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Abstract. The largest uncertainties in the Standard Model calculation of the anomalous magnetic moment of
the muon (g−2)µ come from hadronic effects, namely hadronic vacuum polarization (HVP) and hadronic light-
by-light (HLbL) contributions. Especially the latter is emerging as a potential roadblock for a more accurate
determination of (g − 2)µ. The main focus here is on a novel dispersive description of the HLbL tensor, which
is based on unitarity, analyticity, crossing symmetry, and gauge invariance. This opens up the possibility of a
data-driven determination of the HLbL contribution to (g− 2)µ with the aim of reducing model dependence and
achieving a reliable error estimate.
Our dispersive approach defines unambiguously the pion-pole and the pion-box contribution to the HLbL tensor.
Using Mandelstam double-spectral representation, we have proven that the pion-box contribution coincides
exactly with the one-loop scalar-QED amplitude, multiplied by the appropriate pion vector form factors. Using
dispersive fits to high-statistics data for the pion vector form factor, we obtain aπ-box

µ = −15.9(2)× 10−11. A first
model-independent calculation of effects of ππ intermediate states that go beyond the scalar-QED pion loop is
also presented. We combine our dispersive description of the HLbL tensor with a partial-wave expansion and
demonstrate that the known scalar-QED result is recovered after partial-wave resummation. After constructing
suitable input for the γ∗γ∗ → ππ helicity partial waves based on a pion-pole left-hand cut (LHC), we find that for
the dominant charged-pion contribution this representation is consistent with the two-loop chiral prediction and
the COMPASS measurement for the pion polarizability. This allows us to reliably estimate S -wave rescattering
effects to the full pion box and leads to aπ-box

µ + aππ,π-pole LHC
µ,J=0 = −24(1) × 10−11.

1 Introduction

The anomalous magnetic moment of the muon (g−2)µ has
been measured [1] and computed to very high precision of
about 0.5 ppm (see e.g. [2]). For more than a decade, a
discrepancy has persisted between the experiment and the
Standard Model prediction, now of about (3− 4)σ. Forth-
coming measurements at FNAL [3] and J-PARC [4] will
update the experimental value with the aim of increasing
the precision by a factor of 4 and checking for systematic
errors.

The main uncertainty of the theory prediction is due
to strong interaction effects [5–7]. Here the largest contri-
bution is given by the leading-order HVP, whose currently
most precise determination relies on a dispersion relation
linking it to cross-section measurements for e+e− annihi-
lations into hadrons, with the dominant effect arising from
ππ intermediate states. Since early determinations, the ex-
perimental situation in e+e− → hadrons has improved con-
siderably, and keeps doing so thanks to a dedicated pro-
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gram [2], but at the same time the required precision of the
HVP has increased, especially in view of the anticipated
improved experimental measurement of (g − 2)µ. Thus a
proper treatment of experimental errors and correlations is
becoming crucial and is now the focus of extensive study.
This includes radiative corrections, which need to be taken
into account properly in order to ensure a consistent count-
ing of higher-order HVP iterations. Most current HVP
compilations are based on direct integration of the exper-
imental data [8–10], and a novel dispersive approach ex-
ploiting global constraints from analyticity and unitarity in
the pion vector form factor and ππ scattering [11] provides
complementary information to consolidate uncertainty es-
timates for the ππ channel. Furthermore, very interesting
progress has been made in recent years by several lattice
collaborations to compute (g − 2)HVP

µ from first principles
according to different strategies. For a compilation of re-
sults and ongoing efforts in estimating various systematic
effects, we refer e.g. to [12].

