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Abstract: Current oxygen delivery modes lack monitoring and can be cumbersome for patients
with chronic respiratory diseases. Integrating a pulse oximeter and nasal oxygen cannulas into
eyeglasses would reduce the burden of current solutions. An ear pulse oximeter (OxyFrame) was
evaluated on 16 healthy volunteers and 20 hypoxemic patients with chronic respiratory diseases
undergoing a prespecified protocol simulating daily activities. Correlation, error, and accuracy root
mean square error (ARMS) were calculated to compare SpO2 measured by OxyFrame, a standard
pulse oximeter (MASIMO), and arterial blood gas analysis (aBGA). SpO2 measured by OxyFrame
and MASIMO correlated strongly in volunteers, with low error and high accuracy (r = 0.85, error
= 0.2 ± 2.9%, ARMS = 2.88%). Performances were similar in patients (r = 0.87, error 0 ± 2.5%, ARMS

= 2.49% compared with MASIMO; and r = 0.93, error = 0.4 ± 1.9%, ARMS = 1.94% compared with
aBGA). However, the percentage of rejected measurements was high (volunteers 77.2%, patients
46.9%). The OxyFrame cavum conchae pulse oximeter was successfully evaluated, and demonstrated
accurate SpO2 measurements, compliant with ISO 80601-2-61:2017. Several reasons for the high
rejection rate were identified, and potential solutions were proposed, which might be valuable for
optimization of the sensor hardware.

Keywords: pulse oximetry; cavum conchae; long-term oxygen therapy; hypoxemia; interstitial lung
disease; chronic obstructive pulmonary disease; quality of life

1. Introduction

Long-term oxygen therapy (LTOT) is commonly used for patients with chronic obstructive
pulmonary disease (COPD) and interstitial lung disease (ILD), who suffer from the consequences of
chronic hypoxemia. LTOT improves quality of life, physical performance, dyspnea, and survival, and
is recommended for the treatment of severe resting hypoxemia in patients with COPD [1,2]. The role
of LTOT during physical activity in patients with ILD is an active field of research [3–5].

The accurate measurement of blood oxygenation is needed to monitor hypoxemia in patients who
are candidates for LTOT, or who are already being treated with LTOT. Pulse oximetry is widely used for
non-invasive assessment of blood oxygenation in-hospital, for outpatient assessment, for the diagnosis
of sleep related breathing disorders, and recently for wearable health monitoring technology [6]. Pulse
oximeters are most frequently applied on fingers or earlobes, where a light source (LED) is placed
on one, and a light detector on the other side of the probed tissue [7]. Other potential application
sites include the forehead, pharynx, esophagus, trachea, the nasal cavity, and the ear canal [8–16].
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Electronic amplification and recent progress in digital processing and management of bigger data
volumes allow the acquisition of cleaner, more reliable signals, at higher sampling rates. However,
most pulse oximeters are not validated to measure severe hypoxemia, and frequent motion artefacts
make the estimation of blood oxygenation at ambulation challenging. Furthermore, ambient light can
interfere with the measurements, and pathophysiological variabilities, such as fluctuating perfusion,
body temperature, and cardiac output, demand the validation of pulse oximeters outside laboratory
conditions [17].

We aimed to develop a pulse oximeter for future integration into the frames of daily use eyeglasses,
which also contain nasal cannulas for oxygen delivery (Figure 1c). Such a new pulse oximeter needs to
reliably measure the fluctuating blood oxygenation during common activities of daily living in LTOT
dependent patients.

Figure 1. The sensor earpiece of the OxyFrame device in: (a) detached state showing the photodetector
and the LEDs, and (b) attached at the cavum conchae of a volunteer’s ear holding together with statics
magnets embedded in the sensor. (c) Prototype oxygen titration eyeglasses with integrated nasal
oxygen cannulas (only for illustration of the future application).

Herein we report on the design, evaluation, and future applications of the OxyFrame cavum
conchae pulse oximeter.

2. Materials and Methods

2.1. Study Participants and Protocol

The study protocol (ClinicalTrials.gov NCT02723032) has been approved by Swissmedic
(no. 2015-MD-0028, CIV-15-10-013926) and by the local ethical committee (Swiss Ethics Committee,
Bern, Switzerland, no. 312/15).

2.1.1. Healthy Volunteers

For the first phase of the study, healthy volunteers were invited to participate. Non-smokers of
good general health and physical fitness were chosen as volunteers; subjects with significant heart,
lung, neurological, or metabolic diseases and anemia were excluded from participation.

