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Abstract: Accurate estimation of nutritional information may lead to healthier diets and better
clinical outcomes. We propose a dietary assessment system based on artificial intelligence (AI),
named goFOODTM. The system can estimate the calorie and macronutrient content of a meal, on the
sole basis of food images captured by a smartphone. goFOODTM requires an input of two meal images
or a short video. For conventional single-camera smartphones, the images must be captured from two
different viewing angles; smartphones equipped with two rear cameras require only a single press of
the shutter button. The deep neural networks are used to process the two images and implements
food detection, segmentation and recognition, while a 3D reconstruction algorithm estimates the
food’s volume. Each meal’s calorie and macronutrient content is calculated from the food category,
volume and the nutrient database. goFOODTM supports 319 fine-grained food categories, and has
been validated on two multimedia databases that contain non-standardized and fast food meals.
The experimental results demonstrate that goFOODTM performed better than experienced dietitians
on the non-standardized meal database, and was comparable to them on the fast food database.
goFOODTM provides a simple and efficient solution to the end-user for dietary assessment.

Keywords: carbohydrate; protein; fat; calorie; nutrient estimation; computer vision; smartphone

1. Introduction

Diet-related diseases—such as cardiovascular diseases and diabetes—are the leading causes of
death globally. Macro-vascular diabetes complications such as atherosclerotic cardiovascular disease
are also the most common cause of morbidity and mortality for individuals with diabetes [1], while the
estimated cost for care of diagnosed diabetes accounts for 25% of health related expenses in the USA in
2017 [2]. For individuals living with cardiovascular diseases, a balanced diet which is low in saturated
and trans-unsaturated fat and high in fruits and vegetables, can reduce the risk of ischemic heart
disease and stroke. People with diabetes need to monitor their diet, specifically their carbohydrate
(CHO) intake, as it is a key factor that can affect blood glucose levels. Clinical studies on insulin
dependent children and adolescents have shown that an error of ±20 grams in CHO estimation
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has significant effects in controlling postprandial glycaemia [3]. These individuals have to receive
training on CHO counting, which relies on empirical rules. This results in errors in their estimation,
ranging from 10 to 15.4 grams [4–6]. Moreover, other diseases, such as obesity, certain types of cancer,
osteoporosis and dental diseases, have been associated by the World Health Organization (WHO) with
diet and nutrition [7]. All these diseases require monitoring and assessment of the individual’s diet to
different extents and for different reasons.

With the development of computer vision algorithms and smartphone technologies, it has
become feasible to estimate the nutrient content of the food by analysing meal images captured
from the smartphone camera [8–10]. In an ideal scenario, the users need to capture one or more
meal images using the smartphone camera; the food type and the associated nutrient contents will
be automatically calculated by the dedicatedly designed dietary assessment system. Three stages
are normally involved in such systems: (1) food item segmentation; (2) food item recognition and
(3) volume estimation. Thus, the nutrient content can be retrieved using the food nutrient database in
a straightforward manner.

Following this concept, many algorithms have been proposed for dietary assessment [11–15],
but most of these only focus on the first two steps [11–13], using the associated image segmentation and
recognition algorithms. Even though these algorithms achieve good accuracy on the publicly available
databases [16,17], we observed that it is still difficult for them to provide satisfactory performance on
real life images, especially in the case of blurred images or poor lighting conditions. Thus, for a practical
system a human-interaction module must be implemented to enable the end users to manually correct
the automatically generated food segmentation and recognition results.

Another major challenge of the dietary assessment system lies within the estimation of food
volume. Conventionally, the multi-view geometry-based approach [18,19] is applied to build the food
3D model for volume estimation. The approach requires multiple carefully captured input images and
a rather large reference pattern (e.g., a reference pattern with a size similar to the plate’s), making it
difficult to use in practice. Our previous work, GoCARB [15,20,21], optimises such an approach using
the dedicatedly designed camera pose estimation and stereo-matching strategies, and it requires only
two free-angle food images and a credit card-sized reference card as input. The GoCARB system
is an initial attempt to achieve practical estimation of the food volume in real scenarios and has
been validated both technically [22] and in a framework of pre-clinical and clinical trials [15,23].
Following the development and great progress of the CNNs, a number of recent studies have tried to
address the estimation of food volume using single view colour images [14,24–26]. Ref. [14,26] uses
the CNNs predicting the depth image from single-view colour image, while the predicted depth map
is used for the food volume calculation. Ref. [24,25] treats the food volume as a latent variable and
predicts the food nutrient content directly from the colour image using the CNNs. Although such
approaches achieve ultimate convenience for the end-users, the methods themselves are ill posed and
are therefore difficult to generalize in real life. Moreover, such approaches require large amount of
training data with depth image or food nutrients as ground truth, which is expensive and difficult
to acquire. To this end, at the current stage, we believe that the two-view geometry-based approach
(i.e., the solution of GoCARB) is adequately practical for accurate dietary assessment.