If forthcoming data from e+e− experiments and/or
progress in lattice calculations help reduce uncertainties in
the HVP, the subleading HLbL contribution would domi-
nate the theory error. In present calculations of the HLbL
contribution, systematic errors are difficult, if not impos-
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sible, to quantify, due to model dependence. A new strat-
egy is required to provide a solid estimate of the theory
uncertainties and reduce them. Lattice QCD is making re-
markable progress in this direction, and may play a lead-
ing role in this field in the near future [13–21]. In [22, 23],
we have presented the first dispersive description of the
HLbL tensor.1 By making use of the fundamental princi-
ples of unitarity, analyticity, crossing symmetry, and gauge
invariance, we provide an approach that reduces model de-
pendence and allows for a more data-driven determination
of the HLbL contribution to (g − 2)µ.

Here, we report on a several improvements of our dis-
persive framework [25–27, 39]. We have constructed a
generating set of Lorentz structures for the HLbL tensor
that is free of kinematic singularities and zeros. This sim-
plifies significantly the calculation of the HLbL contribu-
tion to (g − 2)µ. Within our dispersive formalism, the def-
initions of both the pion-pole and pion-box topologies are
unambiguous. By constructing a Mandelstam representa-
tion for the scalar functions, we prove that the box topolo-
gies coincide with the scalar-QED (sQED) contribution
multiplied by pion vector form factors. Here we present
a numerical evaluation of the pion box using a form factor
fit to high-statistics data, in turn using a dispersive repre-
sentation to analytically continue the time-like data into
the space-like region required for the (g − 2)µ integral and
show that this contribution can be calculated with negligi-
ble uncertainties. We then present a first numerical eval-
uation of S -wave ππ-rescattering effects, which unitarize
the pion-pole contribution to γ∗γ∗ → ππ. This constitutes
the first step towards a full treatment of the γ∗γ∗ → ππ
partial waves [28–30]. In particular, our calculation settles
the role of the pion polarizability, which enters at next-to-
leading order in the chiral expansion of the HLbL ampli-
tude [31–33] and has been suspected to produce sizable
corrections in [32].

2 Lorentz structure of the HLbL tensor

In order to study the HLbL contribution to (g−2)µ, we need
a description of the HLbL tensor, namely the hadronic
Green’s function of four light-quark electromagnetic cur-
rents, evaluated in pure QCD:

Πµνλσ(q1, q2, q3) = −i
∫

d4x d4y d4z e−i(q1·x+q2·y+q3·z)

× 〈0|T { jµem(x) jνem(y) jλem(z) jσem(0)}|0〉. (1)

Gauge invariance requires the HLbL tensor to satisfy the
Ward-Takahashi (WT) identities

{qµ1, q
ν
2, q

λ
3, q

σ
4 }Πµνλσ(q1, q2, q3) = 0, (2)

where q4 = q1 +q2 +q3. The HLbL tensor can be written a
priori in terms of 138 basic Lorentz structures built out of
the metric tensor and the four-momenta [34]. Our first task
is to write the HLbL tensor in terms of Lorentz structures

1A different approach, which aims at a dispersive description of the
muon vertex function instead of the HLbL tensor, has been presented in
[24].

that satisfy the WT identities, while at the same time the
scalar functions that multiply these structures must be free
of kinematic singularities and zeros. A recipe for the con-
struction of these structures has been given by Bardeen,
Tung [35], and Tarrach [36] (BTT) for generic photon am-
plitudes. Gauge invariance imposes 95 linear relations be-
tween the 138 initial scalar functions. A generating set2

consisting of 43 elements can be constructed following
Bardeen and Tung [35]. However, as it was shown by Tar-
rach [36], such a set is not free of kinematic singularities
and has to be supplemented by additional structures. We
find a redundant BTT generating set of dimension 54:

Πµνλσ(q1, q2, q3) =

54∑
i=1

T µνλσ
i Πi(s, t, u), (3)

with scalar functions Πi depending on the Mandelstam
variables s = (q1 + q2)2, t = (q1 + q3)2, u = (q2 + q3)2

as well as the photon virtualities q2
i , and Lorentz struc-

tures T µνλσ
i [25, 26, 39]. This decomposition fulfills gauge

invariance manifestly

{qµ1, q
ν
2, q

λ
3, q

σ
4 }T

i
µνλσ = 0, (4)

is highly crossing symmetric (with only 7 distinct struc-
tures, all remaining 47 being related to these by crossing
transformations), and ensures that the coefficient functions
Πi do not contain kinematic singularities and zeros. In ad-
dition, the BTT decomposition typically allows for a very
economical representation of HLbL amplitudes, e.g. one
of the structures coincides with the amplitude for a pseu-
doscalar pole, while even the sQED amplitude becomes
very compact once expressed in terms of BTT functions.

