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Abstract

Let b(z) be the probability that a sum of independent Bernoulli random variables with
parameters pi,p2,ps,... € [0,1) equals x, where X\ := p; + pa + ps + - is finite. We
prove two inequalities for the maximum of the density ratio b(x)/my(x), where 7y is the
probability mass function of the Poisson distribution with parameter .
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1 Introduction and main results

We consider independent Bernoulli random variables Z1, Zo, Z3, ... € {0,1} with parame-
ters IP(Z; = 1) = [E(Z;) = p; € [0,1) and their sum X =}, Z;. By the first and second
Borel-Cantelli lemmas, X is almost surely finite if and only if the sequence p = (p;)i>1

satisfies

downl oaded: 27.12.2020

=S g < o (1)
k=1

and we exclude the trivial case A = 0. Under this assumption, the distribution @) = @ of

X is given by

b(a) =bp(z) =P(X=2) = >  [[wm ] —ps) (2)
JeJ(z) ieJ  keJe

for integers x > 0, where J(x) :={J C N: #J =z} and J*:= N\ J.

It is well-known that the distribution ) may be approximated by the Poisson distri-
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bution Poissy with probability mass function 7 = 7 given by m(z) = e *A?/z!, provided
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that the quantity

A=Ay

i>1
is small. Indeed, Barbour and Hall (1984) obtained the remarkable bound

drv(Q,Poissy) < (1—e M)A

via a suitable version of Stein’s method developed by Chen (1975). Here dry(:,-) stands
for total variation distance. Note also that Var(X) =35, pi(1 —p;) = A(1 — A), and
< = ;e
A S peo= mn
Main results. Motivated by Diimbgen et al. (2020), we are aiming at upper bounds for

the maximal density ratio

p(Q,Poissy) := sup r(z)
x>0

with r(x) = rp(z) := b(x)/m(x). Note that the probability mass functions b and 7 are
densities (in the sense of the Radon-Nikodym theorem) of @) and Poissy with respect to
counting measure on the set Ny of nonnegative integers. Thus r = b/7) is the “density
ratio” in the title. For arbitrary sets A C Ny, the probability Q(A) = IP(X € A) is never
larger than the corresponding Poisson probability times ,o(Q, Poiss A), no matter how small
the Poisson probability is. Hence, p(Q, Poissy) is a strong measure of error when @ is
approximated by Poissy, see also Remark 3 below. While Diimbgen et al. (2020) obtained
explicit and essentially sharp bounds for p(Q, P) for various pairs of distributions P and
Q, the present setting with the particular Poisson binomial distribution () and P = Poiss)

seems to be substantially more difficult. In this note we prove the following result:
Theorem 1. For any sequence p of probabilities p; € [0,1) with A = Zizlpi < 00,
p(Q,Poissy) < (1—p.)~ "
We conjecture that Theorem 1 is true with A in place of p,. In the case of A < 1 we

can prove the following result:

Theorem 2. For any sequence p of probabilities p; € [0,1) with A =3, p; <1,

A A
S — < i < .
A(l 5 2(1—p*)> < log p(Q,Poissy) < A

In particular, A < 1 implies that p(Q, Poissy) < e® < 1/(1—A). And since A < p, < ),
Theorem 2 implies that

log p(Q, Poiss))
A

— 1 as A —0.



Remark 3 (Total variation distance). Proposition 1 (a) of Diimbgen et al. (2020) implies

that drv(Q, Poissy) < Q({b > 7})(1— p(Q, Poissy) ™). Since b(0) = [[i>1(1 —pi) satisfies
the two inequalities 1 — A < b(0) < e=* = 7(0), we obtain the inequality Q({b > 7}) <
1 —b(0) < min(1, A) and the bounds

drv(Q,Poissy) < min(1,\)(1 — p(Q, Poissy) ™)

min(1, \)ps«
AMl—e?) < M= Z‘>1pg if A <1.

The remainder of this note is structured as follows: In Section 2 we provide some basic
formulae for the probability masses b(x) and the ratios (). Then we present the proofs
of Theorems 1 and 2 in Section 3.

