1	Impact of left ventricular outflow tract calcification on procedural
2	outcomes after transcatheter aortic valve replacement
3	
4	Taishi Okuno, MD ^a ; Masahiko Asami, MD ^a ; Dik Heg, PhD ^b ; Jonas Lanz, MD, MSc ^a ;
5	Fabien Praz, MD ^a ; Daniel Hagemeyer, MD ^a ; Nicolas Brugger, MD ^a ; Christoph Gräni,
6	MD ^a ; Adrian Huber, MD ^c ; Alessandro Spirito, MD ^a ; Lorenz Räber, MD, PhD ^a ; Stefan
7	Stortecky, MD ^a ; Stephan Windecker, MD ^a ; Thomas Pilgrim, MD ^a
8	
9	^a Department of Cardiology, Inselspital, University of Bern, Bern, Switzerland
10	^b Clinical Trials Unit, University of Bern, Bern, Switzerland
11	^c Department of Diagnostic, Interventional and Pediatric Radiology, Inselspital,
12	University of Bern, Bern, Switzerland
13	
14	
15	
16	Twitter handle: Thomas Pilgrim (@ThomPilgrim), Taishi Okuno (@taishiokuno)
17	Tweet: "LVOT calcification matters: increased risk of annular rupture, PVL & second
18	valve implantation with #TAVR irrespective of valve type or generation."
19	
20	
21	Running title: LVOT calcification in TAVR
22	Word count: 4, 143 (text, references, and figure legends)
23	Corresponding Author:
24	Thomas Pilgrim, MD
25	Department of Cardiology
26	Inselspital, Bern University Hospital
27	University of Bern
28	CH-3010 Bern
29	Phone: 0041 31 632 21 11
30	Fax: 0041 31 632 47 70
31	Mail: thomas.pilgrim@insel.ch

ABSTRACT

Objectives: We aimed to systematically assess the importance of left ventricular outflow
 tract (LVOT) calcification on procedural outcomes and device performances with
 contemporary transcatheter heart valve (THV) systems.

36 Background: LVOT calcification has been associated with adverse clinical outcomes

following transcatheter aortic valve replacement (TAVR). The available evidence is
however limited to observational data with modest numbers and incomplete assessment
of the effect of the different THV systems.

40 Methods: In a retrospective analysis of a prospective single-center registry, LVOT
41 calcification was assessed in a semiquantitative fashion. Moderate/severe LVOT
42 calcification was documented in the presence of 2 nodules of calcification, or 1 extending
43 >5 mm in any direction, or covering >10 % of the perimeter of the LVOT.

44 Results: Among 1635 patients undergoing TAVR between 2007 and 2018, 45 moderate/severe LVOT calcification was found in 407 patients (24.9%). Patients with moderate/severe LVOT calcification had significantly higher incidences of annular 46 47 rupture (2.3% vs. 0.2%, P<0.001), bailout valve-in-valve implantation (2.9% vs. 0.8%, P=0.004), and residual aortic regurgitation (11.1% vs. 6.3%, P=0.002). Balloon-48 49 expandable valves conferred a higher risk of annular rupture in the presence of 50 moderate/severe LVOT calcification (4.0% vs. 0.4%, P=0.002) as compared to the other valve designs. There was no significant interaction of valve design/generation and LVOT 51 52 calcification with regards to the occurrence of bail-out valve-in-valve implantation and 53 residual aortic regurgitation.

54 Conclusion: Moderate/severe LVOT calcification confers increased risks of annular
55 rupture, residual aortic regurgitation, and implantation of a second valve. The risk of
56 residual aortic regurgitation is consistent across valve designs and generations.

57

58 Clinical Trial Registration: <u>https://www.clinicaltrials.gov</u>. NCT01368250.

59

60 Keywords: transcatheter aortic valve replacement; left-ventricular outflow tract calcium;

- 61 balloon-expandable valve; self-expanding valve; mechanically-expandable valve.
- 62
- 63

CONDENSED ABSTRACT
We systematically assessed the impact of LVOT calcification on procedural outcomes
after TAVI in a retrospective analysis. Moderate/severe LVOT calcification was found in
407 patients (24.9%) and was associated with significantly higher incidences of annular
rupture (2.3% vs. 0.2%, P<0.001), bailout valve-in-valve implantation (2.9% vs. 0.8%,
P=0.004), and residual aortic regurgitation (11.1% vs. 6.3%, P=0.002). Balloon-
expandable valves conferred a higher risk of annular rupture in the presence of
moderate/severe LVOT calcification (4.0% vs. 0.4%, P=0.002). There was no significant
interaction of valve design/generation and LVOT calcification with regards to the
occurrence of bail-out valve-in-valve implantation and residual aortic regurgitation.
Abbreviations:
LVOT = Left ventricular outflow tract
SAVR = Surgical aortic valve replacement
STS PROM= Society of Thoracic Surgery-Predicted Risk Of Mortality
TAVR = Transcatheter aortic valve replacement
THV = Transcatheter heart valve
VARC = Valve Academic Research Consortium

Introduction

88	Left ventricular outflow tract (LVOT) calcification has previously been singled
89	out as one of the anatomical features representing a particular challenge in patients
90	undergoing transcatheter aortic valve replacement (TAVR). LVOT calcification has been
91	associated with increased risks of annular rupture(1-3) and residual aortic regurgitation(4-
92	7) following TAVR. The available evidence is however limited to observational data with
93	modest patient numbers and incomplete assessment of the effect of different transcatheter
94	heart valve (THV) designs on procedural outcomes. The impact of the severity and
95	distribution of LVOT calcification on clinical outcomes remains poorly understood. We
96	therefore aimed to systematically assess the importance of LVOT calcification on
97	procedural outcomes and device performances with contemporary THV systems.
98	
99	Methods
100	Study population
101	All patients undergoing TAVR at Bern University Hospital, Bern, Switzerland, are

