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Abstract: The economic importance of genetically improving feed efficiency has been recognized 

by cattle producers worldwide. It has the potential to considerably reduce costs, minimize 

environmental impact, optimize land and resource use efficiency, and improve the overall cattle 

industry’s profitability. Feed efficiency is a genetically complex trait that can be described as units 

of product output (e.g. milk yield) per unit of feed input. The main objective of this review paper 

is to present an overview of the main genetic and physiological mechanisms underlying feed 

utilization in ruminants and the process towards implementation of genomic selection for feed 

efficiency in dairy cattle. In summary, feed efficiency can be improved via numerous metabolic 

pathways and biological mechanisms through genetic selection. Various studies have indicated 

that feed efficiency is heritable and genomic selection can be successfully implemented in dairy 

cattle with a large enough training population. In this context, some organizations have worked 

collaboratively to do research and develop training populations for successful implementation of 

joint international genomic evaluations. The integration of “-omics” technologies, further 

investments in high-throughput phenotyping, and identification of novel indicator traits will also 

be paramount in maximizing the rates of genetic progress for feed efficiency in dairy cattle 

worldwide.

Key Words: environmental footprint, feed efficiency, genomic selection, residual feed intake, 

rumen microbiome 
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Introduction

The global human population is expected to reach 9.8 billion by 2050 (FAOSTAT, 2019), 

and consequently there will be a substantial increase in food demand. In addition, the projected 

reduction in poverty and expansion of the middle class will reflect in a greater demand for larger 

amounts of high-quality meat and dairy products, produced under exemplary welfare conditions 

and leaving a minimal environmental footprint. As there are limited land and natural resources for 

production expansion, there is an urgent need to develop strategies to optimize the efficiency of 

food production. 

The current worldwide cattle population has more than 1.5 billion animals; over 105 

million cattle are raised in Canada and the United States alone (FAOSTAT, 2019). With feed 

currently being the largest expense in cattle production (Ho et al., 2013; Connor, 2015), a small 

improvement in nutrient utilization (i.e. better digestibility and/or greater nutrient absorption) can 

have major economic and environmental impacts. The reduction in feeding costs will positively 

impact not only the cattle producers’ profitability, but also the final prices of meat and dairy 

products available to consumers.

The demand to optimize animal nutrition practices has led to important investments in 

research over the past decades. Consequently, the science of animal nutrition has evolved rapidly 

and resulted in major contributions to a better understanding of the nutritional physiology of cattle 

and its nutrient requirements. This had led to major advancements in diet formulation, 

supplementation, and techniques for food processing and storage (Eastridge, 2010; Coffey et al., 

2016; Ondarza and Tricarico, 2017; Tedeschi et al., 2017). Despite the clear effectiveness of these 

developments, the need for a more permanent and cumulative solution has been envisioned 
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through genetic selection for a long time in various livestock species, including cattle (e.g. 

Freeman, 1967; Herd et al., 2003; Koch et al., 1963; Stone et al., 1960). 

The economic importance of selecting for improved feed efficiency has been clearly 

recognized by cattle producers, due to its potential to reduce costs considerably, minimize 

environmental impacts (e.g. reduce nutrient loss in manure and methane intensity), optimize land 

and resource use efficiency, and improve the overall cattle industry profitability (Richardson and 

Herd, 2004; Basarab et al., 2013; Berry and Crowley, 2013). However, the inclusion of feed 

efficiency in cattle selection indexes used in commercial breeding programs has been delayed for 

various reasons, among them: 1) the limited amount of phenotypic records for feed efficiency and 

related variables, in commercial herds; 2) the differences in feed intake measurement protocols 

and data sources (e.g. different breeds, lactation stages, parities, diets); 3) unclear definition of the 

breeding goal (Berry and Crowley, 2013; Pryce et al., 2014; Connor, 2015; Hurley et al., 2016); 

and, 4) the lack of research on novel traits evaluated based on a systems biology level that could 

contribute to improve the accuracy genomic prediction of breeding values. In the case of beef 

cattle, there are even some additional challenges, including limited vertical integration of 

production, large diversity of genetic resources (breeds) within country and internationally, greater 

use of crossbreeding systems, and reduced use of artificial insemination compared to dairy cattle, 

which leads to weaker genetic linkage among populations, and consequently, less accurate 

genomic breeding values.

With the more recent advancements in genomic methods and technologies, selection for 

feed efficiency has become more feasible, as genomics can be used as a tool to transfer the 

knowledge generated on research farms to genetically-connected commercial populations  

(Connor, 2015). However, selection based on genomic information still requires genotyping of the 
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selection candidates, as well as continued collection of phenotypic and genotype records from 

genetically-representative individual animals (i.e. a training population). The main objective of 

this review is to present an overview of worldwide research efforts to unravel genetic, molecular 

and physiological mechanisms underlying the efficiency of feed utilization in ruminants, current 

knowledge on host-microbiota interactions, and the implementation process of genomic selection 

for improved feed efficiency in dairy cattle.

Definitions of feed efficiency and indicator traits

Dairy cattle breeding programs have been very successful in improving the main traits of 

interest for the industry (e.g. Miglior et al., 2017). The first step in moving genetic progress in a 

desired direction for any breeding program is the clear definition of the breeding goal. In this 

context, a feed efficient animal has been broadly defined as an animal that eats less without 

compromising performance, or an animal that produces more while consuming the same amount 

of feed. In other words, feed efficiency is related to the units of product output (e.g. milk 

production) per unit of feed input. These units are generally mass, energy, protein or an economic 

value (Vandehaar et al., 2016). It is also of interest to dairy cattle breeders to select animals that 

do not compromise other vital functions, such as reproduction and health, while breeding to 

achieve greater feed efficiency (Connor, 2015).  

Feed efficiency is a complex trait, as feed intake and nutrient utilization are associated with 

many biological and physical mechanisms. For example, variability in feed efficiency can be due 

to variation in feed intake levels, digestion of feed and the associated energy costs, absorption of 

nutrients, metabolism, physiological stage, health status, rumen microbial metabolism, activity and 

thermoregulation (Herd et al., 2004; Herd and Arthur, 2007; Patience et al., 2015; Li et al., 2016). 
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Due to the challenging nature of measuring feed efficiency, many indicator traits have been 

proposed and utilized to assess feed efficiency, such as residual feed intake (RFI), residual solids 

production (RSP), and the use of milk mid-infrared spectroscopy (MIR) (Berry and Crowley, 

2013; Koch et al., 1963; Coleman et al., 2010; Pryce et al., 2014; Connor, 2015; Hurley et al., 

2016; Ondarza and Tricarico, 2017). 

In 1963, Koch et al. suggested the use of RFI as an indicator of feed efficiency. The RFI 

variable, estimated through a regression model, corresponds to the difference (residual) between 

the observed and expected feed intake, where the expected feed intake is based on feeding 

requirements assessed according to metabolic body weight and level or quantity of product 

outcome. Other physiological activities that are energy demanding, such as maintenance and 

reproduction, can also be included in the calculations (Berry and Crowley, 2013; Pryce et al., 

2014). Most commonly, RFI has been used in beef cattle research (Berry and Crowley, 2013). 