2 Auxiliary results

2.1 The probability mass function of @)

Since b(0) < 1 (see Remark 3), we know that p(Q, Poissy) = sup,~; r(x). Writing

[T [Ta-p = T2 TTa =m0 = 00 [T

1—p;
ieJ keJe ieJ b E>1 ieJ pi

equation (2) may be reformulated as

with
Dpi
1—pi

W(J) = HQi and ¢; =
ieJ

€ [0,00),

ie. p = qi/(1 4+ ¢;). Note also that the support of @ is equal to an integer interval

containing 0. Precisely,
b(z) > 0 ifandonlyif = < #{i>1:p; >0} € NU{oo}.
2.2 Discrete scores

For any x > 0,
m(x+1) A

m(r)  x+1’

so the “scores” r(z + 1)/r(x) are given by

r(z+1) (x+1)b(z+1)
r(z) Ab(x)




for x > 0 with b(z) > 0. If x, is a maximizer of r(-), then

(o +1)b(zo + 1) Zob(xo)
ZE I ) “

with b(—1) := 0.
There are various ways to represent the ratios b(x + 1)/b(z). The following notation

will be useful for that task: For any set J C N, we define

= Zpi and S(J) = ZQi’
icJ icJ
In case of ¢ := #J < oo we set
5(J) = s(J)/z., S(J) == S(J)/z and W(J) :== W(J) / S WL

LeJ(x)

with the convention 0/0 := 0. The numbers W (J) are probability weights in the sense
that >~ e 7z W(J) = 1 whenever b(z) > 0. In that case,

b%)l): Yowm = Y s W (R

LeJ (z+1) Lej(xﬂ) keL
= Z W)Y a
JEJ(I keJe
1 C
= > W(I)S(T).
JeJ(x)
Consequently,
w(J (4)
b( ) JeJ(x)

Alternatively, if b(x + 1) > 0, then

b(x) _ W _ qk
= (J) = W(J) .
_ W(JU{k})
B Jezj% ),;C a + S((JU{k})°)

1
- 2 VL iy

LeTJ (z+1) kel

Consequently,

b(x) B - 1 1
e~ 2 TP s ®)

LeJ (z+1



One can repeat the previous arguments with the sums ), ;. p;j/s(J¢) = 1 in place of

ZkeJc Qk/S(JC) — 1. This leads to

J)pi _ 1 —pg
RO Ve iy 1 R VI CD Ve i}

JeJ(z) keJe LeJ(z+1) kel

because W (J)pr = W(J U {k})(1 — pg) for k € J¢. Consequently,

b(x) B = 1 L —p
(x+1)bx+1) Le‘%ﬂ) W(L)x +1 ]% pr + s(Le)’ (6)

Analyzing equation (6) leads to a first result about the location of maximizers of r(-):

Proposition 1. Any maximizer x, € Ny of r(-) satisfies the inequalities 1 < z, < [\].

Proof of Proposition 1. The inequality z, > 1 follows from r(0) < 1, see Remark 3.

To verify the inequality z, < [A], it suffices to show that r(z+1)/r(x) < 1 for any integer
x > A\ with b(z) > 0. This is equivalent to
b(x)

(x+1)b(z+1)

> AL (7)

If b(z + 1) = 0, this inequality is trivial. Otherwise, the left hand side of (7) is given by
(6). Since (1 —y)/(y + s(L°)) is a strictly convex function of y > 0, Jensen’s inequality
implies that

1 Z 1—pg 1-35(L) 1-3(L) ~1-5(L)

v+l p+s(L) ~ (L) +s(L)  SL)+A—s(L)  A—as(L)

But in case of z > A,
1-35(L) < 1-3(L)

A—x5(L) — A—As(L)
whence (7) holds true. O

Finally, let us mention that the probability mass function b is ultra-log-concave in
the sense that logr = log(b/7) is concave, i.e. r(z + 1)/r(z) is monotone decreasing in
x € {y >0:b(y) > 0}, see Section 4 of Saumard and Wellner (2014) and the references
therein. Equivalently, (z+1)b(z+1)/b(x) is monotone decreasing in 2z € {y > 0 : b(y) > 0}.

