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Abstract
This paper studies the Cass-Koopmans-Ramsey model of optimal eco-
nomic growth in the presence of loss aversion and habit formation.
The representative agent’s preferences for consumption can be gradu-
ally varied between the standard constant intertemporal elasticity of
substitution (CIES) case and Kahneman and Tversky’s prospect util-
ity. We find that the transitional dynamics of optimal consumption
paths differ distinctly from the standard model, in particular con-
sumption smoothing is more pronounced. We also show that prospect
utility can cause the economy to remain in a steady state with low
consumption and low capital.
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cLeeds University Business School and School of Mathematics, University of Leeds,

Leeds LS2 9JT, United Kingdom.
Email: foellmi@vwi.unibe.ch; rina.rosenblatt@snb.ch; k.r.schenk-hoppe@leeds.ac.uk.

1



1 Introduction

Reference points and the different perceptions of gains and losses play an
important role in actual decision-making, see, e.g., Kahneman and Tversky
(2000). As K. E. Boulding (1981, p. 108) (one of the founders of modern
evolutionary economics and former president of the American Economic As-
sociation) puts it: “...the perception of potential threats to survival may be
much more important in determining behavior than the perceptions of po-
tential profits, so that profit maximization is not really the driving force. It is
fear of loss rather than hope of gain that limits our behavior.” These charac-
teristics are often ignored in standard dynamic macroeconomics which do not
take into account the role of positional concerns in consumption. This cre-
ates two main issues: First, the empirical evidence suggests the relationship
between growth and happiness is not straightforward. When higher income
growth drives growth in material aspirations, growth does not need to in-
crease happiness (see, e.g., Easterlin, 2001). This makes the welfare effects
of economic growth policies difficult to interpret. Second, when all economic
agents’ preferences exhibit positional concerns, the dynamic consumption
decision changes and, therefore, the growth process will be affected.

In this paper, we want to address these two problems. We study optimal
consumption paths in a growth model with a representative agent to deter-
mine the macroeconomic effects if all agents exhibit loss aversion. To this
end, we consider preferences that can be varied gradually between the two
polar cases of (a) standard time-separable preferences with CIES instanta-
neous utility and (b) the experimentally validated prospect utility function
of Kahneman and Tversky (1979) and Tversky and Kahneman (1992). Kah-
neman and Tversky’s prospect theory builds inter alia on the evidence that
economic agents value their prospects in gains and losses relative to a refer-
ence point and that losses loom larger than gains.

The main findings of our paper are as follows. First, we show that a neo-
classical growth model with a general utility function and past consumption
as a reference point exhibits a unique optimal solution. Second, an econ-
omy with loss-averse agents might remain in a low capital–low consumption
steady state. The reason is that very loss-averse consumers are reluctant
to reduce their consumption today to achieve a higher steady state. Third,
the transitional dynamics of our model differ substantially not only from the
standard model but also from an economy with habit formation, the most
common specification of utility that is nonseparable across time. In particu-
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lar, the presence of loss aversion leads to strong consumption smoothing, as
consumers avoid reductions in consumption. We find that economies with
relatively high income smooth consumption to a larger extent than economies
with relatively low income, which is consistent with microeconomic evidence
in Gervais and Klein (2010). Furthermore, the consumption reaction is more
extreme in downturns which matches the stylized fact that recessions are
more pronounced than booms over the business cycle.