The study protocol included a normobaric hypoxemic challenge test (AltiTrainer®, SMTEC, Nyon,
Switzerland) with participants wearing a facemask and breathing a gas mixture containing a fraction of
inspired oxygen (FiO2), which was reduced in a stepwise manner. The initial FiO2 of 21% was reduced
to a minimum of 10.5%. Participants simulated usual daily activity by walking on place, sitting,
standing, and lying for 3 subsequent minutes at each level of oxygenation, including normoxemia, mild
hypoxemia (peripheral capillary hemoglobin oxygen saturation [SpO2] 85–92%) and severe hypoxemia
(SpO2 80–85%). Oxygen saturation was measured constantly by a standard pulse oximeter (MightySat
Rx®, Masimo, Irvine, CA, USA) and by the OxyFrame device.
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2.1.2. Patients

Included subjects with COPD and ILD are diagnosed and treated according to current
guidelines [18–20]. Patients qualifying for LTOT at rest (paO2 ≤ 55 mmHg or <60 mmHg with
pulmonary hypertension, congestive cardiac failure, or polycythemia) and/or on physical activity
(exercise SpO2 < 90%) were recruited from our in- and outpatient clinic for pulmonary medicine. Main
exclusion criteria were severe hypoxemia or hypercapnia (paO2 < 40 mmHg and/or paCO2 > 55 mmHg),
severe neurologic, metabolic or heart disease, anemia (hemoglobin < 120 g/L), and current smoking.

A sample size of 14 subjects was calculated to achieve a statistical power of 90% and α of 0.05
(confidence interval of 95%), considering a 2% difference of SpO2 being clinically significant, and a
standard deviation of maximal 1.8 to be expected [13]. Accounting for possible dropout, the inclusion
of 20 patients in the study was intended.

Patients performed a uniform, pre-specified protocol breathing room air or additional nasal oxygen
(0–6 L/min), depending on their actual needs and individual symptoms. Patients were instructed to
perform a sequence of specific positions reflecting their daily activities: lying, sitting, standing, walking
(6-min walking test, 6MWT), and cycling. Arterial blood gas analysis (aBGA) was performed at rest
and during cycling (ergometer at constant workload of 15 watt). The patients’ SpO2 and heart rate were
registered constantly and simultaneously by OxyFrame and a standard pulse oximeter (MightySat
Rx®, Masimo, Irvine, CA, USA).

2.2. Sensor Electronics and Data Processing

The OxyFrame device shown in Figure 1a,b was designed and manufactured to record physiological
signals at the cavum conchae in transmission mode. The cavum conchae is an optimal pulse oximetry
body site for several reasons: The proximity of the ear to the trunk makes it less susceptible to
centralization and poor peripheral perfusion artifacts, detection of desaturations might be faster,
and its location being closer to the brain probably enables a more accurate reflection of cerebral
oxygenation [15]. Further, at ambulation, movement of the head is less pronounced than movement of
the arms so that motion artefacts can be reduced.

The device was placed at the left ear where two photoplethysmographic (PPG) signals were
recorded at the infrared (PPG-IR at 940 nm) and at the red wavelength (PPG-R at 660 nm). An example
of these signals is shown in Figure 2. Ambient light signals were recorded to correct PPG-R and PPG-IR
signals by suppressing perturbations, due to ambient light fluctuations. The entire set of signals was
further analyzed offline using MATLAB (Mathworks, Natick, MA, USA), in order to derive SpO2

estimates, according to the algorithm reported by Proença et al. [21], and briefly described in the
following paragraph.

Figure 2. Examples of photoplethysmographic (PPG) signals at (a) the red (PPG-R) and (b) the infrared
wavelength (PPG-IR). Note that the amplitude of these signals is in arbitrary units.

First, the alternating (AC) signal component was estimated by filtering the PPG signals with a
fourth-order bandpass filter. Then, both AC and average (DC) signal components were averaged over
time windows of 40 s, using cardiac-gated averaging. The ratio of signals (ROS) was estimated as ROS =
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(ACPPG-R/DCPPG-R)/(ACPPG-IR/DCPPG-IR), and was further transformed into SpO2 values, as described
later. In addition, this algorithm provides a signal quality index (SQI), which is useful to reject
unreliable measurements. An SQI lower than 70% was considered unreliable, and the corresponding
measurements were excluded from analysis.