With a direct argument one can even show a stronger result.

Proposition 2. The ratio (z 4+ 1)b(x + 1)/b(x) is strictly decreasing in xz € {y > 0 :
b(y) > 0}.

Proof of Proposition 2. We have to show that for any integer z > 0 with b(xz +1) > 0,

(x +2)b(xz +2) (x+1)b(z+1)
b(z+1) b(x) '




It follows from (4) that the left hand side equals S(N) — 3"/ ¢ 7(,41) W (L)S(L) while the
right hand side equals S(N) —3_ ;¢ 7, W (J)S(J). Thus the assertion is equivalent to

Y. WIW(L)(SL) - 5()) > 0. (8)
JeJ(z),LeT (z+1)

But each pair (J, L) € J(x)x J(x+1) is uniquely determined by the three sets M := JNL,
K:=(J\M)U(L\M) and L' :== L\ M, and

W(I)W(L) = W(M)*W(K) and S(L)—-S(J) = 2S(L) — S(K).

Moreover, #K = 2z + 1 —2#M and #L' = x4+ 1 — #M. Hence, the left hand side of (8)

equals
> > Y. Lnk=gW (M)W (K)H(K) (9)
s=0 MeJ(s) KeJ (2x+1—2s)
with
H(K) := > (28(L') — S(K))
L'CK :#L'=x+1—s
Y Y @G-
€K L'CK:#L'=x+1-s
— S(K) 2x — 2s /( 1 )
= s x s).
Hence, all summands in (9) are non-negative, and W (M)?W (K)S(K) > 0 for suitable
sets M € J(z) and K € J(1) with M N K = (. O

2.3 Log-density ratios along a ray

In what follows we consider the sequence ¢p for arbitrary ¢ € (0, 1], leading to the distri-
butions Q;p with probability mass functions by,, weights Wy, (J) and sums S;p(J). The
corresponding Poisson probability mass functions are 7y, and this leads to the ratios ryp.

According to Proposition 1,

f(t) = log p(Qep, Poissyy) = lgrilgaﬁﬂ log rip(z) = 13122}[()\1 log r¢p(z).

Now we analyze the functions L, : (0,1] — R,

L,(t) = logrip(x)

=t \+ log((t)\)*xa:! Z 1 ip; : H(l - tm))
Jegwies - Pigsy
=t\+ log(1 — tpg) + log( A" x! Pi ,
;21 ) ( Jezj%a:) Py tpi)



for integers x > 0 with b(z) > 0. Note first that L,(¢) can be extended to a real-analytic
function of ¢ € (—o0,1/ps) D [0,1], and

L,(0) = log()\ Tx! Z le)

JeJ (z)ied

log<)\ v Z le(5> log(A™*A\*) = 0

i(1),..i(z)>1 s=1

IN

with equality for z = 0,1 and strict inequality for > 1. This shows already that f is a
Lipschitz-continuous function on (0, 1] with limit f(0+) = 0.

Concerning the first derivative of L,, for t € (0, 1],

d Di Z v; Di Di Dk

it _ 2 H . H . —
dt icd 1 —tp; keJ (1 —tpx) ieJ\{k} L —tpi icJ L—ipi keJ 1=ty

whence
Pk Pi
L) = A= p> >
k;>01_tpk Jej(x)ieJl_tpi 1_tpk JeT(x zeJl_tpl
JeJ (x
= A—- Z Wip(J)Sip(J°).
Jej(z

Combining this formula with (4) yields
1 (ZE + 1)btp($ + 1)

L) = A= e (10)
N _ T’tp(flf + 1)
- A Tip(2)
= )‘(1 - exp(Lx+1(t) - Lz(t)))
In particular,
> >
L (t) {:} 0 if and only if L,(t) {:} Loy1(2). (11)
< <

There is also an explicit expression for the second derivative of L,: If b(z+1) = 0, then
x=n=#{i>1:p; >0} and L,(t) = At + log(A\""n!b(n)), whence L = 0. Otherwise,
for0<t <1,

Ly(t) = Aexp(Lat1(t) — La(t)) (L5 (t) — Lii4 (1)),

and

, , L/(z+2)bp(x+2)  (z+ 1D)byp(x+1)
L) =Lyt = 5 o D b )

by Proposition 2. Hence L, defines a smooth concave function on [0, 1].