There is an increasing interest in (growth) models in which the agents’
utility functions are non-standard and current utility also depends on past
consumption or, more generally, where positional concerns play a role in the
consumption-saving choice. Easterlin (1995), Clark and Oswald (1996) and
Layard (2003) provide evidence, both from economics and psychology, that
positional concerns are important in understanding actual consumption pat-
terns. In particular, psychological research into happiness, see, e.g., Easterlin
(1974), Frank (1997) and Kahneman and Tversky (2000), provide evidence
that utility is reference-based (both internally through habits and externally
through comparison). Theoretical approaches are, for instance, Ryder and
Heal (1973) and Boyer (1978) allowing for habit formation, Laibson (1997)
and Barro (1999) studying hyperbolic discounting, Koopmans (1960), Uzawa
(1968) and, more recently, Mausumi (2003) dealing with recursive prefer-
ences and marginal impatience, Shi and Epstein (1993) incorporating recur-
sive preferences and habit formation, and De la Croix and Michel (1999)
investigating optimal growth under hereditary tastes. Closely related to our
approach are the papers by Carroll et al. (2000) and Alvarez-Cuadrado et al.
(2004) who study the implications of habit formation or ‘Keeping up with
the Joneses’ in a growth context; though none of these papers explores the
prospect utility point of view in an economic growth context.

Although prospect theory is not yet common in the context of macroe-
conomic growth models, there are many fields where it (and, in particular,
loss aversion) has been successfully applied, e.g., asset pricing (Benartzi and
Thaler, 1995, Barberis et al., 2001), tax evasion (Yaniv, 1999) or mone-
tary policy (Surico, 2007). Camerer (2004) gives an overview of many more
phenomena which are inconsistent with expected utility theory but can be
explained by ‘thinking in differences’ and, in particular, loss aversion, e.g.,
asymmetric price elasticities in consumer goods, insensitivity of consump-
tion paths to bad income news, downward-sloping labor supply curves, the
disposition effect, status quo bias, and default bias in decision-making.

The remainder of this paper is organized in the following fashion. Sec-
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tion 2 introduces the model along with a convenient reformulation that allows
the application of value function techniques. Section 3 derives qualitative
properties of optimal consumption paths under prospect utility. Section 4
presents a numerical example. Section 5 concludes and discusses extensions
of our model. All proofs are collected in the Appendix.

2 The model

Consider a version of the Ramsey optimal growth model in which the rep-
resentative agent’s preferences for consumption are represented by a utility
function that depends on current as well as last period’s consumption.1

Capital stock and consumption in period t are denoted kt and ct. The
instantaneous utility function is denoted U(·, ·) : R+×R+ → R. U is assumed
to be a continuous function that is strictly decreasing in the first component
and strictly increasing in the second component. An increase in ct−1, which
provides the reference level of consumption, decreases U(ct−1, ct) for fixed ct.
But for any given ct−1, an increase in current consumption ct will yield higher
utility. The production function f : R+ → R+ is increasing and continuous
with f(0) = 0 (measuring f(·) net of depreciation). We further assume that
there is some maximum sustainable capital stock k̄ > 0, i.e., f(k̄) = k̄ and
f(k) ≤ k for all k ≥ k̄.

The economic agent aims to maximize the present value of utility from
consumption, discounted at rate 0 < β < 1, for a given past (reference)
consumption c−1 and a current capital stock k0 ≥ 0:

sup
{ct,kt+1}t≥0

∞∑
t=0

βt U(ct−1, ct) (1)

s.t. ct + kt+1 ≤ f(kt),

and ct ≥ 0, kt+1 ≥ 0 for all t = 0, 1, . . .

The budget constraint ct + kt+1 ≤ f(kt) is assumed to be binding. If it

1Prospect theory provides only little guidance on how the reference point is determined
(see the discussion in Rosenblatt-Wisch, 2008, p. 1144). In our dynamic framework, we
assume that the status quo realized in every period serves as the new reference point.
Fuhrer (2000) presents further supporting evidence: Using an empirical model with habit
formation, he cannot reject the hypothesis that habit is completely pinned down by the
consumption in the previous period.
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were not binding, increasing the investment kt+1 would strictly increase the
set of feasible plans after the current date without decreasing current utility.

This model can be solved as follows, provided there is a capital stock k−1

such that c−1 + k0 = f(k−1). (If this equation has a solution, it is unique by
our above assumptions on the production function.)

We define xt = (x1
t , x

2
t ) and let F (xt, xt+1) := U(f(x1

t )−x2
t , f(x1

t+1)−x2
t+1).