102 consecutively recorded in a prospective institutional database which is a part of the Swiss

103	TAVI registry (NCT01368250)(8). The registry was approved by the Bern cantonal ethics
104	committee, and patients provided written informed consent for participation. The present
105	analysis included patients that underwent TAVR for native aortic valve stenosis with CE
106	marked devices between August 2007 and June 2018. All patients entering the analysis
107	were required to have adequate pre-procedural multi-detector computed tomography
108	(MDCT) data for systematic evaluation of the aortic valvular complex.
109	Transcatheter aortic valve replacement
110	Patients scheduled for TAVR were evaluated and discussed in the institutional
111	heart team meeting. The THV type and size as well as access route were determined by
112	the team based on preprocedural MDCT measurements and clinical considerations.
113	During the study period, balloon-expandable (SAPIEN THV/XT, SAPIEN 3 [Edwards
114	Lifesciences, Irvine, CA, USA]), self-expanding (CoreValve, Evolut R/PRO
115	[Medtronic, Minneapolis, MN, USA]), Portico [Abbott, Chicago, IL, USA], Symetis
116	ACURATE/ACURATE neo [Boston Scientific, Marlborough, MA, USA]), and
117	mechanically-expandable devices (Lotus/Lotus Edge [Boston Scientific, Marlborough,
118	MA, USA]) were used. The decision to perform pre- and/or post-dilation was left to the

119	discretion of the operator and was device-dependent. TAVR was performed via
120	transfemoral route under conscious sedation by default; an alternative access approach
121	was explored in the case of poor femoral access. Treatment strategy for procedural
122	complications was discussed with cardiac surgeons. Standardized transthoracic
123	echocardiography was performed before discharge by a board-certified cardiologist. The
124	severity of residual aortic regurgitation was assessed using a multi-parametric approach
125	and classified in accordance with the definition recommended by the Valve Academic
126	Research Consortium (VARC-2)(9).
127	Grading of left ventricular outflow tract calcification
128	All MDCT examinations were performed as previously described(10) and
129	independently re-evaluated by two investigators blinded to clinical outcomes, by using
130	dedicated TAVR planning software (3mensio Structural Heart, 3mensio Medical Imaging
131	BV, Bilthoven, the Netherlands). The images were reconstructed to achieve a double-
132	oblique transverse reconstruction at the level of the basal aortic annulus ring using the
133	build-in module. The LVOT calcification was assessed and classified in a
134	semiquantitative fashion as previously described(1,11-14): mild calcification was

135	recorded in the presence of one nodule of calcification extending <5 mm in any dimension
136	and covering <10% of the perimeter of the LVOT; moderate calcification was
137	documented in the presence of two nodules of calcification or one extending >5 mm in
138	any direction or covering >10 % of the perimeter of the LVOT; severe calcification was
139	considered in case of multiple nodules of calcification of single focus extending >10 mm
140	in length or covering >20% of the perimeter of the LVOT (Figure 1). LVOT calcification
141	was also quantified in the contrast images by using a Hounsfield unit threshold of 850
142	HU as previously described(6). The region of interest was defined from the basal annular
143	plane to a perpendicular plane 5 mm below the basal plane.

144 Data collection and clinical follow-up

Baseline clinical data, procedural characteristics, and follow-up data were prospectively recorded in a dedicated database, which is independently held and maintained at the Clinical Trials Unit of the University of Bern, Switzerland. Clinical follow-up was obtained at 30 days and 1 year by standardized interviews, documentation from referring physicians, and hospital discharge summaries. All adverse events of interest were systematically collected and adjudicated by a dedicated clinical event 151 committee, involving cardiologists and cardiac surgeons, according to the VARC-2
152 criteria(9).
153 *Statistical analysis*

Categorical data are represented as frequencies and percentages and the 154 differences between groups are evaluated with the Chi-square test or Fisher's exact test. 155 156 Continuous variables are expressed as mean values \pm standard deviation or median values (interquartile range) and compared between groups using Student's t test or Wilcoxon 157 158 rank-sum test. Event-free survival curves were constructed using the Kaplan-Meier 159 method. Univariate Cox proportional hazards model was used to calculate crude hazard 160 ratios (HRs) and 95% confidence intervals (95% CI) for the clinical outcomes. 161 Multivariable Cox regression was performed to calculate adjusted HR for 1-year mortality. 162 All the clinical variables with a p-value <0.10 (body mass index, diabetes mellitus, and mitral stenosis) at baseline as well as age, sex, and Society of Thoracic Surgeons (STS) 163 164 predicted risk of mortality were used for the adjustment. Throughout the present study, a 165 p-value of <0.05 was considered significant. Statistical analyses were performed using 166 Stata 15.1 (StataCorp, College Station, TX, USA).

168	Results
169	Patient population
170	A total of 1635 patients were eligible for the present study. LVOT calcification
171	was found in 650 patients (39.8%) and semi-quantitatively categorized as mild in 243
172	(14.9%), moderate in 153 (9.4%), and severe in 254 patients (15.5%). The median volume
173	of calcium per group was 3.0 (95%CI: 1.0-6.3) mm ³ for mild, 13.0 (95%CI: 7.9-18.7)
174	mm ³ for moderate, and 61.4 (95%CI: 33.8-105.0) mm ³ for severe.
175	Baseline and procedural characteristics
176	Clinical, echocardiographic, and MDCT characteristics are summarized in Table
177	1. Patients with none/mild versus moderate/severe LVOT calcification were comparable
178	in terms of age, sex, and STS risk scores. Patients with moderate/severe LVOT
179	calcification had less frequent diabetes (20.4% vs. 26.9%, P=0.010) and lower body mass
180	index (BMI) (25.60±5.20 vs. 26.93±5.27, P<0.001) as compared to patients with
181	none/mild LVOT calcification. On echocardiography, patients with moderate/severe
182	LVOT calcification had more frequently mitral stenosis as compared to patients with

