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1 Introduction

A neutral plasma with charged constituents, such as the early universe before recombina-

tion, emits and absorbs photons, because scatterings between the microscopic constituents

amount to changing electromagnetic currents. Similarly, a homogeneous plasma can emit

and absorb gravitational waves, because scatterings also imply changing energy and mo-

mentum currents (cf., e.g., ref. [1]). The emission/absorption rate is suppressed by 1/m2
Pl

and therefore tiny for temperatures much below the Planck scale. On the other hand, the

age of the universe (inverse Hubble rate) is ∼ mPl, so that the total energy density emit-

ted into gravitational radiation is only suppressed by 1/mPl. This may motivate a precise

computation of the production rate and its integration over the history of the universe [2].

In addition to the emission from an equilibrium plasma, there are numerous potential

non-equilibrium sources for gravitational radiation. These range from tensor modes pro-

duced during inflation [3] to a multitude of post-inflationary sources (for a review see, e.g.,

ref. [4]). However, all of these rely on yet-to-be-established models, unlike the Standard

Model background that we are interested in.
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Restricting for a moment to locally Minkowskian spacetime, the rate of change of the

polarization-averaged phase space distribution of gravitons (fGW) has the form [5]

ḟGW(t,k) = Γ(k)
[
nB(k)− fGW(t,k)

]
+O

(
1

m4
Pl

)
, (1.1)

where k ≡ |k| and nB(k) ≡ 1/(ek/T − 1) is the Bose distribution. The differential energy

density is given by deGW = 2k fGW
d3k

(2π)3
. Adopting a logarithmic scale, the production rate

of gravitational energy density can thus be expressed as

deGW

dt d ln k
=
k4ḟGW

π2
. (1.2)

In the following we are interested in estimating the rate Γ(k) defined by eq. (1.1) in

the frequency range in which deGW peaks. This range is given by the typical thermal scale

k ∼ πT [2], corresponding after red shift to the same microwave range at which most CMB

photons lie. In this frequency range, the gravitational wave abundance is expected to be

much below equilibrium, fGW � nB(k), so that the right-hand side of eq. (1.1) evaluates to

Γ(k)nB(k). However, the same coefficient Γ(k) also governs other phenomena, for instance

the damping of a gravitational wave as it passes through a thermal plasma, if produced by

some astrophysical source before (cf., e.g., refs. [6, 7] for recent works).

We start by describing in some detail the technical steps of the computation, which

we have implemented in two complementary ways, viz. by taking the cut of a retarded

2-point correlator of the energy-momentum tensor (sections 2.1–2.3), and by considering

Boltzmann equations for graviton production (section 2.4). After phase space integration

(section 2.5) and thermal resummation (section 2.6), the result is evaluated numerically

(section 3) and embedded in a cosmological environment (section 4). Conclusions and an

outlook are offered in section 5. Two appendices explain why two classes of contributions,

frequently considered in the literature, are of subleading order for the present observable.

2 Steps of the computation

2.1 Setup

Assuming that a system is spatially homogeneous and stationary on the time scales ob-

served, and aligning the z-axis with the momentum (k = k ez), the production rate of the

energy density carried by gravitational waves can be related to the Wightman correlator

G<12;12 ≡
∫
X
eik(t−z)〈T12(0)T12(X )

〉
, X ≡ (t,x) . (2.1)

Here we work in the medium rest frame, with its four-velocity taking the form u = (1,0),

in order to permit for a simple identification of the energy density. For a general frame,

spatial indices (. . .)i should be replaced with (gi
µ − uiuµ)(. . .)µ.

In equilibrium, G<12;12 is related to the imaginary part of the retarded correlator as

G<12;12 = 2nB(k) ImGR
12;12. In the following we compute a Euclidean correlator GE

12;12 as

a function of a Euclidean four-momentum K = (kn,k), from which GR
12;12 is obtained by

– 2 –
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an analytic continuation, GR
12;12 = GE

12;12|kn→−i[k+i0+]. Here kn = 2πnT , with n ∈ Z, is a

bosonic Matsubara frequency. The rate Γ(k) from eq. (1.1) is then given by [2]

Γ(k) =
16π ImGR

12;12

km2
Pl

, (2.2)

where mPl = 1.22091× 1019 GeV is the Planck mass.

We write the correlator in a covariant form as1

GE
12;12 =

Lµν;αβ G
E
µν;αβ

D(D − 3)
, GE

µν;αβ ≡
∫
X
eiK·X

〈
Tµν(X)Tαβ(0)

〉
, (2.3)

where D denotes the dimension of space-time, X ≡ (τ,x), and τ ∈ (0, 1
T ). Here we have

defined the projector (Lµν;αβLαβ;γδ = Lµν;γδ)

Lµν;αβ ≡
P

T
µαP

T
νβ +PT

µβP
T
να

2
−
P

T
µνP

T
αβ

D − 2
, P

T
µν ≡ δµiδνj

(
δij −

kikj
k2

)
, (2.4)

which is symmetric (Lµν;αβ = Lνµ;αβ = Lαβ;µν) and projects onto transverse (KµLµν;αβ =

kiδiµLµν;αβ = 0) and traceless (δµνLµν;αβ = 0) modes. We also denote

P
T
p ≡ PT

µνPµPν = p2 − (p · k)2

k2
. (2.5)

As Tµν we take the Standard Model energy-momentum tensor, which we write in

Euclidean metric. Given that Lµν;αβ projects out trace parts, it is enough to include

non-trace ones,

Tµν ⊃ F aiµαF aiνα + (Dµφ)†(Dνφ) + (Dνφ)†(Dµφ)

+
1

4

[
q̄L
(
γµ
←→
Dν + γν

←→
Dµ

)
qL + ūR

(
γµ
←→
Dν + γν

←→
Dµ

)
uR + d̄R

(
γµ
←→
Dν + γν

←→
Dµ

)
dR

+ ¯̀
L

(
γµ
←→
Dν + γν

←→
Dµ

)
`L + ν̄R

(
γµ
←→
Dν + γν

←→
Dµ

)
νR + ēR

(
γµ
←→
Dν + γν

←→
Dµ

)
eR

]
, (2.6)

where the ai label the generators of the various gauge groups; φ is the Higgs doublet;

qL, `L are the left-handed quark and lepton doublets, respectively; and uR, dR, νR, eR are

the corresponding right-handed components. The covariant derivative has the form

Dµ = ∂µ − ig1Y Aµ − ig2T
a2Aa2µ aL − ig3T

a3Aa3µ , (2.7)

where g1, g2, g3 are gauge couplings, aL is the left-handed projector and the hypercharge

assignments are Y = −1
2 , − 1

2Nc
, −Nc+1

2Nc
, Nc−1

2Nc
, 1

2 , 0, 1 for φ, qL, uR, dR, `L, νR, eR, respec-

tively [8]. We note that because of their vanishing gauge charge assignments and the omis-

sion of their Yukawa couplings, the fields νR do not contribute to 2 ↔ 2 scatterings and

have thus no effect on our final results (traditionally, νR are often omitted from the outset).

1A simple way to verify the factor in the denominator is to consider momentum averages in the transverse

plane. By rotational symmetry, 〈qiqjqkql〉 = A (δijδkl+δikδjl+δilδjk). Therefore a representative of 〈T12T12〉
evaluates to 〈q21q22〉 = A, whereas Lij;kl〈qiqjqkql〉 = AD(D − 3).

– 3 –
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In order to avoid inverse polynomials of D in section 2.2, the result for GE
12;12 is

expressed as

GE
12;12 ≡

2

D(D − 2)(D − 3)

{
+ nSΦs + 2nG(1 +Nc)Φf + (2 +NcCF)Φg + nSλΦs(s) +

(
3g2

2 +N2
cCFg

2
3

)
Φg(g)

+ nS|ht|2Nc

[
Φs(f) + Φf(s) + Φs|f

]
+ nS(g2

1 + 3g2
2)
[
Φs(g) + Φg(s) + Φs|g

]
+ nG

[
(Nc + 1)(Nc + 2)g2

1

4Nc

+
3(Nc + 1)g2

2

4
+ 2NcCFg

2
3

][
Φf(g) + Φg(f) + Φf |g

]
+O(g4)

}
, (2.8)

where nS = 1 is the number of Higgs doublets, nG ≡ 3 is the number of fermion generations,

CF ≡ (N2
c − 1)/(2Nc), and O(g4) refers generically to any 3-loop contribution.2 Here

s, f, g refer to effects from scalars, fermions, and gauge bosons, respectively; Φa is a 1-loop

diagram with a particle of type a; Φa(b) is a 2-loop diagram where a particle of type a couples

to Tµν and a particle of type b appears in a loop; and Φa|b is a 2-loop diagram involving

a cross correlation between the energy-momentum tensors of particles of types a and b (in

terms of matrix elements this corresponds to an interference term). The corresponding

Feynman diagrams are shown in figure 1.

