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The forward doubly-virtual Compton scattering (VVCS) off the nucleon contains a wealth of
information on nucleon structure, relevant to the calculation of the two-photon-exchange effects in
atomic spectroscopy and electron scattering. We report on a complete next-to-leading-order (NLO)
calculation of low-energy VVCS in chiral perturbation theory (χPT). Here we focus on the unpolarized
VVCS amplitudes T1ðν; Q2Þ and T2ðν; Q2Þ, and the corresponding structure functions F1ðx;Q2Þ and
F2ðx;Q2Þ. Our results are confronted, where possible, with “data-driven” dispersive evaluations of low-
energy structure quantities, such as nucleon polarizabilities. We find significant disagreements with
dispersive evaluations at very low momentum-transfer Q; for example, in the slope of polarizabilities at
zero momentum transfer. By expanding the results in powers of the inverse nucleon mass, we reproduce the
known “heavy-baryon” expressions. This serves as a check of our calculation, as well as demonstrates the
differences between the manifestly Lorentz-invariant (BχPT) and heavy-baryon (HBχPT) frameworks.
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I. INTRODUCTION AND OUTLINE

The forward doubly-virtual Compton scattering
(VVCS), Fig. 1, is not a directly observable process.
Nevertheless, it is traditionally of high relevance in studies
of nucleon and nuclear structure, and of their impact on
atomic nuclei. At high energies the VVCS has the
apparent connections to deep-inelastic scattering, whereas
at low energies it is important for precision atomic
spectroscopy, where it serves as input for calculations
of the nuclear-structure corrections. Analytical properties
of the VVCS amplitude are used to establish useful
relations—sum rules—between the static (electromagnetic
moments, polarizabilities) and dynamic (photoabsorption

cross sections) properties of the nucleon [1–5]; see also
Refs. [6–11] for reviews.
In the past decade, with the advent of muonic-atom

spectroscopy by the CREMA Collaboration [12–14], the
interest in nucleon VVCS has resurged in the context of the
“proton radius puzzle” (see, e.g., Refs. [15,16] for reviews).
The muonic atoms, being more sensitive to nuclear
structure than conventional atoms, demand a higher quality
of this input in both the Lamb shift [12,13] and, in the near
future, the hyperfine structure measurements [17–19]. The
VVCS enters here in the form of the two-photon exchange

FIG. 1. The forward Compton scattering, or VVCS, in the case
of virtual photons, q2 ¼ −Q2.
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(TPE) corrections appearing at OðZ4α5Þ, which is the
subleading order for the nuclear-structure effects in the
Lamb shift (the leading being the charge radius), and
leading in the hyperfine structure. In either case, the TPE is
the leading theoretical uncertainty and precising this con-
tribution is a challenge for the nuclear and hadron physics
community.
In this work we focus on the unpolarized nucleon

VVCS, described, for each nucleon (proton or neutron),
by two scalar amplitudes T1;2ðν; Q2Þ, functions of the
photon energy ν and virtuality Q2. The discontinuity of
these amplitudes is given, respectively, by the two unpo-
larized structure functions F1ðx;Q2Þ and F2ðx;Q2Þ.
To date, there are two approaches: (1) dispersion

relations (DR) and (2) chiral perturbation theory (χPT),
used for evaluation of nucleon VVCS, with the goal of
quantifying the relevant corrections in muonic hydrogen. It
is expected and highly desirable that (3) lattice QCD will
join this effort in the near future. In the mean time, however,
the DR approach is the most popular one. It employs the
well-known dispersion relations expressing the VVCS
amplitudes as integrals of the structure functions known
empirically from inclusive electron scattering.
Unfortunately, the DRs determine the VVCS in terms of

the structure functions only up to a “subtraction function”
T1ð0; Q2Þ. The latter function is not well-constrained
empirically, which makes this approach prone to model
uncertainties. It is worthwhile to mention that there is a new
proposal on how the subtraction can further be constrained
via the dilepton electroproduction [20]. However, in the
foreseeable future, this issue will preclude a systematic
improvement of the theoretical uncertainty within the DR
approach.
Here we employ the second approach. More specifically,

we use an extension of SU(2) χPT [21,22] to the single-
baryon sector [23–25], referred to as the baryon χPT
(BχPT), augmented by inclusion of the explicit Δð1232Þ-
isobar in the δ-counting scheme [26]. In this framework
we compute the inelastic (non-Born) part of the VVCS
amplitudes to next-to-leading order (NLO). A first version
of this calculation was briefly considered in Ref. [27].
Here we provide a few important improvements, in particu-
lar, the inclusion of the Coulomb-quadrupole ðC2Þ N → Δ
transition, and a more comprehensive comparison of
our results with the DR approach. The impact of this
calculation on the muonic-hydrogen Lamb shift, extending
our previous evaluation [28] to higher orders, will be
discussed elsewhere.
The paper is organized as follows. In Sec. II, we recall

the general formulas for VVCS and its relation to structure
functions, form factors, and polarizabilities. In Sec. III, we
discuss the main ingredients of our NLO calculation. In
Sec. IV, we examine results for the proton and neutron
scalar polarizabilities, and some of the other moments of
structure functions. In the concluding section (Sec. V), we

summarize and give a brief outlook for the near-future
work. In Appendix A, we discuss the structure functions, in
particular, the πN, πΔ, and Δ production channels relevant
to our calculation. In Appendix B, we give analytical
expressions for the πN-loop and Δ-exchange contributions
to the central values and slopes of the polarizabilities and
moments of structure functions at Q2 ¼ 0. The complete
expressions, also for the πΔ-loop contributions, can be
found in the Supplemental Material [29].

II. VVCS FORMALISM

Figure 1 schematically shows the VVCS amplitude,
which for an unpolarized target (of any spin) can be
decomposed into two independent Lorentz-covariant and
gauge-invariant tensor structures [9]:

Tμνðp;qÞ¼
�
−gμνþqμqν

q2

�
T1ðν;Q2Þ

þ 1

M2
N

�
pμ−

p ·q
q2

qμ
��

pν−
p ·q
q2

qν
�
T2ðν;Q2Þ;

ð1Þ

where p and q are the four-momenta of the target particle
and the photon, respectively; MN is the target (here,
nucleon) mass. The scalar amplitudes Ti are functions of
the photon energy ν ¼ p · q=MN and virtuality Q2 ¼ −q2.
The optical theorem relates the absorptive parts of the

VVCS amplitudes to the structure functions, or equiva-
lently, the inclusive electroproduction cross sections:

ImT1ðν; Q2Þ ¼ 4π2α

MN
F1ðx;Q2Þ

¼ Kðν; Q2ÞσTðν; Q2Þ; ð2aÞ

ImT2ðν;Q2Þ¼ 4π2α

ν
F2ðx;Q2Þ

¼Q2Kðν;Q2Þ
ν2þQ2

½σTðν;Q2ÞþσLðν;Q2Þ�; ð2bÞ

with the fine-structure constant α ¼ e2=4π, and the Bjorken
variable x ¼ Q2=2MNν. The two response functions σT
and σL are cross sections of total photoabsorption
of transversely (T) and longitudinally (L) polarized pho-
tons. The flux of virtual photons is conventionally defined
up to the flux factor Kðν; Q2Þ. The experimental observ-
ables do not depend on it, only the definitions of the
response functions σT and σL do. Throughout this work we
adopt Gilman’s flux factor (for other common choices,
cf. Ref. [6]):

Kðν; Q2Þ ¼ jq⃗j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ν2 þQ2

p
; ð3Þ
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where q⃗ is the photon three-momentum in the lab
frame.
The VVCS amplitudes satisfy the following dispersion

relations derived from the above statement of the optical
theorem, combined with general principles of analyticity
and crossing symmetry (cf. for example, Refs. [6,9,10] for
details):

T1ðν;Q2Þ¼T1ð0;Q2Þ

þ32παMNν
2

Q4

Z
1

0

dx
xF1ðx;Q2Þ

1−x2ðν=νelÞ2− i0þ

¼T1ð0;Q2Þþ2ν2

π

Z
∞

νel

dν0

ν0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ν02þQ2

p
σTðν0;Q2Þ

ν02−ν2− i0þ
;

