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ADDENDUM

Germ-free housing conditions do not affect aortic root and aortic arch lesion size 
of late atherosclerotic low-density lipoprotein receptor-deficient mice
Klytaimnistra Kiouptsi a*, Giulia Pontarollo a*, Hristo Todorov b*,#, Johannes Brauna, Sven Jäckela,c, 
Thomas Koecka,c,d, Franziska Bayera, Cornelia Karwota, Angelica Karpie, Susanne Gerber b#, Yvonne Jansenf, 
Philipp Wild a,c,d, Wolfram Ruf a,c,g, Andreas Daiber c,e, Emiel Van Der Vorst f,h,i,j, Christian Weber f,h, 
Yvonne Döring f,h,k*, and Christoph Reinhardt a,c*
aCenter for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Mainz, Germany; bInstitute of Developmental Biology and 
Neurobiology, University Medical Center of the Johannes Gutenberg University of Mainz, Mainz, Germany; cGerman Center for Cardiovascular 
Research (DZHK), Partner Site RheinMain, Mainz, Germany; dPreventive Cardiology and Preventive Medicine, Center for Cardiology, University 
Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany; eCenter for Cardiology, Cardiology I, University Medical Center 
Mainz, Mainz, Germany; fInstitute of Cardiovascular Prevention, Department of Medicine, Ludwig-Maximilians-University Munich, Munich, 
Germany; gDepartment of Immunology and Microbiology, Scripps Research Institute, La Jolla, USA; hGerman Center for Cardiovascular 
Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany; iDepartment of Pathology, Cardiovascular Research Institute 
Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands; jInterdisciplinary Center for Clinical Research (IZKF), Institute for 
Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, Aachen, Germany; kDivision of Angiology, Swiss Cardiovascular Center, 
Inselspital, Bern University Hospital, Bern, Switzerland

ABSTRACT
The microbiota has been linked to the development of atherosclerosis, but the functional impact of 
these resident bacteria on the lesion size and cellular composition of atherosclerotic plaques in the 
aorta has never been experimentally addressed with the germ-free low-density lipoprotein recep
tor-deficient (Ldlr−/-) mouse atherosclerosis model. Here, we report that 16 weeks of high-fat diet 
(HFD) feeding of hypercholesterolemic Ldlr−/- mice at germ-free (GF) housing conditions did not 
impact relative aortic root plaque size, macrophage content, and necrotic core area. Likewise, we 
did not find changes in the relative aortic arch lesion size. However, late atherosclerotic GF Ldlr−/- 

mice had altered inflammatory plasma protein markers and reduced smooth muscle cell content in 
their atherosclerotic root plaques relative to CONV-R Ldlr−/- mice. Neither absolute nor relative 
aortic root or aortic arch plaque size correlated with age. Our analyses on GF Ldlr−/- mice did not 
reveal a significant contribution of the microbiota in late aortic atherosclerosis.
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Introduction

During the last decade, an increasing number of stu
dies has provided a wealth of association-based1-3 and 
causal evidence,1,4-7 linking the microbiota and speci
fic bacterial community members8-10 to the develop
ment of atherosclerotic lesions and cardiovascular 
disease (CVD) (for overview see Table 1).11 The gut 
microbiota has been recognized as an environmental 
factor that influences endothelial cell functions and 
contributes to vascular inflammatory phenotypes,12–14 

fostering arterial thrombosis through various pro
thrombotic mechanisms.15–18 While experiments 
with germ-free (GF) apolipoprotein E (Apoe)- 
deficient mouse models at chow diet conditions have 
repeatedly shown a protective role of the microbiota in 

atherogenesis,4,6 it remains controversial how HFD 
and different feeding regimens affect atherosclerotic 
lesion development in mouse atherosclerosis models 
under GF housing conditions.

In a study that addressed late carotid artery ather
osclerosis in the germ-free Ldlr−/- atherosclerotic 
mouse model,18 we have recently reported that 
16 weeks of feeding with an adjusted calories diet 
(42% kcal from fat, 17.3% protein, 48.5% carbohy
drates, 21.2% [wt/wt] fat, 0.2% cholesterol, 34% [wt/ 
wt] sucrose) that had been vacuum packaged and 
irradiated, abolishes differences between GF and 
conventionally raised (CONV-R) mice in the lipo
protein profile and total plasma cholesterol levels, 
which are apparent characteristics observed under 
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chow diet conditions.19,20 Although GF Ldlr−/- mice 
had reduced counts of adherent leukocytes to the 
uninjured common carotid artery lesion, absolute 
and relative carotid artery plaque size was 
unchanged by GF housing conditions. This was in 
contrast to plaque rupture-induced atherothrombo
sis and adhesion-induced platelet activation on type 
III collagen coatings, which were both diminished in 
germ-free Ldlr−/- mice relative to their CONV-R 
Ldlr−/- counterparts. Thus, our study on GF Ldlr−/- 

mice revealed a prothrombotic role of the gut micro
biota in atherothrombosis, but unchanged carotid 
artery plaque size during late atherosclerosis.18