The progress in academic work on AI-based dietary assessment has been accompanied by
several attempts to commercialise the technology in smartphone applications (e.g., FatSceret [27],
CALORIE MAMA [28] and bitesnap [29]). These applications take advantage of the availability of
smartphones and AI algorithms and aim to provide convenient tools for general users to regularly
record their meals. However, the majority of the applications require the user to manually estimate the
food portion size [27–29] or to use standardised portion units [27–29]. Our recent research indicates
that even trained individuals cannot estimate the food portion accurately [23]. Furthermore, to the
best of our knowledge, the commercially available applications are not supported by publications that
present information on (i) the algorithmic methods used, (ii) validation-even in controlled conditions
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or using a benchmarked dataset and (iii) the system architecture (e.g., smartphone based, server-based).
Therefore, comparative assessment is not straightforward.

In this paper, we propose a smartphone-based dietary assessment system, named goFOODTM.
goFOODTM follows a similar pipeline as our previous GoCARB system, which estimates the nutrient
contents of the food by using two input images. However, the following modifications have been
made: (1) goFOODTM takes advantage of the specially designed advanced deep learning method,
ensuring that the system supports more food types and with better accuracy. (2) In addition to CHO,
goFOODTM also estimates Protein (PRO), Fat and calorie content of the food. (3) The gravity data
from the Inertial Measurement Unit (IMU) of the smartphone is used to further optimize camera
pose and table plane estimation in the food volume estimation module. (4) goFOODTM supports both
two-view images and the stereo image pair for a smartphone equipped with two rear cameras as input.
(5) A lighter version has also been developed, namely goFOODTMLite, which does not implement
macronutrient and calorie estimation, but is used to simply record and store the user’s meal.

The performance of goFOODTM is evaluated on two databases: (1) MADiMa database [30] and
(2) a new database named “Fast food” database, which contains images of food from the “McDonald’s”
fast food chain. It should be noted that the MADiMa database only contains food images captured
from different angles of view using single camera smartphones, while the “Fast food” database
includes both two-view images (single camera smartphones) and stereo image pairs captured by
smartphones with two rear cameras. To demonstrate the performance of the proposed system more
convincingly, we also compare the output of goFOODTM to the estimations of two registered dietitians
from the USA on both databases. The study results show that the proposed system performs better
than the dietitians’ estimations on the MADiMA database, while similar performance is shown on the
“Fast food” database. In addition, to illustrate the advantages of the proposed system with respect to
the typical commercial dietary assessment systems, we summarize a high-level comparison between
the proposed goFOODTM and some popular commercial applications in Appendix A.

Our contributions can be summarised as follows:

1. We propose a practical, accurate, smartphone-based dietary assessment system that predicts the
macronutrient (CHO, PRO, Fat) and calorie content of a meal using two images. The experimental
results demonstrate the superior performance of the proposed system with respect to the
state-of-the-arts on two food databases.

2. A new database (“Fast food” database) is introduced. The database contains both food images
captured from different views and stereo image pairs. Moreover, the accurate nutrient ground
truth and the estimations of the dietitians are also provided. We plan on making this database
publicly available to contribute to the dietary assessment research society.

3. We have conducted a study that compares our system’s estimation to the estimations of
experienced dietitians, demonstrating the promising advantage of an AI-based system for dietary
assessment.

2. System Outline

The system requires the input of two meal images. The input images can be acquired either by
conventionally capturing photos, or by recording a video. For conventional single-camera smartphones,
the images must be captured from two different viewing angles; however, smartphones equipped
with two rear cameras require only one press of the shutter button. The deep neural networks are
applied to process the two images, and this performs food segmentation and recognition, while a 3D
reconstruction-based algorithm estimates food volume. Each meal’s calorie and macronutrient
content are calculated on the basis of each food category, volume and the a food composition
database (Figure 1).
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Figure 1. Overview of goFOODTM.

2.1. Food Image Acquisition

For food image acquisition, two methods using the smartphone’s camera have been developed
and are currently in use. The first is plain photo capture as mentioned above, and requires the user
to capture 2 images from specific angles (see Figure 2). When the smartphone is equipped with at
least two cameras, the relative position of the cameras is known and this allows the user to press the
shutter button only once: two photos are effectively captured simultaneously. For a single camera
phone, the user must capture the two photos separately, while the app indicates the correct angle
from which each photo must be captured, namely 90◦ and 75◦ from the table’s plane. These angles
are selected on the basis of previous research [20], which indicates that the pair is optimal for volume
reconstruction. The second method is video recording. The user is required to record a short video
while moving their smartphone, so that as many different angles as possible are captured within the
video clip.The application, while the video is recorded, automatically captures the most appropriate
stereo-pair image, at angles 90◦ and 75◦ from the table’s plane. Once the appropriate data have been
collected, the user is notified and the recording can stop.