ð4aÞ

T2ðν;Q2Þ¼ 16παMN

Q2

Z
1

0

dx
F2ðx;Q2Þ

1−x2ðν=νelÞ2− i0þ

¼ 2Q2

π

Z
∞

νel

dν0
ν0½σT þσL�ðν0;Q2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ν02þQ2

p
ðν02−ν2− i0þÞ

; ð4bÞ

with νel ¼ Q2=2MN the elastic threshold. The high-
energy behavior of F1ðx;Q2Þ prevents the convergence
of the corresponding unsubtracted dispersion integral,
hence leading to the once-subtracted dispersion relation,
Eq. (4), with the aforementioned “subtraction function”
T1ð0; Q2Þ. Note that while the subtraction point is conven-
tionally chosen at ν ¼ 0, other choices are in principle
possible. Future lattice QCD calculations of the VVCS
amplitude would likely prefer to deal with a Euclidean
subtraction point, e.g., at ν ¼ iQ=2, as chosen in Ref. [30].
The amplitudes are naturally split into nucleon-pole

(Tpole
i ) and nonpole (Tnonpole

i ) parts, or Born (TBorn
i ) and

non-Born (T̄i) terms,

Ti ¼ Tpole
i þ Tnonpole

i ¼ TBorn
i þ T̄i; ð5Þ

with the pole and Born terms given uniquely in terms of the
nucleon electric (GE) and magnetic (GM) Sachs form
factors:

Tpole
1 ðν; Q2Þ ¼ 4πα

MN

ν2el
ν2el − ν2 − i0þ

G2
MðQ2Þ; ð6aÞ

Tpole
2 ðν; Q2Þ ¼ 8πανel

ν2el − ν2 − i0þ
G2

EðQ2Þ þ τG2
MðQ2Þ

1þ τ
; ð6bÞ

TBorn
1 ðν;Q2Þ¼−

4πα

MN

�
GEðQ2ÞþτGMðQ2Þ

1þτ

�
2

þTpole
1 ðν;Q2Þ;

ð6cÞ

TBorn
2 ðν; Q2Þ ¼ Tpole

2 ðν; Q2Þ; ð6dÞ

where τ ¼ Q2=4M2
N . The i0þ prescription represents the

fact that the imaginary part of these amplitudes is given by
the elastic piece of the structure functions: Fel

i ðQ2Þ¼
Fiðx¼1;Q2Þ. One can thus exclude the pole piece from
the above dispersion relations by setting the lower-energy
limit of integration to an inelastic threshold ν0 instead of νel,
or x0 ¼ Q2=2MNν0 instead of 1. For the nucleon the first
inelastic threshold is usually associated with one-pion
production, i.e., ν0 ¼ νel þmπð1þmπ=2MNÞ, where mπ

is the pion mass.
We are not concerned here with the elastic form factors,

and therefore in the rest of the paper we focus on the non-
Born part of the amplitudes, T̄i. The low-energy and low-
momentum expansion of these amplitudes is given in terms
of the static polarizabilities; e.g., for the lowest-order terms
one obtains

T1ðν; Q2Þ=4π ¼ βM1Q2 þ ðαE1 þ βM1Þν2 þ � � � ; ð7aÞ

T2ðν; Q2Þ=4π ¼ ðαE1 þ βM1ÞQ2 þ � � � ; ð7bÞ

where αE1 (βM1) is the electric (magnetic) dipole
polarizability. Such an expansion of both sides of the
dispersion relations (4) thus results in various sum rules,
most notably, the Baldin sum rule [31] for αE1 þ βM1.
Further relations derived from unpolarized VVCS are
considered in Ref. [32].
More generally, one may expand the dispersion relations

(4) in ν alone, keeping Q2 fixed. On the right-hand side,
one finds the moments of structure functions. Introducing

MðnÞ
1 ðQ2Þ≡ 4α

Q2

�
2MN

Q2

�
n−1 Z x0

0

dx xn−1F1ðx;Q2Þ; ð8aÞ

MðnÞ
2 ðQ2Þ≡4αMN

Q4

�
2MN

Q2

�
n−1Z x0

0

dxxn−1F2ðx;Q2Þ; ð8bÞ

the relations (4) lead to

T1ðν; Q2Þ ¼ T1ð0; Q2Þ þ 4π
X
k¼1

Mð2kÞ
1 ðQ2Þν2k; ð9aÞ

T2ðν; Q2Þ ¼ 4π
X
k¼0

Mð2kþ1Þ
2 ðQ2Þν2k: ð9bÞ

Note that in the limit of Q2 → 0, we obtain the Baldin
sum rule in the form

αE1 þ βM1 ¼ Mð2Þ
1 ð0Þ ¼ Mð1Þ

2 ð0Þ: ð10Þ

We refer to Mð2Þ
1 ðQ2Þ as the generalized Baldin sum rule;

see Sec. IVA. More generally, we have the following
relation (for an integer n):
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MðnÞ
1 ð0Þ ¼ Mðn−1Þ

2 ð0Þ; ð11Þ

arising from electromagnetic gauge invariance. One way to
derive it is to introduce the longitudinal amplitude

TLðν; Q2Þ ¼ −T1ðν; Q2Þ þQ2 þ ν2

Q2
T2ðν; Q2Þ ð12Þ

and to show that limQ2→0 TLðν; Q2Þ ¼ 0. Incidentally,
the same is true for asymptotically large Q2, because of
the Callan-Gross relation: 2xF1ðx;Q2Þ ¼ F2ðx;Q2Þ, and
hence MðnÞ

1 ð∞Þ ¼ Mðn−1Þ
2 ð∞Þ.

In what follows, we consider some of these moments,
obtaining them from the χPT results for the VVCS
amplitudes, and compare them with the results of empirical
parametrizations of the nucleon structure functions. The
dispersion relations (4) are used by us to cross-check the
results, using the tree-level photoabsorption cross sections
discussed in Appendix A.

III. CALCULATION OF THE VVCS
AMPLITUDE AT NLO

Our goal here is to obtain the χPT predictions of the
non-Born parts of the nucleon VVCS amplitudes T1;2. The
present NLO calculation is still within the “predictive
powers” of χPT for Compton scattering (CS) amplitudes;
i.e., the results are given in terms of well-known parameters
(see Table I) obtained from non-Compton processes. In this
sense, it is complementary to the existing calculations of
the real CS (RCS) [33,34] and the virtual CS (VCS) [35].
All of these studies, including the present one, are done in
the same framework, using the same set of parameters.

A. Remarks on power counting

We shall employ BχPT, which is the manifestly covariant
extension of χPT to the single-baryon sector in its most
straightforward implementation, where the nucleon is
included as in Ref. [23]. The power-counting concerns
raised in Ref. [23] have been overcome by renormalizing
away the “power-counting violation” using the low-energy
constants (LECs) available at that order. This has been
shown explicitly within the “extended on-mass-shell
renormalization scheme” (EOMS) [25], but is not limited
to it. The inclusion of the explicit Δð1232Þ here will follow
the “δ-counting” framework of Ref. [26] (see also
Refs. [40,41] for concise overviews).
To explain the power counting in more detail, let us recall

that chiral effective-field theory is based on a perturbative
expansion in powers of pion momentum p and mass mπ

over the scale of spontaneous chiral symmetry breaking
Λχ ∼ 4πfπ , with fπ ≃ 92 MeV the pion decay constant.
Each operator in the effective Lagrangian, or a graph in the
loopwise expansion of the S matrix, can have a specific
order of p assigned to it.

To give a relevant example consider the following
operator:

Lð4Þ ∼ δβ N̄NF2; ð13Þ

with δβ the coupling constant, N the Dirac field of the
nucleon, and F2 the square of the electromagnetic field
strength tensor, Fμν ¼ ∂ ½μAν�. This is an operator ofOðp4Þ.
Two of the p’s come from the photon momenta which are
supposed to be small, and the other two powers arise
because the two-photon coupling to the nucleon must carry
a factor of α (the charge e counts as p, since we want the
derivative of the pion field to count as p even after
including the minimal coupling to the photon).
This operator enters the effective Lagrangian with an

LEC, which we denote δβ. It gives a contribution to the CS
amplitude in the form of1

Tμν ¼ 4π δβ ðq · q0gμν − qμq0νÞ; ð14Þ

and leads to a shift in the magnetic dipole polarizability as
βM1 → βM1 þ δβ. Now, two remarks are in order.