3 HLbL contribution to (g − 2)µ
The HLbL contribution to aµ = (g−2)µ/2 can be extracted
with the help of well-known Dirac projector techniques
[40]. With our decomposition of the HLbL tensor in 54
structures, this amounts to the calculation of the following
two-loop integral:

aHLbL
µ = −

e6

48mµ

∫
d4q1

(2π)4

d4q2

(2π)4

1
q2

1q2
2(q1 + q2)2

×
1

(p + q1)2 − m2
µ

1
(p − q2)2 − m2

µ

× Tr
(
(/p + mµ)[γρ, γσ](/p + mµ)γµ(/p + /q1 + mµ)

× γλ(/p − /q2 + mµ)γν
)

×

54∑
i=1

(
∂

∂q4ρ
T µνλσ

i (q1, q2, q4 − q1 − q2)
) ∣∣∣∣∣

q4=0

× Πi(q1, q2,−q1 − q2). (5)

After a Wick rotation of the momenta, five of the eight
loop integrals can be carried out with the technique of
Gegenbauer polynomials [41]. We have checked that this

2In 4 space-time dimensions, there are two additional linear relations,
hence a basis consists of 41 elements [37, 38].
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Wick rotation is justified even in the presence of anoma-
lous thresholds in the scalar functions Πi. In analogy to the
pion-pole contribution [42], a three-dimensional integral
representation for the full HLbL contribution to (g − 2)µ
can be worked out [27] :

aHLbL
µ =

α3

432π2

∫ ∞

0
dΣ Σ3

∫ 1

0
dr r
√

1 − r2 (6)

×

∫ 2π

0
dφ

12∑
i=1

Ti(Q1,Q2,Q3)Π̄i(Q1,Q2,Q3),

where the Ti are known kernel functions, the Π̄i suitable
linear combinations of the BTT Πi, and the Euclidean mo-
menta are given by [38]

Q2
1,2 =

Σ

3

(
1 −

r
2

cos φ ∓
r
2

√
3 sin φ

)
,

Q2
3 =

Σ

3
(1 + r cos φ) . (7)

There are only 6 distinct functions Π̄i, the remaining ones
are again related to these by crossing symmetry. It suffices
to calculate the Π̄i in the kinematic limit where q4 → 0,
the transition to (g−2)µ then proceeds by means of Eq.(6).

4 Mandelstam representation

Although the scalar functions in the master formula Eq.(6)
are needed only for the reduced kinematics where the limit
q4 → 0 is taken, we define the dispersion relation in the
Mandelstam variables of the four-point function with gen-
eral kinematics and evaluate it only afterwards for the spe-
cial case q4 → 0. This procedure has the following advan-
tage: the HLbL contribution to (g − 2)µ splits into contri-
butions from different topologies (shown in fig. 1), each of
them linked to a specific sub-process, which is either data
input or again a dispersively reconstructed quantity. These
different contributions are discussed in the following.

Gauge invariance, encoded in the BTT decomposi-
tion, leads to Lorentz structures T µνλσ

i of mass dimen-
sion 4, 6, and 8. Hence, we expect the scalar func-
tions Πi to be rather strongly suppressed at high energies.
Thus we write down unsubtracted double-spectral (Man-
delstam) representations for the Πi [43], i.e. parameter-free
dispersion relations. The input to the dispersion relation
are the residues at poles (due to single-particle intermedi-
ate states) and the discontinuities along branch cuts (due to
two-particle intermediate states). Both are defined by the
unitarity relation, in which the intermediate states are al-
ways on-shell. We neglect contributions from intermediate
states consisting of more than two particles in the primary
cut. Heavier intermediate states are expected to be sup-
pressed by higher thresholds and smaller phase space, in
agreement with the outcome of model calculations.