183	none/mild calcification (30.3% vs. 12.6%, P<0.001). Procedural characteristics are
184	summarized in Table 2. TAVR was performed by transfemoral route in 89% of patients
185	without differences between the groups. Balloon-expandable valves and self-expandable
186	valves were evenly distributed between the groups, while mechanically-expandable
187	valves were more commonly used in patients with moderate/severe calcification (11.3%
188	vs. 6.0%, P=0.001). The rate of pre-dilation was significantly higher in patients with
189	moderate/severe LVOT calcification (79.6% vs. 71.9%, P=0.002), whereas the rate of
190	post-dilation was comparable between the groups (30.7% vs. 27.1%, P=0.162).
191	Clinical outcomes

Procedural outcomes according to the presence or absence of moderate/severe 192 LVOT calcification are displayed in Table 3. Annular rupture occurred more frequently 193 194 in patients with moderate/severe as compared to those with none/mild LVOT calcification (2.3% vs. 0.2%, P<0.001). Among the ten patients with annular rupture, surgical 195 196 treatment including repair of the ruptured lesion and surgical aortic valve replacement 197 (SAVR)/composite valve graft implantation was performed in three patients. Bail-out interventional treatment using the Amplatzer vascular plug was performed in one patient, 198

199	which resulted in incomplete coverage of the leak. The other six patients were treated
200	with conservative strategies such as resuscitation with or without mechanical support,
201	optimization of the coagulation status, and pericardial drainage. Seven out of the ten
202	patients died in-hospital as a consequence of the complication (Supplemental Table 1).
203	Extent and localization of calcification in the patients are shown in Supplemental Figure.
204	LVOT calcification was located in the region of the free myocardial wall of the left
205	ventricle in all cases, in the region below the noncoronary sinus of Valsalva in 6 cases,
206	and in the interventricular septum in 3 cases.
207	Bail-out valve-in-valve procedures were more frequently performed in patients
208	with moderate/severe as compared to those with none/mild LVOT calcification (2.9% vs.
209	0.8%, P=0.004). At discharge, residual moderate or severe aortic regurgitation was more
210	frequently documented in patients with moderate/severe LVOT calcification as compared
211	to patients with none/mild LVOT calcification (11.1% vs. 6.3%, P=0.002) (Figure 2).
212	Procedural outcomes according to a more detailed stratification into none, mild, moderate,
213	and severe LVOT calcification are summarized in Supplemental Table 2. There was no
21/	significant difference between the two groups with regard to the VARC-2 early composite

215 LVOT calcification: 18.4%, P=0.432). Along the same line, there were no differences in 216

safety endpoint at 30 days (moderate/severe LVOT calcification: 20.4% versus none/mild

217 the occurrence of 30-day mortality, disabling stroke, or permanent pacemaker implantation as a function of the presence or absence of moderate/severe LVOT 218 calcification (Table 4). 219

220 Patients with moderate/severe LVOT calcification had a numerically higher incidence of all-cause mortality at 1 year as compared to patients with none/mild LVOT 221 222 calcification, that was borderline statistically significant (15.4% vs. 11.6%, crude 223 HR=1.35, 95%CI 1.00 to 1.82, P=0.048)(Figure 3). In a multivariate analysis, 224 moderate/severe LVOT calcification did not emerge as an independent predictor of all-225 cause mortality at 1-year (adjusted HR=1.16, 95%CI 0.77 to 1.74, P=0.472). 226 Impact of LVOT calcification on clinical outcomes according to the design and generation

of THV 227

228 We performed subgroup analyses to investigate the impact of moderate/severe 229 LVOT calcification on clinical outcomes according to the valve design (balloon-230 expandable, self-expanding, mechanically-expandable) and the valve generation (earlier-

231	generation [Sapien THV/XT and CoreValve], newer-generation [Sapien 3, Evolut
232	R/PRO]). Relevant residual aortic regurgitation was more common in patients with
233	moderate/severe LVOT calcification as compared to those with none/mild LVOT
234	calcification irrespective of balloon-expandable (7.4% vs. 3.7%, P=0.047) or self-
235	expanding valve design (12.5% vs. 7.3%, P=0.038) (p for interaction 0.491). Along the
236	same line, the risk of need for a second valve was higher in patients with moderate/severe
237	LVOT calcification as compared to those with none/mild LVOT calcification without
238	significant interaction as a function of balloon-expandable (1.7% vs. 0.4%, P=0.084) or
239	self-expanding (4.9% vs. 1.4%, P=0.008) valve design (p for interaction 0.774). In
240	patients treated with mechanically-expandable valves, the incidences of relevant residual
241	aortic regurgitation and need for a second valve implantation were comparable between
242	patients with moderate/severe and those with none/mild LVOT calcification (2.1% vs.
243	2.7%, P=0.841; 0% vs. 0%, p-values not available; respectively) (p for interaction
244	[balloon-expandable, self-expanding, mechanically-expandable] 0.676 and 0.773,
245	respectively). Balloon-expandable valves conferred a higher risk of annular rupture in the
246	presence of moderate/severe LVOT calcification (4.0% vs. 0.4%, P=0.002), while annular