(i) Naturalness.— The magnitude of the LEC is not
arbitrary. It goes as δβ ¼ ðα=Λ3

χÞc, with the dimen-
sionless constant c being of the order of 1, or more
precisely,

p=Λχ ≪ jcj ≪ Λχ=p: ð15Þ

This condition ensures that the contribution of this
operator is indeed ofOðp4Þ, as inferred by the power
counting.

(ii) Predictive powers.— This LEC enters very promi-
nently in the polarizabilities and CS at tree level,
which means its value is best fixed by the empirical
information on these quantities. If this is so, the
Oðp4Þ result is not “predictive,” as it could only be
used to fit the χPT expression to experiment
or lattice QCD calculations. On the other hand,

TABLE I. Parameters (fundamental and low-energy constants)
[36] at the order they first appear. The πNΔ coupling constant hA
is fit to the experimental Delta width and the γ�NΔ coupling
constants gM, gE, and gC are taken from the pion photoproduction
study of Ref. [37]. The free parameters δβp;n are fitted to the
Baldin sum rule for the proton and neutron [38,39], respectively.

Oðp2Þ α ≃ 1=ð137.04Þ, MN ¼ Mp ≃ 938.27 MeV
Oðp3Þ gA ≃ 1.27, fπ ≃ 92.21 MeV, mπ ≃ 139.57 MeV
Oðp4=ΔÞ MΔ ≃ 1232 MeV, hA ≡ 2gπNΔ ≃ 2.85,

gM ≃ 2.97, gE ≃ −1.0, gC ≃ −2.6
Oðp4Þ δβp ¼ −1.12 × 10−4 fm3, δβn ¼ −3.10 × 10−4 fm3

1Throughout this paper we use the conventions summarized at
the beginning of Ref. [9].
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contributions of orders lower than p4 are predictive,
as they only contain LECs fixed from elsewhere.

As already mentioned, the “predictive” contributions to
CS and polarizabilities have been identified and computed
for the case of RCS [33], VCS [35], and VVCS [27]. Our
present calculation is quite analogous to those works,
and hence we refer to them for most of the technical
details, such as the expressions for the relevant terms of the
effective Lagrangian. It is crucial to first study these
predictive contributions. We note, however, that here we
choose to also include the p4 LEC that shifts the magnetic
polarizability. In doing so, we fit the value of δβ so as to
reproduce the Baldin sum rule values:

αE1pþβM1p ¼ 14.0ð0.2Þ×10−4 fm3 proton ½38�; ð16aÞ

αE1nþβM1n ¼ 15.2ð0.5Þ×10−4 fm3 neutron ½39�; ð16bÞ

taking the values of αE1 obtained at Oðp4=ΔÞ as BχPT
predictions. This choice reflects the fact that the most
prominent scalar moments considered here, the second
moment of F1ðx;Q2Þ and the first moment of F2ðx;Q2Þ,
both change into the Baldin sum rule in the real-photon
limit. The values of the magnetic polarizabilities that result
from this fit are

βM1p¼2.75ð0.2Þ×10−4 fm3; βM1n¼1.5ð0.5Þ×10−4 fm3;

ð17Þ

where the error bar does not include the theoretical
uncertainty. One has to admit that this procedure results
in somewhat smaller values of βM1 than, for instance,
those obtained in the recent heavy-baryon (HB) and
covariant chiral analyses: 3.2ð0.5Þ × 10−4 fm3 [42,43]
for the proton and 3.65ð1.25Þ × 10−4 fm3 [44] for the
neutron. We will, however, use this simplified procedure
since the only affected quantity studied by us is the proton
subtraction function T1pð0; Q2Þ=4π ¼ βM1pQ2 þ � � �, and
the discrepancy for βM1p is tolerable.
We also include the Coulomb-quadrupole ðC2Þ N → Δ

transition, described by the gC term in the following
nonminimal γ�NΔ coupling [37,45] (note that in these
references the overall sign of gC is inconsistent between the
Lagrangian and Feynman rules):

Lð2Þ
Δ ¼ 3e

2MNMþ
N̄T3

n
igMF̃μν∂μΔν − gEγ5Fμν∂μΔν

þ i
gC
MΔ

γ5γ
αð∂αΔν − ∂νΔαÞ∂μFμν

o
þ H:c:; ð18Þ

with Mþ ¼ MN þMΔ and the dual of the electromagnetic
field strength tensor F̃μν ¼ 1

2
ϵμνρλFρλ. The electric, mag-

netic, and Coulomb couplings (gE, gM, and gC) are known
from the analysis of pion photoproduction P33 multipoles

[45]. The corresponding numerical values, as well as those
of other physical constants used in this work, are given in
Table I. The Coulomb coupling is subleading compared
with the electric and magnetic couplings, and it was not
included in the previous calculations. However, the rela-
tively large magnitude of gC hints at its potential numerical
importance, which we examine in this work.
The counting of the Δð1232Þ effects is done within “δ

counting” [26], where the Delta-nucleon mass difference,
Δ ¼ MΔ −M, is a light scale (Δ ≪ Λχ) that is substantially
heavier than the pion mass (mπ ≪ ΔÞ. Hence, if p ∼mπ ,
then Oðp4=ΔÞ is in between Oðp3Þ and Oðp4Þ.
For the non-Born VVCS amplitudes and polarizabilities

the predictive orders are Oðp3Þ and Oðp4=ΔÞ. The Oðp3Þ
contribution comes from the pion-nucleon (πN) loops. We
refer to it here as the LO contribution.2 The Oðp4=ΔÞ
contribution, arising at the NLO, comes from the tree-level
Delta-exchange (Δ-exchange) graph shown in Fig. 2, and
the pion-Delta (πΔ) loops. The loop diagrams are shown in
Ref. [27] [Figs. 1 and 2].
The Δ-exchange graph is described by the γ�NΔ

interaction in Eq. (18). For the magnetic coupling, one
assumes a dipole behavior to mimic the form expected from
vector-meson dominance (VMD),

gM →
gM

½1þQ2=Λ2�2 ; ð19Þ

with the dipole massΛ2 ¼ 0.71 GeV2. This modification is
going beyond the standard χPT framework, although it may
in principle be implemented within χPT by systematic
inclusion of vector mesons, as is done for the nucleon form
factors in, e.g., Ref. [46]. Another possibility is to represent
the above VMD effect by a resummation of the ππ
rescattering diagrams in the t channel. In either case, the
inclusion of this Q2 dependence is crucial for the correct
description of the pion electroproduction data [37]. Since
the pion electroproduction is, via the sum rules, affecting
the polarizabilities, it can be expected that a better
description of the electroproduction data leads to a better
description of theQ2 behavior of polarizabilities. The effect
of this modification of gM is illustrated in Figs. 4, 6, and 7.
A feature of the δ counting is that the characteristic

momentum p distinguishes two regimes: the low-energy

FIG. 2. Tree-level Δð1232Þ-exchange diagram.

2In the full Compton amplitude, there is a lower order
contribution coming from the Born terms, leading to a shift in
nomenclature by one order: the LO contribution referred to as the
NLO contribution, etc.; see e.g., Ref. [33].
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(p ≃mπ) and resonance (p ≃ Δ) regimes. The above
counting is limited to the low-energy regime. Since we
are interested in the low-energy expansion of the VVCS
amplitudes (i.e., the expansion in powers of small ν
with Q2 finite), we do not consider the regime where
one-Delta-reducible graphs are enhanced (resonance
regime). However, going to higher Q2 one does need to
count the Delta propagators similar to the nucleon propa-
gators, which, in turn, calls for inclusion of πΔ loops with
two and three Delta propagators, which have been omitted
here. They are only included implicitly by adjusting the
isospin coefficients of the one-nucleon-reducible πΔ-loop
graphs to restore current conservation, as explained in
Sec. III B. Apart from that, πΔ loops have a rather mild
dependence on momenta and the missing loops are unlikely
to affect the Q2 dependence of the moments of structure
functions significantly, even for Q2 comparable to Δ2.