2.3. OxyFrame SpO2 Performance Evaluation

The performance of OxyFrame-derived SpO2 values was evaluated as recommended by the ISO
80601-2-61:2017 standard for pulse oximeters and sensors [22], time windows without stable standard
SpO2 measurements were discarded prior to analysis. For the remaining measurement points the
ROS of each subject were transformed into SpO2 values (expressed in %) via a linear calibration
function: SpO2 = a ROS + b. The two calibration coefficients (a and b) were determined for each
subject individually, by using a leave one out calibration, i.e., by using the measurements of all other
subjects for calibration, while excluding the ones of the current subject. This procedure was performed
independently for the two populations (volunteers and patients). This led to the following distribution
of correlation coefficients: a = −29.6 ± 0.8 and b = 119.9 ± 0.8 and a = −26.8 ± 0.3 and b = 116.9 ± 0.3,
in volunteers and patients, respectively.

Mean, standard deviation, Pearson’s correlation coefficient (r), error, precision, and accuracy root
mean square error (ARMS) were calculated, and the Bland-Altman analysis was used to compare SpO2

measured by the novel sensor with the standard sensor and arterial blood samples.

3. Results

3.1. Healthy Volunteers

Eight men and eight women volunteered to participate in phase I of the study. The median
age of the volunteers was 34.2 (range 21–57 years). The mean (SD) SpO2 and heart rate at rest were
97.4 % (1.1) and 69.8 (6.9) bpm, the mean (SD) systolic and diastolic blood pressure were 130 (16.9)
mmHg and 76 (12.6) mmHg, respectively. After completing the study procedure, nine volunteers were
excluded from the final analysis. For one volunteer, the optical signal was missing, due to a technical
problem with the sensor data acquisition. The other eight volunteers provided a large proportion of
measurements that were rejected, due to a low SQI. The major reason for this high rejection rate was a
technical defect of the optical sensor earpiece, which was detected at the interim analysis of phase I
and resolved before phase II of the study (evaluation in patients). Finally, 90 data points from seven
volunteers were retained and analysed (Figure 3). This results in an overall rejection rate of 77.2%.
Figure 4 compares SpO2 measurements obtained by OxyFrame with SpO2 measurements from the
reference device (MASIMO). Data points from both devices correlated strongly (r = 0.85, SpO2 error
0.2% (standard deviation [SD] 2.9%), with an accuracy of ARMS = 2.88%. When performing a separate
analysis for walking and stationary sequences accuracies of ARMS = 2.99% and ARMS = 2.87% were
obtained (Table 1). All ARMS were below 4% as required by the ISO standard 80601-2-61:2017.

Table 1. Performance of OxyFrame compared to a standard pulse oximeter (MASIMO) for walking
and stationary activities. The error values are shown as mean (standard deviation).

Volunteers Patients

Overall Walking Stationary Overall Walking Stationary

Error (%) 0.2 (2.9) 1.5 (2.8) 0.1 (2.9) 0.0 (2.5) 1.6 (3.4) 0.3 (2.2)
r 0.849 * 0.901 † 0.845 * 0.866 * 0.829 * 0.804 *

ARMS (%) 2.88 2.99 2.87 2.49 3.65 2.17
Rejection Rate (%) 77.2 92.4 72.6 46.9 71.3 35.9

* p < 0.001, † p < 0.01; r: correlation coefficient; ARMS: accuracy root mean square error.
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Figure 3. Flow chart of the two-phased study showing the number of measurements remaining for
analysis, after applying specific exclusion criteria for both healthy volunteers (in phase I) and patients
(in phase II).

Figure 4. Performance of the OxyFrame device compared to a standard sensor (MASIMO) in healthy
volunteers. (a) Correlation plot SpO2 measurement by OxyFrame versus MASIMO. (b) Bland-Altman
plot SpO2 measurement by OxyFrame versus MASIMO. Measurements of the same volunteer have the
same color and shape.

3.2. Patients

Nine patients with COPD and eleven patients with ILD consented to participate in the study.
Patients’ baseline characteristics including disease severity and LTOT requirements are summarized
in Table 2.

One patient was excluded from analysis due to corrupted data of the OxyFrame device, which
led to the loss of data from the entire recording. Another four patients were excluded, because too
few measurements of sufficient signal quality were recorded (Figure 3). Of the remaining 15 patients,
172 measurements were available for final analysis. This results in an overall rejection rate of 46.9%.

Correlation of OxyFrame SpO2 measurement with corresponding reference measurements
(MASIMO) was strong (r = 0.87, Figure 5), with low SpO2 error (0% [SD 2.5%]) and high accuracy (ARMS

2.49%). When performing a separate analysis for walking and non-walking sequences accuracies were
ARMS 3.65% and 2.17%, respectively (Table 1).
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Table 2. Baseline characteristics of participating subjects in the patient group (phase II of study). Values
shown represent mean (standard deviation) or median (range).