Since several reports demonstrated that the 
results on GF mouse atherosclerosis models vary 
dependent on the genetic model, the diet, and the 
feeding regimen (Table 1),4–6,18,22 we have com
paratively analyzed the aortic lesions of GF Ldlr−/- 

and CONV-R Ldlr−/− mice to pinpoint whether the 
absence of the gut microbiota affects lesion size and 
cellular plaque composition.

Results

To study whether the lack of a gut microbiota impacts 
atherosclerotic lesion size and cellular composition, 
we rederived Ldlr−/- mice as germ-free (GF), kept 
those mice for 16 weeks on an irradiated high-fat 
diet (HFD) and compared their lesions in the aortic 
root and arch with those of conventionally raised 
(CONV-R) Ldlr−/- counterparts (Figure 1(a)). 
Histological analyses of fixed-frozen sections revealed 
no differences in the atherosclerotic plaque areas in 
the oil-red-O stained aortic roots of male and female, 
GF Ldlr−/- mice on HFD relative to CONV-R Ldlr−/- 

controls (Figure 1(b)). As expected, females in both 
HFD-fed CONV-R Ldlr−/- and HFD-fed GF Ldlr−/- 

groups had increased relative aortic root plaque areas 
compared to males, irrespectively of the presence of 
microbiota (Figure 1(c)).23,24 Thus, our results con
firm that sex is a determinant of the atherosclerotic 
lesion size in ‘zero-level’ aortic roots.24 Interestingly, 
under these circumstances, germ-free housing condi
tions had no influence on aortic root lesion size.

Next, we comparatively analyzed the cellular 
composition of aortic root lesions in GF and 
CONV-R Ldlr−/- mice on HFD. Immunostaining 
of aortic root plaques for the macrophage marker 
MAC-2 excluded differences in the macrophage 

content or the necrotic core area in these late ather
osclerotic lesions, which was comparable between 
the two groups of mice (Figure 1(d)). Interestingly, 
smooth muscle actin staining revealed reduced 
quantities of smooth muscle cells in the aortic 
root plaques of GF Ldlr−/- mice relative to CONV- 
R Ldlr−/- mice (Figure 1(e)), in agreement with the 
fibroproliferative response in aortic root lesions 
that we observed in HFD-fed GF Ldlr−/- mice com
pared with CONV-R Ldlr−/- mice. In line with 
unchanged macrophage content, reactive nitrogen 
species (RNS) levels in aortic root plaques were 
comparable between the HFD-fed GF Ldlr−/- mice 
and CONV-R Ldlr−/- mice (Figure 1(f)), as indi
cated by unchanged areas of 3-nitrotyrosine (3-NT) 
immunostaining (Figure 1(g)). In conclusion, 
germ-free housing conditions influenced smooth 
muscle cell content in aortic root lesions, but did 
not result in altered macrophage content or chan
ged RNS levels.

In addition, we analyzed the aortic arch plaque 
areas in hematoxylin-and-eosin (HE)-stained cryosec
tions, but did not find differences between HFD-fed 
GF Ldlr−/- mice relative to HFD-fed CONV-R Ldlr−/- 

mice (Figure 2(a)). Furthermore, analyzing the aortic 
arch plaque areas, we did not find differences in rela
tive plaque size between female and male Ldlr−/- mice 
(Figure 2(b)). In contrast to aortic root plaque size,24 

sex did not influence lesion size in the aortic arch of 
late atherosclerotic plaques in Ldlr−/- mice.