247	rupture rarely occurred regardless of the presence of moderate/severe LVOT calcification
248	among patients treated with self-expanding (0.5% vs. 0%, P=not available) and
249	mechanically-expandable (0% vs. 0%, P=not available) valves (p-values for interaction
250	not available) (Central Illustration). Furthermore, the annular rupture in the patient
251	treated with a self-expanding valve was attributed to aggressive post-dilation performed
252	to mitigate residual paravalvular leak.
253	The incidence of annular rupture was significantly higher (3.3% vs. 0%,
254	P=0.039) in the presence of moderate/severe LVOT calcification among patients treated
255	with earlier-generation THVs, while the difference was not statistically significant
256	(1.3% vs. 0.4%, P=0.198) among patients treated with newer generation THVs (p-value
257	for interaction not available). There was no significant interaction of the valve
258	generation and LVOT calcification with regard to the occurrences of need for the
259	implantation of a second valve (p for interaction 0.693) and relevant aortic regurgitation
260	at discharge (p for interaction 0.836) (Central Illustration).
261	Outcomes in current THVs

262 Procedural characteristics and clinical outcomes of patients treated with newer

263	generation THVs [Sapien 3, Evolut R/PRO, Portico, Symetis ACURATE/ACURATE
264	neo, Lotus/Lotus Edge] are summarized in Supplemental Table 3. Consistent with the
265	results of the overall cohort, mechanically-expandable valves were more commonly
266	used in patients with moderate/severe LVOT calcification (20.6% vs. 9.3%, P<0.001).
267	The risk of procedural complications, including annular rupture (0.9% vs. 0.3%,
268	P=0.210), bail-out valve-in-valve implantation (2.2% vs. 0.8%, P=0.070), and residual
269	moderate or severe aortic regurgitation (4.0% vs. 3.3%, P=0.539) were comparable
270	between patients with moderate/severe LVOT calcification and those with none/mild
271	LVOT calcification. Subgroup analyses to investigate the impact of moderate/severe
272	LVOT calcification on clinical outcomes for each newer generation THV individually
273	are shown in Supplemental Table 4. As with the overall cohort, there was no
274	significant interaction between the THV design and LVOT calcification with regard to
275	the need for the implantation of a second valve and relevant aortic regurgitation at
276	discharge (p for interaction [balloon-expandable, self-expanding, mechanically-
277	expandable] 0.442 and 0.791, respectively). Annular rupture was only observed in
278	patients treated with balloon-expandable valves.

280	Discussion
281	The principal findings of the present analysis can be summarized as follows:
282	Moderate or severe LVOT calcification was encountered in one quarter of patients
283	undergoing TAVR and was associated with increased risks of annular rupture, need for a
284	second valve, and moderate or severe residual aortic regurgitation. The effect was
285	largely consistent across the valve designs and the generations. In patients with
286	moderate/severe LVOT calcification, balloon-expandable valves were however
287	associated with higher rates of annular rupture as compared to self-expanding and
288	mechanically-expandable valves. Moreover, we observed a trend towards an increased
289	risk of death at one year in patients with moderate/severe LVOT calcification.
290	We documented a lower prevalence of diabetes and a lower BMI in patients with
291	moderate/severe LVOT calcification as compared to those with none/mild LVOT
292	calcification. While this observation contrasts with the current understanding that
293	cardiac valvular calcification shares similar risk factors and atherosclerotic
294	pathophysiological pathways as vascular calcification(15,16), it is consistent with

295	previous reports(7,11). We can only speculate on the underlying cause for this
296	observation. One possible explanation may be that patients known to have diabetes or
297	metabolic syndrome had more severe coronary artery disease; in combination with
298	significant LVOT calcification, this may have led to a preference for SAVR in
299	combination with coronary artery bypass graft surgery rather than TAVR in combination
300	with percutaneous coronary intervention.
301	LVOT calcification and annular rupture
302	Annular rupture is a rare (0.5 to 1.0%) but life-threatening complication
303	following TAVR, associated with an in-hospital mortality of up to 50%(1,17-19). In a
304	multicenter analysis of 31 patients from 16 centers, patients with LVOT calcification
305	treated with balloon-expandable devices had a more than 10-fold increased risk of
306	annular rupture as compared to matched controls(1,3). Consistently, in a retrospective
307	analysis of 537 consecutive patients treated with balloon-expandable valves in 90% of
308	the patients, the incidence of aortic annulus injury was significantly higher in patients
309	with moderate/severe LVOT calcification as compared with patients with none/mild
310	LVOT calcification (3.7% vs. 0.2%, P=0.006)(11). In the present study, we corroborate

311	these findings in a considerably larger patient population from a prospective registry
312	with comprehensive imaging data and independent event adjudication. In contrast to the
313	above mentioned studies, more than half of all patients with moderate/severe LVOT
314	calcification were treated with self-expanding or mechanically-expandable valves in our
315	study. While annular rupture was exceedingly rare in patients with self-expanding or
316	mechanically-expandable valves, we found no significant interaction of the occurrence
317	of annular rupture as a function of treatment with early or newer generation valves.
318	While valve designs have substantially been refined over recent years, sizing
319	recommendations have largely remained unchanged. In eight out of the ten patients with
320	annular rupture, oversizing rate was >10%, in two of which oversizing rate was >20%.
321	Implantation of smaller sized THV may have prevented annular rupture in these cases.
322	Calcification in the LVOT in direct extension of the left coronary sinus of Valsalva is
323	considered to entail the greatest risk due to its proximity to the epicardial fat and
324	pericardial cavity(4,19). In the present study, although all ruptured cases had
325	calcification adjacent to the free myocardial wall, a correlation between the distribution
326	of the calcification and the location of rupture could not be assessed due to the absence

327 of multimodality imaging assessment.