All (n = 20) COPD (n = 9) ILD (n = 11)

Demographics

Age, years 65.9 (55–72) 66.6 (59–72) 65.4 (55–72)
Male/female 15/5 7/2 8/3
BMI, kg/m2 26.1 (5.9) 23.8 (7.0) 28.1 (3.8)

Smoked pack-years 46 (36) 75 (31.6) 20 (11.9)

Pulmonary Function Test

TLC, % predicted 85.5 (31.6) 123.3 (15.4) 64.8 (14.2)
FEV1/FVC, % 62.2 (21.4) 40.9 (10.9) 79.6 (7.7)

FVC, % predicted 64.1 (17.6) 66.1 (17.6) 62.5 (17.4)
FEV1, % predicted 51.5 (24.3) 34.9 (15.3) 65.0 (21.8)
DLCO, % predicted 41.0 (14.7) 37.6 (9.4) 43.8 (17.3)

6-min Walking Test

6MWD, meters 366 (119) 327 (126) 387 (108)
6MWD, % predicted 69 (20.7) 65.2 (23.6) 73.9 (16.6)

SpO2 at rest 91.8 (3.7) 92.8 (3.7) 90.9 (3.5)
SpO2 nadir 84 (5.6) 87.1 (3.5) 82 (6.1)

O2 for 6MWT, yes/no 12/8 6/3 6/5
O2, l/min 3.7 (1.5–6) 3.6 (1.5–6) 3.8 (2–6)

BMI: body mass index; DLCO: diffusing capacity of the lung for carbon monoxide; FEV1: forced expiratory volume
in 1 s; FVC: forced vital capacity; LTOT: long term oxygen therapy; TLC: total lung capacity; 6MWD: 6-min
walk distance.

Figure 5. Performance of the OxyFrame device compared to a standard sensor (MASIMO) in patients.
(a) Correlation plot SpO2 measurement by OxyFrame versus MASIMO. (b) Bland-Altman plot SpO2

measurement by OxyFrame versus MASIMO. Measurements of the same patient have the same color
and shape.

SaO2 measurements from aBGA were compared to OxyFrame- and MASIMO-derived SpO2.
Among the 36 initially available aBGA measurements, only 24 could be used for comparison, since
12 of the corresponding OxyFrame measurements showed insufficient signal quality. Comparing
these remaining OxyFrame SpO2 measurements to the corresponding SaO2 from aBGA, the following
performance characteristics were be obtained (Figure 6): r = 0.93, SpO2 error 0.4% (SD 1.9%) and ARMS

1.94%. In contrast, comparing MASIMO derived SpO2 to arterial SaO2 measurements resulted in a
weaker correlation, higher error, and lower accuracy (r = 0.83, SpO2 error 0.7% [SD 2.9%], ARMS 2.95%).
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Figure 6. Performance of the OxyFrame device compared to arterial blood gas analysis in patients.
(a) Correlation plot SpO2 measurement by OxyFrame versus arterial blood gas analysis (aBGA);
(b) Bland-Altman plot SpO2 measurement by OxyFrame versus aBGA. Measurements of the same
patient have the same color and shape.

All analyses showed an overall accuracy of ARMS < 4%, as required by the ISO standard 80601-2-61.

4. Discussion

We demonstrate high accuracy of an ear pulse oximeter (OxyFrame) in healthy volunteers, and
in patients with severe chronic respiratory diseases. This novel sensor was evaluated in a two-phase
approach, according to the most recent ISO standard: after evaluation in healthy subjects undergoing a
normobaric hypoxemic challenge test, we evaluated OxyFrame in LTOT dependent patients, simulating
common activities of daily living. Comparison of OxyFrame with the reference pulse oximeter, and
with arterial oxygen saturation, resulted in a strong correlation between corresponding measurements,
with low error and high accuracy. With ARMS < 4% for all analyses OxyFrame qualifies as an accurate
pulse oximeter for use in healthy individuals, as well as in severely impaired patients.

4.1. Low Signal Quality and High Rejection Rates

A high number of measurements were automatically rejected due to insufficient signal quality
(low SQI), leading to a rejection rate of 77.2% in healthy volunteers and 46.9% in patients (Figure 3).
This high rejection rate successfully validates the sensitivity of our SQI algorithm, which automatically
detects signals with low quality, due to the absence of physiological pulsations in the PPG signals.