Note that x1
t stands for kt−1 and x2

t for kt. Given x0, the representative agent
maximizes

sup
{xt+1}t≥0

∞∑
t=0

βt F (xt, xt+1) (2)

s.t. xt+1 ∈ Γ(xt) for all t = 0, 1, . . .

where
F (xt, xt+1) = U(f(x1

t )− x2
t , f(x1

t+1)− x2
t+1) (3)

and
Γ(x) = {z = (z1, z2) ∈ R2 | 0 ≤ z1 ≤ x2, 0 ≤ z2 ≤ f(z1)}. (4)

The set Γ is increasing because free disposal of capital is allowed. The second
intertemporal maximization problem appears to be more general than the
first. However, the preceding discussion makes clear that one can always
assume x1

t+1 = x2
t along an optimal path. In our numerical study (Section 4)

this property is used to improve computational efficiency.
For representation (2), the Bellman equation takes on the familiar form,

V (xt) = sup
xt+1∈Γ(xt)

[F (xt, xt+1) + βV (xt+1)] (5)

where, however, the value function V depends on a two-dimensional variable.
Existence and uniqueness of a function V ∗ solving (5) can be proved

as usual by Blackwell’s sufficient conditions for a contraction: Define the
operator

(TV )(x) = sup
z∈Γ(x)

[F (x, z) + βV (z)]. (6)

T is monotone (V ≤ W implies TV ≤ TW ), and has the discounting property
(T (V + a)(x) ≤ (TV )(x) + βa) because 0 < β < 1.

Define X(k) = [0, k]×[0, k] ⊂ R2
+ for every k ≥ k̄. Then, by our definition

of the production function f , Γ(x) ⊂ X(k) for all x ∈ X(k). Thus X(k) is a
state space of the model for every sufficiently large k. Since U is continuous,
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it is bounded on X(k). Therefore T maps the space of bounded real-valued
functions on X(k) into itself. This ensures existence and uniqueness of a
bounded solution V ∗ to (5). Monotonicity properties of V ∗ can be obtained
in the usual way. Denote by H1 the complete space (with respect to the
sup-norm) of functions V : X(k) → R which are non-increasing in the first
and non-decreasing in the second argument. Further let H2 ⊂ H1 denote
the space of functions where the monotonicity is strict in each component.
The assumed properties of U , F and Γ ensure that T (H1) ⊂ H2. This
implies V ∗ ∈ H2. Continuity of V ∗ can be proved along the lines of Stokey,
Lucas and Prescott (Theorem 4.6, 1989) because Γ(x) is compact and the
correspondence x 7→ Γ(x) is continuous.

To summarize the discussion, we state:

Proposition 1. The optimization problem (5) with state space X(k) =
[0, k] × [0, k], where k ≥ k̄, has a unique bounded solution V ∗. The solution
is continuous, strictly decreasing in the first argument and strictly increasing
in the second argument.

Stokey, Lucas and Prescott (Theorem 4.6, 1989) ensures that the set of
optimal decisions G : X(k)→ X(k), k ≥ k̄, defined by

G(x) = {z ∈ Γ(x) |V ∗(x) = F (x, z) + βV ∗(z)},

is nonempty, compact-valued and upper hemi-continuous. This finding guar-
antees that a solution to the problem (2) exists. A unique policy function
can be extracted by imposing the additional assumption that the economic
agent always chooses the highest consumption if more than one choice gives
the same value. By continuity and compactness such a consumption choice
is feasible and unique.