More recently, studies in dairy cattle have also been reported (e.g. Connor et al., 2019; Flay et al., 

2019; Waghorn et al., 2012). 

In dairy cattle, RFI is estimated by regressing dry matter intake (DMI) on a variety of 

physiological activities, which commonly include production (milk yield or energy corrected 

milk), metabolic body weight, changes in body weight or body condition score (BCS) and stage 

of lactation (Connor, 2015; Byskov et al., 2017; Seymour et al., 2019). Other residual traits have 

also been analyzed in place of RFI to obtain an estimate closer to the biology behind feed 

efficiency, such as RSP (Coleman et al., 2010). Similar to RFI, RSP represents the difference 

between observed milk solids production and that estimated via regression based on various 

activities (Coleman et al., 2010). 

Page 6 of 54
C

an
. J

. A
ni

m
. S

ci
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.n
rc

re
se

ar
ch

pr
es

s.
co

m
 b

y 
U

N
IV

 G
U

E
L

PH
 o

n 
08

/0
4/

20
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y.

 T
hi

s 
Ju

st
-I

N
 m

an
us

cr
ip

t i
s 

th
e 

ac
ce

pt
ed

 m
an

us
cr

ip
t p

ri
or

 to
 c

op
y 

ed
iti

ng
 a

nd
 p

ag
e 

co
m

po
si

tio
n.

 I
t m

ay
 d

if
fe

r 
fr

om
 th

e 
fi

na
l o

ff
ic

ia
l v

er
si

on
 o

f 
re

co
rd

. 



Another group of feed efficiency indicators are based on nutrient usage, such as energy and 

nitrogen efficiency, which considers nutrient partitioning between milk production and other 

physiological functions (Ondarza and Tricarico, 2017). For instance, energy conversion efficiency 

is the milk energy output divided by metabolizable energy intake. It has the advantage to consider 

diverse nutrient efficiency, however it does not account for mobilization of body reserves. 

Therefore, in order to account for body reserve changes, residual energy intake (REI) has been 

proposed (Mantysaari et al., 2012; Liinamo et al., 2015; Fischer et al., 2018). REI is the actual 

metabolizable energy intake minus the predicted energy requirement of the cow based on 

production, bodyweight, changes in bodyweight and/or BCS, and gestational energy needs 

(Mantysaari et al., 2012; Fischer et al., 2018).

As the costs to measure feed intake on individual animals are still high, alternative 

approaches to measure feed efficiency have been investigated. For instance, predictor traits that 

can be measured on a large number of animals for a relatively low cost through milk samples, 

blood, biosensors and automated recording systems are of great interest. Some examples of these 

include: infrared thermography (Montanholi et al., 2010), plasma concentrations of IGF-1 (Moore 

et al., 2005), milk MIR spectrometry (O’Donovan et al., 2014; Wallén et al., 2018), and milk fatty 

acid composition (Kelly et al., 2010). The use of MIR spectrometry to measure energy balance in 

dairy cattle began in 2011 (McParland et al., 2011; 2012). In additional MIR is widely used to 

determine major milk components, such as fat and protein. Shetty et al. (2017) used a partial least 

squares approach to estimate DMI based on MIR spectral data. While further studies are necessary, 

such models are a promising way to estimate individual energy intake (Dórea et al. 2018; Seymour 

et al., 2019). In summary, multiple alternatives to quantify individual variability of feed efficiency 

in dairy cattle have been proposed. As reviewed by Ondarza and Tricarico (2017), each one of 
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them has advantages and disadvantages. In order to make a better decision on the indicator trait to 

be used in a breeding program, it is of utmost value to understand the physiological mechanisms 

of feed utilization and the genetic architecture of the traits utilized. The next sections of this review 

will cover these aspects.  

An overview of the main physiological mechanisms underlying feed efficiency

The expected physiological changes arising from genetic selection for improved feed 

efficiency are dependent on the feed efficiency metric (i.e. indicator trait) used. For example, gross 

feed efficiency is typically calculated as the ratio of milk output to feed intake. As a result, this 

trait can be improved by increasing milk yield, decreasing feed intake, or a combination of both 

strategies. More complex measures of feed efficiency, such as RFI (Koch et al., 1963), REI 

(Fischer et al., 2018), or net energy efficiency (Seymour et al., 2020), share some commonalities. 

This includes the concept of categorizing energy expenditures into maintenance, growth or 

production activities, and will be the focus of this section. However, regardless of the measure (i.e. 

trait) used, the physiology of feed efficiency can be partitioned into two main areas: those 

regulating voluntary feed intake, and those regulating the conversion of nutrients into milk. On 

another layer, the major components affecting feed efficiency can be divided into: those that alter 

maintenance or the portion of net energy that is captured in milk or body tissues (instead of being 

used for maintenance), and those that alter the conversion of gross energy to net energy 

(VandeHaar et al., 2016).

All measures of feed efficiency are dependent on the amount of feed consumed, and thus 

the regulation of voluntary feed intake is a major determinant of efficiency. The physiological 

regulation of DMI is a complex and multi-factorial process, and was comprehensively described 
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by Allen (2000), Allen et al. (2009) and Forbes (2000, 2007). The predominant factors known to 

affect voluntary feed intake in ruminants are reticulorumen distension due to gut fill, hepatic 

propionate flux, and the amount of lipid in the diet (Allen, 2000). Gut fill is considered to be the 

major limiting factor of feed intake in early lactation when energy demands are highest, where 

mechanoreceptors are triggered by reticulorumen wall distension and send negative feedback to 

the brain via the vagus nerve to reduce feed intake (Allen, 2000; Forbes, 2000). The hepatic 

oxidation theory (Allen et al., 2009) postulates that the oxidation of fuels in the liver, such as 

propionate, acts as a major signal integrator that regulates feed intake in response to whole body 

energy status. There is a plethora of other signaling mechanisms involved in the regulation of feed 

intake, and a single stimulus may act through multiple pathways (polymodality), as well as at 

different sites (polytopicity; Forbes, 2007).

After consuming feed, animals partition the available energy to various processes which 

are normally categorized into maintenance, growth, reproduction or production. In general, 

animals who partition a greater proportion of energy towards productive purposes are considered 

to be more feed efficient. The biological processes governing anabolic and catabolic processes are 

generally considered to be highly regulated and subject to strict thermodynamic constraints 

(Baldwin et al., 1980; Seymour et al., 2020), making genetic selection for improved efficiency of 

these pathways somewhat challenging. However, Bottje et al. (2019) have recently provided 

support for the theory that defective proteins in the electron transport chain may lead to suboptimal 

mitochondrial function and reduce the overall energetic efficiency of the animal. If the genes 

associated with these protein defects could be identified, genomic variants (e.g. single nucleotide 

polymorphisms – SNPs) could be given greater weight in sophisticated genomic prediction 
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methods that are currently available. However, this would likely necessitate increased selection 

intensity on dam of dam lines, as mitochondrial DNA is strictly maternal in origin.