The first topology in fig. 1 consists of the pion pole,
i.e. the terms arising from a single pion intermediate state.

This contribution is well-known [42] and given by

Π̄
π0-pole
1 = −

Fπ0γ∗γ∗
(
−Q2

1,−Q2
2
)
Fπ0γ∗γ∗

(
−Q2

3, 0
)

Q2
3 + M2

π

,

Π̄
π0-pole
2 = −

Fπ0γ∗γ∗
(
−Q2

1,−Q2
3
)
Fπ0γ∗γ∗

(
−Q2

2, 0
)

Q2
2 + M2

π

, (8)

where Fπ0γ∗γ∗ denotes the pion transition form factor (for
off-shell photons but an on-shell pion). Within this frame-
work, Ref. [44] determined aπ

0-pole
µ = 62.6+3.0

−2.5 × 10−11

by achieving a dispersive representation of the space-like
doubly virtual pion transition form factor that matches
smoothly onto the asymptotic behavior expected from per-
turbative QCD.

The other topologies in fig. 1 are obtained by select-
ing two-pion intermediate states in the primary cut. The
sub-process γ∗γ∗ → ππ is again cut in the crossed chan-
nel. If we single out the pion-pole contribution in both of
the sub-processes, we obtain the box topologies for HLbL.
For higher intermediate states in the crossed channel of
γ∗γ∗ → ππ, we obtain boxes with multi-particle cuts in-
stead of poles in the sub-processes.

By explicitly constructing the Mandelstam representa-
tion, we have shown that the box topologies in the sense
of unitarity have the same analytic structure as the one-
loop sQED contribution, multiplied with pion electromag-
netic form factors FV

π (q2
i ) for each of the off-shell photons

(FsQED). The dispersion relation defines unambiguously
this particular q2

i dependence. With the construction of the
Mandelstam representation, we prove that FsQED and box
topologies are the same. Note that the sQED loop contri-
bution in terms of Feynman diagrams consists of boxes,
triangles, and bulbs, but that the corresponding unitarity
diagrams are just box topologies. This can be understood
as follows: in sQED, the appearance of triangle and bulb
diagrams is due to the seagull vertex, needed to ensure
gauge invariance. In our formalism, gauge invariance is
already encoded in the BTT tensor decomposition Eq.(3).
Due to the high degree of crossing symmetry, the pion-box
contribution can be expressed in terms of either fixed-s, -t,
or -u dispersion relations, or in a symmetrized form

Ππ-box
i (s, t, u) =

1
3

[
1
π

∫ ∞

4M2
π

dt′
Im Ππ-box

i (s, t′, u′)
t′ − t

+
1
π

∫ ∞

4M2
π

du′
Im Ππ-box

i (s, t′, u′)
u′ − u

+ fixed-t + fixed-u
]
.

In this case the representation is exact.
Once heavier intermediate states are considered, see

Fig. 1, a more detailed investigation of the double spec-
tral functions is required. In practice, such contributions
can be included using a partial-wave expansion, in which
case the sub-process becomes a polynomial in the crossed
variable and the crossed-channel cuts are neglected. Writ-
ing down all crossed versions of the unitarity diagrams in
Fig. 1 with a two-particle primary cut, one sees that each
double spectral region appears exactly twice in a sym-
metrized form as in (9), so that the prefactor changes ac-
cording to 1/3 → 1/2 [39], with corrections suppressed

3
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Figure 1. Unitarity diagrams according to the Mandelstam representation. Crossed diagrams are omitted.

by the mass scale of the neglected LHC. In particular, this
representation becomes exact for ππ-rescattering effects,
which, by definition, are polynomial in the crossed Man-
delstam variable.