B. Renormalization

The calculation of the πN- and πΔ-loop graphs is
analogous to Ref. [33], with the obvious extension to
the case of a finite photon virtuality. The renormalization
is also done in the exact same way, namely, subtracting
the loop contribution to the Born term of the VVCS
amplitude. The πΔ-loop graphs still contain divergences
after this subtraction. These divergences are of higher
orders, Oðp5=Δ2Þ and Oðp4Þ, and will be canceled by
the corresponding higher-order contact terms. In practice,
they are removed by taking the MS values of the divergent
quantities.
As mentioned above, πΔ-loop graphs where photons

couple minimally to the Delta contain more than one Delta
propagator and therefore should be suppressed by extra
powers of p=Δ. However, their lower-order contributions
are important for electromagnetic gauge invariance and
therefore for the renormalization procedure. This issue is
similar to HBχPT, where πN loops with nucleon-photon
couplings are suppressed (in the Coulomb gauge) and not
included at Oðp3Þ, even though they are required for
manifest electromagnetic gauge invariance. It is then said
that the gauge-invariance violating pieces are of higher
order. Here, in the δ-counting, we choose to retain exact
gauge invariance, by means of including a minimal set of
higher-order contributions.
This is achieved, as first done in [33], by observing that a

gauge-invariant set of diagrams with one Delta propagator
arises for the particular case of neutral Delta, Δ0. The ratio
of the isospin factors between the one-particle-irreducible
(1PI) and one-particle-reducible (1PR) graphs is then set to
correspond with the Δ0 case. This procedure ensures exact
gauge invariance and the low-energy theorem [47,48], thus
facilitating the correct renormalization of the charge and
anomalous magnetic moment of the nucleon. In this way
one includes the relevant contributions of the omitted

one-loop graphs with minimal coupling of photons to
the Delta. When the latter graphs are included explicitly
in a future higher-order calculation, the isospin factors of
1PR graphs will be restored to actual values.

C. Uncertainty estimate

To estimate the uncertainties of our NLO predictions, we
define the running expansion parameter

δ̃ðQ2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�

Δ
MN

�
2

þ
�

Q2

2MNΔ

�
2

s
; ð20Þ

such that the next-to-next-to-leading order (N2LO) is
expected to be of relative size δ̃2 [37]. To estimate the
uncertainty of a polarizability PðQ2Þ due to the neglected
higher-order terms in the chiral expansion, we separate that
polarizability into the real-photon piece Pð0Þ and the Q2-
dependent remainder PðQ2Þ − Pð0Þ. The uncertainty of
PðQ2Þ is obtained by adding the estimates for these two
parts in quadrature:

ΔPðQ2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δ̃4ð0ÞPð0Þ2 þ δ̃4ðQ2Þ½PðQ2Þ − Pð0Þ�2

q
:

ð21Þ

The uncertainties in the values of the parameters have a
much smaller impact compared to the truncation uncer-
tainty and are therefore neglected.

IV. RESULTS AND DISCUSSION

We now consider the numerical results for some of the
moments of the nucleon structure functions that appear in
the expansion Eq. (9). We shall also consider the proton
subtraction function T̄1ð0; Q2Þ. The complete NLO values
will be decomposed into three individual contributions: the
πN loops, the Δ exchange, and the πΔ loops. In practice,
we extract all results from the calculated non-Born VVCS
amplitudes. For a cross-check, we used the photoabsorption
cross sections described in Appendix A.

A. Mð2Þ
1 ðQ2Þ—The generalized Baldin sum rule

The electric and magnetic dipole polarizabilities,
αE1ðQ2Þ and βM1ðQ2Þ, encode information about the dipole
response of the nucleon to an electromagnetic field. For
finite momentum transfers, the sum of dipole polarizabil-
ities is given by the generalized Baldin sum rule:

½αE1 þ βM1�ðQ2Þ ¼ 1

2π2

Z
∞

ν0

dν

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þQ2

ν2

s
σTðν; Q2Þ

ν2

¼ 8αMN

Q4

Z
x0

0

dx xF1ðx;Q2Þ; ð22Þ
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where ν0 is the lowest inelastic threshold, in this case
the one-pion production threshold ν0¼mπþðm2

πþQ2Þ=
2MN , and x0 ¼ Q2=2MNν0. The electric and magnetic
dipole polarizabilities of the nucleon enter the nucleon-
structure contributions to the Lamb shift of muonic hydro-
gen and other muonic atoms [28,49–51], and thus are of
major interest for an accurate extraction of the nuclear
charge radii.
Our BχPT predictions for αE1 þ βM1 are shown in Fig. 3

(upper panel), for both the proton and the neutron, up to
photon virtualities of 0.3 GeV2. Our main result is given by
the blue solid lines and the error bands, where we used the
p4 LEC δβ to fit the static polarizabilities to the empirical
Baldin sum rule values (green and purple dots) given in
Eq. (16) (see discussion in Sec. III A). The inclusion of δβ
(cf. Table I) merely leads to a constant shift, as can be seen
by comparing to the pure Oðp4=ΔÞ predictions (blue long-
dashed lines), which include the πN-loop, the Δ-exchange,

and the πΔ-loop contributions. To illustrate the effect of the
Delta in these predictions, we also plot the LO πN-loop
contributions separately (red solid lines). We compare our
results for the Q2 evolution with the Oðp3Þ HBχPT
predictions [52] (purple dashed lines) and the MAID model
predictions [53,54] (black dotted lines). The latter are based
on the generalized Baldin sum rule (22) evaluated with
(π þ ηþ ππ) photoproduction cross sections [6]. The data
points are also evaluations of the (generalized) Baldin sum
rule [38,55,56]. One can see that the BχPT predictions
seem to systematically overestimate the MAID model in
the Q2 range shown here. One has to note that the MAID
model, on the other hand, slightly underestimates the
empirical Baldin sum rule evaluations.
The Oðp3Þ HB results seem to agree with the

empirical values at the real-photon point [56] for both
the proton and the neutron. However, they do not fall off
with increasing Q2 in contrast to the BχPT predictions.
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FIG. 3. Upper panel: Generalized Baldin sum rule for the proton (left) and neutron (right) as functions of Q2. The result of this work,
including the δβ contribution, is shown by the blue solid line, with the blue band representing the uncertainty due to higher-order effects.
The blue long-dashed line shows the NLO BχPT prediction (i.e., without the δβ term). The red line represents the LO BχPT result, while
the purple dashed line is theOðp3ÞHB result [52]. The black dotted line is the MAID model prediction [53,54,57]; for the proton we use
the updated estimate from Ref. [6] that includes the π; η; ππ channels. At Q2 ¼ 0 GeV2, we show the Baldin sum rule value for the
proton (green dot) [38] and neutron (purple dot) [39]. For the proton, the Q2 ¼ 0.3 GeV2 point (blue square) is the empirical evaluation
of Ref. [55]. Lower panel: Longitudinal polarizability for the proton (left) and neutron (right). The NLO BχPT predictions of this work
are shown by the blue solid line with the blue band; the legend for the remaining curves is as in the upper panel. Note that the LO BχPT
curves are practically on top of the NLO ones.
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This asymptotic behavior is the reason for the large proton-
polarizability effect on the muonic-hydrogen Lamb shift
found within HBχPT [52,58,59], much larger than the
phenomenological value. As shown in Refs. [28,32], this
issue is solved within the relativistic formulation, which
gives a result closer to calculations based on the dispersive
approach.
The static dipole polarizabilities αE1 and βM1 have

been studied within both the HB and the BχPT. While
HBχPT gives results remarkably close to the experi-
mental determinations already at LO [60], the contri-
bution of the Δð1232Þ is harder to accommodate in this
framework [61]. In contrast to that, LO BχPT [62,63]
yields smaller values for the sum of dipole polarizabil-
ities, in disagreement with the empirically extracted
values based on evaluations of the Baldin sum rule
with modern photoabsorption data [38,56,64]. However,
the NLO contributions from Δ exchange and πΔ loops
improve the situation [33,34]. In the case of the proton, they
bring the BχPT result in agreement with the experimental
extraction, while for the neutron the total result is slightly
bigger. The Δð1232Þ contributions are, therefore, naturally
accommodated in BχPT, and not in HBχPT (where they can

be reconciled with the empirical values only by means of the
p4 LEC δβ; see, e.g., Refs. [43,65] for the recent calculations
and review).
The BχPT contributions from πN loops, Δ exchange,

and πΔ loops to the dipole polarizabilities are, in that order
and in the usual units of 10−4 fm3:

αE1p þ βM1p ¼ 15.12ð1.48Þ ≈ 5.10þ 7.04þ 2.98; ð23aÞ

αE1n þ βM1n ¼ 18.30ð1.79Þ ≈ 8.28þ 7.04þ 2.98: ð23bÞ

This NLO result is a prediction of BχPT; i.e., it
does not include the p4 LEC δβ discussed in Sec. III A.
The corresponding individual contributions to the Q2-
dependent generalized polarizabilities are shown in Fig. 4
(upper panel). For the proton, the dominant contribution in
the studiedQ2 range is that of theΔ exchange, while for the
neutron the πN-loop and Δ-exchange contributions are of
roughly the same size. The importance of the Delta is
related to the fact that the nucleon-to-Delta transition is
dominantly of the magnetic dipole type, and therefore
it gives a huge contribution to βM1.
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In addition, we investigate the slopes of the polar-
izabilities at the real-photon point. Decomposing the results
as before into the three contributions, we observe that BχPT
predicts large contributions to the slopes both from πN
loops and Δ exchange. The Q2 dependence generated by
πΔ loops, on the other hand, is negligible, as can clearly be
seen from Fig. 4. The numerical values for the individual
contributions to the slopes are, in units of 10−4 fm5,

dðαE1p þ βM1pÞðQ2Þ
dQ2

����
Q2¼0

¼ −0.19ð6Þ ≈ −0.74þ 0.74 − 0.20; ð24aÞ

dðαE1n þ βM1nÞðQ2Þ
dQ2

����
Q2¼0

¼ −0.68ð21Þ ≈ −1.22þ 0.74 − 0.20: ð24bÞ

The dipole form factor in the magnetic coupling gM
generates the Q2 falloff of the dipole polarizabilities
(cf. Fig. 4), which is also observed in parametrizations
of experimental cross sections [66]. Because of cancella-
tions between the πN-loop and the Δ-exchange contribu-
tions, the dipole also crucially affects the overall sign of the
slope, as can be seen in Fig. 4. Note that due to these
cancellations we estimate the relative error of the slope by δ̃
instead of δ̃2.
Evaluating the Baldin sum rule radius,

r2ðαþβÞ ≡ −
6

αE1 þ βM1

d
dQ2

½αE1 þ βM1�ðQ2Þ
���
Q2¼0

; ð25Þ

we obtain rðαþβÞp¼ 0.29ð9Þ fm and rðαþβÞn ¼ 0.52ð16Þ fm,
where we estimated the relative error to be δ̃. Here, we
again used our result including the δβ contribution; i.e.,
we fixed the static polarizabilities to the Baldin sum-rule
values in Eq. (16), while the slope is still a prediction
of BχPT.
The result for the proton is in tension with the sum-rule

evaluations [55,66,67], which use empirical parametriza-
tions of the structure function F1ðx;Q2Þ, e.g., [66]:

rðαþβÞp ¼ 0.98ð5Þ fm: ð26Þ

From Fig. 3 one can see that the MAID empirical para-
metrization also leads to a steeper slope than BχPT. This
calls for a careful revision of the low-momentum behavior
of the empirical parametrizations in the near future.

B. αLðQ2Þ—The longitudinal polarizability

The low-energy expansion of the longitudinal VVCS
amplitude goes as

TLðν; Q2Þ=4π ¼ αE1Q2 þ αLQ2ν2 þ � � � ð27Þ

with αL called the longitudinal polarizability. Note that, in

terms of the moments αL ¼ Mð1Þ0
2 ð0Þ −Mð2Þ0

1 ð0Þ þMð4Þ
1 ð0Þ.

The generalized longitudinal polarizability is given by,

αLðQ2Þ ¼ 1

2π2

Z
∞

ν0

dν

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þQ2

ν2

s
σLðν; Q2Þ
Q2ν2

¼ 4αMN

Q6

Z
x0

0

dxFLðx;Q2Þ; ð28Þ

with

FLðx;Q2Þ ¼ −2xF1ðx;Q2Þ þ
�
1þ 4M2

Nx
2

Q2

�
F2ðx;Q2Þ:

Our BχPT prediction for αLðQ2Þ is shown in Fig. 3 (lower
panel), where we compare our results, with and without the
Delta contributions, with the MAID model predictions
[6,53,54,57] and the HB limit of the πN-loop contribution.
One can see that the Delta plays a negligible role in the
low-Q2 evolution of αL, which in the BχPT approach is
dominated by πN loops. Our results run very close to the
MAID curves, with small discrepancies in the intermediate
Q2 region. At higher virtualities, these discrepancies
decrease. The HB approach, on the other hand, seems to
systematically overestimate the value of αL in the consid-
ered Q2 range. This relatively big mismatch can be traced
back to the slow convergence of the 1=MN expansion, as
one can see from the analytic expression for the πN-loop
contribution to αLðQ2 ¼ 0Þ given in Appendix B.
For αL, we obtain the following contributions from πN

loops, Δ exchange, and πΔ loops, in units of 10−4 fm5,

αLp ¼ 2.28ð22Þ ≈ 2.22þ 0.00þ 0.06; ð29aÞ

αLn ¼ 3.17ð31Þ ≈ 3.11þ 0.00þ 0.06: ð29bÞ

For the slope at Q2 ¼ 0, we find, in units of 10−4 fm7,

dαLpðQ2Þ
dQ2

����
Q2¼0

¼ −1.63ð16Þ ≈ −1.62þ 0.01 − 0.01;

ð30aÞ

dαLnðQ2Þ
dQ2

����
Q2¼0

¼ −2.25ð22Þ ≈ −2.24þ 0.01 − 0.01:

ð30bÞ

The corresponding individual contributions to the Q2

dependence of αLðQ2Þ are demonstrated in Fig. 4 (lower
panel). One again notices that Δ exchange and πΔ loops
give negligible contributions in this Q2 range. The small-
ness of theΔ-exchange contribution is explained by the fact
that the magnetic coupling gM does not contribute to αL.
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C. Mð1Þ
2 ðQ2Þ—The first moment of F2ðx;Q2Þ

At Q2 ¼ 0, the first moment of the structure function
F2ðx;Q2Þ

Mð1Þ
2 ðQ2Þ¼ 1

2π2

Z
∞

ν0

dν
ν

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ν2þQ2

p ½σTðν;Q2ÞþσLðν;Q2Þ�;

¼ 4αMN

Q4

Z
x0

0

dxF2ðx;Q2Þ; ð31Þ

reproduces the Baldin sum rule: Mð1Þ
2 ð0Þ ¼ αE1 þ βM1 ¼

Mð2Þ
1 ð0Þ [cf. Eq. (23)]. However, at finiteQ2 this moment is

independent of Mð2Þ
1 ðQ2Þ. Comparing Fig. 5 (upper panel),

which shows the Q2 dependence of Mð1Þ
2 , with the

respective figure for Mð2Þ
1 , Fig. 3 (upper panel), one can

indeed see that the two moments noticeably diverge as one
departs from the real-photon limit. Note that the contribu-
tion of the p4 operator in Eq. (14) simultaneously shifts

Mð2Þ
1 ð0Þ and Mð1Þ

2 ð0Þ so they both coincide with the

empirical Baldin sum rule value. For the slope of Mð1Þ
2

at Q2 ¼ 0, we find the following contributions from πN
loops, Δ exchange, and πΔ loops, in units of 10−4 fm5:

dMð1Þ
2p ðQ2Þ
dQ2

����
Q2¼0

¼ −3.92ð38Þ ≈ −1.47 − 2.18 − 0.26;

ð32aÞ

dMð1Þ
2n ðQ2Þ
dQ2

����
Q2¼0

¼ −4.81ð47Þ ≈ −2.37 − 2.18 − 0.26:

ð32bÞ

Interestingly, the slope does not show such a drastic
cancellation between the πN-loop and the Δ-exchange
contributions as one encounters in the generalized Baldin
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FIG. 5. Upper panel: The first moment of the structure function F2ðx;Q2Þ for the proton (left) and neutron (right) as functions of Q2.
The result of this work, including the δβ contribution, is shown by the blue solid line, with the blue band representing the uncertainty due
to higher-order effects. The blue long-dashed line shows the NLO BχPT prediction (i.e., without the δβ term). The red line represents the
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sum rule. Correspondingly, the shape of the Mð1Þ
2 curve is

not so much affected by the inclusion of the gM dipole form
factor, as one can see from Fig. 6 (upper panel) which
shows the individual contributions to the Q2 dependence

of Mð1Þ
2 ðQ2Þ.