An important physiological change associated with improved feed efficiency (RFI) in dairy 

cattle is a reduction in body size appropriate for the specific production system, as proposed by 

Dickerson (1978) and Vandehaar et al. (2016). This would serve to reduce the total energy 

partitioned towards maintenance processes, allowing for a greater proportion of energy to be 

directed towards productive purposes. While this will reduce milk yield and feed intake, selection 

for improved lactation persistency and management for extended lactations would help maintain 

total lactation milk yield (Capuco et al., 2006; Santschi et al., 2011a;b). Additionally, it is generally 

accepted that smaller body size is associated with improved fertility. Thus, animals would remain 

in the herd longer, which would result in fewer animals needed to produce a given volume of milk 

in a specific time period. Overall, these outcomes would likely improve the efficiency of both the 

individual animal and the overall herd. The nutritional management system in each farm also needs 

to be considered. As described by Vandehaar et al. (2016), under limited feeding and management, 

significant gains in feed efficiency can be captured by further diluting maintenance (e.g. smaller 

cows). However, the effect of multiples of maintenance on efficiency might be similar on weather 

animals are selected to produce more milk at a specific body weight, or the same milk yield with 

smaller body weight (Vandehaar et al., 2016).

Genetic architecture of feed efficiency

Genetic parameters for feed efficiency traits

Before including a trait in a genetic selection index, it is important to evaluate its 

heritability (h2) and genetic variance in the population of interest, as well as its genetic correlation 
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with other economically important traits. These genetic parameters give insights into the rate of 

genetic progress that can be achieved per generation and contribute to better designing the genetic 

evaluation systems. Studies have indicated that feed efficiency, assessed in different ways using 

indicator traits, is moderately heritable (Table 1). For example, Williams et al. (2011) reported that 

genetic variation in RFI exists in dairy heifers and this could be an alternative to indirectly selecting 

dairy cows for improved feed efficiency, as it is easier to record feed intake in heifers (similar 

production and data collection systems as in beef cattle). Spurlock et al. (2012) estimated genetic 

parameters and made recommendations regarding traits related to energy balance, including DMI, 

bodyweight, BCS, energy-corrected milk production, and gross feed efficiency.

The h2 estimates presented in Table 1 indicate that feed efficiency can be improved through 

genetic selection. The wide range of h2 estimates reported in the literature are related to the 

different populations used in each study, as genetic parameters (such as h2 estimates) are 

population-specific. Thus, this suggests the importance of (re-)estimating genetic parameters for 

each population. It is worth noting that selection for improved feed efficiency might also impact 

other economically important traits, due to genetic correlations between them. Examples of genetic 

correlations reported in the literature for different indicator traits of feed efficiency and some 

important economic traits in dairy cattle are summarized in Table 2. A detailed description of 

genetic correlations between feed efficiency indicators and other relevant traits can be found in 

Berry and Crowley (2013) and Manafiazar et al. (2016).

Functional candidate genes associated with feed efficiency

The development and availability of high-throughput “-omics” technologies (e.g. 

genomics, transcriptomics, proteomics, metabolomics, metagenomics) has enabled the 
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identification of numerous candidate regions associated with economically relevant traits 

(Cánovas et al., 2017). In this context, genome-wide association studies (GWAS) and 

transcriptomics using RNA-Sequencing (RNA-Seq) technology have contributed to the 

identification of functional candidate genes and genetic variants (e.g. SNPs; copy number of 

variations – CNVs; and, insertions and deletions – INDELs; Cánovas et al., 2010; 

Wickramasinghe et al., 2014). In beef cattle, GWAS and transcriptomics studies using RNA-Seq 

have enabled the identification of key regulators of biological processes and pathways linked to 

feed efficiency variability, including lipid and protein metabolism, ion transport, protein and amino 

acid glycosylation, and valine, leucine and isoleucine degradation (Rolf et al. 2012; Abo-Ismail et 

al. 2014; Olivieri et al. 2016; Duarte et al. 2019). 

The integration of multiple “-omics” technologies through a systems biology approach is 

a powerful strategy for precisely identifying functional variants mapped in key regulator genes 

involved in the metabolic pathways affecting feed efficiency (Cánovas et al., 2017). Despite the 

low number of GWAS and RNA-Seq studies evaluating feed efficiency in dairy cattle, the 

combination of these results can be integrated to better understand the genetic architecture of feed 

efficiency in dairy cattle. 

In this section we summarize the main studies, published up to date, that have applied 

GWAS and RNA-Seq to investigate the genetic mechanisms underlying feed efficiency. Table 3 

presents the descriptive details of GWAS studies for feed efficiency in dairy cattle: breed(s), 

sample size, indicator trait, number of genetic markers, statistical method used, significance 

threshold, and number of significantly associated markers. Similarly, the descriptive details of 

transcriptomics studies using RNA-Seq comparing divergently-selected feed-efficient dairy cattle: 

breed(s), sample size, tissue analysed, indicator trait, statistical analysis, p-value threshold, and 
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number of differentially expressed genes are described in Table 4. Seven GWAS for feed 

efficiency indicator traits (e.g. RFI, DMI, milk energy, metabolic body weight) and three RNA-

Seq studies comparing two divergent groups of feed-efficient animals were found in the literature 

(Tables 3 and 4). The majority of these studies focused on the Holstein breed, which is the most 

commonly raised breed for milk production around the world. However, Salleh et al. (2018) 

studied Jersey breed animals, in addition to a subset of Holstein cows. As there are breed 

differences for feed utilization performance (Berry and Crowley, 2013), one can assume that there 

would be differences at the gene expression level as well. However, the number of transcriptomics 

studies available using RNA-seq is still too limited to draw such conclusions.

The integration and evaluation of multiple levels of -omics data can provide a better 

understanding of the physiological processes underlying feed efficiency. In addition to 

transcriptomics, the combination of proteomic and metabolomic analysis is important to determine 

causal effect and provide functional validation. When considering the application of -omics in 

livestock studies, there is a lack of information on feed efficiency and, more specifically, in dairy 

cattle. Few studies have evaluated feed efficiency in dairy cattle using metabolomics and 

proteomics. Due to the lack of studies integrating multiple -omics technologies to study feed 

efficiency in dairy cattle, it is difficult to assess the consistency across studies. For instance, 

proteomics and metabolomics have only recently been performed to study feed efficiency in dairy 

cattle (Wang and Kadarmideen, 2019; Zhang et al., 2019). Metabolic profiling of blood plasma 

has been performed in Holstein and Jersey cattle, revealing multiple fatty acids with significantly 

different profiles between divergent feed efficiency groups and were functionally enriched for 

biological pathways associated with energy use and production (Wang and Kadarmideen, 2019). 

The integration of hepatic metabolomic and proteomic data of Holstein heifers divergent for feed 
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efficiency has revealed 29 metabolites and 60 proteins that were significantly different between 

low and high feed efficient heifers (Zhang et al., 2019). These studies provide useful biomarkers 

as indicators for feed efficiency in dairy cattle, however, integration and evaluation of multiple -

omics technologies to study feed efficiency can improve the understanding of the whole biological 

system underlying feed efficiency through functional validation.

Regarding the study of feed efficiency in dairy cattle at the whole genome level using 

GWAS, a large number of regions were identified to be associated with feed efficiency traits, but 

the effect of each genomic region was small, indicating that feed efficiency is a polygenic trait. 