2.2 Retarded energy-momentum correlator

As the gravitational wave production rate is dominated by very high temperatures, we

treat all particles as massless for the moment (the role of thermal masses is discussed

in section 2.6 and in appendices A and B). Then the results for the correlators can be

expressed in terms of the “master” sum-integrals [9]

Jcab ≡
∑∫
P

jcab , J̃cab ≡
∑∫
{P}

jcab , jcab ≡
[PT

p]c[K2]x

[P 2]a[(K − P )2]b
, (2.9)

Ifghabcde ≡
∑∫
PQ

ifghabcde , Ĩfghabcde ≡
∑∫
P{Q}

ifghabcde , Îfghabcde ≡
∑∫
{P}Q

ifghabcde , Īfghabcde ≡
∑∫
{PQ}

ifghabcde ,

ifghabcde ≡
[PT

p]f [PT
q]g[PT

q−p]h[K2]y

[P 2]a[Q2]b[(Q− P )2]c[(K − P )2]d[(K −Q)2]e
, (2.10)

where {P} denotes a fermionic Matsubara four-momentum. The indices x ≡ a + b − c

and y ≡ a + b + c + d + e − f − g − h − 2 guarantee the overall dimensionality GeV4. In

the fermionic cases the representation is not unique; for the class of masters discussed in

section 2.3, which have a cut corresponding to a 2 ↔ 2 scattering, we have ordered the

indices such that a, c, e are non-negative.

The reduction of the energy-momentum tensor correlator to the basis of eqs. (2.9)

and (2.10) has been carried out with a self-designed algorithm implemented in FORM [10].

2The Higgs self-coupling and top Yukawa coupling appear in a Euclidean Lagrangian as LE ⊃ λ(φ†φ)2 +

q̄LhttRφ̃+ φ̃†t̄Rh
∗
t qL, whereas other Yukawa couplings are omitted.

– 4 –
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Figure 1. The 1 and 2-loop graphs contributing to eq. (2.8). Each subset is gauge independent.

Dashed lines denote scalars; solid lines fermions; wiggly lines gauge fields; dotted lines ghosts; blobs

the operator Tµν . Graphs obtained by symmetrizations have been omitted.

After the use of symmetries related to substitutions of integration variables, and noting

that terms with odd numbers of γ5-matrices do not contribute at this order, the results read

Φs = 4(D−3)J2
11 , (2.11)

Φf =−4(D−3)J̃2
11+

D(D−3)

2

(
2J̃1

10−J̃1
11

)
, (2.12)

Φg = 2(D−3)

[
(D−2)J2

11+D
(
J1

11−J1
10

)
+
D(D−2)

8

(
J0

11−2J0
10+4J0

00

)]
, (2.13)

Φs(s) =−48(D−3)I200
21010 , (2.14)

Φg(g) =
D(D−2)(D−3)

2

[
−I000

11111−I010
12101−I100

21100+3I100
10101−12I010

12001

+2
(
I010

121−21−I000
11100−I010

11001−I000
11000−I100

20010

)
+4
(
I100

121−11+I100
111−11+I100

11101+I000
11101−I010

21100−I100
11001−I100

12001

)]
+2D(D−3)

[
4I010

11101−2I100
11111−I001

11111

]
+2D(D−6)

[
2I101

11111+I110
11111

]
−(3D2−16D+12)

[
2I200

11111+I002
11111

]
−D(D−3)(3D−10)

2
I100

11100

+D(D−2)
[
4
(
I110

12101−I110
21100

)
+2
(
I101

12101−I200
12101+I020

21100−I011
21100

)
+I200

21100−I020
12101

]
+

(D−2)2(D−3)

2

[
D
(
I000

12000−I000
12001

)
−8I020

12001

]
, (2.15)

– 5 –
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Φs(f) = 8(D−3)
[
2Î020

12001−Î020
11101

]
, (2.16)

Φf(s) =
D(D−3)

2

[
4
(
Ī010

111−11+Ī100
10101−Ī100

10110−Ī100
11100−Ī100

20100+Ī100
20110+Ī100

21000−Ī100
21010

)
−2
(
Ī001

10101+Ī100
11011

)
+Ī001

11011

]
+16(D−3)

[
Ī200

20110−Ī200
21010

]
− 3D−8

2
Ī002

11111

+2(D−2)
[
4
(
Ī101

11011−Ī101
11101−Ī110

11101

)
+2
(
Ī002

11101+Ī020
11101+Ī200

11101−Ī200
11011

)
+Ī101

11111−Ī002
11011

]
+(D−4)

[
8Ī011

11101−4Ī110
11011+Ī200

11111−Ī110
11111

]
, (2.17)

Φs|f = 2(D−2)
[
4
(
Ĩ011

11101+Ĩ101
11101

)
−2
(
Ĩ011

11111+Ĩ200
11101+Ĩ020

11101+Ĩ002
11101

)
+Ĩ020

11111

+Ĩ002
11111

]
+8(D−3)Î020

11101−4
[
Ĩ110

11111+Ĩ101
11111

]
−2(D−4)

[
Ĩ200

11111+4Ĩ110
11101

]
, (2.18)

Φs(g) =
D−2

2

[
4I101

11111−2I200
11111−I002

11111

]
−(D−4)I110

11111

+
D−3

2

[
3DI010

10101−8I020
11101−4(D−1)I200

21010

]
, (2.19)

Φg(s) =
D(D−3)

4

[
4
(
I100

121−11−I100
111−11+I010

11010−I010
21100−I010

21010

)
+2
(
I010

121−21+I010
11101−I100

20010

)
−I100

21100−I010
12101−I010

10101+6I100
11010

+7I100
11100−12I100

21010

]
+2(D−2)

[
I200

11101−I101
11101

]
−4I110

11101−(D−4)I020
11101

+
D

2

[
4
(
I110

12101−I110
21100

)
+2
(
I101

12101−I200
12101+I020

21100−I011
21100

)
+I200

21100−I020
12101

]
+

(D−2)(D−3)

4

[
D
(
2I000

11010+I000
21000−I000

21010−4I000
11000

)
−8I200

21010

]
, (2.20)

Φs|g = (D−2)
[
2
(
I110

11111+I101
11101−I200

11111−I200
11101

)
−I002

11111

]
+4I101

11111

+
D(D−3)

2

[
4
(
I100

111−11−I100
11010−I010

11010

)
+2I100

11101−I010
11101−I010

10101−5I100
11100

]
+4I110

11101+(5D−16)I020
11101+

D(D−2)(D−3)

2

[
2I000

11000−I000
11010

]
, (2.21)

Φf(g) =
D(D−2)(D−3)

2

[
2
(
Ī010

111−11+Ī000
101−11+Ī010

02101−Ī010
12001−Ī010

01101+Ī010
12000−Ī010

02100

)
−Ī000

10101−Ī000
01010

]
+
D(D−3)

2

[
Ī100

11111+Ī010
11111−Ī001

11111+2Ī001
11100−2DĪ010

11100

]
+

(D−4)(D+2)

4

[
Ī200

11111+Ī020
11111

]
− 3D2−18D+32

4
Ī002

11111−
D2−18D+40

2
Ī110

11111

+(D−2)2
[
2
(
Ī200

11101+Ī002
11101+Ī101

11011+Ī011
11011

)
−Ī200

11011−Ī020
11011−Ī002

11011−4Ī101
11101

]
+
D(D−3)(D−10)

2

[
2Ī100

10101−Ī001
10101

]
−D(D−3)(D−6)

4

[
Ī100

11011+Ī010
11011−Ī001

11011

]
+2(D2+4D−20)Ī020

11101−2(D−2)(D−4)Ī110
11011+

D2−8D+20

2

[
Ī101

11111+Ī011
11111

]
+4(D2−10D+20)Ī011

11101−4(D−4)2Ī110
11101+8(D−2)(D−3)

[
Ī020

02101−Ī020
12001

]
,

(2.22)

Φg(f) =
D(D−2)(D−3)

2

[
Ĩ000

11100−Î000
11101−Ĩ000

101−11

+2
(
Ĩ000

10101+Ĩ000
21010−Ĩ000

21000

)
−3Ĩ000

01100−4Ĩ000
11010+8Ĩ000

11000

]

– 6 –
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+D(D−3)
[
2
(
Î100

111−11−Î001
111−11+Î001

121−11−Î010
121−21−Î100

121−11−Î100
12101

−Ĩ001
10101−Ĩ001

21100+Ĩ001
21000−Ĩ100

21000−Ĩ010
21000

)
+Î010

12101+Ĩ100
21100+3

(
Ĩ100

10101+Ĩ100
11100

)
+4
(
Î100

11101−Ĩ100
11010+Ĩ010

21100

)
−6
(
Î010

11101+Ĩ010
11100

)
+10Ĩ100

21010

]
+2D

[
4
(
Ĩ110

21100−Î110
12101

)
+2
(
Î200

12101−Î101
12101+Ĩ011

21100−Ĩ020
21100

)
+Î020

12101−Ĩ200
21100

]
+16Î110

11101+8(D−2)
[
Î101

11101−Î200
11101

]
+8(D−2)(D−3)Ĩ200

21010−4(D2−6D+10)Î020
11101 , (2.23)

Φf |g =D(D−2)(D−3)
[
Ĩ000

101−11−Ĩ000
10101+Ĩ000

01100+2Ĩ000
11010−4Ĩ000

11000

]
+D(D−3)

[
Ĩ010

11111+Ĩ001
11111−Ĩ100

11111−2Ĩ100
11100+3Ĩ010

10101+5Ĩ001
10101−6Ĩ100

10101

+4
(
Î001

111−11−Î100
111−11+Î010

11101−Ĩ010
11101+Ĩ100

11010

)
+8
(
Ĩ010

11100−Î100
11101

)]
+2(D2−10D+20)

[
2
(
Ĩ110

11011−Ĩ110
11101

)
−Ĩ011

11111

]
+(D2−2D−4)

[
Ĩ002

11111+Ĩ020
11111

]
+8(D−2)

[
Î200

11101−Î101
11101

]
+4(D2−6D+10)Î020

11101−16Î110
11101

+2(D−2)2
[
2
(
Ĩ101

11101−Ĩ101
11011

)
+Ĩ002

11011−Ĩ002
11101+Ĩ200

11011−Ĩ200
11101

]
+2(D2−12D+28)Ĩ020

11011−2(D2+4D−20)Ĩ020
11101

+(D−4)2
[
4
(
Ĩ011

11101−Ĩ011
11011

)
−Ĩ200

11111

]
−2(3D−10)

[
Ĩ101

11111+Ĩ110
11111

]
. (2.24)

The computation was carried out in a general covariant gauge, and we have checked that the

gauge parameter drops out exactly. The result for Φg(g) can be crosschecked against ref. [9].