3 A specific loss-aversion utility

We describe the qualitative properties of optimal consumption and capi-
tal paths when agents are loss averse for a specific utility function which
has two main features. First, it combines the commonly used CIES utility
function with preferences akin to Kahneman and Tversky’s prospect theory
(1979/1992). Second, it allows to scale the degree of prospect utility such
that the model can be gradually varied between the two polar cases.
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The instantaneous utility function

U(ct−1, ct) = (1− α)u(ct) + αv(ct − ct−1) (7)

weighs instantaneous utility u(ct) = c1−σ
t /(1 − σ) against loss aversion with

reference level given by previous period’s consumption

v(∆ct) =

{
∆ct if ∆ct≥0,

φ∆ct if ∆ct<0,
(8)

where ∆ct := ct − ct−1 and where the parameter α is between zero (no
prospect utility) and one (pure prospect utility maximizer). This modifica-
tion allows at the same time for loss aversion and decreasing marginal utility.
The second component v(∆ct) of the utility function is a piecewise-linear ap-
proximation of Kahneman and Tversky’s kinked power utility function which
weighs negative differences in consumption heavier than gains where the loss
aversion parameter φ > 1. The core of prospect theory for our purposes is
the notion of loss aversion and thinking in differences, i.e., the existence of a
reference point. Hence, to capture the asymmetry between gains and losses,
this simple piecewise-linear function entails the essential argument of loss
aversion (see Rosenblatt-Wisch, 2008, p. 1143).

3.1 Euler equation and steady state

We derive the first order conditions for the instantaneous utility function
(7) where the capital accumulation constraint is binding. Along an optimal
consumption path, where ∆ct,∆ct+1, and ∆ct+2 are different from zero, the
Euler equation is given by

u′(ct)− βf ′(kt+1)u′(ct+1) (9)

=
α

1− α
[−v′(∆ct) + βv′(∆ct+1) + βf ′(kt+1) (v′(∆ct+1)− βv′(∆ct+2))] .

This Euler equation differs from the standard formulation in a Ramsey model.
Consumption is no longer time-separable since the objective function is now
dependent not only on ct and ct+1 but also on ct+2 and ct−1. Previous deci-
sions about consumption and capital change the reference point which affects
current and future expected utility. If a consumer considers a reduction in
consumption today versus an increase in consumption tomorrow, he takes
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into account that this implies a utility loss u′(ct) today and a utility gain
βf ′(kt+1)u′(ct+1) tomorrow, like in the standard model. The right hand side
of (9) captures the prospect elements, their relative weight is α/(1−α) in (7).
By reducing today’s consumption, the economic agent suffers from an addi-
tional utility loss −v′(∆ct). However, the reference point is lower for tomor-
row’s consumption which yields a gain of βv′(∆ct+1). Instead, the increase
in tomorrow’s consumption will increase the reference point tomorrow which
reduces utility the day after tomorrow by βf ′(kt+1) (v′(∆ct+1)− βv′(∆ct+2)).

The Euler equation (9) may not hold with equality in time periods where
in the optimum ct = ct+1. The reason is that v(∆ct) is not differentiable at
∆ct = 0 because of the presence of loss aversion. Recall that the derivative of
v(∆ct) is equal to φ > 1 (resp. 1) when zero is approached from the left (resp.
right). A consumer will find it optimal to choose ∆ct = ∆ct+1 = ∆ct+2 = 0
if the following inequality holds,

β − φ+ βf ′(kt+1) (1− βφ) (10)

≤ 1− α
α

[1− βf ′(kt+1)]u′(c) ≤ βφ− 1 + βf ′(kt+1) (φ− β) ,

where ct = ct+1 = c. To derive equation (10), start out from a situation
where ct = ct+1 = c. Then neither a small reduction nor a small increase
in ct can increase utility in the optimum. Since the loss aversion parameter
φ > 1, it is straightforward to see that a positive range of parameter values
must exist such that (10) holds. In particular, we observe that a consumer
may choose (temporarily) a constant consumption profile in the transition
process where βf ′(kt+1) 6= 1. The reason is the presence of loss aversion: The
kink in the utility function (for φ > 1) makes a consumer reluctant to follow
a changing consumption path even if the marginal product of capital would
induce them to so in the standard model, i.e., when βf ′(kt+1) is different
from one. Such a ‘plateau building’ in consumption may occur when the
economy-wide capital stock is above as well as when it is below the steady
state. In the absence of loss aversion, this feature may not be present. If
φ approaches one, which corresponds to the case with habit formation, the
left- and the right-hand side of (10) coincide. Then consumption will only
be constant if the economy is in the steady state.