For instance, Hardie et al. (2017) reported that the 10 genomic windows explaining the majority 

of the genetic variance for RFI, accounted for only 5.38% and 4.80% of the genetic variance for 

RFI in first-parity and multiparous cows, respectively. 

The transcriptomics analyses performed using RNA-Seq technology (Table 4) compared 

gene expression measured in the whole transcriptome between two divergently-selected group of 

animals based on feed efficiency. It is worth highlighting that Salleh et al. (2017, 2018) evaluated 

liver biopsies from the same set of animals (high-RFI = five Holstein and five Jersey cows; low-

RFI = four Holstein and five Jersey cows), but used distinct statistical approaches. In all studies, 

RNA-seq was performed using liver tissue samples due to the key role of this organ in energy 

conversion and metabolic efficiency. In addition, Khansefid et al. (2017) also evaluated gene 

expression in white blood cells of divergently-selected cattle for RFI. The number of differentially 

expressed genes (DEG) varied substantially across studies. These results reinforce the polygenic 

nature of feed efficiency (as described by Salleh et al., 2018; Seymour et al., 2018). The use of 

methodologies such as the weighted gene co-expression network analysis (WGCNA) is a good 

alternative to identify hidden patterns of interactions between genes and consequently, contribute 
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to further understanding the biological processes associated with feed efficiency. This 

methodology is useful due to the fact that the individual identification of DEG can underestimate 

the complexity of the genetic architecture of quantitative traits, especially when the expression of 

genes acting in the biological processes tend to be correlated (Langfelder and Horvath, 2008). To 

date, no studies have exploited the identification of functional variants associated with feed 

efficiency traits using RNA-Seq data.

The level of overlapping and cross-validation among studies can greatly vary 

depending of the methodology used to perform the analyses.  One of the main causes of 

the non-validation across studies is the lack of homogeneity in the population structure, 

phenotypes, statistical models, quality control thresholds, among others. For example, 

Fonseca at al. (2018)  described a strong stratification for the list of positional and 

functional candidate genes as a function of the purpose of the breed (dairy or beef) and 

the phenotype evaluated when GWAS for male fertility traits were functionally integrated. 

Even though all the studies summarized in this current review were focused on feed 

efficiency, different phenotypes were used to access the feed efficiency in each study: 

RFI (using different models), daily-RFI and DMI. As each one of these phenotypes might 

be representing a different portion of the total feed efficiency of the animals, the candidate 

regions and genes can be expected to be different for each trait phenotype. Additionally, 

Page 15 of 54
C

an
. J

. A
ni

m
. S

ci
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.n
rc

re
se

ar
ch

pr
es

s.
co

m
 b

y 
U

N
IV

 G
U

E
L

PH
 o

n 
08

/0
4/

20
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y.

 T
hi

s 
Ju

st
-I

N
 m

an
us

cr
ip

t i
s 

th
e 

ac
ce

pt
ed

 m
an

us
cr

ip
t p

ri
or

 to
 c

op
y 

ed
iti

ng
 a

nd
 p

ag
e 

co
m

po
si

tio
n.

 I
t m

ay
 d

if
fe

r 
fr

om
 th

e 
fi

na
l o

ff
ic

ia
l v

er
si

on
 o

f 
re

co
rd

. 



the population structure and the statistical models applied in each study can substantially 

impact the detection power. Therefore, a very precise and careful approach must be 

performed in order to discuss and to point possible similarities and differences across the 

studies. This may be achieved by a proper meta-analysis, as more studies become 

available.  

Despite the reduced number of GWAS and transcriptomics studies using RNA-Seq 

evaluating feed efficiency in dairy cattle, the findings currently reported are similar to those 

observed in beef cattle (Table 3). The similarities in results from beef and dairy cattle-based studies 

creates an opportunity to perform integrative analyses (e.g. meta-analyses, functional analyses) in 

order to reduce the number of false-positive associations, and consequently, fine map those 

variants with the strongest effects. Thereafter, the identification of functional candidate genes can 

be performed in a more efficient way. Once candidate genes are identified, the prospection of 

causal variants mapped within these genes can contribute to increasing the predictive ability of 

feed efficiency through the use of specific markers used in sophisticated genomic selection 

approaches (Hayes et al., 2013; Goddard et al., 2016; VanRaden et al., 2017). 

The additional value of whole-genome sequence data

The use of genomic information derived from SNP chip arrays in genetic evaluation 

schemes is very efficient for multiple purposes (e.g. Georges et al., 2019). However, the inclusion 

of information from denser SNP arrays or whole-genome sequence data (WGS) is yet to be shown 

as advantageous. In this context, more recently, there has been an interest in selecting variants 
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based on WGS-based GWAS analyses and the incorporation of structural variants, especially 

CNVs, in GWAS and genomic predictions.

The identification of SNPs related to feed efficiency through WGS-based GWAS followed 

by functional analyses will enable the identification of variants with direct impact on feed 

efficiency. Therefore, the causal mutations can be included in the genomic predictions without the 

need to rely on linkage disequilibrium (LD; MacLeod et al., 2014). For instance, VanRaden et al. 

(2017a) reported an increase of 2.7% in the accuracy of genomic estimated breeding values 

(GEBVs) when performing WGS variant selection based on their estimated effect on a given trait. 

Mielczarek et al. (2018) reported CNV variations within and between multiple European 

dairy cattle breeds. This variability in CNV might enable more accurate selection of animals with 

greater genetic merit for feed efficiency. Although few CNV studies have been performed in dairy 

cattle, those conducted reported identified multiple genomic regions associated with feed 

efficiency and other traits of interest. Based on 147 high-density (HD) Holstein genotypes, Hou et 

al. (2012) identified and partially validated CNVs that were only observed in high or low feed 

efficient animals. The authors also linked those CNVs with important metabolic pathways 

involved in feed utilization. However, the power of the study was small due to limited sample size. 

In addition, Zhou et al. (2018) identified 10 CNVs (based on the UMD3.1 reference assembly; 

Zimin et al., 2009) in Holstein cattle associated with RFI. One of these CNVs (BTA4:108,225,979-

108,252,635 bp) was also associated with DMI. In addition, multiple regions were harboring 

olfactory receptor genes (e.g. RXFP4), which are likely indirectly related to feed efficiency 

through changes in feeding behavior (Soria-Gomez et al., 2014). For instance, the RXFP4 gene is 

known to be related to appetite regulation and metabolism, providing a direct link to efficiency 

(Ang et al., 2017). Lastly, a region overlapping with a quantitative trait loci (QTL) associated with 
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average daily gain (ADG) on BTA7 (42,745,346-42,788,788) was also associated with RFI. The 

release of a better-quality reference genome assembly, i.e. ARS-UCD1.2 (Rosen et al., 2018), will 

enable the discovery of additional CNVs associated with feed efficiency. Furthermore, there are 

limitations on the number of individuals with phenotypic and WGS information. As more animals 

have phenotypes and WGS data become available on a larger number of individuals, more accurate 

results are expected to be obtained. 

In addition to the individual genetic merit of dairy cattle, there are other factors that 

contribute to variability in feed efficiency. The next section will describe the role of the rumen 

microbiome on the efficiency of feed utilization in dairy cattle as well as its interaction with the 

genetic makeup of the individual host. 