2.3 Extracting 2 ↔ 2 cuts at light cone

As discussed below eq. (2.1), from each Φ we need to extract the cut Im Φ|kn→−i[k+i0+]. For

the moment we only consider the cuts corresponding to 2↔ 2 scatterings, which originate

from the masters I, with the discussion of 1↔ 2 reactions postponed to appendix B. As we

restrict ourselves to the light cone, structures which have a positive power y in eq. (2.10)

yield no contribution. This implies that the only structures playing a role are of the types

I000
101−11 , I100

10101 , I100
111−11 , I100

121−21 , I200
11101 . (2.25)

We denote the phase space of 2↔ 2 scatterings by∫
dΩ2→2 ≡

∫
d3p1

(2π)32p1

∫
d3p2

(2π)32p2

∫
d3k1

(2π)32k1

(2π)4δ(4)(P1 + P2 −K1 −K2) , (2.26)

where Pi≡ (pi,pi) with pi≡ |pi|, and K2≡K≡ (k,k). Distribution functions are denoted by

nσ(ε) ≡ σ

eε/T − σ
, σ = ± , (2.27)

so that n+ = nB and n− = −nF are the Bose and Fermi distributions, respectively. Distri-

bution functions appear in the combination

Nτ1;σ1σ2 ≡ nτ1(k1) [1 + nσ1(p1)] [1 + nσ2(p2)]− nσ1(p1)nσ2(p2) [1 + nτ1(k1)] . (2.28)

Mandelstam variables are defined as usual, s ≡ (P1 +P2)2, t ≡ (P1−K1)2, u ≡ (P2−K1)2.
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With this notation, the 2↔ 2 cuts for the structures in eq. (2.25) read

Im
{
Ifgh1b1d1

}∣∣2↔2

kn→−i[k+i0+]
=

1

2

∫
dΩ2→2

{
[PT

k1
]f [PT

p1
]g[PT

p2
]hNσa;σeσc

[−u]b [−s]d

+
[PT

p1
]f [PT

p2
]g[PT

k1
]hNσc;σaσe

[−t]b [−u]d

+
[PT

p2
]f [PT

k1
]g[PT

p1
]hNσe;σcσa

[−s]b [−t]d

}
, (2.29)

where σa, σc and σe label the statistics of the 1st, 3rd and 5th subscript of I, respectively.

The diagram illustrates the cuts, with crosses on the propagators b and d of which at least

one comes with a zero or negative power.

We can now collect together the cuts from eqs. (2.14)–(2.24). In so doing we also set

D → 4 for simplicity, as there are no ultraviolet divergences in these cuts. Denoting by C
an operation which produces an integrand for eq. (2.29), viz.

lim
D→4

Im
{

Φ
}∣∣2↔2

kn→−i[k+i0+]
≡
∫

dΩ2→2 CΦ , (2.30)

and making use of symmetries such as Ĩfgh1b101 = Īhgf1b101 (obtained by the substitution

P → Q− P ), the non-zero contributions for the combinations appearing in eq. (2.8) read

CΦg(g) = 4C
[
Φs(g) + Φg(s) + Φs|g

]
(2.31)

= 4C
[
2I010

121−21 + 4I100
111−11 + 3I100

10101

]
= 2N+;++

{
P

T
p1

(
3 +

4u

t
+

2s2

u2

)
+PT

p2

(
3 +

4t

s
+

2u2

t2

)
+PT

k1

(
3 +

4s

u
+

2t2

s2

)}
, (2.32)

C
[
Φs(f) + Φf(s) + Φs|f

]
= 4C

[
2
(
Ī010

111−11 + Ī100
10101

)
− Ī001

10101

]
= 2N−;−+

{
2sPT

p1

u
+ 2PT

k1
−PT

p2

}
+ 2N−;+−

{2tPT
k1

s
+ 2PT

p2
−PT

p1

}
+ 2N+;−−

{
2uPT

p2

t
+ 2PT

p1
−PT

k1

}
, (2.33)

C
[
Φf(g) + Φg(f) + Φf |g

]
= 4C

[
2
(
Î001

111−11 − Î100
111−11 − Î010

121−21 + Ī010
111−11 + Ī000

101−11

)
+Ĩ000

101−11

]
= 4N−;−+

{
sPT

p1

u
+
u
[
P

T
k1
−PT

p1

]
t

−
u2
P

T
p2

t2

}
+ 4N−;+−

{ tPT
k1

s
+
s
[
P

T
p2
−PT

k1

]
u

−
s2
P

T
p1

u2

}
+ 4N+;−−

{
uPT

p2

t
+
t
[
P

T
p1
−PT

p2

]
s

−
t2PT

k1

s2

}
. (2.34)
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Figure 2. t-channel 2 ↔ 2 scatterings contributing to gravitational wave production (further

processes are obtained with u and s-channel reflections). The notation is as in figure 1, with the

double line indicating a graviton. Up to numerical prefactors, the amplitudes squared originating

from these processes, after summing over the physical polarization states of the gravitons and

Standard Model particles, correspond to the cuts shown in eqs. (2.36)–(2.38) (cf. section 2.4).

At the light cone, there is a further identity that has not been employed yet and

that permits for a remarkable simplification of eqs. (2.32)–(2.34). Noting that for massless

particles u = 2(k · p1 − kp1), and recalling that PT
p1

= (kp1 − k · p1)(kp1 + k · p1)/k2, we

can make use of energy-momentum conservation to verify that

P
T
k1

s
+
P

T
p2

t
+
P

T
p1

u
= −1 . (2.35)

With this identity, combined with renamings p1 ↔ p2 as well as a repeated use of s+t+u =

0, all projectors PT can be eliminated, and the cuts in eqs. (2.31)–(2.34) can be written in

a form where the breaking of Lorentz invariance through the medium manifests itself only

through the distribution functions Nτ1;σ1σ2 :

CΦg(g) = 4C
[
Φs(g) + Φg(s) + Φs|g

]
= 2N+;++

{
−2

(
s2 + u2

t
+
t2

s

)}
, (2.36)

C
[
Φs(f) + Φf(s) + Φs|f

]
= 2N−;−+

{
2t
}

+ 2N+;−−
{
s
}
, (2.37)

C
[
Φf(g) + Φg(f) + Φf |g

]
= 4N−;−+

{
s2 + u2

t

}
+ 4N+;−−

{
t2

s

}
. (2.38)

We note that eq. (2.36) could be written in a more symmetric form, but for later convenience

we prefer to use the same structures as in eq. (2.38). Eqs. (2.36)–(2.38) correspond to

amplitudes squared for processes illustrated in figure 2 (cf. section 2.4).

The drastic simplification that we have observed when going on the light-cone has

a known precedent: it also takes place for photon production from a thermal medium.

Furthermore, in that case it is well understood. The transverse correlator to which physical

photons couple, ImGR
T, can be replaced by the full vector correlator, ImGR

V = ImGR
T +

ImGR
L , because a Ward identity guarantees the vanishing of ImGR

L for zero virtuality.

We are not aware of a similar operator relation between the tensor channel correlator in

– 9 –
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eq. (2.3) and one without any PT’s, even if intriguing relations between photon and graviton

production amplitudes are known to exist (cf. section 2.4).