328 LVOT calcification and residual aortic regurgitation

329	We found a higher risk of residual moderate or severe aortic regurgitation in
330	patients with significant LVOT calcification, thus corroborating the findings of previous
331	studies reporting an increased risk of residual aortic regurgitation due to LVOT
332	calcification in patients treated with balloon-expandable(4,6) and self-expanding
333	valves(5). In our study, there was no significant interaction of the effect of LVOT
334	calcification on aortic regurgitation as a function of balloon-expandable or self-
335	expanding valve design. Of note, among patients treated with mechanically-expandable
336	valves, the rate of moderate/severe aortic regurgitation were comparable in patients with
337	none/mild (2.7%) versus moderate/severe (2.1%) LVOT calcification (P=0.841). This
338	observation confirms our clinical experiences and accounts for the disproportionately
339	higher use of mechanically-expandable valves in patients with moderate/severe LVOT
340	calcification in our registry.
341	In a study by Nomura and colleagues including 433 patients with mild or more
342	LVOT calcification, newer-generation THVs (SAPIEN 3 and Evolut R) were found to

343	have a numerically lower rate of moderate or severe paravalvular leak as compared with
344	earlier-generation THVs (SAPIEN THV/XT and CoreValve)(13). In contrast, we found
345	a consistent risk of residual aortic regurgitation across different valve generations. The
346	implantation of a second-valve during the index procedure closely correlated with
347	residual aortic regurgitation. The majority of second valves were implanted due to
348	excessive aortic regurgitation after the first valve in patients with moderate/severe
349	LVOT calcification (Supplemental Table 5). The risk of bail-out implantation of a
350	second valve was comparable across the valve designs and generations.
351	LVOT calcification and mortality
351 352	LVOT calcification and mortality LVOT calcification has been associated with an increased risk of mortality
351 352 353	LVOT calcification and mortality LVOT calcification has been associated with an increased risk of mortality following TAVR in previous reports (7,11,12). Studies by Watanabe and colleagues and
351 352 353 354	LVOT calcification and mortality LVOT calcification has been associated with an increased risk of mortality following TAVR in previous reports (7,11,12). Studies by Watanabe and colleagues and Jochheim and colleagues both documented an association of calcification of the aortic
351 352 353 354 355	LVOT calcification and mortality LVOT calcification has been associated with an increased risk of mortality following TAVR in previous reports (7,11,12). Studies by Watanabe and colleagues and Jochheim and colleagues both documented an association of calcification of the aortic valve and the LVOT with an increased risk of mortality at 30 days in a modest number
351 352 353 354 355 356	LVOT calcification and mortality LVOT calcification has been associated with an increased risk of mortality following TAVR in previous reports (7,11,12). Studies by Watanabe and colleagues and Jochheim and colleagues both documented an association of calcification of the aortic valve and the LVOT with an increased risk of mortality at 30 days in a modest number of patients(12). In contrast, there was no increased risk of mortality at 30 days in the
 351 352 353 354 355 356 357 	LVOT calcification and mortality LVOT calcification has been associated with an increased risk of mortality following TAVR in previous reports (7,11,12). Studies by Watanabe and colleagues and Jochheim and colleagues both documented an association of calcification of the aortic valve and the LVOT with an increased risk of mortality at 30 days in a modest number of patients(12). In contrast, there was no increased risk of mortality at 30 days in the study by Maeno and colleagues, including 107 patients with moderate/severe LVOT

359	independent predictor of death at 2 years in a multivariable analysis. In the present
360	study including a considerably larger number of patients compared with the previous
361	reports, we observed a 35% increased risk of death at 1 year in patients with
362	moderate/severe LVOT calcification as compared to those with none/mild LVOT
363	calcification. Consistent with a previous report(10), LVOT calcification was associated
364	with mitral stenosis in approximately one third of patients in our cohort. Calcification of
365	the aortic valve complex often coexists with mitral annular calcification due to the
366	shared pathophysiological mechanism of atherosclerosis(15). The observed effect of
367	LVOT calcification may therefore be confounded by concomitant mitral stenosis. Along
368	this line, in a multivariable analysis including mitral stenosis, LVOT calcification did
369	not independently effect mortality at 1 year in the present study. In addition, a higher
370	rate of residual aortic regurgitation in patients with moderate/severe LVOT calcification
371	may have contributed to the increased risk of death at one year. The adverse effect of
372	residual aortic regurgitation after TAVR has been reported previously(20).
373	Study Limitations

The findings of our study need to be interpreted in light of several limitations.

375	First, even though the current study provides the largest dataset on systematically
376	assessed CT data of patients undergoing TAVR, the low event rate of rare but
377	devastating complications such as annular rupture warrants cautious interpretation of
378	the statistical analysis. Second, the selection of valve type was based on a heart team
379	decision and was performed in a non-randomized fashion; the impact of LVOT
380	calcification as a function of valve type may therefore be confounded and needs to be
381	interpreted with caution. Furthermore, although we excluded patients with inadequate
382	pre-procedural MDCT images from the present analysis, some of the included patients
383	still had MDCT images of borderline quality, which may have led to inaccurate valve
384	sizing. Third, the risk of residual aortic regurgitation and need for a second valve
385	implantation is multifactorial and not solely determined by the severity of LVOT
386	calcification. Finally, while previous reports investigating the effect of LVOT calcium
387	had a focus on balloon-expandable valves, we studied the impact of LVOT calcification
388	on the entire spectrum of valve types; however, the number of patients treated with
389	mechanically-expandable valves was modest limiting the robustness of the reported
390	findings.

391 Conclusions and clinical perspectives

392	Presence of LVOT calcification in TAVR candidates carries an increased risk of
393	annular rupture, residual aortic regurgitation and need for implantation of a second valve,
394	and should be considered in the heart team decision on the optimal treatment strategy for
395	patients with aortic stenosis.