There are several potential issues likely responsible for the signal quality of the OxyFrame sensor.
In the interim analysis of phase I of the study, we identified a technical defect of the optical sensor
earpiece, which led to the exclusion of measurements from eight volunteers before the sensor was
optimized for evaluation on patients in phase II of the study. In patients, the rejection rate is lower but
still significant (Table 1). This rejection is hypothesized to be mainly due to motion artefacts, which
potentially deteriorate the signal quality. To explore this issue, sensitivity analyses for walking and
non-walking sequences were performed, which confirmed a more challenging SpO2 measurement
when subjects were walking, as indicated by a lower ARMS and a higher rejection rate (Table 1). The low
signal quality and the resulting high rejection rate is a problem that needs to be addressed further.
However, according to ISO 80601-2-61:2017 OxyFrame measurements were still sufficiently accurate
when patients were walking (ARMS < 4%).

4.2. Issues and Potential Solutions Related to the OxyFrame Sensor

The following limitations need to be improved in a future version of the OxyFrame sensor.
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First, the signal quality varies depending on the placement of the sensor earpiece. Moving the
sensor to a slightly different location has shown to sometimes improve the signal quality. Thus,
we suggest probing a larger area of tissue by using a photodetector with a larger surface and/or multiple
LEDs for each wavelength (red and infrared). Second, the cables of the sensor earpiece can pull the
sensor leading to motion artefacts during movement. We attached these cables behind the neck of
the subjects, which might not have been sufficient to prevent disruption of the PPG signal. Potential
solutions include the direct attachment of the sensor to eyeglass frames via a short cable, or the use of
wireless data and power transmission, via a second system attached to the eyeglass frames. Third,
the PPG acquisition hardware used in the OxyFrame earpiece sensor is built using discrete components.
In contrast, the use of a more recent acquisition hardware with an integrated analogue front-end has
shown promise to measure SpO2 [23]—even in more challenging reflection mode, PPG—and should
therefore be tested in a future design.

These suggestions should be considered for a future version of the OxyFrame sensor hardware to
increase its reliability in terms of signal quality when used in the daily life of LTOT dependent patients.
Future validation should include a large group of patients with different respiratory diseases and
oxygen requirements in diverse ambulatory settings, with testing for longer periods. This would allow
confirming usability and acceptability of OxyFrame in real-life settings.

4.3. Clinical Perspectives

Considering its frequent use, there is surprisingly little evidence supporting the benefit of LTOT
in patients with COPD and ILD [24–28]. Specifically, the uncertain effectiveness of LTOT in exercise
induced hypoxemia, might partly be due to an insufficiently controlled and individualized mode of
oxygen delivery. Despite LTOT, some patients show transient oxygen desaturation while walking [29],
which likely reflects inaccurate oxygen titration in some cases. In addition to preventing hypoxemia at
physical activity, it is also important not to overdose oxygen, which can cause hypercapnia, typically in
COPD patients with hypoxic regulation of ventilation [30,31]. Other potentially detrimental effects of
hyperoxia, such as increased oxidative stress, are not yet fully understood [32].

The OxyFrame pulse oximeter was designed for oxygen titration in patients with chronic
respiratory diseases, and specifically for the future integration into eyeglass frames, including an
oxygen delivery system. Automated oxygen titration systems aim to provide patients with the oxygen
flow that matches their instantaneous demand [33–36]. These systems might prevent hyper- and
hypoxemia and, at the same time, save oxygen resources. Lower oxygen consumption results in
a larger range of motion for the patient, and lower LTOT related healthcare costs. However, safe
automated oxygen titration requires pulse oximeters with high performance and accuracy, with most
currently available pulse oximeters likely not meeting these criteria [37,38]. In the current study, we
demonstrate the accuracy of our device. However, the reliability in terms of signal quality is not yet
fully satisfactory, and a redesign of the sensor hardware is required to improve the signal quality,
particularly during movement.

Besides the technical issues, patients experience a variety of practical and psychosocial challenges
when using LTOT, and frequently the overall benefit from the treatment does not meet their
expectations [39]. Some patients decline to use their oxygen in public, because they feel stigmatized
by the cumbersome nasal cannulas, which can burden their social life, interaction, and mobility [39].
The OxyFrame pulse oximeter was designed for the future integration into eyeglass frames that
dissimulate the nasal oxygen cannula, which markedly improves the wearability of the small device
and the entire oxygen delivery system.

5. Conclusions

The OxyFrame ear pulse oximeter placed on the cavum conchae was evaluated successfully
according to the stringent ISO guidelines. We demonstrated a high accuracy in healthy volunteers, and a
population of patients with advanced chronic respiratory diseases simulating daily activities. However,
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the large number of automatically rejected measurements highlights the potential of optimization of
the OxyFrame sensor hardware to increase its reliability in terms of signal quality. We strive towards
an integration of the sensor into an automated closed-loop oxygen delivery system for a safer, more
cost-effective, and socially acceptable mode of oxygen delivery for LTOT dependent patients.
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