2.4 Connection to Boltzmann equations

The 2 ↔ 2 cuts of section 2.3 can also be obtained from kinetic theory and Boltzmann

equations. As a starting point, we may, for k ∼ πT , write the leading-order contribution

to eq. (1.1) as

ḟGW(t,k) = Γ(k)nB(k) =
1

8k

∫
dΩ2→2

∑
abc

∣∣∣Mab
cG(p1,p2;k1,k)

∣∣∣2fa(p1) fb(p2) [1± fc(k1)] ,

(2.39)

where we have neglected fGW(t,k) on the right-hand side. The sum runs over all abc ∈ SM

(Standard Model) particle and antiparticle degrees of freedom and thus over all ab → cG

processes, with G denoting the graviton. |Mab
cG(p1,p2;k1,k)|2 is the corresponding matrix

element squared, summed over all degeneracies of each species. For the SM in the symmet-

ric phase, these are spin, polarization, colour, weak isospin and generation. For k ∼ πT

the contribution of thermal masses is suppressed, so the external states can be considered

massless (thermal masses are only needed for the IR-divergent part of the squared ampli-

tudes, cf. section 2.6). The prefactor 1/8k is a combination of 1/2k from the phase space

measure, 1/2 for the graviton polarization degeneracy, and 1/2 for the symmetry factor for

identical initial state particles; in the cases where a 6= b this factor is compensated for by

their being counted twice in the sum over abc. The thermal distributions fi correspond to

nB and nF for bosons and fermions, respectively, with [1± fc(k1)] implying [1 + nB(k1)] in

the former case and [1− nF(k1)] in the latter.

The main challenge is the determination of the matrix elements squared, which requires

the derivation of Feynman rules for all graviton-SM couplings and the computation of the

tree-level amplitudes. Given the large number of vertices and processes, and the associated

opportunities for error, we have adopted automated techniques, originally developed for

collider physics. We first used FeynRules [11], which can derive Feynman rules from a

given Lagrangian. We applied it to the Lagrangian describing the symmetric-phase SM

coupled to gravitons, i.e.

LSM+G = LSM −
√

32π

2mPl

hµνT
µν
SM , (2.40)

where the SM energy-momentum tensor TµνSM contains also the trace part. The kinetic term

for gravitons can be omitted, as they are external states in our computation.

Using the appropriate interface [12], FeynRules can generate a model file for Feyn-

Arts [13] (unfortunately, sometimes manual fixes of the generation and SU(2) index assig-

ments were needed). This package and its companion FormCalc [14] were then used to

generate, evaluate and square all amplitudes, summing over the relevant degeneracies.3 The

handling of spin, vector boson polarization and colour is available in FormCalc, whereas

SU(2) algebra and tensor boson polarization had to be implemented. For the latter, we

3We have also looked into several other packages, however have not identified a procedure that would

be simpler than the one described here.
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proceeded as follows. FeynArts assigns to external tensor bosons a polarization tensor

ελµν(k) which is written, using a common factorization formula (cf., e.g., refs. [15, 16]), as

ελµν(k) ≡ ελµ(k) ελν (k) , (2.41)

with ελµ(k) the transverse polarization vector of a massless gauge boson. Upon taking

k = k ez and the circular polarization vectors ελµ(k) = 1/
√

2(0,−1λ,−i, 0), λ = 1, 2, it is

easy to verify that the polarization sum satisfies∑
λ

ελµν(k) ελ ∗αβ(k) = Lµν;αβ , (2.42)

with L as defined in eq. (2.4). We implemented this form of the tensor polarization sum

as a Mathematica routine interfaced with the Mathematica output of FeynArts/

FormCalc. The resulting matrix elements have an apparent dependence on the projectors

P
T, which again disappears by applying eq. (2.35).

Upon generating and evaluating all processes and plugging the results in eq. (2.39),

we find

Γ(k)nB(k) =
1

8k

32π

m2
Pl

∫
dΩ2→2

{
+nB(p1)nB(p2) [1+nB(k1)]

(
g2

1 +15g2
2 +48g2

3

)(st
u

+
su

t
+
tu

s

)
(2.43)

−nF(p1)nB(p2) [1−nF(k1)]

[
6|ht|2t+

(
10g2

1 +18g2
2 +48g2

3

)s2+u2

t

]
(2.44)

−nB(p1)nF(p2) [1−nF(k1)]

[
6|ht|2u+

(
10g2

1 +18g2
2 +48g2

3

)s2+t2

u

]
(2.45)

+nF(p1)nF(p2) [1+nB(k1)]

[
6|ht|2s+

(
10g2

1 +18g2
2 +48g2

3

) t2+u2

s

]}
. (2.46)

This expression agrees with the one obtained by plugging eqs. (2.36)–(2.38) into eqs. (2.30),

(2.8) and (2.2). To verify the agreement, relabellings p1 ↔ p2 (and t ↔ u) as well as use

of the identity Nτ1;σ1σ2 = nσ1(p1)nσ2(p2) [1 + nτ1(k1)]n−1
τ1σ1σ2(p1 + p2 − k1) are needed.

In obtaining the fermionic parts of the total rate, i.e. eqs. (2.44)–(2.46), we have not

written out terms which arise from an odd number of γ5 matrices in Dirac traces, since they

vanish under the
∫

dΩ2→2 integration. Specifically, these terms appear in the fg → fG

processes and their crossings, with f a fermion and g a gauge boson.

We also note that the automated procedure fixes the gauge group factors, multiplicities

and charge assignments to those specific for the SM; the coefficients multiplying the cou-

pling constants are not obtained in terms of Nc, nG and nS. Focussing on sub-processes, it

is easy to reinstate group theory factors. For instance, the g2
3-part of eq. (2.43) corresponds

to the matrix elements squared for the gluonic scattering gg → gG, yielding∣∣∣Mgg
gG(p1,p2;k1,k)

∣∣∣2 =
32π

m2
Pl

2(N2
c − 1)Nc g

2
3

(
st

u
+
su

t
+
tu

s

)
. (2.47)

Recently, there has been much work on factorizing graviton amplitudes into photon

amplitudes multiplied by kinematic factors, say fγ → fG versus fγ → fγ (cf., e.g.,
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refs. [15, 16] and references therein). It is not clear to us, however, whether all the terms

in eqs. (2.43)–(2.46) could be related to photon production or scattering rates.

We conclude this section by stressing that kinetic theory and its automated implemen-

tation are not sufficient for determining the leading-order gravitational wave production

rate. Indeed, as discussed in sections 2.5.3 and 2.6, phase space integrals over matrix

elements squared lead to IR divergences, related to soft gauge-boson exchange. The diver-

gences need to be subtracted and subsequently Hard Thermal Loop resummed. An even

more dramatic departure from the simple scattering picture is needed at smaller momenta,

k ∼ α2
sT , where elementary particle states need to be replaced by hydrodynamic modes [2].

2.5 Phase space integrals

The next step is to carry out the phase space integral
∫

dΩ2→2 for the cuts in eqs. (2.36)–

(2.38) or the matrix elements squared in eqs. (2.43)–(2.46). For this task it is helpful to

employ the parametrization introduced in ref. [17].4 We discuss separately the treatment

of t and s-channel cases (u-channel can always be transformed into t-channel).

2.5.1 t-channel

Consider the phase space integral

Γtτ1;σ1σ2 ≡
∫

dΩ2→2Nτ1;σ1σ2

{
a1

s2 + u2

t
+ a2 t

}
. (2.48)

The idea is to insert 1 =
∫

d4Qδ(4)(P1 − K1 − Q) in the integral. Then the energy-

momentum conservation constraint inside dΩ2→2 can be written as δ(4)(Q+ P2 −K). We

can now integrate over p2 and k1 by using the spatial parts of the Dirac δ’s, leaving q0,q

and p1 as the integration variables. The temporal Dirac δ’s fix two angles as

q · k =
q2 − q2

0 + 2kq0

2
, q · p1 =

q2 − q2
0 + 2p1q0

2
, (2.49)

whereas kinematic variables become

t = q2
0 − q2 , u = 2(k · p1 − kp1) , s = −t− u . (2.50)

The azimuthal average of powers of k · p1 can be computed by parametrizing

q = (0, 0, q) , k = k (sinχ, 0, cosχ) , p1 = p1 (sin θ cosϕ, sin θ sinϕ, cos θ) , (2.51)

and integrating over ϕ. Denoting 〈. . .〉 ≡ 1
2π

∫ 2π
0 dϕ (. . .), this yields

〈
k · p1

〉
=

(q · k) (q · p1)

q2
, (2.52)

〈
(k · p1)2

〉
=

1

2

[
k2p2

1 −
p2

1(q · k)2

q2
− k2(q · p1)2

q2
+

3(q · k)2(q · p1)2

q4

]
. (2.53)

4If one is considering spectral functions off the light cone, more complicated structures ∼ PTK4/(ut) ap-

pear, which require a refined parametrization if a two-dimensional integral representation is desired [18, 19].
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The scalar products appearing here can be eliminated through eq. (2.49). Finally, the

phase space distributions from eq. (2.28) can be cast in the form

Nτ1;σ1σ2 =
[
1 + nτ1σ1(p1 − k1) + nσ2(p2)

][
nτ1(k1)− nσ1(p1)

]
=
[
1 + nτ1σ1(q0) + nσ2(k − q0)

][
nτ1(p1 − q0)− nσ1(p1)

]
, (2.54)

thereby factorizing the p1-dependence.