Perspectives

398	What	Is Kn	lown?

- 399 LVOT calcification has been suggested to confer increased risks of annular rupture,
- 400 residual aortic regurgitation, and mortality following TAVR. However, there is limited
- 401 evidence on the effect of different THV designs or generations on the procedural
- 402 outcomes in the presence of significant LVOT calcification.
- 403 What Is New?
- 404 Patients with moderate/severe LVOT calcification had significantly higher incidences of
- 405 annular rupture, bailout valve-in-valve implantation, and residual aortic regurgitation.
- 406 While balloon-expandable valves had the greatest risk of annular rupture, the risk of
- 407 residual regurgitation or implantation of a second valve was comparable across valve408 types.
- 409 What Is Next?

410 LVOT calcification requires special consideration in peri-procedural planning.
411 Refinemens of valve designs are needed to overcome the limitations of current devices in
412 this patient population.

414 Acknowledgements: None

415 Disclosures: Prof. Windecker reports having received research grants to the institution from Abbott, Amgen, Bayer, BMS, Biotronik, Boston Scientific, CSL Behring, Edwards 416 Lifesciences, Medtronic, Polares and Sinomed. Prof. Pilgrim reports having received 417 418 research grants to the institution from Edwards Lifesciences, Boston Scientifc and 419 Biotronik, and speaker fees from Biotronik and Boston Scientific. Prof. Räber reports 420 having received research grants to the institution from Abbott, Biotronik, Sanofi, 421 Regeneron, and Heartflow, and personal fees from Abbott, Amgen, Astra Zeneca, Biotronik, Sanofi, Regeneron, Bayer, CSL Behring, and Occlutech. Prof. Stortecky 422 423 reports having received research grants to the institution by Edwars Lifesciences, 424 Medtronic, and Boston Scientific, and speaker fees from Boston Scientific, Teleflex, and 425 BTG. Dr. Okuno reports having received speaker fees from Abbott. All other authors have 426 no relationships relevant to the contents of this article to disclose.

427

429		References
430	1.	Barbanti M, Yang TH, Rodes Cabau J et al. Anatomical and procedural features
431		associated with aortic root rupture during balloon-expandable transcatheter
432		aortic valve replacement. Circulation 2013;128:244-53.
433	2.	Hayashida K, Bouvier E, Lefevre T et al. Potential mechanism of annulus
434		rupture during transcatheter aortic valve implantation. Catheter Cardiovasc
435		Interv 2013;82:E742-6.
436	3.	Hansson NC, Norgaard BL, Barbanti M et al. The impact of calcium volume and
437		distribution in aortic root injury related to balloon-expandable transcatheter
438		aortic valve replacement. J Cardiovasc Comput Tomogr 2015;9:382-92.
439	4.	Khalique OK, Hahn RT, Gada H et al. Quantity and location of aortic valve
440		complex calcification predicts severity and location of paravalvular regurgitation
441		and frequency of post-dilation after balloon-expandable transcatheter aortic
442		valve replacement. J Am Coll Cardiol Intv 2014;7:885-94.
443	5.	Seiffert M, Fujita B, Avanesov M et al. Device landing zone calcification and its
444		impact on residual regurgitation after transcatheter aortic valve implantation

445		with different devices. Eur Heart J Cardiovasc Imaging 2016;17:576-84.
446	6.	Jilaihawi H, Makkar RR, Kashif M et al. A revised methodology for aortic-
447		valvar complex calcium quantification for transcatheter aortic valve
448		implantation. Eur Heart J Cardiovasc Imaging 2014;15:1324-32.
449	7.	Jochheim D, Deseive S, Gschwendtner S et al. Impact of severe left ventricular
450		outflow tract calcification on device failure and short-term mortality in patients
451		undergoing TAVI. J Cardiovasc Comput Tomogr 2019.
452	8.	Stortecky S, Franzone A, Heg D et al. Temporal Trends in Adoption and
453		Outcomes of Transcatheter Aortic Valve Implantation: A Swisstavi Registry
454		Analysis. Eur Heart J Qual Care Clin Outcomes 2019;5(3):242-251.
455	9.	Kappetein AP, Head SJ, Genereux P et al. Updated standardized endpoint
456		definitions for transcatheter aortic valve implantation: the Valve Academic
457		Research Consortium-2 consensus document (VARC-2). Eur J Cardiothorac
458		Surg 2012;42:S45-60.
459	10.	Okuno T, Asami M, Khan F et al. Does isolated mitral annular calcification in
460		the absence of mitral valve disease affect clinical outcomes after transcatheter

461		aortic valve replacement? Eur Heart J Cardiovasc Imaging 2019.
462	11.	Maeno Y, Abramowitz Y, Yoon SH et al. Relation Between Left Ventricular
463		Outflow Tract Calcium and Mortality Following Transcatheter Aortic Valve
464		Implantation. Am J Cardiol 2017;120:2017-2024.
465	12.	Watanabe Y, Lefevre T, Bouvier E et al. Prognostic value of aortic root
466		calcification volume on clinical outcomes after transcatheter balloon-expandable
467		aortic valve implantation. Catheter Cardiovasc Interv 2015;86:1105-13.
468	13.	Nomura T, Maeno Y, Yoon SH et al. Early Clinical Outcomes of Transcatheter
469		Aortic Valve Replacement in Left Ventricular Outflow Tract Calcification: New-
470		Generation Device vs Early-Generation Device. J Invasive Cardiol 2018;30:421-
471		427.
472	14.	Abdel-Wahab M, Mehilli J, Frerker C et al. Comparison of balloon-expandable
473		vs self-expandable valves in patients undergoing transcatheter aortic valve
474		replacement: the CHOICE randomized clinical trial. JAMA 2014;311:1503-14.
475	15.	Allison MA, Cheung P, Criqui MH, Langer RD, Wright CM. Mitral and aortic
476		annular calcification are highly associated with systemic calcified