Interestingly, when the loss aversion parameter φ is sufficiently high, the
aforementioned effects are so strong that the consumption path stays not
only temporary but permanently on a plateau different from a neoclassical
steady state. In that case, the economy stays in a ‘poverty trap.’ If the

8



economy starts at a capital stock level below the steady state and k0 = k1,
it would be necessary to reduce consumption tomorrow to reach the steady
state determined by βf ′(k∗) = 1. If loss aversion is very high, however, indi-
viduals are more concerned about the initial consumption drop than about
the future gain in consumption. Note that this result does not depend on the
discount rate β: Without loss aversion, the individual would value the future
consumption gains always more when starting at k0 < k∗. The reluctance to
suffer an initial loss results in the economy remaining in a low capital/low
consumption state.2 In contrast, if φ is sufficiently low, a unique steady state
exists.

Proposition 2. An economy with loss aversion given by utility function (7)
has a unique steady state with capital stock k∗ given that βφ ≤ 1−α

α
u′(c∗) + 1,

where c∗ = f(k∗)− k∗ and βf ′(k∗) = 1.

Proof. See Appendix.
Under the sufficient assumption βφ ≤ 1−α

α
u′(c∗) + 1, an economy where

individuals show loss aversion converges to the same steady state as in the
neoclassical growth model.

4 Numerical simulations

To better understand the quantitative macroeconomic implications of loss
aversion, we carry out a numerical simulation study. The results obtained
in the preceding sections ensure existence of a solution to the optimization
problem which can be characterized by the value function. All simulations
are based on an approximation of the value function through iteration of the
Bellman operator on a grid of 1, 000 × 1, 000 equidistant points on the set
[0, 1] × [0, 1]. This simple method turns out to be sufficient here.3 The pa-
rameters chosen are standard: We set β = 0.95, σ = 0.5 and the production
function to f(k) =

√
k. In accordance with Tversky and Kahneman (1992),

we set the loss aversion parameter φ = 2.25. As a sensitivity analysis we ran

2Numerically, consumption remains constant below the steady state in the following
example. Set f(k) =

√
k, β = 0.95, σ = 0.5, α = 0.9, and φ = 10. Let k0 = k1 such

that c0 =
√
k0 − k0. Our simulations show that for k0 = k1 > 0.811k∗ consumption stays

constant at c = c0.
3The software is available at www.schenk-hoppe.net/software.html.
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simulations for higher values of σ as well and found that there are no qual-
itative change. In line with our expectations, consumption follows a much
smoother path, and the speed of convergence is lower for all specifications.

Each figure contains three paths, one for each of the three different initial
values of the capital stock k0 and consumption c0. The dashed line (k0, c0) =
(0.005, 0.01) corresponds to the case of a growing economy because both
k0 and c0 are below their steady state values (k∗, c∗) = (β2/4, β/2 − β2/4)
≈ (0.226, 0.249). The solid line (k0, c0) = (0.3, 0.05) represents the case
where the reference point c0 is low and the inherited capital stock k0 is high.
Consequently, k1 and c1 are larger than their corresponding steady state
values and the economy follows a declining path towards the steady state.
Finally, the dotted line corresponding to (k0, c0) = (0.3, 0.45) highlights a
situation in which the reference point c0 is above and k1 = 0.097 is below
the steady state. These values imply that c1 must lie below the steady state
and, therefore, will be lower than c0. (Otherwise, the economy could not
converge on an increasing path towards the steady state.) This case can be
interpreted as an unanticipated drop in capital.