Denoting

q± ≡
q0 ± q

2
, (2.55)

the integration range of p1 can be established as (q+,∞). The integration measure contains

no powers of p1, whereas azimuthal averages yield powers up to p2
1. The integral reads∫ ∞

q+

dp1

(
β0 + β1p1 + β2p

2
1

)[
nτ1(p1 − q0)− nσ1(p1)

]
=
(
β0 + β1 q+ + β2 q

2
+

)
L1 +

(
β1 + 2β2 q+

)
L2 +

(
2β2

)
L3 , (2.56)

where

L1 ≡ T
[
ln
(

1− σ1e
−q+/T

)
− ln

(
1− τ1 e

q−/T
)]
, (2.57)

L2 ≡ T 2
[
Li2

(
τ1 e

q−/T
)
− Li2

(
σ1e
−q+/T

)]
, (2.58)

L3 ≡ T 3
[
Li3

(
τ1 e

q−/T
)
− Li3

(
σ1e
−q+/T

)]
. (2.59)

All in all this results in

Γtτ1;σ1σ2 =
1

(4π)3k

∫ k

−∞
dq0

∫ 2k−q0

|q0|
dq
[
1 + nτ1σ1(q0) + nσ2(k − q0)

]
(q2 − q2

0)

×
{
a1[q2 − 3(q0 − 2k)2][12L3 + 6qL2 + q2L1]

6q4
−
(
a2 +

2a1

3

)
L1

}
. (2.60)

The integral in eq. (2.60) is logarithmically IR divergent at small q0, q. For the different

statistics the divergent parts read

Γt+;++|IR ≡ −2Γt−;−+|IR ≡
1

(4π)3k

∫ k

−∞
dq0

∫ 2k−q0

|q0|
dq
[
1 + nB(q0) + nB(k − q0)

]
×
{
−4a1q0(q2 − q2

0)k2π2T 2

q4

}
, (2.61)

Γt−;+−|IR ≡ −Γt+;−−|IR ≡
1

(4π)3k

∫ k

−∞
dq0

∫ 2k−q0

|q0|
dq
[
1− nF(q0)− nF(k − q0)

]
×
{

42a1(q2 − q2
0)k2ζ(3)T 3

q4

}
. (2.62)
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2.5.2 s-channel

The s-channel phase space integral is defined as

Γsτ1;σ1σ2 ≡
∫

dΩ2→2Nτ1;σ1σ2

{
b1
t2

s
+ b2 s

}
. (2.63)

This time we insert 1 =
∫

d4Qδ(4)(P1 + P2 − Q) in the integral, whereby the energy-

momentum conservation constraint inside dΩ2→2 can be written as δ(4)(Q−K1 −K). We

integrate over p1 and k1 by using the spatial parts of the Dirac δ’s, leaving q0,q and p2

as the integration variables. The temporal Dirac δ’s fix two angles as

q · k =
q2 − q2

0 + 2kq0

2
, q · p2 =

q2 − q2
0 + 2p2q0

2
, (2.64)

whereas kinematic variables become

s = q2
0 − q2 , t = 2(k · p2 − kp2) , u = −s− t . (2.65)

The azimuthal average of powers of k · p2 can be computed like in eqs. (2.52)–(2.53),

exchanging p1 ↔ p2. The phase space distributions from eq. (2.28) are now cast in the form

Nτ1;σ1σ2 =
[
1 + nσ1(p1) + nσ2(p2)

][
nτ1(k1)− nσ1σ2(p1 + p2)

]
=
[
1 + nσ1(q0 − p2) + nσ2(p2)

][
nτ1(q0 − k)− nσ1σ2(q0)

]
, (2.66)

factorizing the dependence on p2. The integration range of p2 can be established as (q−, q+),

and powers up to p2
2 appear, whereby the general integral reads∫ q+

q−

dp2

(
β0 + β1 p2 + β2 p

2
2

)[
1 + nσ1(q0 − p2) + nσ2(p2)

]
= β0q +

β1qq0

2
+
β2q(q

2 + 3q2
0)

12

−
(
β0 + β1 q+ + β2 q

2
+

)
L+

1 −
(
β1 + 2β2 q+

)
L+

2 −
(
2β2

)
L+

3

+
(
β0 + β1 q− + β2 q

2
−
)
L−1 +

(
β1 + 2β2 q−

)
L−2 +

(
2β2

)
L−3 , (2.67)

where

L±1 ≡ T
[
ln
(

1− σ1e
−q∓/T

)
− ln

(
1− σ2 e

−q±/T
)]
, (2.68)

L±2 ≡ T
2
[
Li2

(
σ2 e

−q±/T
)

+ Li2

(
σ1e
−q∓/T

)]
, (2.69)

L±3 ≡ T
3
[
Li3

(
σ2 e

−q±/T
)
− Li3

(
σ1e
−q∓/T

)]
. (2.70)

All in all, this gives

Γsτ1;σ1σ2 =
1

(4π)3k

∫ ∞
k

dq0

∫ q0

|2k−q0|
dq
[
nτ1(q0−k)−nσ1σ2(q0)

]
(q2−q2

0)

×
{
b1[q2−3(q0−2k)2][12(L−3 −L

+
3 )−6q(L−2 +L+

2 )+q2(L−1 −L
+
1 )]

12q4

− b1(q0−2k)[2(L−2 −L
+
2 )−q(L−1 +L+

1 )]

2q2
−
(
b1
3

+b2

)
(L−1 −L

+
1 +q)

}
. (2.71)
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There is no IR divergence in the s-channel: would-be singular terms contain inverse

powers of q, but the integration domain extends to small q only around q0 = 2k, where the

integrand vanishes for all statistics (q± = k +O(q)).

2.5.3 IR divergence

Let us collect together the IR divergence affecting the 2 ↔ 2 computation. Comparing

eqs. (2.36)–(2.38) with eqs. (2.48) and (2.63) we can extract the coefficients appearing in

eqs. (2.61) and (2.62):

CΦg(g) : a1|+;++ = −4 , b1|+;++ = −4 , (2.72)

C
[
Φs(g) + Φg(s) + Φs|g

]
: a1|+;++ = −1 , b1|+;++ = −1 , (2.73)

C
[
Φs(f) + Φf(s) + Φs|f

]
: a2|−;−+ = 4 , b2|+;−− = 2 , (2.74)

C
[
Φf(g) + Φg(f) + Φf |g

]
: a1|−;−+ = 4 , b1|+;−− = 4 . (2.75)

The coefficient a1 only comes with the statistical factors that were considered in eq. (2.61),

so that the IR divergence shown in eq. (2.62) is absent. Adding prefactors according to

eq. (2.8) yields the total IR divergence of the 2↔ 2 contribution:

lim
D→4

Im
{
GR

12;12

}∣∣IR
2↔2

=
1

(4π)3k

∫ k

−∞
dq0

∫ 2k−q0

|q0|
dq
[
1 + nB(q0) + nB(k − q0)

]6q0(q2 − q2
0)k2π2T 2

q4

×
{
g2

1

[
nS

6
+
nG(Nc + 1)(Nc + 2)

12Nc

]
+3g2

2

[
2

3
+
nS

6
+
nG(Nc + 1)

12

]
+
(
N2

c − 1
)
g2

3

(
Nc

3
+
nG

3

)}
. (2.76)

2.6 Hard Thermal Loop resummation

The logarithmic IR divergence in eq. (2.76) can be eliminated through Hard Thermal Loop

resummation [20, 21]. More precisely, as shown in ref. [17] for a fermionic production rate

and in ref. [2] for the present observable, the infrared divergence is shielded through the

so-called Landau damping part of a resummed propagator, corresponding physically to soft

t-channel exchange.5 Thermal scatterings give an effective mass to the exchanged gauge

boson, whereby the logarithmic divergence turns into a finite logarithm, as we show in

the remainder of this section. In principle there could be a similar contribution from soft

t-channel fermion exchange, however in practice there is no divergence at leading order,

as we demonstrate in appendix A. Scalar fields do not experience Landau damping, so no

discussion is needed for them. In the notation of eq. (2.8), we thus need to evaluate

GE
12;12

∣∣
HTL

=
2

D(D − 2)(D − 3)

{
2nG(1 +Nc)Φf

∣∣
HTL

+ (2 +NcCF)Φg

∣∣
HTL

}
. (2.77)

5Originally this was shown in the context of photon production in QCD [22–25].
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Computing the diagram associated with Φg in figure 1 with HTL-resummed propaga-

tors, the result reads6

Φg

∣∣
HTL

=
(D − 2)Lµν;αβ

2

∑∫
Q

4Θαβ;ρσ(Q,K −Q)∆HTL
σλ (K −Q)Θµν;λκ(K −Q,Q)∆HTL

κρ (Q) ,

(2.78)

where ∆HTL is the gauge propagator,

∆HTL
µν (K) =

P
T
µν

K2 + ΠT(K)
+

P
E
µν

K2 + ΠE(K)
+
ξKµKν

K4
, (2.79)

with PT being the projector defined in eq. (2.4), ξ a gauge parameter, and

P
E
µν = δµν −

KµKν

K4
−PT

µν . (2.80)

The tensor Θ parametrizes the cubic graviton-gauge vertex,

Θαβ;ρσ(P,Q) ≡
(
Pαδµρ − Pµδαρ

)(
Qβδµσ −Qµδβσ

)
. (2.81)

The full HTL computation can be simplified by noting that in the diagrams of figure 2,

one of the gauge bosons attaching to the graviton vertex is always “hard” (i.e. with an

external momentum q ∼ πT ) and only one is “soft” (i.e. an internal t-channel rung).7

Adding to this that Θ projects out the longitudinal part of the propagator to which it

is attached, permits us to replace ∆HTL
σλ (K − Q) → 2δσλ/(K − Q)2, where the factor 2

accounts for the two possibilities of picking the hard line. Subsequently, after carrying out

the contractions, we get

Φg

∣∣
HTL
≈
∑∫
Q

4

(K −Q)2

{(
1

Q2 + ΠT

− 1

Q2 + ΠE

)[
(D − 3)

[
P

T
q

]2(
D − 2− Q2

q2
+
Dk2

2q2

)

−
D(D − 3)Q2

P
T
q

2

(
q · k
q2

+
Q2

4q2

)
+
D(D − 2)(D − 3)Q4

8

]
+

1

Q2 + ΠE

[
(D − 3)(D − 2)

[
P

T
q

]2 − D(D − 3)Q2
P

T
q

2
+
D(D − 2)(D − 3)Q4

8

]}
.