477		atherosclerosis. Circulation 2006;113:861-6.
478	16.	Johnson RC, Leopold JA, Loscalzo J. Vascular calcification: pathobiological
479		mechanisms and clinical implications. Circulation research 2006;99:1044-59.
480	17.	Genereux P, Head SJ, Van Mieghem NM et al. Clinical outcomes after
481		transcatheter aortic valve replacement using valve academic research consortium
482		definitions: a weighted meta-analysis of 3,519 patients from 16 studies. J Am
483		Coll Cardiol 2012;59:2317-26.
484	18.	Pasic M, Unbehaun A, Dreysse S et al. Rupture of the device landing zone
485		during transcatheter aortic valve implantation: a life-threatening but treatable
486		complication. Circ Cardiovasc Interv 2012;5:424-32.
487	19.	Pasic M, Unbehaun A, Buz S, Drews T, Hetzer R. Annular rupture during
488		transcatheter aortic valve replacement: classification, pathophysiology,
489		diagnostics, treatment approaches, and prevention. J Am Coll Cardiol Intv
490		2015;8:1-9.
491	20.	Kodali S, Pibarot P, Douglas PS et al. Paravalvular regurgitation after
492		transcatheter aortic valve replacement with the Edwards sapien valve in the

493 PARTNER trial: characterizing patients and impact on outcomes. Eur Heart J

2015;36:449-56.

Figure Legends

497	Figure 1. Categorization of LVOT calcification and prevalence per group.
498	A, B) 1 nodule of calcification extending <5mm in any dimension and covering
499	<10% of the perimeter of the LVOT. C) 1 nodule of calcification extending >5mm in
500	any direction. D) 2 nodules of calcification. E) 1 nodule of calcification covering
501	>10% of the perimeter of the LVOT. F) Multiple nodules of calcification of single
502	focus extending >10 mm. G) Multiple nodules of calcification covering >20% of the
503	perimeter of the LVOT. Yellow arrows indicate nodules of calcification.
504	Figure 2. Residual AR at discharge according to none/mild or moderate/severe
505	LVOT calcification
506	Bar graph illustrating the prevalence of aortic regurgitation in patients with
507	moderate/severe LVOT calcification and none/mild LVOT calcification. Light blue =
507 508	moderate/severe LVOT calcification and none/mild LVOT calcification. Light blue = no aortic regurgitation; grey = mild aortic regurgitation; dark blue = moderate aortic
507 508 509	moderate/severe LVOT calcification and none/mild LVOT calcification. Light blue = no aortic regurgitation; grey = mild aortic regurgitation; dark blue = moderate aortic regurgitation; red = severe aortic regurgitation.

511 moderate/severe LVOT calcification

512	Blue line indicates none/mild LVOT calcification; Red line indicates moderate/severe
513	LVOT calcification.
514	Central Illustration. The impact of LVOT calcification stratified by THV designs
515	and THV generation.
516	Depicted are numbers of events/patients with percentages (%), rate ratios (robustified
517	standard errors) with 95% confidence interval and p-values, and interaction p-values.
518	Balloon-expandable valves include SAPIEN THV/XT, SAPIEN 3. Self-expandable
519	valves include CoreValve, Evolut R/PRO, Portico, Symetis ACURATE/ACURATE
520	neo. Mechanical-expandable valves include Lotus/Lotus Edge.

Tables

- **523 Table 1.** Baseline characteristics according to none/mild or moderate/severe LVOT
- 524 calcification

Table 1. Baseline characteristics according to none/mild or moderate/severe LVOT calcification				
		LVOT ca	lcification	
	All patients	None/ Mild	Moderate/Severe	P-value
	(n=1635)	(n=1228)	(n=407)	
Clinical characteristics				
Age (years)	82.22±5.94	82.13±5.82	82.50±6.30	0.270
Female gender (n, %)	865 (52.9%)	654 (53.3%)	211 (51.8%)	0.647
Body mass index (kg/cm ²)	26.60±5.28	26.93±5.27	25.60±5.20	< 0.001
Logistic Euro Score	17.60±13.27	17.56±13.44	17.73±12.77	0.818
STS PROM	5.34±3.53	5.30±3.55	5.46±3.49	0.420
NYHA III or IV (n, %)	1140 (69.9%)	866 (70.6%)	274 (67.5%)	0.236
Hypertension (n, %)	1387 (84.8%)	1049 (85.4%)	338 (83.0%)	0.264
Diabetes mellitus (n, %)	413 (25.3%)	330 (26.9%)	83 (20.4%)	0.010
CKD (GFR<60) (n, %)	1090 (66.8%)	819 (66.8%)	271 (66.7%)	1.000
COPD (n, %)	209 (12.8%)	162 (13.2%)	47 (11.5%)	0.441
Atrial fibrillation (n, %)	549 (33.6%)	419 (34.1%)	130 (31.9%)	0.432
Coronary artery disease (n, %)	1021 (62.4%)	763 (62.1%)	258 (63.4%)	0.679
Cerebrovascular accident (n, %)	187 (11.4%)	140 (11.4%)	47 (11.5%)	0.929
Peripheral artery disease (n, %)	223 (13.6%)	162 (13.2%)	61 (15.0%)	0.360
Previous pacemaker (n, %)	141 (8.6%)	104 (8.5%)	37 (9.1%)	0.685
Echocardiographic data				
Aortic Valve Area (cm ²)	0.66±0.24	0.67±0.25	0.60±0.22	< 0.001
LVEF (%)	55.10±14.28	54.87±14.18	55.78±14.58	0.272
Moderate/severe AR (n, %)	11 (0.9%)	7 (0.7%)	4 (1.2%)	0.495
Moderate/severe MR (n, %)	234 (18.0%)	168 (17.6%)	66 (18.9%)	0.625
Moderate/severe TR (n, %)	181 (14.0%)	123 (13.0%)	58 (16.7%)	0.104
Mitral stenosis (n, %)				< 0.001
Normal	814 (82.7%)	632 (87.4%)	182 (69.7%)	< 0.001
Mild	128 (13.0%)	76 (10.5%)	52 (19.9%)	< 0.001

Moderate	39 (4.0%)	13 (1.8%)	26 (10.0%)	< 0.001		
Severe	3 (0.3%)	2 (0.3%)	1 (0.4%)	1.000		
Multidetector computed tomography data						
Annulus area (mm2)	452.01±84.92	450.06±83.86	457.88±87.89	0.108		
AVC calcium (mm ³)	336.95±360.04	268.76±264.32	542.01±503.79	< 0.001		
LVOT calcium (mm ³)	0.0 (0.0; 9.3)	0.0 (0.0; 0.0)	37.0 (16.5; 78.4)	< 0.001		

Depicted are means with standard deviations (\pm SD), counts with percentages (%) or median with interquartile ranges (25%; 75%).