In order to examine the influence of age on 
aortic plaque size, we calculated the Pearson corre
lation between age and plaque size. The age of the 
Ldlr−/- mice at the time of sacrifice following the 
16 weeks HFD-feeding regimen was not signifi
cantly correlated with absolute or relative plaque 
size in the aortic root overall and when animals 
were stratified by sex (Figure 3(a)). Aortic arch 
plaque area was also not dependent on the age of 
the mice (Figure 3(b)). It is well established that age 
has a strong influence on aortic root atherosclero
sis. To further investigate if age impacted aortic 
root and aortic arch lesion size, we performed 
a 2-way analysis of covariance (ANCOVA) with 
GF or CONV-R housing conditions and sex as 
factors and age as covariate. The effect of age was 
not statistically significant (F1,33 = 1.31, p = .259 for 
aortic root lesion size and F1,35 = 0.716, p = .403 for 
aortic arch lesion size). Furthermore, the difference 

4 K. KIOUPTSI ET AL.
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Figure 1. (a) Applied diet regimen to study late atherosclerosis in GF and CONV-R Ldlr−/- mice. (b, c) Atherosclerotic plaque area in cross- 
sections at the zero-level of the aortic root of CONV-R (15 mice/group, 8 females, and 7 males) and GF (15 mice/group, 10 females, and 5 males) 
Ldlr−/- mice on HFD, (b) overall values or (c) sex-split. Mean ± SEM. Representative histology images showing Oil-Red O-stained sections. Scale 
bar 500 μm. (d) Quantification (% of total plaque nuclei) of MAC-2 positive cells in cross-sections of the aortic root (3–7 mice/group). Scale bar 
200 μm. Mean ± SEM. Based on the % of plaque area, the necrotic core area was calculated for seven CONV-R and six GF mice, all males. (e) 
Quantification (% of total nuclei) of smooth muscle cells (SMC) by SMC-actin immunostaining in cross-sections of the aortic root (3–7 mice/ 
group). Scale bar 200 μm. Mean ± SEM. (f, g) Immunostained atherosclerotic plaque area stained for 3-nitrotyrosine (3-NT) in cross-sections at 
the zero-level of the aortic root of CONV-R (8 mice/group, four females and four males) and GF (8 mice/group, four females, and four males) 
Ldlr−/- mice on HFD, (f) overall values, or (g) sex-split. Mean ± SEM. Representative histology images showing 3-NT-stained sections. Scale bar 
500 μm. Independent samples Student’s t-tests, * p < .05, ** p < .01, *** p < .001. For all panels, CONV-R mice are shown in gray and GF mice in 
white. For panels (b, c, and f, g), the sex of the mice is color-coded: females: red; males: blue.
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between GF Ldlr-/- and CONV R Ldlr−/- in aortic 
root plaque size (F1,33 = 1.141, p = .293) or in aortic 
arch plaque size (F1,35 = 0.21, p = .649) was not 
significant even after adjusting for age differences.

Since our previous study identified altered 
plasma cytokine levels between HFD-fed GF 
Ldlr−/- and CONV R Ldlr−/- mice,18 we went on 
to identify additional biomarkers influenced by 
colonization with microbiota under normal and 
HFD conditions. We analyzed 92 proteins of the 
Mouse Exploratory Panel (Olink Proteomics AB, 
Uppsala, Sweden) in citrated plasma samples by 
an immuno-PCR-based proximity extension assay 
with high sensitivity to detect low-level proteins. 
Principal component analysis showed robust clus
tering of the individual samples according to 
experimental conditions (Figure 4(a)). The great
est difference was observed for the profiles of 
HFD-fed Ldlr−/- mice compared to WT mice on 
a chow diet. However, the microbiome status 
separately affected the analytes measured by proxi
mity ligations assay. We fit the data of HFD-fed 
Ldlr−/- mice with housing conditions as a factor to 
model the difference in plasma proteins induced 
by GF conditions. This allowed us to identify 
markers that were altered in HFD-fed Ldlr−/- 

mice in dependence of the microbiota (Figure 4 
(b)). Analogously, we identified a set of markers 
that were altered in GF WT mice in comparison to 
CONV-R WT mice (Figure 4(c)). The altered 

biomarkers had no apparent enrichment in speci
fic GO terms.