(2.82)

Furthermore, we may focus on the contribution that is largest in the IR domain q, q0 � k.

This arises from the highest power of k in the numerator, i.e. the term proportional to k2

on the first line of eq. (2.82):

Φg

∣∣IR
HTL
≡
∑∫
Q

2D(D − 3)

(K −Q)2

(
1

Q2 + ΠT

− 1

Q2 + ΠE

)
k2
[
P

T
q

]2
q2

. (2.83)

At this point we write the Euclidean propagators in a spectral representation,

1

Q2 + Π(Q)
=

∫ ∞
−∞

dq0

π

ρ(q0, q)

q0 − iqn
, ρ(q0, q) ≡ Im

{
1

Q2 + Π(Q)

}
qn→−i[q0+i0+]

, (2.84)

6The structure is the same for all three gauge groups, so we consider one of them as a representative.
7This is also the reason for why vertices do not need to be resummed.
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carry out the Matsubara sum over qn, and take the cut,

ΓHTL ≡ Im

{∑∫
Q

1

(K −Q)2[Q2 + Π(Q)]

}
kn→−i[k+i0+]

=

∫ ∞
−∞

dq0

∫
q

ρ(q0, q)

2εqk

{
δ(q0 − k − εqk)

[
nB(εqk)− nB(q0)

]
+ δ(q0 − k + εqk)

[
1 + nB(q0) + nB(εqk)

]}
, (2.85)

where εqk ≡ |q− k|. Focussing on the soft contribution from the domain q, q0 � k, only

the latter channel gets kinematically realized. Carrying out the angular integral, this

contribution can be expressed as

ΓHTL ⊃
1

8π2k

∫ k

−∞
dq0

∫ 2k−q0

|q0|
dq q

[
1 + nB(q0) + nB(k − q0)

]
ρ(q0, q)

∣∣
q·k=

q2−q20+2kq0
2

. (2.86)

Inserting now the full structure of eq. (2.83) into eq. (2.86), we get

Im
{

Φg

∣∣IR
HTL

}
kn→−i[k+i0+]

D→4
⊃ 1

8π2k

∫ k

−∞
dq0

∫ 2k−q0

|q0|
dq q

[
1+nB(q0)+nB(k−q0)

]
×
{

8k2
[
P

T
q

]2
q2

[
ρT(q0, q)−ρE(q0, q)

]}
q·k=

q2−q20+2kq0
2

. (2.87)

The angular constraint implies that

q2
⊥ ≡ PT

q = (q2 − q2
0)

(k − q+)(k − q−)

k2

q±�k≈ q2 − q2
0 . (2.88)

The last step is invoked in order to carry out the resummation only for the leading term

in an expansion in q0, q, i.e. in the regime where there is an actual IR-divergence.

We now apply eq. (2.87) combined with the insertion of eq. (2.88) in two different

ways. The first is to “re-expand” the result in the form of a weak-coupling expansion. In

other words, the HTL spectral functions are evaluated for large q, q0, whereby they become

ρT →
πm2

Eq0

4q3(q2 − q2
0)
, ρE → −

πm2
Eq0

2q3(q2 − q2
0)
. (2.89)

Here the Debye mass mE reads, in the case of the different gauge groups,

m2
E1 = g2

1T
2

[
nS

6
+
nG(Nc + 1)(Nc + 2)

12Nc

]
, (2.90)

m2
E2 = g2

2T
2

[
2

3
+
nS

6
+
nG(Nc + 1)

12

]
, (2.91)

m2
E3 = g2

3T
2

(
Nc

3
+
nG

3

)
. (2.92)
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In this way we find

Im
{

Φg

∣∣IR
HTL

}expanded

kn→−i[k+i0+]
=

1

8π2k

∫ k

−∞
dq0

∫ 2k−q0

|q0|
dq
[
1 + nB(q0) + nB(k − q0)

]
Λ(q0, q)

× 6πq0(q2 − q2
0)k2m2

E

q4
. (2.93)

Here a function Λ has been introduced, with the property limq0,q→0 Λ = 1. It can be chosen

at will outside of the domain where the resummation is implemented, given that its effects

cancel up to higher-order corrections (cf. the discussion below eq. (2.97)).

Adding the prefactor from eq. (2.77) and resolving the different gauge groups,

2(2 +NcCF)m2
E

D(D − 2)(D − 3)

D→4→ m2
E1 + 3m2

E2 + (N2
c − 1)m2

E3

8
, (2.94)

we reproduce the IR divergence from eq. (2.76) in the domain where Λ = 1.

The second way is that we evaluate the HTL contribution as such. This could be

computed numerically after inserting the full spectral functions ρT,E into eq. (2.87), but

through an opportune choice of the weighting function Λ it can also be determined analyti-

cally, by making use of a sum rule [26, 27]. First, according to eq. (2.88), we can substitute

q2 ≈ q2
0 + q2

⊥, and use then q⊥ and q0 as integration variables. Second, for q0 � T , the

Bose distribution nB(q0) ≈ T/q0 dominates over the terms 1 + nB(k− q0) that are of order

unity. It is helpful to employ this simplification, which can be implemented by choosing

Λ = Λ?, where [
1 + nB(q0) + nB(k − q0)

]
Λ?(q0, q) ≡

T

q0

. (2.95)

We also note that the difference ρT(q0,
√
q2

0 + q2
⊥) − ρE(q0,

√
q2

0 + q2
⊥) decreases rapidly

at large |q0|, whereby the integration range over q0 can be extended to positive infinity.

Therefore

Im
{

Φg

∣∣IR
HTL

}full

kn→−i[k+i0+]

Λ=Λ?

≈ kT

π2

∫ ∞
−∞

dq0

q0

∫ 2k

0
dq⊥ q⊥

q4
⊥
[
ρT(q0, q)− ρE(q0, q)

]
q2

[26, 27]
=

kT

π

∫ 2k

0
dq⊥ q

3
⊥

(
1

q2
⊥
− 1

q2
⊥ +m2

E

)
=

kTm2
E

2π
ln

(
1 +

4k2

m2
E

)
. (2.96)

This logarithmically enhanced term corresponds to that determined in ref. [2].

The full contribution of HTL resummation can now be obtained by subtracting the

term in eq. (2.93) and adding that in eq. (2.96),

∆ Im
{

Φg

∣∣
HTL

}
≡ Im

{
Φg

∣∣IR
HTL

}full
− Im

{
Φg

∣∣IR
HTL

}expanded
. (2.97)

Given that for q0, q � mE the full and expanded HTL spectral functions agree up to terms

of O(g4), the influence of Λ drops out in this difference, however the same choice needs to

be made in both terms (we chose Λ = Λ?). The gauge groups are resolved as in eq. (2.94).

The subtraction term is evaluated together with eq. (2.60), rendering the latter IR finite.
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Figure 3. Left: examples of the interaction rate Γ(k) from eq. (2.2) at a few representative

temperatures, normalized to T 3/m2
Pl. The interaction rate decreases in these units with temper-

ature, because the most important running couplings become smaller. Right: the combination

m2
Pl k

3 Γ(k)nB(k)/T 6 that plays a role for the production rate of the energy density carried by

gravitational radiation.

3 Numerical results

Inserting the integrals from eqs. (2.60) and (2.71), with coefficients from eqs. (2.72)–(2.75),

into eq. (2.8), and adding the resummation from eq. (2.97), we can determine the interaction

rate Γ(k) from eq. (2.2). For the running couplings and Debye masses appearing in these

expressions, we use values specified in section 4 of ref. [28].

In figure 3, Γ(k) is plotted both as m2
Pl Γ(k)/T 3 and in the combination appearing in

the energy density production rate, m2
Pl k

3 Γ(k)nB(k)/T 6, at T ≈ 103, 109, 1015 GeV. In

the units chosen, the rates decrease slowly with the temperature, due to the running of g2
2,

g2
3 and h2

t .