For the current system, many prerequisites regarding data capturing have been eliminated,
yet some remain necessary. In the case of a single camera smartphone, for other than the specific
angles from which the images need to be captured, the user needs to place a credit card-sized reference
object upon the surface or table. The food is not required to be placed on a plate, since the system can
identify food on its own. It is however required that the meal (either plated or not) is placed upon a
flat surface (the reference object needs to be placed on the same surface). This requirement is needed
for the proper volume estimation. Finally, there is no prerequisite with respect to both texture and
colour of the surface/background. However, a surface which exhibits high contrast to the food or
plate, both texture- and color-wise guarantees better and easier segmentation.

The procedure for image acquisition supports goFOODTM, but also exists as a standalone
application, called goFOODTMLite. With the standalone version, it is possible to focus only on
large-scale data gathering to create a larger database for the further development and evaluation
of goFOODTM.

2.2. Food Segmentation

goFOODTM supports both the automatic and semi-automatic modes for food segmentation.
Automatic segmentation is performed immediately after the system receives the meal-related data
(Figure 3a) using the embedded image segmentation algorithm. The user needs to check whether the
segmentation result from the automatic mode is correct. If the segmentation result is unsatisfactory,
they are advised to use the semi-automatic mode. The user should indicate each food item on the image
by touching the corresponding area on the smartphone screen, as shown in Figure 3b. Then a new
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segmentation map is generated by the system, in accordance with both the user’s input and the
embedded segmentation algorithm.

(a) (b)

Figure 2. The application: (a) goFOODTMLite—two images capturing (b) goFOODTMLite—Video
recording.

The algorithm used for the automatic food segmentation is based on the instance segmentation
approach. More precisely, we are using the Mask-RCNN framework [31] in the proposed system.
Even though the Mask-RCNN is able to address both the food segmentation and recognition
simultaneously, we only use it to deal with the food segmentation task. We do this because collecting
the training database with instance segmentation ground truth for a large amount of food categories
is costly and unpractical. Thus, at this point we do not distinguish the different food types,
which allows us to take advantage of the publicly available databases for the food segmentation
network training [11,12]. For the semi-automatic food segmentation, the traditional region growing
and merging [20] algorithm is applied. The interaction regions from the end-users (e.g., the purple
lines in Figure 3b) are used as the seed points of the algorithm [20].

(a) (b) (c)

Figure 3. The application: (a) goFOODTM—Successful automatic segmentation; (b) goFOODTM—
Failed automatic segmentation due to bad lighting [left]—Manual user input [middle]— Successful
semi-automatic segmentation [right]; (c) goFOODTM—Automatic Recognition.

2.3. Food Recognition

goFOODTM supports 319 preinstalled, fine-grained food categories. Even though goFOODTM

recognizes the most frequent food categories, in real-life it is still impossible for the system to
recognize all the food categories existing in the world, and this is also the limit for all existing
applications so far. To alleviate this issue, a hierarchical architecture of three levels has been designed,
with each sub-category containing a larger number of more specific categories (Figure 4). In this way,
an additional two-level hyper food category is assigned to each fine-grained food category and the
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resulting number of hyper food categories is relatively limited in the real world. If an unknown
fine-grained food type is detected, goFOODTM is able to output the hyper food category correctly for
the approximate estimation of food nutrient. Moreover, this hierarchical architecture of food category
representation can also improve the system’s recognition accuracy comparing with the normally used
one-level food label representing method (which is demonstrated in Section 3).

Bread Meat Dairy… Mixed…

White Non White

…

Yoghurt Cheese

18 Types

red White Processed Salads Sandwich Rice orientated …

Caesar salad

Greek salad

Seaweed 
salad

…

Tostada 

Taco 

Lobster roll 
sandwich

…

Fried rice 

Biryani 

Pad_thai

…

Barbecued 
wing

Chicken 
geschnetzelt

es

… …
…

Galantine 

Sausage 
products 

Hot dog

…

Steak 

Beef tartare

Prime rib

……

40 Types

319 Types

Figure 4. The food categories are organized in a three-level hierarchy. The green labels indicate
fine-grained food categories supported by the system, while the gray and blue labels are the concluded
first and second level hyper food categories, respectively.

The convolutional neural networks [32] are designed and implemented for hierarchical food
recognition. Practically, any kind of prevalent CNN for image classification can be used as the backbone
of our food recognition module. Here we choose the Inception V3 [32] due to its high accuracy in
food classification task [33]. We replace the last fully connected layer of the Inception-V3 with three
parallel food recognition layers that correspond to our three levels of food categories. The input
of the algorithm is the food image that is trimmed by the segmentation map from the previous
step, while the outputs are the two-level hyper- and fine-grained categories. A weighted inference
strategy is applied to the three tags and the one with the highest confidence for the nutrient content
calculation is the final output. The training dataset consists of images collected from the Internet,
from publicly available databases [16,34] and the internally captured meal images. As with food
segmentation, the semi-automatic mode is also supported in the food recognition module (Figure 3c),
which permits the user to manually modify the food category when the results from the automatic
mode are not satisfactory.