D. Mð4Þ
1 ðQ2Þ—The generalized fourth-order

Baldin sum rule

Let us now consider the fourth moment of the structure
function F1ðx;Q2Þ:

Mð4Þ
1 ðQ2Þ ¼ 1

2π2

Z
∞

ν0

dν

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þQ2

ν2

s
σTðνÞ
ν4

¼ 32αM3
N

Q8

Z
x0

0

dx x3F1ðx;Q2Þ: ð33Þ

In the real-photon limit, this moment is related to a linear
combination of dispersive and quadrupole polarizabilities
[69,70], resulting in the fourth-order Baldin sum rule (see
Ref. [9] for review):

Mð4Þ
1 ð0Þ ¼ αE1ν þ βM1ν þ

1

12
ðαE2 þ βM2Þ: ð34Þ

Here we obtain the following NLO results for the
proton and neutron (showing also the separate contribu-
tions from πN loops, Δ exchange, and πΔ loops), in units
of 10−4 fm5:

Mð4Þ
1p ¼ 6.00ð59Þ ≈ 2.95þ 2.92þ 0.13; ð35aÞ

Mð4Þ
1n ¼ 7.30ð72Þ ≈ 4.26þ 2.92þ 0.13: ð35bÞ

For the slopes at Q2 ¼ 0, we find, in units of 10−4 fm7,

dMð4Þ
1p ðQ2Þ
dQ2

����
Q2¼0

¼ −1.38ð14Þ ≈ −1.16 − 0.20 − 0.02;

ð36aÞ

dMð4Þ
1n ðQ2Þ
dQ2

����
Q2¼0

¼ −1.96ð19Þ ≈ −1.73 − 0.20 − 0.02:

ð36bÞ
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FIG. 6. Contributions of the different orders to the chiral prediction of Mð1Þ
2 ðQ2Þ (upper panel) and Mð4Þ
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proton (left) and neutron (right). Red solid line: πN-loop contribution; green dot-dashed line: Δ-exchange contribution; orange dotted
line: πΔ-loop contribution; blue long-dashed line: total result; purple dot-dot-dashed line: total result without gC contribution; black
short-dashed line: total result without gM dipole.
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The corresponding individual contributions to the Q2

dependence of Mð4Þ
1 ðQ2Þ are demonstrated in Fig. 6

(lower panel).
In Fig. 5 (lower panel), we show our BχPT predictions

compared to the MAID model predictions [53,54,57], the
HB limit of the πN-loop contribution [52], and empirical
evaluations of the fourth-order Baldin sum rule [38,68] for
proton and neutron, respectively. Our NLO BχPT predic-
tions are in good agreement with MAID, while the HB
results fail to describe the decrease with growing Q2.

E. T̄1ð0;Q2Þ—The proton subtraction function

The knowledge of the proton subtraction function
T̄1ð0; Q2Þ is needed to evaluate the leading contribution
of the nucleon structure to the (muonic-)hydrogen Lamb
shift; see Refs. [9,15,16] for reviews. At very low momenta
the non-Born part of the subtraction function is given by the
magnetic dipole polarizability, T̄1ð0; Q2Þ=Q2 ¼ 4πβM1þ
OðQ2Þ. Since the Lamb-shift integrals are weighted toward
low Q2, the low-momentum features of T̄1ð0; Q2Þ have a
more pronounced effect. In particular, the uncertainty in
the (empirical) extraction of βM1 contributes the bulk of the
theoretical uncertainty in Ref. [71]. At the same time, the
slope of this function at Q2 ¼ 0 could potentially be
important, and the different models and mechanisms could
lead to rather different values of that slope.
This is illustrated in Fig. 7 (left panel), which shows the

low-Q2 behavior of T̄1ð0; Q2Þ=4πQ2. One can see that both
βM1 and the slope change significantly when one adds theΔ
contributions (Δ-exchange and the πΔ loops contribution)
[cf. Fig. 7 (right panel)]. The resulting curve in the left
panel is compared with the HBχPT evaluation of Ref. [71],
showing an appreciable disagreement in the slope, with the

Q2 dependence of the two curves being noticeably differ-
ent. Our NLO prediction of the slope at Q2 ¼ 0 is given by
(in units of 10−4 fm5)

1

8π

d2T̄1ð0; Q2Þ
dðQ2Þ2

����
Q2¼0

¼ −2.33ð23Þ ≈ −0.06 − 2.18 − 0.10:

ð37Þ

Extracting the slope of the subtraction function experimen-
tally should in principle be possible through dilepton
electroproduction as proposed in Ref. [20]. It remains to
be seen whether such a measurement is feasible in the
near future.

V. SUMMARY AND CONCLUSIONS

We have completed the NLO calculation of the unpo-
larized VVCS amplitudes in SU(2) BχPT, with explicit
Δð1232Þ. We have calculated the non-Born amplitudes,
which at this order come out as a parameter-free prediction
of BχPT. We have provided the theoretical uncertainty of
these predictions due to higher-order effects, as well as an
explicit illustration of such effects due to the inclusion of a
low-energy constant from N2LO [Oðp4Þ�. The obtained
VVCS amplitudes are used to examine several notable
combinations of the (generalized) polarizabilities that are
expressed through the moments of the nucleon structure

functions, i.e.,Mð2Þ
1 ðQ2Þ—the generalized Baldin sum rule;

Mð4Þ
1 ðQ2Þ—the generalized fourth-order Baldin sum rule;

αLðQ2Þ—the longitudinal polarizability; and Mð1Þ
2 ðQ2Þ—

the first moment of the structure function F2ðx;Q2Þ. The
dispersion relations between the VVCS amplitudes and the
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FIG. 7. Left panel: The low-Q2 behavior of the non-Born piece of subtraction function T̄1ð0; Q2Þ=4πQ2 for the proton. The result of
this work, including the δβ contribution, is shown by the blue solid line, with the blue band representing the uncertainty due to higher-
order effects. The blue long-dashed line corresponds to the NLO BχPT prediction (i.e., without the δβ term). At the real-photon point,
we show the value of βM1p ¼ ð2.75� 0.2Þ × 10−4 fm3 (dark green triangle) resulting from the fit to the Baldin sum rule described in
Sec. III A. The red solid curve corresponds to the BχPT πN-loop contribution only, and the gray band is the HBχPT evaluation [71].
Right panel: Contributions of the different orders to the chiral prediction of T̄1ð0; Q2Þ=4πQ2 for the proton. Red solid line: πN-loop
contribution; green dot-dashed line: Δ-exchange contribution; orange dotted line: πΔ-loop contribution; blue long-dashed line: total
result; purple dot-dot-dashed line: total result without gC contribution; black short-dashed line: total result without gM dipole.
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tree-level photoabsorption cross sections served as a cross-
check of these calculations.
These results can be compared with the dispersive

evaluations using the empirical parametrization of the
nucleon structure functions. The biggest discrepancy is
observed for the low-Q behavior of the generalized Baldin
sum rule, calling for a future revision of the low-momentum
behavior of the empirical parametrization of the structure
function F1ðx;Q2Þ.
Concerning the Δð1232Þ contribution, we have seen that

it plays an important role in transverse quantities, whereas
in the longitudinal quantities, such as the longitudinal
polarizability αL, its role is negligible. We have studied
a modification of the magnetic γN → Δ coupling gM which
incorporates the effects of vector-meson dominance
[cf. Eq. (19)], and it turned out to be important in some
cases, even at low Q2. This emphasizes the importance of
the VMD-type of effects in the γ�N → Δ transition form
factor. Strictly speaking, it needs to be included within the
χPT in a more systematic manner, either by an explicit
inclusion of the vector mesons or a resummation of the ππ
rescattering. It would be interesting to implement (one of)
these systematic extensions of χPT in the future calcula-
tions. We have also considered the effect of the Coulomb
(C2) γ�N → Δ transition, described by the coupling gC.
However, we find that it has generally a small effect in the
unpolarized moments considered here.
We have obtained an NLO prediction for the proton

subtraction function T̄1ð0; Q2Þ, which cannot be deduced
from dispersion relations. This is an important step toward
a systematic improvement of the LO χPT evaluation [28]
of the proton-polarizability contribution to the muonic-
hydrogen Lamb shift.
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APPENDIX A: PHOTOABSORPTION
CROSS SECTIONS

The forward CS amplitude can, up to the subtraction
function, be reconstructed from the total photoabsorp-
tion cross sections through the dispersion relations in
Eq. (4). Therefore, we use tree-level cross sections to
verify our NLO calculation of the non-Born VVCS
amplitudes.