3 Proofs of the main results

Proof of Theorem 1. We know that f(t) = log p(Qyp, Poiss;y) is equal to the maximum
of L,(t) over z € {1,...,[A]}, and that f(0+) = 0. Note also that

f'(t+) = max L (t)

zeN(t)
where
N(t) := argmax ryp(x).
2€{Ls[A]}
Since g(t) := —log(1 — tp,) satisfies g(0) = 0 and ¢'(t) = p./(1 — tp«), it suffices to show
that
L(t) < P for any x € N(t).

1 — tp.

According to (10), the latter requirement is equivalent to

(x + 1)bp(xz+ 1) > P tp

for any x € N(t).
bip () = 1~ tp. Y Q

Note that z € N(t) implies that L,_1(t) < L,(t). But the latter inequality is equivalent

to L),_;(t) <0, see (11), and by (10), this is equivalent to
M > A
bip(x — 1)
Consequently, it suffices to show that
($+1)btp(x+ D) > tA — tp+ whenever M > tA.
bip(x) 1 — tps bip(z —1)
We may simplify notation by replacing ¢tp with p and prove that
1 1 X
(z+ Db +1) > A— P whenever b(z) > A (12)
b(x) 1 —p. b(x — 1)

Note that for 1 < z < [A], the representation (5) with  — 1 in place of x reads

bz —1) o1 1
ab(x) 2 W(J):vzqﬁS(JC)’

JeJ (x) ieJ

By Jensen’s inequality,

e (s - s
ieg

ieJ
SO

b(fb(;)l) > Y WIS +S)

JeJ(z)




A second application of Jensen’s inequality yields that

WD) (3 W (EW) + S9)

Qj‘b(ﬂj‘) - JeJ(x)

-1

Consequently, if xb(z)/b(x — 1) > A, then

> W((SW)+S(T%) = A
JeJ(x)

On the other hand, (4) yields

D) S~ gy (3 +509) - Y WSW)

b(x)
JET (z) JET ()
— p*
- 1 - p* )
because S(J) = 71 Y, pi/(1 — pi) < ps/(1 — ps) for any set J € J(z). This proves
(12). O

Proof of Theorem 2. We know from Proposition 1 that in case of A <1,

log p(@, Poissy) = logr(l) = Li(1)

with

Li(t) = t/\—&—Zlogl—tpz +log( 12 —tp)

i>1 i>1
First of all, L;(0) = 0, and

2
Di D; Di
Li(t) = A — + E . /
i IR i
= 1—tp; = (1 —tp;) = 1—tp;
2 2
b; b; Di
- _tE iy E 71/
_ 2 0
= 1—tp; = (1 —tps) = 1—tp;

whence L) (0) = A. Moreover, we have seen before that L < 0 by ultra-log-concavity of

the probability mass functions by,. Consequently, for some & € (0,1),
Li(1) = Ly(0)+ L4(0) + 27 LY(€) = 0+A+271L1() < A.

As to the lower bound, recall that

Li(1) = > (pi+1log(l —pi)) +log(A 30 ).

i>1 i>1

On the one hand,

2
p D; ¢ D;
Hlog(l—py) = — > b > =LYy pl =
p’L Og( pl) ]{ - 2 p* 2(1 _ p*)7



SO 1 A
> (pi+log(1—pi)) > 20— p > v = _MA'

i>1 i>1

Moreover,

log<)\_1z%) > log(/\_lz(pi—i-pg)) = log(1+A) > A—A?%)2,

i>1 v i>1

and this implies the asserted lower bound for L;(1). O
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