2.4. Food Volume Estimation

As mentioned before, the input data are either from two views with a traditional single-camera
smartphone (from two single images or a video capture) or a stereo-image pair using a smartphone with
two rear cameras. Different strategies are applied for these two scenarios to estimate the food volume.
For the case of different-view images, a reference object of known size must be placed next to the food
when taking photos (this is not required in the case of two rear cameras). In order to reconstruct the
food 3D model, we use a similar method as in our previous work [20]. However, we further improve
this method by using the gravity data from the smartphone’s IMU. The orientation of the plate’s
bottom is retrieved directly from the gravity data by assuming the table plane is horizontal in the
world coordinates. Moreover, the camera rotation along the smartphone edges is calculated using the
rotation of the gravity vector instead, which significantly reduces the computational complexity for
the camera pose estimation and gives a more stable performance.
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2.5. Nutrient Estimation

The calories and macronutrient content of each food category (per 100 ml) is retrieved from
the “Nutritionix Database” [35], an online nutritional database, which includes the nutrient content
of almost 885 K food types. With this database and the estimated food volume, a straightforward
calculation gives the nutrient content of the meal. As can be seen in Appendix C, the definition of the
categories is based not only on the visual characteristics of the food, but also its nutritional content.
Salient differences are therefore distinguished between the recognised foods, such as different pasta
dishes using the same type of pasta but different sauce, which could substantially affect the final
nutrient content. Moreover the categories cover a large range of dishes and cuisines, constituting the
nutrient estimation appropriate for usage in different locations.

2.6. Pipeline Setup

In our attempt to minimize the hardware requirements of the smartphone, no data are kept and
no calculations are implemented locally on the smartphone. The captured images and/or recorded
videos are immediately transmitted and stored in our servers, where our application programming
interface (API) is implemented and in function. The smartphone interacts with the server through
a series of HTTP requests and responses and receives all intermediate results, as well as the final
estimation. This data is not stored on the phone.

3. Experimental Analysis

The objective of goFOODTM is to reduce the effort of the average user when it comes to
dietary assessment, while achieving performance comparable to healthcare professionals. In this
section, we evaluate the performance of goFOODTM by comparing it to both the ground truth and
dietitians’ estimations.

3.1. Evaluation Databases

Two food image databases were used during our experiments:

MADiMa database [30]:

The database contains 80 central-European style meals. Each meal contains 2–4 food items that
were carefully weighed and annotated with semantic segmentation map and volume. The database
includes 234 food items and 64 fine-grained food types. It should be noted that the original database
annotated the 234 food items with 22 food types. We re-annotated the data in accordance to the food
categories described earlier, in order to align the database with goFOODTM. Each meal in the database
contains the images captured from different viewing angles (between 30–90◦ with the table plane)
and distance (40–60 cm to the table) using multiple sensors (smartphone camera and Intel Realsense
depth camera). The pixel-level semantic map of the meal images are manually annotated and the
ground truth calorie and macronutrient content for each food item are calculated from the recorded
food weight and food composition databases (USDA [36] and/or Swiss [37]. More details regarding
the database can be found in [30]).

The MADiMa database was used to evaluate the performance of the full pipeline of the dietary
assessment, i.e., food segmentation, recognition, and estimations of volume and nutrient content.
To fairly compare our goFOODTM system with the state of the art ones [30,38], we only employ
the colour images captured by smartphone, at 40 cm, 90◦ and 60◦ for evaluation (according to [20],
the 90◦ and 75◦ (or 70◦) are the most accurate combination for food volume estimation. However,
the MADiMa database does not contain such combination, we therefore chose the 90◦ and 60◦ as the
other works [30,38]).
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Fast food database:

The MADiMa database only contains meal images captured by monocular cameras,
while goFOODTM supports both two view images and stereo-image pairs as input. To thoroughly
evaluate the performance of goFOODTM, a new database that contains both two view images
and stereo image pairs of each meal was constructed, using food from the international fast food
chain“McDonald’s”.

This database contains 20 meals and includes 14 different food types. Each meal contains 1–3 food
items. The two-view images and stereo image pairs for each meal were captured using an Android
smartphone (with goFOODTMLite) and an iPhone X, respectively. The ground truth calories and
macronutrient content were retrieved from the official website of “McDonald’s”. Figure 5 exemplifies
some meal images contained in both MADiMa and Fast food databases.

(a) (b)

Figure 5. Some example meal images in (a) MADiMa and (b) Fast food Databases.

3.2. Dietitians’ Estimation

Two dietitians from the USA, with over 5 years of experience in macronutrient counting,
participated in the study. They were asked to perform visual estimations for macronutrients (in grams)
and calories (in kcal) for each meal and report them on a dedicated excel file (both for the MADiMa and
the fast food databases). A detailed description of the estimation method followed by the dietitians is
described in Appendix B.