We remark that Γ(k) has a (barely visible) negative dip for k/T → 0. In this region

many of our approximations, taken under the assumption k ∼ πT , fail. Most importantly,

HTL resummation with one hard and one soft gauge boson in Φg, as described in sec-

tion 2.6, only works correctly for k � mE.8 This is neither new nor specific to graviton

production: previous calculations of gravitino [29–31], axion [32, 33] and axino [34] pro-

duction saw the same issue. In fact, the negative dips were typically much larger (cf., e.g.,

figure 3 of ref. [34]). The reason for the difference can be traced back to the way in which

HTL resummation was implemented in these works, following ref. [35]. Even if the method

8For k � mE, we could actually replace the argument of the logarithm in eq. (2.96) with just 4k2/m2
E,

as the difference between these is parametrically of O(g4). For k � mE/2, however, ln(1 + 4k2/m2
E) is

small and positive, whereas ln(4k2/m2
E) is large and negative. That said, our result is formally incomplete

for k <∼mE, as is practically any available thermal production rate as of today, including that of photons

from QCD.
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agrees with ours for k ∼ πT up to terms of O(g4), it differs for k ∼ mE, in ways related to

the discussion in footnote 8. Remarkably, our implementation of HTL resummation avoids

large negative dips without resorting to partial, gauge-dependent resummations of higher-

order effects that were introduced in refs. [31] and [33] for gravitino and axion production,

respectively. These calculations could be revisited with our method, by finding the appro-

priate coefficients ai and bi for eqs. (2.60) and (2.71), and taking over our implementation

of HTL resummation.

4 Cosmological implications

As a final step we embed the production rate in an expanding cosmological background

and compute

∆Neff ≡
8

7

(
11

4

) 4
3 eGW(T0)

eγ(T0)
, (4.1)

where the final temperature can be chosen as T0 ∼ 0.01 MeV and eγ ≡ π2T 4
0 /15 is the

energy density carried by photons. The constraints originating from Neff are analogous

in spirit to the constraints on eGW considered in refs. [36, 37] (see also [4]), and recently

Neff itself was invoked in ref. [38]. The uncertainties of the Standard Model prediction

of Neff continue to be discussed in the literature (cf., e.g., refs. [39–41] and references

therein), being around ∆Neff ∼ 10−3, whereas the current experimental accuracy is ∆Neff ∼
10−1 [42], which is expected to be reduced by an order of magnitude by future facilities [43].

We consider the uncertainty of the Standard Model prediction, ∆Neff ∼ 10−3, to set an

interesting sensitivity goal for considerations concerning the gravitational background.

Denoting by H ≡
√

8πeSM/(3m
2
Pl) the Hubble rate, by sSM the Standard Model entropy

density, and by c2
s the speed of sound squared, the energy density at T0 can be obtained as [2]

eGW(T0)

s
4/3
SM (T0)

=

∫ ln
(

Tmax
T0

)
0

dx

3c2
sH

∫
kR(T, k)

s
4/3
SM (T )

, x ≡ ln

(
Tmax

T

)
, (4.2)

where the production rate R is related to the damping coefficient Γ from eq. (1.1) through

R(T, k) ≡ 2k Γ(k)nB(k) . (4.3)

The integrand of eq. (4.2) is illustrated in figure 4(left) as a function of the temperature.

Clearly the integral is dominated by the high-temperature end, so in practice we may re-

strict to temperatures above the electroweak crossover, T ∼ 160 GeV, for its determination.

The entropy dilution that takes place at low temperatures is accounted for by the

factor s
4/3
SM (T0) in eq. (4.2). We have adopted a prescription for sSM which permits for its

use even at T < 2 MeV when neutrinos have decoupled (cf. the web page associated with

ref. [44] for the specification and for the numerical values that have been used9).

Putting everything together, the contribution of the gravitational wave background

to Neff, obtained from eq. (4.1), is shown in figure 4(right). Once the experimental accu-

racy reaches the level ∆Neff ≈ 10−3, maximal temperatures above 2 × 1017 GeV can be

constrained.
9The numerical values are attached to this publication as supplementary material.
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Figure 4. Left: the integrated production rate of the energy density carried by gravitational

radiation, normalized as in eq. (4.2), as a function of the temperature. Only the high-temperature

end plays a significant role. Right: the contribution of the gravitational energy density to the

parameter Neff (cf. eq. (4.1)), as a function of the highest temperature of the radiation epoch. Once

the experimental determination of Neff reaches the current theoretical precision, ∆Neff ∼ 10−3,

reheating temperatures above Tmax ≈ 2× 1017 GeV can be constrained.

5 Conclusions and outlook

The main purpose of this paper has been to refine the estimate Tmax
<∼ 1017...18 GeV that

was obtained for the maximal temperature of the radiation epoch in ref. [2], by promoting

the previous leading-logarithmic analysis to a full leading-order computation of the energy

density carried by gravitational radiation emitted by a Standard Model plasma. If the

experimental determination of the parameter Neff can reach the current theoretical accu-

racy, ∆Neff ∼ 10−3, and no deviations from the Standard Model prediction are found, the

refined estimate reads Tmax ≤ 2× 1017 GeV. It is remarkable that this model-independent

constraint is not much weaker than typical bounds on the reheating temperature that are

obtained by comparing model-dependent inflationary predictions with Planck data [42].

Most of the energy density carried by thermally produced gravitational radiation peaks

in the microwave frequency range today. Conceivably, this physics can be probed by

tabletop experiments in the future [45–53], even if the sensitivity goal is quite formidable.

With future extensions in mind, we have displayed the technical steps of the computa-

tion in quite some detail (cf. section 2). The partly automatized procedure to determine the

matrix elements squared in eqs. (2.43)–(2.46) can be straightforwardly extended to other

models. The IR subtraction and thermal resummation that were described in section 2.6

must still be adjusted accordingly, however we hope that our exposition lays out these steps

in a digestible fashion. Apart from graviton production in Beyond the Standard Model

theories, this machinery can be applied to the production rates of other particles coupling

to a heat bath via non-renormalizable operators, such as gravitinos (with M � πT ), axions
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and axinos. Indeed, as mentioned in section 3, the phase space integration and resumma-

tion prescriptions of sections 2.5, 2.6, which do not suffer from large, unphysical negative

contributions at small k/T , can be directly applied to the known matrix elements squared

in the literature [29, 32, 34].
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A Soft t-channel fermion exchange

We analyze in this appendix the fermion exchange part of eq. (2.77), viz. Φf

∣∣
HTL

, and show

that no resummation is needed at leading order.

Computing the diagram associated with Φf in figure 1 within the HTL theory, the

result reads10

Φf

∣∣
HTL

=
(D − 2)Lµν;αβ

2

∑∫
{Q}

Tr
{

Υµν(Q,K +Q)GHTL(K +Q) Υαβ(K +Q,Q)GHTL(Q)
}
,

(A.1)

where GHTL is the HTL-resummed fermion propagator,

GHTL(K) =
iknγ0

K2 + ΠW(K)
+

ikiγi
K2 + ΠP(K)

, (A.2)

and the tensor Υ parametrizes the cubic graviton-fermion vertex,

Υαβ(P,Q) ≡
γα
(
Pβ +Qβ

)
+ γβ

(
Pα +Qα

)
4

. (A.3)

Like in the gluonic case, we can replace one of the propagators by a free one (ΠW,P → 0

in eq. (A.2)) and account for the associated symmetry by a factor 2. Taking the Dirac trace,

this leads to

Φf

∣∣
HTL
≈
∑∫
{Q}

2(D − 3)

(K +Q)2

{
1

Q2 + ΠW

[
−DPT

q(q2
n + qnkn)

]
+

1

Q2 + ΠP

[
4
[
P

T
q

]2 −DPT
q(q2 + q · k)

]}
. (A.4)

Writing now

q2
n + qnkn = −(q2 + q · k) +

(K +Q)2 +Q2 −K2

2
, (A.5)

and noting that K2 vanishes on the light cone after analytic continuation and that (K+Q)2

gives no cut as it cancels the free propagator, we can identify the most IR sensitive terms

as those proportional to q · k.

10The structure is the same for all fermions, so we consider one Dirac-like fermion as a representative.
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Next, we invoke a spectral representation like in eq. (2.84), carry out the Matsubara

sum over qn, and take the cut,

Γ̃HTL ≡ Im

{∑∫
{Q}

1

(K +Q)2[Q2 + Π(Q)]

}
kn→−i[k+i0+]

= −
∫ ∞
−∞

dq0

∫
q

ρ(q0, q)

2ε̃qk

{
δ(q0 + k − ε̃qk)

[
nF(q0)− nF(ε̃qk)

]
+ δ(q0 + k + ε̃qk)

[
1− nF(q0)− nF(ε̃qk)

]}
, (A.6)

where ε̃qk ≡ |q + k|. Focussing on the soft contribution from the domain q, q0 � k, only

the first channel gives a contribution. It is convenient to substitute q0 → −q0 and make use

of the antisymmetry ρ(−q0, q) = −ρ(q0, q). Carrying out the angular integral, this yields

Γ̃HTL⊃
1

8π2k

∫ k

−∞
dq0

∫ 2k−q0

|q0|
dq q

[
1−nF(q0)−nF(k−q0)

]
ρ(q0, q)

∣∣
q·k=

q20−q2−2kq0
2

. (A.7)

We note from the angular constraint in eq. (A.7) that for the most IR sensitive con-

tribution we can replace q · k→ −kq0. Combining this with eqs. (A.4) and (A.5) leads us

to focus on

Im
{

Φf

∣∣IR
HTL

}
kn→−i[k+i0+]

D→4≡ 1

8π2

∫ k

−∞
dq0

∫ 2k−q0

|q0|
dq q

[
1− nF(q0)− nF(k − q0)

]
× 8q0P

T
q

[
ρP(q0, q)− ρW(q0, q)

]
, (A.8)

where PT
q can be taken over from eq. (2.88).