Figure 1 depicts the optimal consumption paths for a representative agent
with loss aversion. The weight of the prospect utility part is α = 0.9. Figure 2
shows the consumption choice of an individual with habit formation. The
prospect utility function (7) contains habit formation as a special case if
φ = 1. The utility function depends on the habit stock (the consumption
level of the previous period). However, in absolute terms and in contrast to
loss aversion, there is no asymmetry between negative and positive changes
in consumption. Figure 3 shows the dynamics of the standard neoclassical
growth model as a benchmark. This reference case (with α = 0) coincides
with the saddle path of the standard model from period t = 1 on.

Even in this simple deterministic setting we observe that prospect theory
has a drastic impact on the transition path, Figure 1. The reference point
and the asymmetry between losses and gains play a crucial role: When the
reference point is low and the inherited capital stock is high (solid line),
the initial rise in consumption is much smaller than in the Ramsey case as
consumption will eventually be lower in the steady state. Since the agent is
loss averse, he wants to reduce the amount of negative consumption changes
in the future, which implies that c1 is lower than in the Ramsey case. In other
words, the presence of loss aversion decreases the intertemporal elasticity of
substitution and the speed of convergence. There is a second important
difference to the standard model: the transition path differs in its shape.
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Figure 1: Loss aversion case (α = 0.9 and φ = 2.25). Optimal consumption
paths for different pairs of initial capital stock and consumption (k0, c0):
dashed line (0.005, 0.01), solid line (0.3, 0.05), dotted line (0.3, 0.45).
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Figure 2: Habit case (α = 0.9 and φ = 1). Optimal consumption paths
(initial values as in Figure 1).
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Figure 3: Standard case (α = 0.0). Optimal consumption paths (initial
values as in Figure 1).

The optimal consumption path is chosen in such a way that the reduction in
consumption is only realized in the future. Since future losses are discounted,
this reduction is less painful from today’s perspective than an immediate
drop. This entails a ‘consumption plateau.’ As demonstrated using the
Euler condition (10), such a behavior may indeed be optimal along a path
(caused by the non-differentiability of the utility function at ∆c = 0). In the
opposite case, when the reference point c0 is high and the inherited capital
stock is low (the dotted line in Figure 1), a loss-averse person will not decrease
consumption in t = 1 as much as a Ramsey consumer does. Since reducing
consumption hurts more than twice as much as gaining the same amount, an
optimal path requires that consumption does not decrease as much as in the
standard case and stays constant thereafter to build up capital.

We observe again a consumption plateau as long as enough capital is built
up and the economy converges to a steady state. However, a comparison of
the solid to the dotted line shows that the consumption reaction is more
extreme in a downturn. When both the reference point and consumption are
low (dashed line), the transition path of a loss-averse consumer is close to
the standard model. Intuitively, when consumption exhibits steady growth
and there are no shocks, the loss aversion component of the utility function
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(7) does not play a role. In all three cases (and in accordance with Prop. 2),
the economy eventually settles on the same steady state as in the standard
Ramsey model (poverty traps cannot occur for these parameter values).

Comparing the optimal choice of a representation agent with habit for-
mation (Figure 2) and a standard Ramsey consumer (Figure 3), we see that
the transitional dynamics in both cases are quantitatively very similar.4 If
the reference point is very different from the consumption thereafter, the
economic agent wants to smooth consumption in such a way that the speed
of convergence is lower than in the Ramsey model. However, consumption
smoothing is much less pronounced than in the model with loss aversion
where φ = 2.25. Solely thinking in differences does not produce dynamics
very different to the standard case and, in particular, it does not exhibit
excessive consumption smoothing.

In the standard permanent income hypothesis model with rational ex-
pectations, consumption jumps immediately in response to current “news”
about lifetime resources, a direct implication of the random-walk property of
consumption. Although our model assumes rational expectations, consump-
tion is much smoother than income. The Ramsey model, in contrast, has the
feature that income is as smooth as consumption. Gervais and Klein (2010)
show that households with relatively high income, smooth consumption to
a larger extent than households with relatively low income. Applying these
findings to our economic growth framework, households with a low capital
stock (i.e., with an income below steady state in period 1) should smooth
their consumption less than agents with a capital stock above the steady state
(relatively rich and high income). Indeed, this asymmetry is reflected in our
model: Compare the dashed line with the solid line in Figure 1, the latter
exhibits obviously more consumption smoothing. In the standard Ramsey
model, instead, households show the same consumption smoothing pattern
below or above the Ramsey steady state.