4. Results

4.1. Food Image Processing

The evaluation of food image processing included food segmentation, recognition and volume
estimation. Although both automatic and semi-automatic modules are implemented in goFOODTM

for the first two aspects, we only evaluated the system’s performance under automatic mode.
The performance of the semi-automatic mode heavily depends on the user, which is not objective
enough for the evaluation. For the food volume estimation, the ground truth segmentation map was
applied for the food 3D model generation.

We applied the same metric as described before [39] (i.e., F-score) for the evaluation of food
segmentation. Higher F-scores indicate better segmentation performance. Table 1 compares the results
of the food segmentation. goFOODTM achieved 94.4% of the Fsum and 83.9% of the Fmin on the MADiMa
database, which are higher than the other works in the literature [30,39], and indicates that the good
performance of food segmentation module of goFOODTM. Table 2 reveals the top-1 and top-3 accuracy
in all the three-level food classification tasks (2 hyper- and 1 fine-grained). To demonstrate the
advantage of the joint three-level prediction architecture of goFOODTM, we compare our result with
the original Inception-V3 [32] networks, by implementing three individual Inception-V3 networks for
each level of food category respectively. The comparison was conducted under the same experimental
conditions: The training data was augmented using the same way as [40]; The stochastic gradient
descent (SGD) optimizer is applied with the initial learning rate 1 × 10−2; The batch size is set
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as 32 and the number of epochs is 20. From the results in Table 2, the joint learning architecture
(i.e., goFOODTM) outperforms the original network regarding the top-1 accuracy for all the food
category levels, demonstrating the good performance of the proposed multi-level food classification
strategy. It should be noted that the evaluation process was conducted with one image crop.
Although the multi-image crops and embedded backbone models improve the recognition accuracy,
such strategies are not practical for real-life applications due to high computational cost. Figure 6
shows some typical examples of correctly and incorrectly recognized images. We can see that the errors
are mainly due to the similar visual appearance of the inter food categories. For example, the “falafel”
(a type of fried ball made from ground chickpeas), looks very similar to the “Rissole”, which is a kind
of fried meat ball. The “lutefisk” in Figure 6 was easily misidentified as a piece of chicken breast.

Table 1. Comparison of food segmentation results on the MADiMa database.

Methods Fmin (%) Fsum (%)

[38]-Region growing & merging 67.8 90.8
[30]-CNNbordersegnet 70.6 92.9
[30]-CNNborderunet 74.3 93.7
goFOODTM 83.9 94.4

Table 2. Comparison of food recognition results on the MADiMa database.

Methods Hyper1 Hyper2 Fine-Grained

Top-1 (%) Top-3 (%) Top-1 (%) Top-3 (%) Top-1 (%) Top-3 (%)

Inception-V3 [32] 63.2 83.7 47.0 70.5 53.9 73.6
goFOODTM 65.8 82.4 61.5 78.2 57.1 71.8

GT: Barbecuewing
Top3 Pred:
Samosa
Onion rings
Chicken kiev

GT: tagliatelle
Top3 Pred:
Spaghetti
Macaroni 
vermicelli 

GT: Falafel 
Top3 Pred:
Rissole
Chicken
Kabob

GT: lutefisk
Top3 Pred:
Chicken
Steakaupoivre
Beans

GT: Chicken /w red sauce
Top3 Pred:
Chicken /w red sauce
Potatoesboiledroast
Chickpeas

GT: Carrot
Top3 Pred:
Carrot
Sauerkraut 
Chili

GT: Macaroni 
Top3 Pred:
Macaroni
Mashedpotatoes
Potatoesboiledroasted

GT: Mashedpotatoes
Top3 Pred:
Mashedpotatoes 
Gnocchi
Frenchfries

Good examples Bad examples

Figure 6. Examples of correctly and incorrectly recognized food images.

The computation time of the whole food image processing module is ∼2.7 s on a server equipped
with GTX1080Ti and i7− 4770KCPU@3.5GHz. We evaluated the food volume estimation as in [20],
which gave a 19% Mean Absolute Relative Error (MARE) over the 234 food items in the MADiMa
database. In comparison to our previous GoCARB system (which has 22.6% MARE), the improvement
in performance is mainly due to the introduction of the gravity data from the smartphone.

4.2. Nutrient Estimation

Tables 3 and 4 compare the results of the goFOODTM system and the dietitians’ estimations on
both the MADiMa and the Fast Food databases. The metric we used for evaluation was the median of
the absolute error and its 25th and 75th percentiles.