Again, we evaluate eq. (A.8) in two ways. Re-expanding in a strict weak-coupling

expansion, the spectral functions become

ρP → −
πm2

Aq0

4q3(q2 − q2
0)
, ρW → −

πm2
A

4qq0(q2 − q2
0)
. (A.9)

Here mA is a so-called asymptotic thermal mass [54], which for quarks reads

m2
qL

=
(g2

1Y
2 + 3g2

2/4 + g2
3CF)T 2

4
, m2

uR,dR
=

(g2
1Y

2 + g2
3CF)T 2

4
, (A.10)

where Y denotes the hypercharge assignment as listed below eq. (2.7). For the leptons, the

SU(3) parts are absent. Inserting eq. (A.9) into eq. (A.8) yields

Im
{

Φf

∣∣IR
HTL

}expanded

kn→−i[k+i0+]
=

1

8π2

∫ k

−∞
dq0

∫ 2k−q0

|q0|
dq
[
1− nF(q0)− nF(k − q0)

]
× 2π(q2 − q2

0)m2
A

q2
. (A.11)

This is integrable (i.e. IR finite) at q, q0 � k, and therefore does not appear in eq. (2.76).
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Figure 5. An example of a 2 ↔ 3 scattering contributing to gravitational wave production. The

notation is as in figure 2, and the magnitude of these scatterings is estimated in appendix B.

A complementary view on the soft fermion contribution can be obtained by evaluating

eq. (A.8) like we did for the gauge contribution in eq. (2.96). Making use of a sum rule

derived in ref. [17], and making a choice analogous to eq. (2.95), this gives

Im
{

Φf

∣∣IR
HTL

}full

kn→−i[k+i0+]
≈ 1

π2

∫ ∞
−∞

dq0 q0

∫ 2k

0
dq⊥ q⊥

[
1

2
− nF(k)

]
q2
⊥
[
ρP(q0, q)− ρW(q0, q)

]
[17]
=

1

2π

[
1

2
− nF(k)

] ∫ 2k

0
dq⊥ q

3
⊥

m2
A

q2
⊥ +m2

A

. (A.12)

The integral is dominated by q⊥ ∼ 2k, yielding a contribution of O(g2T 4) for k ∼ πT . This

is of leading order, but just a part of the full result, not justifying any resummation.

All in all, soft fermion exchange does not need to be resummed at leading order.

B Magnitude of 1 + n ↔ 2 + n processes

The processes we have considered in the main text, illustrated in figure 2, correspond to

2↔ 2 scatterings. It may be asked if 1 +n↔ 2 +n reactions also contribute. As Standard

Model particles obtain thermal masses, whereas gravitons remain massless, there is no

phase space for such a process at the Born level (n = 0). However, if one of the particles

interacts before emitting a gravitational wave (n ≥ 1), so that it is set slightly off-shell,

this argument no longer applies. An example of this type of a “bremsstrahlung” process is

shown in figure 5. In the context of producing photons or massless fermions from a thermal

plasma, such processes do contribute at the same order as 2 ↔ 2 scatterings, and have to

be summed to all orders (
∑∞

n=0), through a procedure known as Landau-Pomeranchuk-

Migdal (LPM) resummation [55–57]. In footnote 1 of ref. [33], it has however been pointed

out that such reactions are of subleading order for gravitational wave production. The

purpose of this appendix is to confirm the assertion of ref. [33], which we do by employing

light-cone variables similar to those normally adopted for LPM resummation.

In the notation of eq. (2.8), i.e. treating the gauge groups on equal footing for a

moment, the LPM contribution reads

GE
12;12

∣∣
LPM

=
2

D(D − 2)(D − 3)

{
nS Φs

∣∣
LPM

+ 2nG(1 +Nc)Φf

∣∣
LPM

+ (2 +NcCF)Φg

∣∣
LPM

}
.

(B.1)
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In order to determine the three terms, we start by writing their (vanishing) Born limits in

a suggestive form.11 According to eqs. (2.11)–(2.13), the cuts read

lim
D→4

Im
{

Φs

}∣∣
kn→−i[ω+i0+]

= 4 Im
{
J2

11

}∣∣
kn→−i[ω+i0+]

, (B.2)

lim
D→4

Im
{

Φf

}∣∣
kn→−i[ω+i0+]

= −2 Im
{

2J̃2
11 + J̃1

11

}∣∣
kn→−i[ω+i0+]

, (B.3)

lim
D→4

Im
{

Φg

}∣∣
kn→−i[ω+i0+]

= 2 Im
{

2J2
11 + 4J1

11 + J0
11

}∣∣
kn→−i[ω+i0+]

, (B.4)

where the masters J, J̃ were defined in eq. (2.9) and we have kept ω 6= k. Let us approach

the light cone from above, setting ω ≡
√
k2 +M2 with M2 → 0+. Adopting results from

eqs. (2.85) and (A.6) and setting Q → −Q in the latter, we can write

ΓLPM ≡ Im

∑
∫
Q

α0

[
P

T
q

]2
+ α1P

T
qK

2 + α2K
4

(K −Q)2Q2


kn→−i[ω+i0+]

=

∫ ∞
−∞

dq0

∫
q

ρfree(q0, q)

2εqk

{
α0

[
P

T
q

]2 − α1P
T
qM

2 + α2M
4
}

(B.5)

×
{
δ
(
q0 − ω − εqk

) [
nσ(εqk)− nσ(q0)

]
+ δ
(
q0 − ω + εqk

) [
1 + nσ(q0) + nσ(εqk)

]}
,

where σ = ± takes care of statistics according to eq. (2.27). The free spectral function

reads

ρfree(q0, q) =
π
[
δ(q0 − q)− δ(q0 + q)

]
2q

. (B.6)

For M2 > 0 the contribution comes from the second kinematic channel in eq. (B.5) com-

bined with the first term in eq. (B.6).

We now go over to light-cone coordinates, q = q‖ ek + q⊥, so that

εqk =
√

(k − q‖)2 + q2
⊥ , P

T
q = q2

⊥ . (B.7)

The constraint δ(q0 − q) is eliminated by integrating over q‖, which sets q‖ =
√
q2

0 − q2
⊥

(here we anticipate the overall sign to be positive, q‖ ∼ q0 ∈ (0, k), cf. eq. (B.9)). The

remaining constraint δ(q0 − ω + εqk) implies

M2 = ω2 − k2 = 2

[
q2

0 − k
√
q2

0 − q2
⊥ + q0

√
k2 + q2

0 − 2k
√
q2

0 − q2
⊥

]
. (B.8)

This can be expanded in q2
⊥/q

2
0 and q2

⊥/(k − q0)2, assuming again 0 < q0 < k to fix signs.

Keeping contributions up to q4
⊥ in α0 q

4
⊥ − α1 q

2
⊥M

2 + α2M
4 and contributions up to q2

⊥
inside δ(q0 − ω + εqk), we find

lim
D→4

Im
{

Φi

}∣∣
kn→−i[ω+i0+]

M2≈ 0
=

∫ ∞
−∞

dq0 κi(q0)
[
1 + nσ(q0) + nσ(k − q0)

]
×
∫
q⊥

q4
⊥ δ

(
−M

2

2k
+

q2
⊥

2(k − q0)
+
q2
⊥

2q0

)
. (B.9)

11More precisely, to extract the information, all terms contributing to the “slope” towards the vanishing

limit need to be included, which in the current context amounts to terms ∝ K4.
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It is clear from here that for M2 > 0 the contribution originates from 0 < q0 < k. However,

we have removed the specifier M2 → 0+, because eq. (B.9) turns out to be applicable for

M2 → 0− as well, with the contribution originating from q0 < 0 and q0 > k in that case.

When the coefficients α0, α1, α2 are inserted into the prefactor according to eqs. (B.2)–

(B.4), the functions κi in eq. (B.9) become

κs(q0) =
1

2q0(k − q0)
, κf (q0) =

q2
0 + (k − q0)2

4q2
0(k − q0)2

, κg(q0) =
q4

0 + (k − q0)4

4q3
0(k − q0)3

. (B.10)

Up to overall conventions, κs and κf agree with the prefactors cited for scalars and fermions

in ref. [56]. The factor κg is similar to the prefactor for the gluon contribution to gluon emis-

sion that was discussed in ref. [58], however it is not exactly the same: the latter has an ad-

ditional k4 in the numerator, guaranteeing a symmetry between the three gluons involved.

Let us now estimate the magnitude of the 1+n↔ 2+n contributions. For this, we can

set the virtuality to be parametrically M2 ∼ g2T 2, as it is at this scale that thermal masses

and scatterings of the type in figure 5 play a role if q0 ∼ k ∼ πT . Then eq. (B.9) implies

that q2
⊥ = M2q0(k− q0)/k2 and, up to logarithms in the case of κg, Im

{
Φi

}
∼M4 ∼ g4T 4.

This is suppressed by O(g2) compared with the effects that we are interested in.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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