For a numerical evaluation of the pion box contribu-
tion, the only input needed is the pion vector form factor
in the space-like region. By fitting a dispersive representa-
tion which accounts for the prominent singularities in the
low-energy region as suggested in [45, 46] to both space-
like [47] and time-like form factor data [48–53], we obtain

aπ box
µ = −15.9(2) × 10−11 (9)

where the uncertainty is determined from the differences
between the time-like data sets as well as the details of the
fit representation. We stress that previous evaluations of a
“pion loop” [54, 55] had large model-dependent uncertain-
ties, whereas our evaluation of an unambiguously-defined
pion box has a negligible one.

5 Partial-wave expansion

Constraints from unitarity are most conveniently formu-
lated in a partial-wave expansion for HLbL helicity am-
plitudes hJ

λ1λ2,λ3λ4
with angular momentum J and helicity

labels λi. In this case the unitarity relation becomes diag-
onal

Im hJ
λ1λ2,λ3λ4

(s) =
σπ(s)
16πS

hJ,λ1λ2 (s)h∗J,λ3λ4
(s), (10)

where σπ(s) =
√

1 − 4M2
π/s, S = 2 for indistinguish-

able particles, and hJ,λ1λ2 the helicity partial waves for
γ∗γ∗ → ππ, and once formulated in isospin basis, Wat-
son’s theorem guarantees that the phases on the right-hand
side cancel to produce a well-defined imaginary part.

There are 41 independent helicity amplitudes for the
full HLbL tensor, which reduce to 27 if one photon is taken
on-shell. By overcoming several technical and conceptual
challenges [27, 39], we were able to construct a set of 27
amplitudes Π̌i related to the 27 singly-on-shell helicity am-
plitudes by a basis change that we have derived in explicit
analytic form. In the limit q4 → 0 a subset of the Π̌i in-
cludes all the scalar functions needed as input in (6) [39].
Moreover, this set of 27 amplitudes is manifestly free of
Tarrach [36] or d = 4 ambiguities [38]. For singly-on-
shell kinematics, there still exist 15 sum rules among the
27 helicity amplitudes, which we have exploited to opti-
mize to a certain degree the representation with respect to
the convergence of the partial-wave expansion.

The pion box provides an ideal test case for our partial-
wave framework since the full result is known and explicit

Table 1. Saturation of aπ-box
µ for maximal angular momentum

Jmax.

Jmax fixed-s fixed-t fixed-u average

0 0.0% 106.2% 106.2% 70.8%

2 73.9% 102.3% 92.7% 89.6%

4 89.2% 101.5% 96.4% 95.7%

6 94.3% 100.7% 97.9% 97.6%

8 96.5% 100.4% 98.7% 98.5%

expressions for all BTT scalar functions are available. Our
results, for simplicity obtained by using a vector-meson-
dominance pion form factor FV

π (q2) = M2
ρ/(M2

ρ −q2), with
aπ-box, VMD
µ = −16.4× 10−11, are shown in Table 1, demon-

strating that each fixed-s, -t, -u representation approaches
the full result (going up to Jmax = 20, we checked that also
the remaining differences disappear after partial-wave re-
summation). The vanishing S -wave contribution for fixed-
s is well understood and partly a matter of convention [27].
The convergence pattern looks very reasonable.

6 ππ rescattering effects

The partial-wave decomposition of the pion box demon-
strates that the traditional sQED pion loop can be under-
stood as the result of resumming the Born-term contribu-
tions to the γ∗γ∗ → ππ partial waves hJ,λ1λ2 (s) introduced
in the context of the unitarity relation (10). However, uni-
tarity for the sub-process itself implies

Im hI
J,λ1λ2

(s) = sin δI
J(s)e−iδI

J (s)hI
J,λ1λ2

(s), (11)

with isospin labels I and ππ phase shifts δI
J . This relation

is clearly violated for the (real) Born terms alone. With
a partial-wave framework at our disposal, we are thus in
the position to evaluate the corresponding unitarity correc-
tions, more conventionally referred to as ππ-rescattering
effects, as a first important step to account for contribu-
tions beyond the pion box.