Unexpected changes to productivity. To gain further intuition about
the implications of loss aversion, we consider a change in productivity which is
unanticipated by the representative agent. Let us assume that the production
function is given by A

√
k with A a parameter that can vary over time. The

4This result is partly due to the fact that habit or loss elements enter the utility function
(7) in an additive way. If we chose a multiplicative formulation (as, e.g., in Carroll et
al., 2000 or Alvarez-Cuadrado et al., 2004) the effect of habit would be much stronger.
However, this reinforces our results: We are able to find a quantitatively important impact
of loss aversion although the additive formulation of the utility function works against it.
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previous analysis was concerned with a constant A = 1.0.
Two scenarios are simulated: At time t = 0, the economy is in the steady

state corresponding to the case A = 1: (k∗, c∗) = (β2/4, β/2 − β2/4) ≈
(0.226, 0.249). At time t = 1, A increases from 1.0 to 1.5 (Scenario 1) or A
decreases from 1.0 to 0.5 (Scenario 2). Figure 4 depicts the dynamic of the
saving rate and consumption.5
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(a) Scenario 1 (A ↑ 1.5): Saving rate
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(c) Scenario 2 (A ↓ 0.5): Saving rate
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(d) Scenario 2 (A ↓ 0.5): Consumption

Figure 4: Unanticipated change in productivity at time t = 1. The capital
stock k1 and the reference level for consumption c0 are given by the long-run
steady state (k∗, c∗). Loss aversion (dotted, red), habit formation (dashed,
blue), and standard case (solid, black).

5Note that in Figure 4 we plot the loss, habit, and standard cases within the same
panel. The reference point is the same and pinned down by the steady state for A = 1.
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When productivity increases, the behavior in the habit and loss case
coincide, see Figure 4(a) and (b). This in line with common intuition: As
the income shock is positive and the economy is growing to a higher steady
state, downside risks and loss aversion have no effect. The increase in the
saving rate in both cases is stronger than in the standard case, which confirms
the results of Carroll et al. (2000) who show that habits imply a sluggish
response of consumption to income shocks, consistent with the stylized facts.
The same is true for loss-averse consumers in our model: consumption is
smoother because outcomes are valued as differences.

The dynamic is different under a negative technology shock, Figure 4(c)
and (d). The loss-averse agent would like to avoid a reduction in consump-
tion. Therefore, after a negative income shock, the cuts in consumption are
smoothed and delayed to make them less painful (because the future is dis-
counted). The saving rate is lowered the most in the loss case (because losses
loom larger than gains) and consumption is cut by less than in the habit or
standard case. Consumption responds in a even more sluggish way than with
habit formation (which already exhibits more consumption smoothing than
the standard case).

5 Discussion and conclusions

The model presented in this paper incorporates prospect utility into the
neoclassical growth model. We prove the existence of an optimal consump-
tion policy for general utility functions with past consumption as a reference
point, without imposing any assumptions on differentiability. The model can
explain the stylized fact of consumption smoothing and, in this respect, is
superior to the Ramsey model. Empirical studies have shown that consump-
tion is less volatile than income. In our model, the economic agent’s income
is generated through the capital stock. Consumption is much smoother than
the capital stock, whereas in the Ramsey model consumption and capital
stock show almost the same dynamics.