The role of rumen microbiome on feed efficiency

The rumen microbial community is a complex ecosystem composed mainly of bacteria, 

ciliate protozoa, fungi, and archaea, which interact with each other to digest fibrous feed (Williams 

and Coleman, 1997). Ruminants are dependent on the rumen microbial community to produce and 

serve as metabolic energy products to survive, and in return, the microbial community depends on 

the ruminant for a habitat to survive, resulting in a symbiotic host-microbial relationship. The 

function of the rumen to extract nutrients from feed and deliver metabolites to productive tissues, 

represents its large role in nutrient economy and whole-body metabolism (Baldwin and Connor, 

2017). As feed efficiency is largely dependent on better partitioning of metabolic energy, the 

metabolic efficiency of the rumen microbiota is known to influence feed utilization, due to its large 

role in energy production and delivery to the host (Myer et al., 2015; Shabat et al., 2016).
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The near-total exchange of rumen contents between two cows has revealed that ruminal 

pH and volatile fatty acid (VFA) concentration rapidly stabilizes within 24 hours after rumen 

content exchange. This implies that the rumen microbial community has the ability to adapt rapidly 

(Weimer et al., 2010), and the assembly of the microbial community could be partially determined 

by the host (Benson et al., 2010; Sasson et al., 2017; Difford et al., 2018; Wallace et al., 2019, Li 

et al., 2019). This suggests that ruminants may exhibit individual rumen microbial profiles, and 

that there could be a potential for genetic selection for a desirable rumen microbiome profile in 

combination with management of other environmental factors (e.g. diet). However, the 

understanding of the genetic basis underlying the interactions between the host’s genetics and the 

rumen microbiome, along with its overall influence on feed efficiency is limited. This has led to 

recent studies using transcriptomics, meta-transcriptomic and metagenomics to investigate the role 

of the rumen microbiome, which is considered as “all the microbial genomes within the rumen 

microbial community”.

Studying the rumen microbiome using “-omics” technologies

Previous studies have used metagenomic and meta-transcriptomic approaches to quantify 

microbial content/abundance and microbial gene expression, respectively, and its potential link to 

feed efficiency in cattle (Shabat et al., 2016; Li and Guan, 2017; Paz et al., 2018). Research 

investigating the rumen metagenome and its association with feed efficiency has revealed 

differential bacteria abundances across divergent rumen metabolic efficiencies by classifying 

specific bacteria using Operational Taxonomic Units (OTU; Paz et al., 2018), which measures 

various microbial species and their abundance. Specific OTU have been characterized in beef 

cattle across divergent feed efficiency groups and revealed that specific OTU abundance from 
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bacterial families, including Prevotellaceae and Lachnospiraceae, were associated with feed 

efficiency in beef steers (Paz et al., 2018). Feed efficiency and rumen microbiome have been 

previously associated (Hayes et al., 2013; Sasson et al., 2017; Paz et al., 2018), revealing that 

models used to explain feed efficiency traits (e.g. DMI; ADG; gain to feed ratio) explained up to 

20% of the total variation in feed utilization when including OTU abundance parameters (Paz et 

al., 2018). This evidence suggests that microbial OTU abundance may serve as a predictor of feed 

efficiency (Paz et al., 2018). 

The study of rumen meta-transcriptome has indicated that less efficient cattle exhibit more 

diverse microbial activities (Li and Guan, 2017). This supports the findings by Shabat et al. (2016), 

in which less feed efficient beef cattle exhibited higher richness of microbial gene content 

compared to more feed efficient beef cattle. These studies suggest that rumen microbiome content 

and function/activity may serve as a microbiome feature to genetically improve feed efficiency 

(Shabat et al., 2016; Li and Guan, 2017). To further improve the understanding of the associations 

between the rumen microbiome and host phenotypes, other “-omics” platforms should be 

considered, including meta-proteomics and metabolomics (Almeida et al., 2018; Hart et al., 2018).

Heritability estimates of rumen microbial features

The nature of the diverse community of the rumen microbiome has led to variation in 

characterizing and defining consistent rumen microbiome traits to estimate heritability and 

investigate correlations with production traits. The heritability of the rumen microbiome has 

primarily been estimated using taxonomic profiles, on an OTU abundance basis (Sasson et al., 

2017; Difford et al., 2018; Wallace et al., 2019, Li et al., 2019). Additionally, more recent traits 
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used to estimate heritability of the rumen microbiome include microbial diversity indices and ratios 

between microbial groups (Li et al., 2019).

Using specific bacteria OTU abundance, a study on 78 Holstein-Friesian dairy cows 

estimated heritability of that trait at approximately 0.70 (Sasson et al., 2017). Furthermore, bacteria 

and archaea OTU abundance had heritability estimates ranged between 0.17 and 0.25, when the 

association between methane emissions (a trait correlated with efficiency of nutrient utilization) 

and rumen microbiome in lactating Holstein cows was analyzed (Difford et al., 2018). In Holstein 

and Nordic Red lactating dairy cows, Wallace et al. (2019) identified 39 heritable core (few 

specific targeted microorganisms) microbial OTUs, with heritability estimates ranging from 0.20 

to 0.60.

Heritability estimates on rumen microbial traits have also been studied in beef cattle. For 

instance, the heritability of rumen bacterial diversity indices were estimated in Angus, Charolais, 

and Crossbreed, revealing heritability estimates of 0.23 (Shannon index) and 0.19 (Simpson index) 

(Li et al., 2019). In the same study, the heritability of bacterial or archaeal community component 

differences ranged from 0.15 to 0.25. Similarly, moderate heritability estimates were observed for 

total bacterial abundance (0.16), while heritability estimates for total archaeal abundance was 

lower (0.05). A wide range of heritability estimates have been reported for various microbial 

features, mainly due to differences across breeds, populations, analytical methods and diets 

(Sasson et al., 2017; Wallace et al., 2019; Li et al., 2019). 

Host-microbiome genetic interactions and its influence on production traits in dairy cattle

Advances in transcriptomic, meta-transcriptomic (the measurement of host and microbial 

gene expression using RNA-Seq technology; Li and Guan, 2017) and metagenomic (amplicon-
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sequencing to measure microbial content/abundance; Sasson, 2017; Wallace et al., 2019) 

sequencing approaches have led to opportunities to better understand rumen microbiome 

parameters and their relationship with host phenotypic expression. Li et al. (2019) reported 19 

SNPs in the host genome associated with 14 rumen microbial taxa. Out of those 19 SNPs, five are 

located in known QTLs for cattle feed efficiency. Host-microbiome interactions has been widely 

studied in mice, flies and humans (Benson et al., 2010; Turpin et al., 2016; Fromont et al., 2019). 

However, to our best knowledge, Li et al. (2019) is the first report on the characterization of the 

link between the cattle genetic makeup and heritable microbial features. This is a research area in 

great expansion at the moment and therefore, major breakthroughs in this field are expected over 

the next few years.