As indicated by the results, the proposed goFOODTM system achieved satisfactory results on both
databases. It should be noted that goFOODTM performed much better than the dietitians’ estimations
on the MADiMa database, and was somewhat inferior to the dietitians’ estimations on the Fast Food
database. To further support the above findings, the two-sample t-test is conducted on both databases
(statistical significance was set to 0.05). The null hypothesis was set as: “the dietitian’s estimation
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is closer to the ground truth than goFOODTM’s estimation”. Examining the results, the p-values of
CHO, PRO, Fat and calories on the MADiMa database are all lower than 0.05, indicating that the null
hypothesis can be rejected and the alternative, i.e, goFOODTM has closer performance to the ground truth
than the dietitians on the MADiMa database , should be accepted. However, the p-values of CHO, PRO,
Fat and calories on the Fast food database are 0.062, 0.224, 0.052, 0.054, respectively. Thus, on the Fast
food database we accept the null hypothesis, that the dietitians’ estimation are closer to the ground
truth than goFOODTM.

We believe that this occurred due to the experiences of the dietitians. We theorize that they,
like most people, are well familiarized with standardized meals (standard portions, plate sizes,
nutrient contents etc.), that are common in fast food chains, such as McDonald’s. On the other hand,
when it comes to everyday meals from individuals, the diversity is much greater, regarding all
parameters that can affect the dietary estimation of a meal from just an image (portion sizes,
plate sizes, food combinations etc.). Moreover the current study involved populations, and thus
meals, from Central Europe, which can pose an extra obstacle for the dietitians originating from
the USA, due to differences in culinary culture. These factors pose greater challenges for a dietary
estimation, which is indicated by the experimental results.

Table 3. Estimations of nutrient content on the MADiMa database.

goFOODTM

Median (25th– 75th Percentiles)
Dietitians

Median (25th–75th Percentiles)

CHO (g) 7.2 (3.2–15.3) 27 (10.6–37.7)
PRO (g) 4.5 (2.0–10.9) 8.7 (4.7–13.5)
Fat (g) 5.2 (2.0–10.06) 5.2 (2.3–9.7)
Calories (kcal) 74.9 (40.4–139.3) 180 (119–271)

Table 4. Comparison of results of nutrient content estimation on the Fast Food database.

Two-View
Median (25th–75th Percentiles)

Stereo Pair
Median (25th–75th Percentiles)

Dietitians
Median (25th–75th Percentiles)

CHO (g) 7.9 (4.2–15.7) 9.3 (3.5–14.1) 5.3 (2.9–7)
PRO (g) 2.8 (1.3–4.20) 4.4 (2.9–7.5) 1.5 (0.5–3.3)
Fat (g) 5.8 (1.4–14.6) 9.22 (3.9–22.5) 3.8 (1.5–6.3)
Calories (kcal) 75.9 (27.9–124.7) 107.8 (54.8–150.9) 55.5 (17–83)

In Table 4, the performance of the two different system inputs (i.e., two different view images and
stereo image pair) are also compared. As shown by the results, the input of two view images achieved
better results, which is due to the large baseline distance between the two view images (∼20 cm),
while that of the stereo-image pair is very small (∼14 mm for the iPhone X). The small baseline distance
then has a negative effect on the 3D model reconstruction [41].

The Pearson correlations between goFOODTM, the dietitians’ estimations and the ground truth are
illustrated in Table 5. As indicated by these numbers, the estimations of goFOODTM were correlated
with both the ground truth values and the dietitians’ estimations. The highest correlation values (>0.6)
are found between the PRO, fat and calorie estimations and the ground truth from the MADiMa
database and between the CHO, PRO and calorie estimations and the ground truth from the Fast
Food database.

To further illustrate the comparison between the performances of goFOODTM and the dietitians,
the Bland–Altman plots on both databases are illustrated in Figures 7 and 8. The Bland–Altman
plots reveal that goFOODTM achieves a more stable performance than the dietitians on the MADiMa
database, but a comparable performance on the Fast Food database.
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(a)

(c) (d)

(b)

Figure 7. Bland–Altman plots of goFOODTM’s and dietitians’ estimations on the MADiMa database
in terms of (a) CHO, (b) PRO, (c) FAT and (d) Calories. The dashed lines indicate the 95% confidence
interval of goFOODTM (blue) and the dietitians’ estimations (red).

Table 5. Pearson correlations between different methods.

Database
goFOODTM vs.
Ground Truth

Dietitians vs.
Ground Truth

goFOODTM vs.
Dietitians

MADiMa

CHO 0.54 0.57 0.40
PRO 0.69 0.82 0.62
Fat 0.66 0.63 0.47
Calories 0.60 0.66 0.52

Fast
Food

CHO 0.88 0.97 0.87
PRO 0.89 0.95 0.92
Fat 0.50 0.94 0.47
Calories 0.87 0.97 0.83

All values of the table are p < 0.05.
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(a)

(c) (d)

(b)

Figure 8. Bland–Altman plots of goFOODTM’s and dietitians’ estimations on the Fast Food database
in terms of (a) CHO, (b) PRO, (c) FAT and (d) Calories. The dashed lines indicate the 95% confidence
interval of goFOODTM (blue) and the dietitians’ estimations (red).