Loss aversion only becomes relevant (in contrast to models with habit for-
mation) when reductions in consumption are possible. In this deterministic
model, consumption downturns are only possible when the reference point
is high. We expect the same effects to be present, however, in a stochastic
version of this model. As the individual wants to avoid reductions in con-
sumption, he will increase savings as a way of self-insurance. Hence, the
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behavior of loss-averse consumers is governed by an insurance motive. Our
simulation study indicates that the consumption reaction is more extreme in
downturns which agrees with the stylized fact that the outset of recessions
are more pronounced than that of booms.

The latter finding has important implications for the interpretation of
consumption patterns in the light of the Cass-Koopmans-Ramsey model
(Ramsey, 1928, Cass, 1965, Koopmans, 1965) with textbook utility func-
tion. In the model with an (empirically unjustified) additive-separable util-
ity function, the strong reduction of consumption in a recession may only
be explained by assuming the presence of a strongly negative technology
shock. Consumption would erroneously be associated with two correspond-
ing steady states and a transition from high to low consumption. These
results indicate that stochastic growth—or real business cycle models—with
loss-averse agents would require less severe negative technology shocks to
explain macroeconomic data.

Our paper suggests several directions for future research, in particular,
those focussing on inequality. First, differences in preferences would be worth
studying. If only a certain number of agents is loss-averse, we still expect
to observe loss-averse behavior on the aggregate level, though at a reduced
level. However, ‘poverty traps’ are likely to be ruled out since savings of the
Ramsey agents would cause the capital stock to rise. An even more interest-
ing extension would be to analyze endowment inequality where individuals
share the same preferences. Heterogeneity in wealth implies that both con-
sumption levels and reference points differ across individuals; this turns out
crucial for individual savings and thus gives predictions on the evolution of
inequality. Finally, our paper may be seen as a first step towards a more
demanding analysis of the stochastic optimal growth model in which loss
aversion may provide an insurance motive.

A Proof of Proposition 2

Assume ct = ct+1 = ... = ct+T = c and kt+1 = k with k given by c = f(k)−k.
Consider first the case k > k∗ in which βf ′(k) < 1 because βf ′(k∗) = 1.

For a stationary consumption path to be optimal, the consumer must not be
able to improve his utility by increasing ct, ct+1, ..., ct+T−1 and reducing ct+T
the day after tomorrow. As ct = f(kt)− kt+1, the reduction of ct+T is deter-
mined by dct+T = ΠT

j=1f
′(kt+j)dct + ΠT

j=2f
′(kt+j)dct+1 + ... + f ′(kt+T )dct+T
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(holding kt+T+1 constant) where, by definition, dct = dct+1 = ... = dcT+t−1.
We obtain

1− α
α

1− βT

1− β
u′(c) + 1

≤ 1− α
α

βT
1− f ′(k)T+1

1− f ′(k)
u′(c) + βT (φ− β)

1− f ′(k)T+1

1− f ′(k)
+ βTφ.

Recall that βf ′(k) < 1, and note that βT (1− f ′(k)T+1) can be rewritten
as βT − [βf ′(k)]Tf ′(k). Letting T →∞, we find

1− α
α

1

1− β
u′(c) + 1 ≤ 0

which is a contradiction. Hence, a stationary path with k > k∗ cannot be an
equilibrium.

Next consider the opposite case k < k∗ in which βf ′(k) > 1. Utility must
not rise by reducing ct, ct+1, ... and using the resulting savings to increase
ct+T in the future. We have

φ ≥ max
T

{
βT

1− f ′(k)T+1

1− f ′(k)

[
1−α
α

u′(c) + 1−βφ
]

+ βT − 1−α
α

1− βT

1− β
u′(c)

}
.

Recall that we assumed βf ′(k) > 1. Therefore, if βφ < 1−α
α
u′(c) + 1 (this

condition holds if βφ ≤ 1−α
α
u′(c∗) + 1), the right-hand side grows without

bound as T → ∞ and the condition is violated. Hence, this cannot be an
equilibrium either.

Instead, for high degrees of loss aversion, βφ ≥ 1−α
α
u′(c) + 1, the right-

hand side is decreasing in T and stationary consumption paths below the
steady state become possible. 2
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