Data collection and implementation of genomic evaluations

Genomic selection for improved feed efficiency

As previously outlined, the costs and feasibility of measuring individual feed intake (and 

related traits, such as bodyweight) in a large number of animals with pedigree information has 

limited the implementation of genetic selection for feed efficiency. Genomic selection has become 

widely available in the dairy cattle industry and enabled selection of breeding candidates based on 

their predicted genetic merit for feed efficiency. This is because animals from research herds can 

be used as a training population to estimate SNP effects, which are then used to predict GEBVs 

for selection candidates based on their own genotype (Veerkamp et al., 2015). In brief, genomic 

selection refers to the use of genome-wide genetic markers to predict breeding values of selection 

candidates (Meuwissen et al., 2001). 
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The accurate calculation of GEBVs depends on the estimation of SNP effects based on 

genomic and phenotypic datasets (i.e. training population). The size of the training population 

directly affects the GEBV accuracies (Goddard, 2009; Hayes and Goddard, 2008). However, the 

size of training population for feed efficiency in dairy cattle is still limited. Other factors that 

impact GEBV accuracy are: SNP panel density, trait heritability (Daetwyler et al., 2008; Goddard, 

2009), the extent of the LD between SNP and QTL (Hayes et al., 2009; VanRaden et al., 2009), 

and the relationship between the training and validation or target populations (Habier et al., 2010; 

Pszczola et al., 2012).

As previously discussed, RFI is one of the most common indicator traits of feed efficiency 

in research settings. Genomic selection for RFI has been shown to be feasible, but the accuracies 

are still lower compared to other traits (Table 5; Calus et al., 2013; Gonzalez-Recio et al., 2014). 

Some studies have reported that a training population containing more than 30,000 individuals 

would be required to achieve satisfactory reliabilities for traits with heritability estimates of 0.2 

such as RFI (Calus et al., 2013; Connor, 2015; Gonzalez-Recio et al., 2014). Despite the fact that 

GEBV accuracies for RFI in dairy cows are usually lower than the accuracies obtained for 

production traits, they are expected to increase as the training populations keep growing. For 

instance, Pryce et al. (2012) reported GEBV accuracies for RFI of 0.31 to 0.37, when using a HD 

SNP panel and independent cross-validation datasets from Australia and New Zealand, 

respectively.

Gonzalez-Recio et al. (2014) described the implementation of heifer feed efficiency in the 

Australian selection index, using genomic selection and its impact in the industry. In 2015, the 

same research group (Pryce et al., 2015) defined and described the implementation of genetic 

evaluation for “feed saved” as a new indicator of feed efficiency in dairy cows. Feed saved 
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combines RFI with mature bodyweight estimated using estimated breeding values for predicting 

maintenance costs, so that feed requirements are quantified in a single breeding value. Since April 

2015, feed saved has been included as part of the Australian national selection index. 

Negussie et al. (2019) used simulated data to estimate accuracies of genomic prediction for 

different DMI recording scenarios (once weekly, once monthly, every two, three and four months) 

using different sizes of training populations in dairy cattle in order to develop future innovative 

phenotyping strategies of recording DMI. The authors reported that the accuracy of genomic 

predictions associated with the five recording scenarios indicated that the use of a large training 

population and the adoption of a less-frequent DMI sampling scenario is an advantageous strategy 

when considering accuracy, logistic, and cost implications. GEBV accuracies for DMI and RFI 

that have been reported in the literature are summarized in Table 5. These results indicate that 

there is still room for improving the prediction of GEBVs.

Some alternatives have been investigated to increase the training population for feed 

efficiency, including the use of data from nutrition studies (Tempelman et al., 2015; Veerkamp et 

al., 2014) and combining data from different countries (Banos et al., 2012; Berry et al., 2014; de 

Haas et al., 2012; Pryce et al., 2012; Tempelman et al., 2015) or breeds (Khansefid et al., 2014). It 

is worth noting that in the last few years, a collaboration group named The global Dry Matter 

Initiative (gDMI) has been created to combine feed intake records, which included 10 research 

herds from nine countries (de Haas et al., 2015; Berry et al., 2014). 

Data collection and international collaborations for data sharing

To genetically select animals for improved feed efficiency, at least, pedigree information 

and individual phenotypic records associated with feed intake and production traits are required. 
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The simplest way to record DMI is based on the amount of feed offered and refused by each cow 

per day, with the associated DM percentage (Seymour et al., 2019). Other important variables to 

be recorded for assessment of feed efficiency are milk production and composition, lactation stage, 

water intake, diet composition, bodyweight and BCS over the course of lactation, health/disease 

events, and reproductive performance traits. It is important to notice that even if not all these 

variables are used in the genetic/genomic evaluations, they might be useful in the future for 

research and also selection purposes. Furthermore, the costs to record these additional traits are 

low compared to the cost of individual feed intake recording (Veerkamp et al., 2015).

There are various automated systems available for feed intake recording, including Calan 

Broadbent (American Calan Inc. Northwood, NH), Gallagher Animal Management Systems 

(Hamilton, New Zealand), GrowSafe® Feed Intake System (GrowSafe Systems, Ltd., Airdrie, AB, 

Canada), and the RIC system (i.e. Insentec; Hokofarm Group B.V., Marknesse, the Netherlands). 

These systems are mostly based on radio-frequency identification to track and record individual 

feed intake as well as feeding behavior (e.g. number of visits per day, intake duration, time of 

intake). As discussed by Connor (2015), the use of these systems in dairy cattle has been limited 

to research herds or growing heifers. The use of automated feed monitoring systems in larger 

groups of lactating cows is hindered by the limited feeding capacity of the automated feed bunks, 

meaning that significantly fewer cows can be fed from a single bunk relative to growing cattle to 

accommodate substantially greater intakes of lactating cows (Connor, 2015).

It is well established that the success and long-term sustainability of any livestock breeding 

program is largely dependent on the amount and quality of pedigree, phenotypic and genotypic 

data available for genetic and genomic evaluations. As feed efficiency is difficult and expensive 

to measure, a global effort to enlarge training population for genomic evaluations is crucial and 
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has the potential to greatly benefit all groups involved in the project. In addition to gDMI, the 

Efficient Dairy Genome Project (EDGP, http://genomedairy.ualberta.ca/) is a large international 

research project led by Canadian institutions aiming to develop strategic research, tools, and the 

whole infrastructure to implement genetic and genomic evaluations for improved feed efficiency 

and reduced methane emissions in dairy cattle. In this regard, the EDGP database was developed 

in 2017 to allow data sharing among international collaborators from six countries (Australia, 

Canada, Denmark, Switzerland, United Kingdom and United States) to facilitate development of 

an international genetic evaluation for feed efficiency. This goal is likely possible due to the high 

level of relatedness of the Holstein population, the most common dairy breed with records for feed 

efficiency. Moreover, all collaborators are members of the International Committee for Animal 

Recording (ICAR, www.icar.org) providing standardized information on production records. 