At LO, we need to consider the πN-production channel.
Following Refs. [33,72] and performing a chiral rotation to
cancel exactly the Kroll-Ruderman term at this order, only
the tree-level diagrams shown in Fig. 8 contribute, which
are gauge invariant by themselves. Analytical expressions
for σTðν; Q2Þ and σLðν; Q2Þ can be found in Ref. [28]. The
cross sections in the real-photon limit can be found in
Refs. [33,72]. We checked that the non-Born VVCS
amplitudes at LO, the left-hand side of Eq. (4), are
reproduced by the right-hand side of the same equation
when the tree-level πN-production photoabsorption cross
sections are inserted.
Besides the πN production, we calculated the tree-level

πΔ-production and Δ-production photoabsorption cross
sections; see Figs. 9 and 10. Because of the worse high-
energy behavior of the πΔ-production cross sections
(cf. Fig. 11), the dispersion relations require further
subtractions for a reconstruction of the πΔ-loop contribu-
tion to the VVCS amplitudes. However, we could use these
cross sections to verify higher-order terms in the expansion
of the VVCS amplitudes in powers of small ν.
The Δ-production cross sections are related to the tree-

level Δ-exchange shown in Fig. 2. The threshold for
production of theΔð1232Þ resonance is at lab-frame photon
energies of

νΔ ¼ M2
Δ −M2

N þQ2

2MN
: ðA1Þ

Therefore, the Δ-production cross sections contain to the
following Dirac’s δ-function: δðν − νΔÞ. The explicit form
of these cross sections is given by

(c)(b)(a)

FIG. 8. Contribution of the γ�N → πN channel to photoab-
sorption on the nucleon.

(c)(b)(a)

FIG. 9. Contribution of the γ�N → πΔ channel to photoab-
sorption on the nucleon.

FIG. 10. Contribution of the γ�N → Δ channel to photoab-
sorption on the nucleon.
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σTðν; Q2Þ ¼ 4π2α

2MNM2þjq⃗j
�
g2Mjq⃗j2ðνþMþÞ þ

g2Eðν − ΔÞðMNν −Q2Þ2
M2

N
þ g2CQ

4sðν − ΔÞ
M2

NM
2
Δ

−
gMgEjq⃗j2ðMNν −Q2Þ

MN

þ gMgCjq⃗j2Q2

MN
þ 2gEgCQ2ðMNν −Q2Þ½−MΔðMN þ νÞ þ s�

M2
NMΔ

	
δðν − νΔÞ; ðA2aÞ

σLðν; Q2Þ ¼ 4π2α

2M3
NM

2þjq⃗j
�
g2Eðν − ΔÞ½M2

N jq⃗j2 − ðQ2 −MNνÞ2� þ
g2CQ

2ðν − ΔÞðM2
N jq⃗j2 −Q2sÞ

M2
Δ

−
2gEgCQ2ðMNν −Q2Þ½s −MΔðMN þ νÞ�

MΔ

	
δðν − νΔÞ; ðA2bÞ

with Δ ¼ MΔ −MN , Mþ ¼ MΔ þMN , and the Mandel-
stam variable s ¼ M2

N þ 2MNν −Q2. Analytical expres-
sions for the unpolarized structure functions can be
constructed with the help of Eq. (2), with the flux factor
Kðν; Q2Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ν2 þQ2

p
.

It is important to note that the above cross sections
only describe the Δ-pole contributions to the tree-level
Δ exchange. In general, the VVCS amplitudes described
by the Δ-exchange diagram in Fig. 2 can be split as
follows [73]:

TΔ-exch
1 ðν; Q2Þ ¼ TΔ-exch

1 ð0; Q2Þ þ TΔ-pole
1 ðν; Q2Þ þ T̃Δ-exch

1 ðν; Q2Þ; ðA3aÞ

TΔ-exch
2 ðν; Q2Þ ¼ TΔ-pole

2 ðν; Q2Þ þ T̃Δ-exch
2 ðν; Q2Þ: ðA3bÞ

TΔ-exch
1 ð0; Q2Þ is the usual subtraction function:

TΔ-exch
1 ð0; Q2Þ ¼ 4παQ4

MΔMþωþ

�
g2M
Q2

−
g2EΔ

M2
NMþ

−
g2CΔðM2

N −Q2Þ
M2

NM
2
ΔMþ

þ gMgE
MNMþ

þ gMgC
MNMþ

þ 2gEgCðMNΔþQ2Þ
M2

NMΔMþ

�
ðA4Þ

FIG. 11. Photoabsorption cross sections for πN (red lines) and πΔ production (orange lines) with Q2 ¼ 0 (solid lines) and Q2 ¼
0.1 GeV2 (dashed lines for πN and dotted lines for πΔ channels).
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with ω� ¼ ðM2
Δ −M2

N �Q2Þ=2MΔ. T
Δ-pole
i are the Δ-pole

contributions that feature a pole at the Δð1232Þ-production
threshold, and thus, are proportional to

1

½s −M2
Δ�½u −M2

Δ�
¼ 1

4M2
N

1

ν2Δ − ν2
; ðA5Þ

where s and u are the usual Mandelstam variables. T̃Δ-exch
i .

are the (Δ-)nonpole terms in which the pole has canceled
out [73]:

T̃Δ-exch
1 ðν; Q2Þ ¼ −

4παν2

MNM2þ
ðg2M þ g2E − gMgEÞ; ðA6aÞ

T̃Δ-exch
2 ðν; Q2Þ ¼ −

4παQ2

MNM2þ

�
g2M þ g2E − gMgE þ g2CQ

2

M2
Δ

�
:

ðA6bÞ

To describe the nonpole terms in Eqs. (A6a) and (A6b)
within the standard dispersive framework, Eq. (4), we
define the auxiliary structure functions:

F̃1ðx;Q2Þ ¼ MNx
8πα

T̃Δ-exch
1 ðx;Q2ÞδðxÞ; ðA7aÞ

F̃2ðx;Q2Þ ¼ Q2

16παMN
T̃Δ-exch
2 ðx;Q2ÞδðxÞ: ðA7bÞ

APPENDIX B: POLARIZABILITIES AT Q2 = 0

In this section, we give analytical expressions for the
polarizabilities and their slopes at Q2 ¼ 0. In particular,
we give the HB expansion of the πN-loop contributions and
the Δ-exchange contributions. The complete expressions,
also for the πΔ-loop contributions, can be found in the
Supplemental Material [29].

1. πN-loop contribution

Here, we give analytical expressions for the πN-loop
contributions to the proton and neutron polarizabilities,
expanded in powers of μ ¼ mπ=MN , viz., the HB expan-
sion. Note that we choose to expand here to a high order in
μ; the strict HB expansion would only retain the leading
term in an analogous NLO calculation.

