii) A treaty with repeated payments f(∆) implements the same solution as the second-

best sustainable RS with initial payments fSB
0 if all countries receive (ρfSB

0 )/n from

the fund in each period. At the end of each ∆-th period, the fund is reduced to zero

and will be refilled by f(∆). At the beginning of each period, the remainder of the

fund is invested and earns interest ρ. Therefore it holds that

0 = f(∆t)(1 + ρ)∆t − (1 + (1 + ρ) + . . . + (1 + ρ)∆−1)ρfSB
0 . (A.47)

Applying the formula for the finite geometric series

∆−1
∑

k=0

(1 + ρ)k =
1 − (1 + ρ)∆

1 − (1 + ρ)
, (A.48)

we obtain (31).

�
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