Incorporating feed efficiency into breeding programs

National organizations and private companies began implementing the selection of feed 

efficiency into their breeding programs in 2014 (Pryce et al., 2014). Each organization 

incorporated indirect measures of feed efficiency such as production levels, body weight (or 

predicted body weight), and conformation traits into their selection indexes (VanRaden et al., 

2007; Veerkamp et al., 2013; Pryce et al., 2014, 2015). In Australia, animals that are one standard 

deviation above the mean for the Feed Saved trait, consume 65 kg less feed per year, while 

maintaining the same levels of production (Pryce et al., 2018). The USA developed a composite 

index into their national evaluation, which uses milk, fat, protein, and predicted body weight to 

predict feed efficiency (Holstein Association USA, 2017). New Zealand indirectly selects for feed 

efficiency by selecting on milk production, live weight and BCS simultaneously (Pryce et al., 
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2014; DairyNZ, 2016). In the Netherlands, GEBVs for saved feed costs have been available since 

December 2017 (CRV, 2018). This value is expressed in euros per cow per lactation, where the 

feed for both production and maintenance are considered (de Jong et al., 2019). Furthermore, there 

are many other countries worldwide, including Canada, which are working towards including feed 

efficiency into their national breeding programs.

The inclusion of feed efficiency into breeding objectives is not exclusive to national 

organizations. Private breeding companies (e.g. CRV, Select Sires, GENEX, STGenetics and 

Viking Genetics) are also promoting GEBVs for more efficient cows through their own selection 

strategies. For instance, CRV generates the NVI, which is the total merit index used in the 

Netherlands and Flanders, which includes a saved-feed-cost trait. In other countries, such as the 

USA, CRV offers the Better Life Efficiency program, which identifies bulls that have a high 

lifetime production to lifetime feed intake ratio (CRV, 2019). Recently, Viking Genetics also 

released a saved feed index. They are working towards implementing an index based on two 

indicator traits: maintenance efficiency, which captures the energy requirements for maintenance, 

and metabolic efficiency, which reflects how efficiently the eaten feed is utilized (Viking Genetics, 

2019).  Bulls with a score of 5% for Better Life Efficiency have been reported to have daughters 

that can produce an additional 680 kg of milk with the same amount of feed, which would translate 

into an additional $295 per cow per lifetime. Select Sires also developed a selection index, 

FeedPRO® that focuses on producing moderately sized cows while maintaining production levels 

(Select Sires Inc., 2019). Daughters of FeedPRO® bulls have been reported to produce on average 

13 to 18 cents more per day (Select Sires Inc., 2019). The FeedPRO® index is also correlated at 

0.90 to TPI, a total selection index in the USA. Production Efficiency (PREF$), an index from 

GENEX, has also been reported to result in higher yielding cows with lower feed costs. This sub-
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index makes up 47% of the ICC$TM index, with emphasis on marginal feed costs, fat, protein and 

milk yield (Genex Cooperative, 2018). EcoFeedTM, a feed efficiency index developed by 

STgenetics, is designed to encompass environmental, metabolic and genomic factors affecting 

dairy cattle profitability from birth to culling (STgenetics, 2018). Daughters of bulls that are 5 

points above the average are reported to consume 0.45 kg less feed per day, while maintaining 

similar production levels (STgenetics, 2018). While many companies and national breeding 

organizations are moving towards the inclusion of feed efficiency into their breeding programs, 

there is no consensus on the optimal way to include these traits. It is worth mentioning that the 

descriptions of the selection indexes mentioned above were provided by the companies and some 

details might have been omitted by them. Further research is required to compare different 

approaches and define an optimal strategy.

Conclusions

Feed efficiency, assessed based on different indicators, is a heritable trait and can be 

improved through genetic and genomic selection. The breeding goal needs to be refined and 

indicator traits that can be easily measured at low cost should be identified. Feed efficiency is a 

polygenic trait influenced by many genetic variants, regulator genes and structural variations. With 

the important role of the rumen microbiota on feed efficiency and evidence of host genetic 

influence on the rumen microbiome profile, further evaluation of rumen microbial features may 

lead to its prospective use as an indicator trait, or use in future genomic selection models. The 

accuracy of genomic predictions for feed efficiency are still low, but are expected to increase as 

training populations are enlarged and additional functional information could be included from 

transcriptomics and other –“omics” technologies. In this regard, various groups around the world 
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are collaboratively working to refine the methods used in the evaluations as well as enlarging the 

datasets used for genomic evaluations. 
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1

Tables

Table 1. Heritability estimates for different indicator traits of feed efficiency in dairy cattle.

Trait Reference h2±SEa Breed
Vallimont et al. (2010) 0.18±0.06 Holstein
Williams et al. (2011) 0.17±0.10 Holstein Friesian
Liinamo et al. (2012) 0.23±0.12 Nordic Red dairy cattle
Tetens et al. (2014) 0.37±0.04 Holstein
Shonka et al. (2015) 0.52±0.13 Holstein

Bilal et al. (2016) 0.12±0.01           Canadian Holstein
Byskov et al. (2017) 0.37±0.06 Holstein

Dry matter 
intake

Lu et al. (2018) 0.23±0.02 NAb

Energy intake Köck et al. (2018) 0.07±0.03 to 
0.13±0.02

Fleckvieh, Brown Swiss and 
Holstein

Energy-
corrected milk Köck et al. (2018) 0.08±0.03 to 

0.12±0.02
Fleckvieh, Brown Swiss and 

Holstein

Hurley et al. (2017) 0.04±0.08 to 
0.11±0.08 Holstein Friesian

Van Arendonk et al. (1991) 0.19±0.12 Dutch and Holstein Friesian

Krover et al. (1991) 0.22±0.11 Dairy cattle raised in The 
Netherlands (breed not specified)

Jensen et al. (1995) 0.36±0.17 Red Danish, Danish Friesian, 
Danish Red and White, and Jersey

Svendsen et al. (1993) 0.02±0.08 Dual-purpose Norwegian cattle
Vallimont et al. (2011) 0.01±0.05 Holstein
Williams et al. (2011) 0.27±0.12 Holstein Friesian
Byskov et al. (2017) 0.23±0.05 Holstein

Residual Feed 
Intake

Lu et al. (2018) 0.16±0.02 NA
a h2±SE: heritability ± standard error. 
b NA: Data from international dairy consortium, included several breeds (not specified).
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2

Table 2. Examples of genetic correlations between different indicator traits of feed efficiency and 

production and production-related traits in dairy cattle.

Feed efficiency trait Trait Reference rg±SEa

Gonzalez-Recio et al. (2014) 0.10±0.11Milk yield Vallimont et al. (2010) 0.51±0.32
Fat- and protein-

corrected milk yield Difford et al. (2020) 0.83±0.04

Gonzalez-Recio et al. (2014) -0.03±0.10Fat yield Vallimont et al. (2010) 0.53±0.34
Gonzalez-Recio et al. (2014) -0.11±0.08Protein yield Vallimont et al. (2010) 0.55±0.37

Somatic cell score Vallimont et al. (2010) -0.15±0.28
Liinamo et al. (2012) 0.54 to 1.00Bodyweight Vallimont et al. (2010) 0.52±0.35

Natural logarithm of 
methane Difford et al. (2020) 0.60±0.13

Natural logarithm of 
carbon dioxide Difford et al. (2020) 0.42±0.13

Productive life Vallimont et al. (2013) 0.49±0.18
Meal size Lin et al. (2013) 0.18±0.15
Eating rate Lin et al. (2013) 0.11±0.14

Feeding duration Lin et al. (2013) 0.48±0.12
Number of meals Lin et al. (2013) 0.03±0.16