(i) Polarizabilities at (Q2 ¼ 0):

αE1p þ βM1p ¼ e2g2A
96π3f2πmπ

�
11π

8
þ 6ð3 log μþ 4Þμ − 1521πμ2

64
−
ð210 log μþ 29Þμ3

3
þ � � �

	
; ðB1Þ

αE1n þ βM1n ¼
e2g2A

96π3f2πmπ

�
11π

8
þ ð12 log μþ 1Þμ

2
−
117πμ2

64
þ 7μ3

3
þ � � �

	
; ðB2Þ

αLp ¼ e2g2A
1440π3f2πm3

π

�
93π

32
−
89μ

2
þ 18231πμ2

256
þ 10ð44þ 51 log μÞμ3 − 1880805πμ4

4096
− 3

�
356 log μ −

129

10

�
μ5 þ � � �

	
;

ðB3Þ

αLn ¼
e2g2A

1440π3f2πm3
π

�
93π

32
−
35

2
μþ 4095πμ2

256
þ 1

2
ð11þ 120 log μÞμ3 − 80085πμ4

4096
þ 141μ5

5
þ � � �

	
; ðB4Þ

Mð4Þ
1p ð0Þ ¼

e2g2A
720π3f2πm3

π

�
81π

32
− 56μþ 29145πμ2

256
þ 3

4
ð1501þ 1380 log μÞμ3

−
4670925πμ4

4096
−
96

5
ð13þ 160 log μÞμ5 þ � � �

	
; ðB5Þ

Mð4Þ
1n ð0Þ ¼

e2g2A
720π3f2πm3

π

�
81π

32
− 28μþ 6525πμ2

256
þ 3ð1þ 30 log μÞμ3 − 113925πμ4

4096
þ 192μ5

5
þ � � �

	
: ðB6Þ

(ii) Slopes of polarizabilities at Q2 ¼ 0:

dðαE1p þ βM1pÞð0Þ
dQ2

¼ e2g2A
480π3f2πm3

π

�
3π

16
− 18μþ 6477πμ2

128
þ
�
1339

2
þ 550 log μ

�
μ3 −

1366515πμ4

2048

− 7

�
313

10
þ 270 log μ

�
μ5 þ � � �

	
; ðB7Þ

FORWARD DOUBLY-VIRTUAL COMPTON SCATTERING OFF THE … PHYS. REV. D 102, 014006 (2020)

014006-15



dðαE1n þ βM1nÞð0Þ
dQ2

¼ e2g2A
1440π3f2πm3

π

�
9π

16
−
89μ

2
þ 5535πμ2

128
þ ð1þ 150 log μÞμ3 − 92265πμ4

2048
þ 1209μ5

20
þ � � �

	
;

ðB8Þ

dαLpð0Þ
dQ2

¼ e2g2A
1440π3f2πm5

π

�
−
621π

896
þ 13μ

14
þ 4995πμ2

1024
−
669μ3

7
þ 2517315πμ4

16384
þ
�
34407

35
þ 1116 log μ

�
μ5 þ � � �

	
;

ðB9Þ

dαLnð0Þ
dQ2

¼ e2g2A
1440π3f2πm5

π

�
−
621π

896
−
55μ

14
þ 3195πμ2

1024
−
207μ3

7
þ 456915πμ4

16384
þ 18

35
ð29þ 210 log μÞμ5 þ � � �

	
;

ðB10Þ

dMð1Þ
2p ð0Þ
dQ2

¼ e2g2A
480π3f2πm3

π

�
−
17π

32
þ 9μ

2
−
399πμ2

256
þ 1

3
ð197þ 90 log μÞμ3

−
246015πμ4

4096
−
1

5
ð199þ 990 log μÞμ5 þ � � �

	
; ðB11Þ

dMð1Þ
2n ð0Þ
dQ2

¼ e2g2A
480π3f2πm3

π

�
−
17π

32
− 2μþ 705πμ2

256
þ 1

6
ð1þ 60 log μÞμ3 − 12255πμ4

4096
þ 79μ5

20
þ � � �

	
; ðB12Þ

dMð4Þ
1p ð0Þ
dQ2

¼ e2g2A
10080π3f2πm5

π

�
225π

128
− 229μþ 495555πμ2

1024
− 7542μ3

þ 217523775πμ4

16384
þ 3ð38771þ 37408 log μÞμ5 þ � � �

	
; ðB13Þ

dMð4Þ
1n ð0Þ
dQ2

¼ e2g2A
2520π3f2πm5

π

�
225π

512
−
209μ

4
þ 228795πμ2

4096
−
1653μ3

4
þ 21341775πμ4

65536
þ 3ð3þ 364 log μÞμ5 þ � � �

	
:

ðB14Þ

2. Δ-exchange contribution

Here, we give analytical expressions for the tree-levelΔ-exchange contributions (cf. Fig. 2) to the nucleon polarizabilities
and their slopes at Q2 ¼ 0. Note that the Δ exchange contributes equally to proton and neutron polarizabilities. Recall
that for the magnetic γ�NΔ coupling we introduced a dipole form factor to mimic vector-meson dominance:
gM → gM=ð1þQ2=Λ2Þ2.

(i) Polarizabilities at (Q2 ¼ 0):

αE1 ¼ −
e2g2E
2πM3þ

; ðB15Þ

βM1 ¼
e2g2M
2πM2þ

1

Δ
; ðB16Þ

αL ¼ e2M2
Δ

πM3þ

�
g2E

ΔMNM2þ
−

g2C
2M4

Δ
þ gEgC
MNM2

ΔMþ

�
; ðB17Þ

Mð4Þ
1 ð0Þ ¼ e2MN

πM3þΔ

�
g2M
Δ2

þ g2E
M2þ

−
gEgM
ΔMþ

�
: ðB18Þ
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(ii) Slopes of polarizabilities at Q2 ¼ 0:

d½αE1 þ βM1�ð0Þ
dQ2

¼ −
e2

πM2þ

�
g2M
Δ2

�
1

Mþ
−

1

2Δ

�
þ 2

Λ2

g2M
Δ

þ gMgE
MN

�
1

4Δ2
−

1

ΔMþ
þ 1

4M2þ

�
−

g2E
4MNMþ

�
1

Δ
−

5

Mþ

�

−
gMgC

2ΔMNMþ
þ gEgC
MNM2þ

�
; ðB19Þ

dαLð0Þ
dQ2

¼ e2M3
Δ

πΔM4þ

�
2g2E

Δ2M2þ

�
2

MΔ
−

1

MN

�
−

g2C
M4

Δ

�
1

MN
−

3

2MΔ

�
þ gEgC
ΔM2

ΔMþ

�
5

MΔ
−

3

MN

��
; ðB20Þ

dMð1Þ
2 ð0Þ
dQ2

¼ e2

πM3þ

�
−

g2M
2Δ2

−
2g2MMþ
Λ2Δ

þ gMgE
2ΔMN

þ g2E
2ΔMþ

þ gMgC
2ΔMN

−
g2C
2M2

Δ

�
; ðB21Þ

(ii) Slopes of polarizabilities at Q2 ¼ 0:

d½αE1 þ βM1�ð0Þ
dQ2

¼ −
e2

πM2þ

�
g2M
Δ2

�
1

Mþ
−

1

2Δ

�
þ 2

Λ2

g2M
Δ

þ gMgE
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�
1

4Δ2
−

1

ΔMþ
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1

Δ
−
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−
gMgC

2ΔMNMþ
þ gEgC
MNM2þ

�
; ðB19Þ

dαLð0Þ
dQ2

¼ e2M3
Δ

πΔM4þ

�
2g2E

Δ2M2þ

�
2

MΔ
−

1

MN

�
−

g2C
M4

Δ

�
1
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−

3

2MΔ

�
þ gEgC
ΔM2

ΔMþ

�
5

MΔ
−

3

MN
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; ðB20Þ

dMð1Þ
2 ð0Þ
dQ2

¼ e2

πM3þ

�
−

g2M
2Δ2

−
2g2MMþ
Λ2Δ

þ gMgE
2ΔMN

þ g2E
2ΔMþ

þ gMgC
2ΔMN

−
g2C
2M2

Δ

�
; ðB21Þ

dMð4Þ
1 ð0Þ
dQ2

¼ e2MN

πΔ2M5þ
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g2M
Δ
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Δ

þM2þ
Δ2

�
−
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g2M
Λ2

þ gMgE

�
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Δ
−
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Δ2

−
1
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�

þ 2MþgMgE
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�
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Δ
−
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�
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−
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: ðB22Þ
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