5. Discussion and Conclusions

In this paper, we proposed a fully automated nutrient estimation system, goFOODTM,
that estimates the calorie and macronutrient content (kcal, CHO, PRO and fat) of a meal using
images or video captured by smartphones. The experimental results indicate that the proposed
goFOODTM system performs with a higher accuracy than the experienced dietitians on normal
central-European meals, while exhibiting comparable performance for the fast food standardized
meals. However, it should be noted that the study was conducted with only two dietitians from the
same country. A larger number of nutrition experts with diversity backgrounds are needed in order to
test the estimations again and be able to generalise our findings.

The embedded food segmentation algorithm used in this version of goFOODTM has proved
to be superior to its previous version [30] and accurately recognized different foods, depending on
how common and fine-grained they were. The lowest top-3 accuracy of 71.8% was found for the most
fine-grained categories, which emphasizes the need for additional and more specific data, since the
number of different foods that can be encountered on a daily basis is high.

The results of goFOODTM and the experienced dietitians were similar for the Fast Food database.
This may be due to the dietitians’ greater familiarity with standardized meals. On the other hand,
goFOODTM performed better with the MADiMa database and more real-life every day meals,
which can indicate the system’s ability to generalize its findings, but which can also be dependent on
the USA dietitians’ unfamiliarity with the Central European cuisine.

The above mentioned findings indicate that such an enhanced system can be of considerable
practical value in different scenarios and use cases. There are a number of system versions addressing
numerous use cases. goFOODTM can obviously be useful for individuals who desire to monitor their
diet and be cautious either for health related reasons or for lifestyle. Similarly, it can be a very useful
tool for dietitians and health care professionals that wish to monitor their patients’ or clients’ diet
either by using the tool on-site or by having their patients or clients share their results. This can
also further assist with producing statistical information and extracting trends, which can help in
improving one’s diet. Furthermore, a simpler version of goFOODTM, called goFOODTMLite, has been
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developed, which does not provide a meal estimation, but is simply used to record the user’s consumed
foods and beverages. The data acquired using this method are appropriate for retrospective analysis.
Thus, this tool is valuable to individuals in need of simple tracking of their diet and/or their dietitians
or health care professionals. On a broader spectrum goFOODTMLite can be a valuable tool for
large-scale data gathering research projects, both technical and nutritional, as it can be used for
image-/video-data gathering. In technical research it is expensive and difficult to gather the volume
of data required for the training of state of the art algorithms and for the development and research
of novel methods. Similarly in nutrition research, the currently available methods for data collection
are greatly cumbersome to the research participants and prone to inaccurate entries. Food recording
can be tedious for participants to complete, thus constituting a reason for them not to participate in a
project at all, and for researchers to analyze.

Future Work:

As has been made obvious throughout this work, goFOODTM is under constant development
aiming at improving its current features, in terms of accuracy, speed, user friendliness and also aiming
at developing and integrating new features. The most recent addition to the set of functionalities is
the development and integration of a bar-code scanner, so that packaged consumed products can also
be accounted for. This functionality has not been analysed and will not be further discussed in the
current manuscript, as it does not constitute an active research project, but a developed package ready
for integration.

Finally, only an Android app is currently available to the user. This obviously limits possible
users to only those with Android phones. At the moment an iOS version is also under development
so that the app can be of help to all smartphone users. The app was not available to the public when
the current manuscript was drafted. Its usage is limited to research purposes, either in-lab for further
development or as part of a number of research and development project that are currently ongoing.
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AI artificial intelligence
CHO carbohydrate
PRO protein

Appendix A. High-Level Comparison between goFOODTM and Some Popular Commercial
Dietary Assessment Apps

In this section, we provide a high-level comparison between the proposed goFOODTM system
and some popular commercial products for dietary assessment. As mentioned in Section 1, it should
be noted that the commercial products normally do not provide the details regarding the algorithms
used and validation results. Thus, a systematic and in depth comparison is not feasible (e.g., there is
no way for us to know the configuration of their products in the sense of algorithmic execution on
the server side or smartphone side). Nevertheless, Table A1 summarises the major differences and
advantages of the proposed approach (goFOODTM) against commercial products.
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Table A1. High-level comparison between goFOODTM and some popular commercial dietary
assessment apps.

APP name 1 Automatic
Food

Recognition

Automatic
Food Portion
Estimation

Core Algorithm
Computa-

Tional Time 2 Validation

FatSecret [27] × × - <1 s -

CALORIE
MAMA [28]

√
× CNN for food

recognition
<1 s -

bitesnap [29]
√

× CNN for food
recognition

<1 s -

aical [42]
√

× Voice recognition
aided food
recognition

<1 s -

GoCARB 3

previous version

of goFOODTM
√ √

Traditional machine
learning for food

recognition,
segmentation; SfM
for food 3D model

reconstruction
(volume calculation)

∼2 s for food
recognition

and
segmentation;
∼5 s for
volume

estimation

· Technical
· Pre-clinical
· Clinical

goFOODTM 4 √ √
CNN for food

recognition,
segmentation;

Improved SfM for
food 3D model
reconstruction

(volume calculation)

<1 s for food
recognition

and
segmentation;
∼2 s for food

volume
estimation

· Technical
· Pre-clinical

ongoing, 2020

1. These commercial apps are chosen because of their high number of downloads; 2. It is impossible for us to
know the precise running time of the commercial apps, thus we chose 1s as the threshold; 3. https://gocarb.ch;
4. https://go-food.tech.