Days open Vallimont et al. (2013) −0.14 ± 0.29
Gonzalez-Recio et al. (2014) 0.37±0.32

Liinamo et al. (2012) 0.11 to 0.45

Dry matter intake

Body condition score
Vallimont et al. (2010) 0.37±0.46
Veerkamp et al. (1994) -0.11 to 0. 07Milk yield Gonzalez-Recio et al. (2014) 0.07±0.08

Fat yield Gonzalez-Recio et al. (2014) 0.02±0.07
Gonzalez-Recio et al. (2014) 0.03±0.07Protein yield Veerkamp et al. (1994) -0.11 to -0.02

Lactose Veerkamp et al. (1994) -0.19 to -0.05
Korver et al. (1990) 0.03Bodyweight Van Arendonk et al. (1991) 0.01

Natural logarithm of 
methane Difford et al. (2020) 0.42±0.23

Natural logarithm of 
carbon dioxide Difford et al. (2020) 0.48±0.24

Productive life Vallimont et al. (2013) −0.23±0.29
Days open Vallimont et al. (2013) −0.50±0.40
Meal size Lin et al. (2013) −0.06±0.16

Residual Feed Intake

Eating rate Lin et al. (2013) 0.06±0.16
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3

Feeding duration Lin et al. (2013) 0.27±0.15
Number of meals Lin et al. (2013) −0.07±0.17

Gonzalez-Recio et al. (2014) 0.71±0.32Body condition score Veerkamp et al. (1994) 0.33 to 0.36
a rg±SE: additive genetic correlation ± standard error.
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4

1

2 Table 3. Summary of Genome-Wide Association Studies (GWAS) performed in dairy cows to identify genomic regions associated with 

3 feed efficiency traits.

Breed, 
country, 
reference

N Trait N of SNPs Statistical analysis Significance 
threshold

N of significant 
markers

Holstein, USA,
(Li et al. 2019) 5,610 RFI 278,254 (after 

quality control) Single-step GWAS
Top-20 SNPs and 

5-SNP sliding 
windows

20 single-SNPs
20 5-SNPs sliding 

windows

Holstein,
Scotland, 

Netherlands, 
Canada, and 

USA,
(Lu et al. 2018)

4,916

RFI based on classical 
model and multiple-
trait (MT) model (Lu 
et al. 2015) using dry 
matter intake (DMI), 

milk energy 
(MILKE), and 
metabolic body 
weight (MBW)

57,347 (after 
quality control)

Single-SNP marker 
association and 
windows-based 

association (1 Mb 
non-overlapping 

windows)

Multiples, based 
on Bonferroni 
adjustment at 
genome-wide 

type I error rate of 
5%

MBW = 4 SNPs, 3 
windows

RFI = 2 windows
MT = 2 windows
DMI = 2 windows

MILKE = 1 window
MBW = 3 windows

Holstein, USA,
(Zhou et al. 

2018) 473 Residual feed intake 
and Dry matter intake

454 Copy 
Number Variants 

(CNVs)

Multiple linear 
regression

p-value<0.05 after 
FDR correction RFI = 10 CNVs

DMI = 1 CNV

Holstein,
USA, Canada, 
Netherlands 
and United 
Kingdom,

(Hardie et al. 
2017)

4,916

RFI was calculated as 
the residual of the 
regression of dry 

matter intake (DMI) 
on milk energy 

(MILE), metabolic 
body weight (MBW), 

change in body 

60,671 markers BayesB and 
BayesC 

Top-10 genomic 
windows

RFI = 5.38% (PM) and 
4.80% (MP) of total 

genetic variance 
explained by the top 10 

windows

DMI = 9.18% (PM) 
and 5.54% (MP)
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5

weight, and 
systematic effects. 

RFI, DMI, MILKE, 
and MBW, bivariate 

analyses were 
performed for each 

trait as a separate trait 
within parity group.

MILKE = 7.12% (PM) 
and 5.08% (MP)

MBW = 9.31% (PM) 
and 9.8% (MP)

Holstein,
Germany,

(Tetens et al. 
2014)

681 DIM 11, 30, 80, 130, 
and 180

40,407 (after 
pruning for loci 

>10% of missing 
genotypes, 

MAF<0.05 and 
markers without 

position)

Linear mixed 
model approach 

implemented in the 
package GEMMA

p-value<0.05 after 
Bonferroni 
correction.

DMI11= 4 markers
DMI30= 8 markers
DMI80= 3 markers
DMI130= 5 markers
DMI180= 7 markers

Holstein,
USA,

(Yao et al. 
2013)

395 Daily RFI from 50 to 
150 d postpartum 42,275 Random Forest 

algorithm
Importance score 

(ΔMSE%) 188 markers

Holstein,
Australia and 
New Zealand,
(Pryce et al. 

2012)

1,782 RFI 624,930 Bayes A and Bayes

The 1,000 largest 
SNP effects 
ranked on 

absolute value 
were selected.

1,000 markers

4

5

6

7
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6

8 Table 4. Summary of RNA sequencing studies comparing divergent feed efficient groups (based on Residual feed intake, RFI) in dairy 

9 cattle.

Breed, 
country Sample size Tissue Significance 

threshold N of differentially expressed genes Reference

Holstein (H) 
and Jersey (J),

Denmark

High-RFIa= 5 (H) 
and 5 (J)

Low-RFIa= 4 (H) 
and 5 (J)

Liver p-value < 0.05 Holstein: 11 modules of co-expressed genes
Jersey: 4 modules of co-expressed genes (Salleh et al., 2018)

Holstein (H) 
and Jersey (J),

Denmark

High-RFIa= 5 (H) 
and 5 (Jersey)

Low-RFIa= 4 (H) 
and 5 (J)

Liver FDR < 5% 70 (H for model 1)
19 (J for model 1)
2 (J for model 2)

(Salleh et al., 2017)

Holstein,
Australia

High-RFIb= 9 
animals

Low-RFIb= 10 
animals

Liver and 
white blood 

cells

FDR < 5%
Liver RFI = 473

Liver GEBV = 526
WBC RFI = 4,817
WBC GEBV = 137

(Khansefid et al., 
2017)

10  a RFI groups were defined based on the ranking of random effects solutions (from a fixed linear regression on metabolic body weight, 
11 daily live weight change, daily body condition score change (fitted with a Legendre polynomial), and energy corrected milk yield.) for 
12 200 animals, where the top and bottom animals were selected. 
13 b RFI groups were defined using the top and bottom 10% animals from the RFI distribution in a population composed by 843 animals 
14 (average RFI = 0, and SD = 0.19; Williams et al., 2011).
15
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7

16

17 Table 5. Accuracies of genomic predictions for indicator traits of feed efficiency. 

Trait Reference Average accuracy
de Haas et al. (2012) 0.35
de Haas et al. (2015) 0.37
Mujibi et al. (2011) 0.20

Boloorma et al. (2013) 0.32
Dry matter intake

Negussie et al. (2019) 0.42 – 0.57 (simulation-based)
Pryce et al. (2012) 0.40

Mujibi et al. (2011) 0.43
Boloorma et al. (2013) 0.43

VanRaden et al. (2017b) 0.44
Residual feed intake

Negussie et al. (2019) 0.22 – 0.50 (simulation-based)
18
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