STS PROM = Society of Thoracic Surgeons Predicted Risk Of Mortality; NYHA = New York Heart Association; CKD = Chronic kidney disease; GFR = Glomerular filtration rate; COPD = Chronic obstructive pulmonary disease; LVEF = Left ventricular ejection fraction; AR = Aortic regurgitation; MR = Mitral regurgitation; TR = Tricuspid regurgitation; AVC = Aortic valvular complex; LVOT = Left ventricular outflow tract.

525

526

527

Table 2. Procedural characteristics according to none/mild or moderate/severe LVOT

530 calcification

	LVOT calcification			
	All patients (n=1635)	None/ Mild (n=1228)	Moderate/Severe (n=407)	P-value
Fluoroscopy time (min)	18.07 ± 15.66	17.61 ± 12.10	19.45 ± 23.27	0.054
General anesthesia (n, %)	355 (21.7%)	254 (20.7%)	101 (24.8%)	0.083
Femoral main access site (n, %)	1460 (89.3%)	1100 (89.6%)	360 (88.5%)	0.518
Type of valve (n, %)				0.002
Balloon-expandable* (n, %)	742 (45.4%)	566 (46.1%)	176 (43.3%)	0.358
Self-expanding** (n, %)	771 (47.2%)	587 (47.8%)	184 (45.3%)	0.39
Mechanically-expandable***: (n, %)	120 (7.3%)	74 (6.0%)	46 (11.3%)	0.001
Pre-dilation (n, %)	1206 (73.8%)	883 (71.9%)	323 (79.6%)	0.002
Post-dilation (n, %)	458 (28.0%)	333 (27.1%)	125 (30.7%)	0.162
Depicted are means with standard de * SAPIEN THV/XT, SAPIEN3 ** CoreValve, Evolut R/ PRO, Porti *** Lotus/ Lotus Edge	eviations (±SD), cour co, Symetis ACURA	nts with percentages TE/ACURATE neo	(%).	

Table 3. Procedural outcomes according to none/mild or moderate/severe LVOT

533 calcification

Table 3. Procedural complications according to none/mild or moderate/severe LVOT calcification					
		LVOT calcification			
	All patients (n=1635)	None/ Mild (n=1228)	Moderate/Severe (n=407)	P-value	
Bail-out valve-in-valve (n, %)	22 (1.3%)	10 (0.8%)	12 (2.9%)	0.004	
Valve dislocation/embolization (n, %)	27 (1.9%)	19 (1.8%)	8 (2.3%)	0.509	
Annular rupture (n, %)	10 (0.7%)	2 (0.2%)	8 (2.3%)	< 0.001	
Cardiac tamponade/rupture (n, %)	14 (0.9%)	9 (0.7%)	5 (1.2%)	0.356	
Coronary artery occlusion (n, %)	6 (0.4%)	4 (0.4%)	2 (0.6%)	0.642	
Moderate/severe residual AR at discharge (n, %)	122 (7.5%)	77 (6.3%)	45 (11.1%)	0.002	
Depicted are counts with percentages (%).					

Table 4. Clinical outcomes at 30 days according to none/mild or moderate/severe LVOT

537 calcification

Table 4. Clinical outcomes at 30 days according to none/mild or moderate/severe LVOT calcification					
	LVOT calcification severity		Crude Rate ratio		
	None/Mild Moderate/Severe		Moderate/Severe vs. None/Mild		
	(n=1228)	(n=407)	RR (95% CI)	p-value	
All-cause mortality (n, %)	34 (2.8%)	14 (3.4%)	1.24 (0.67-2.31)	0.496	
Myocardial infarction (n, %)	7 (0.6%)	4 (1.0%)	1.73 (0.51-5.91)	0.382	
Disabling stroke (n, %)	24 (2.0%)	11 (2.7%)	1.39 (0.68-2.84)	0.365	
Major or life-threatening bleeding $(n, \%)$	232 (18.9%)	79 (19.4%)	1.02 (0.79-1.32)	0.867	
Major vascular complication (n, %)	126 (10.3%)	46 (11.3%)	1.10 (0.78-1.54)	0.581	
Kidney injury stage 3 (n, %)	20 (1.6%)	9 (2.2%)	1.37 (0.62-3.00)	0.436	
Permanent pacemaker implantation (n, %)	224 (20.1%)	81 (20.1%)	1.00 (0.78-1.29)	0.984	
All-cause mortality or any Stroke (n, %)	64 (5.2%)	27 (6.6%)	1.28 (0.82-2.01)	0.277	
VARC-2 early composite safety endpoint*	226 (18.4%)	83 (20.4%)	1.11 (0.86-1.42)	0.432	

Number of first events are presented (% from life table estimate for 30 days).

• VAR-2 early composite safety includes all-cause mortality, stroke, life-threatening bleeding, acute kidney injury (stage 2 or 3), coronary artery obstruction requiring intervention, major vascular complication, and valve-related dysfunction requiring repeat procedure.