In contrast to the on-shell and singly-virtual case [28–
30], the calculation of the γ∗γ∗ → ππ partial waves for two
off-shell photons is complicated by the fact that even for S -
waves two different helicity partial waves, h0,++ and h0,00,
become coupled, including off-diagonal kernel functions
required to eliminate kinematic singularities [22, 26]. We
applied this framework to construct the γ∗γ∗ → ππ am-
plitudes that correspond to the rescattering corrections to
the Born terms, whose solution can still be derived based

4
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Table 2. S -wave rescattering corrections to aπ-box
µ , in units of

10−11, for both isospin components and in total.

cutoff 1 GeV 1.5 GeV 2 GeV ∞

I = 0 −9.2 −9.5 −9.3 −8.8

I = 2 2.0 1.3 1.1 0.9

sum −7.3 −8.3 −8.3 −7.9

on Muskhelishvili–Omnès methods [56, 57]. We used
ππ phase shifts based on the modified inverse-amplitude
method [58], for the main reason that it has a simple ana-
lytic expression, while at the same time it reproduces ac-
curately the low-energy properties of the phase shifts as
well as pole position and couplings of the f0(500) reso-
nance [27]. We also tested the sensitivity to the asymptotic
part of the dispersive integrals by studying solutions with
different cutoff values Λ = [1 GeV,∞), constructed with
finite-matching-point techniques [29, 59–62]. Our results
for the rescattering contribution, summarized in Table 2,
turn out to be stable over a wide range of cutoffs, indicat-
ing that our input for the γ∗γ∗ → ππ partial waves reliably
unitarizes the Born-term LHC, which should indeed dom-
inate at low energies. The isospin-0 part of the result can
be interpreted as a model-independent implementation of
the contribution from the f0(500) of about −9 × 10−11 to
HLbL scattering in (g − 2)µ. In total, we obtain for the
ππ-rescattering effects related to the pion-pole LHC

aππ,π-pole LHC
µ,J=0 = −8(1) × 10−11, (12)

where the error is dominated by the uncertainties related
to the asymptotic parts of the integral.

Finally, it is instructive to consider the separate con-
tributions not in the isospin, but in the charge basis. Our
numerical analysis [27] shows that the rescattering effects
in (12) are, as expected, dominated by the charged pion,
with input for the γ∗γ∗ → ππ partial waves fully consistent
both with the recent COMPASS measurement [63] of its
dipole polarizability and the corresponding two-loop chi-
ral prediction [64]. For this reason (12) can be considered
a model-independent implementation of effects related to
the low-energy constants L9 and L10 in Chiral Perturba-
tion Theory, which were suspected to produce large ef-
fects in [32]. Our calculation proves that this is not the
case, and that the related rescattering corrections are in-
deed of much more reasonable size (a similar conclusion
was reached within a model approach in [33]).

To summarize, we have shown that our framework al-
lows us to estimate very accurately the combined effect
of two-pion intermediate states generated by a pion-pole
LHC and its S -wave unitarization

aπ-box
µ + aππ,π-pole LHC

µ,J=0 = −24(1) × 10−11, (13)

which is considered to be among the most important
contributions after the dominant pseudoscalar poles, but
was so far affected by significant uncertainties. This
first numerical result based on our dispersive approach
lays the foundation for extensions including the treat-
ment of higher partial waves [65], further left-hand cuts in

the γ∗γ∗ → ππ subamplitudes, higher-mass intermediate
states as well as the incorporation of short-distance con-
straints from QCD [66, 67], all important prerequisites for
a model-independent data-driven evaluation of the com-
plete HLbL contribution to (g − 2)µ.
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