Appendix B. Macronutrient Estimation from the Dietitians

The goal was to calculate the nutritional content in terms of energy and macronutrients
(CHO, PRO and fat) for each of the food items in every plate. The nutritional content of each of
the 80 dishes was calculated using the USDA nutritional database, the Swiss nutrient database [37] or
the food label referring to each food item. Certain images contained meals consisting of several food
items, but whose food labels did not provide nutritional information for each separate item, but for
the entire meal. For these meals, the USDA nutritional database or the Swiss nutrient database were
used, needed, in order to calculate each food item’s nutritional content, with a precision as close to the
labeled food as possible.

When specific food items did not exist as separate food items, either on the food labels or in the
nutrient databases (e.g., curry chicken with pasta written on the label, but no individual nutritional
values for chicken with curry sauce and pasta), then a professional dietitian estimated the amount of
sauce and the amount of meat that was present on the plate and calculated the nutritional content of
the sum of those food items accordingly.

https://gocarb.ch
https://go-food.tech
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Appendix C. Food Categories

The food categories supported by goFOODTM are structured in a three-level hierarchical scheme.
These three levels are divided into two levels of hyper-categories and one level of fine grained
categories. A visual presentation of the three-level is provided in Figure 4. These three levels contain
finer food categories while moving “downwards”. Starting from the first level, we mainly have basic
food groups. Moving to the second level we have a sub-categorization of these basic food groups
(e.g., past can be divided into white, non white and stuffed past). Finally, the fine categories of the
third level contain actual dishes with main ingredient the one from the corresponding second or first
level. In Table A2 we provide the full list of the first two levels, while also some indicative examples of
the finer third level categories. Certain categories exist in both the first and second level (e.g., ”rice” as
a 1st level hyper-category and as a 2nd level category, under “Mixed”). This separation is based on
the fact that there are certain dishes that contain a food type in high quantities, but also contain other
types in such ratios, so that the first type cannot constitute the category, but a main ingredient of
a mixed dish. For example, the dish “bibimbap” contains rice in a large quantity, enough to consider it
the main/basic ingredient. But it also contains other ingredients (vegetables, meat, egg) and in such
quantities that the entire dish is considered as mixed.

Our system is trained on all levels and can recognize the food as well as its two broader categories.
In the case that an image contains a dish, which is not included in the 319 fine categories, the system
can provide the second and first level categories, along with their nutrient content. This way, the user
can receive the most accurate estimation possible.

Table A2. goFOODTM Food Cateogories.

1st Level 2nd Level Fine Categories

Bread white garlic bread
non white

Pasta white couscous, spaghetti, penne with tomato sauce, etc.
non white
stuffed pasta ravioli, spinach tortellini, etc.

Potatoes None french fries, boiled potatoes with skin, etc.

Pulses/legumes None peas, poi, etc.

Rice white pilaf, etc.
non white wild rice, etc.

Fish and Seafood None oyster, clam food, lutefisk, etc.

Fruit None acerolas, pineapples, apples, etc.

Meat processed products sausage products, galantine, etc.
white meat fried chicken, creamy chicken, turkey with cheese, etc.
red meat meatballs, steak au poivre, etc.

Dairy products yoghurt plain yoghurt, mixed yoghurt
white cheese hard white cheese, cottage cheese, etc.
yellow cheese fondue

Eggs boiled/baked boiled egg, deviled egg, etc.
fried omelette, frittata, etc.

Sweets None churro, panna cotta, flan, etc.

Vegetables None carrots, mushrooms, string beans, etc.
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Table A2. Cont.

1st Level 2nd Level Fine Categories

Mixed gratins casserole, ziti, tamale pie, etc.
salads green salad, beet salad, seaweed salad, etc.
open sandwiches tostada, bruschetta, huevos rancheros, etc.
closed sandwiches hamburger, lobster roll sandwich, club sandwich, etc.
stuffed food dumpling, burrito, gyoza, etc.
pizza
multilayer lasagna, moussaka, etc.
soup wonton, pho, miso soup, etc.
noodles/pasta chow mein
rice biryani, pad thai, bibimbap, etc.
meat coq au vin, moo moo gai pan, etc.
fish lobster thermidor, fish and chips, etc.
other kedgeree, guacamole, sushi, etc.

Breaded (incl. croquettes) None falafel, tempura, samosa, etc.

Corn None

Nuts None pecan, hazelnut, etc.

Snack None chips, nachos, etc.

Cereal processed
unprocessed
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