A set of markers were concordantly altered under 
HFD and normal diet. Interleukin 23 receptor (IL23r) 
was decreased whereas epithelial cell markers, such as 
epithelial cell adhesion molecule (EPCAM), and the 
incretin glucagon-like peptide-1 (Glp-1, Gcg) with 
vascular protective functions were increased in the 
absence of microbiota irrespectively of the diet and 
the genotype. In contrast, microbiota had also differ
ential effects when comparing WT mice on a normal 
diet with Ldlr−/- mice on an HFD. Specifically, under 
HFD inflammation markers, e.g. tumor necrosis fac
tor (Tnf), interleukin 1 alpha (IL1a), glial cell derived 
neurotrophic factor family receptor alpha 1 (Gfra1), 
and C-X-C motif chemokine ligand 9 (Cxcl9), as well 
as follistatin (Fst) levels, were reduced in GF Ldlr-/- 

mice relative to their CONV-R counterparts. In addi
tion, proteins known to be expressed in the gastro
intestinal track, i.e. integrin subunit beta 6 (Itgb6) and 
v-set and immunoglobulin domain containing 2 
(Vsig2) were increased, possibly related to changes 
in gut permeability. GF HFD Ldlr−/- mice also had 
higher markers associated with metabolic processes, 
e.g. carbonic anhydrase 13 (Ca13), quinoid dihydrop
teridine reductase (Qdpr), mitogen-activated protien 
kinase 6 (Map2k6), Axin1, which in part may be 
related to differences in the formulation of the diet 
independent of lipid content. Interestingly, the down
regulation of interleukin 17a/f (IL17a/f) in response to 
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6 K. KIOUPTSI ET AL.



loss of the gut microbiota in GF WT mice was no 
longer seen in GF HFD-fed Ldlr−/- mice. While 
macrophage densities were not changed in late ather
osclerotic lesions, these proteome changes indicate 
that GF conditions nevertheless alter immune cell 
activation or polarization in atherosclerotic mice.

Discussion

More than one century ago, in 1910, in his book “The 
Prolongation of Life. Optimistic Studies” Ilja 
Metchnikoff proposed that “auto-toxication from 
microbial poisons absorbed and microbes themselves 

may pass through the walls of the intestine and enter 
the blood” and he discussed the poisons of microbes 
as one possible cause for the development of inflam
matory artery lesions.25 Metchnikoff clearly recog
nized chronic inflammation, triggered by resident 
microbes, as one of the causes that endangers vascular 
health and restricts human lifespan. In recent years, 
this hypothesis from 1910 was refurbished, as it now 
could be experimentally addressed thanks to genome- 
wide sequencing approaches and the depletion of gut 
microbiota in mouse models of atherosclerosis. While 
the development of next-generation sequencing 
enabled the detection of abundant bacterial species 

a

b

Figure 3. Correlation between the age and the absolute (µm2) or relative (%) plaque size at the (a) zero-level of the aortic root or (b) at 
the aortic arch in CONV-R and GF Ldlr−/- mice on HFD. The groups of mice are the same as detailed in Figures 1 and 2. For all panels, 
CONV-R mice are shown as gray dots, and GF animals as white dots. The sex of the mice is color-coded: females: red; males: blue.
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in atherosclerotic patients,2 decimation of the gut 
microbiota by antibiotic treatments, and/or analysis 
of germ-free atherosclerotic mouse models unravel 

the global impact of the resident bacterial community 
on the host.6,7,20 In our recent work, we analyzed 
carotid artery atherosclerosis and atherothrombosis 

a

c

b

Figure 4. (a) Principal component analysis of plasma proteome changes in GF WT, GF Ldlr−/-, CONV-R WT, and CONV-R Ldlr−/- mice. 
Scatter plot of the first two principal components for all 92 analytes measured in the indicated mice and feeding as well as colonization 
conditions. Each point represents a biological replicate from independent animals. (b) Volcano plot of the differential abundance of 
circulating biomarkers in HFD-fed GF Ldlr−/- mice compared to HFD-fed CONV-R Ldlr−/- mice and (c) GF WT mice compared to CONV-R 
WT mice. Positive log2 fold change values correspond to higher protein levels and negative values correspond to reduced protein 
levels in GF condition mice. The horizontal line reflects the cutoff for statistical significance (p < 0.05) while vertical lines represent 
threshold for minimum effect size (|log2 fold change| >0.5). Red highlights proteins with a significant difference (p < 0.05) above the 
threshold for effect size. Grey dots represent proteins with either no statistical significance or small effect size or both.

8 K. KIOUPTSI ET AL.



evoked by ultrasound-induced rupture of carotid 
artery plaques in the germ-free Ldlr−/- mouse model 
kept for 16 weeks on HFD.18 We found a phenotype 
of decreased adhesion-induced platelet activation in 
the GF Ldlr−/- mice. Clearly, with regard to the micro
biota’s influence on the development of atherosclero
tic lesions, controversies persist. In part, experiments 
may yield divergent results due to different mouse 
atherosclerosis models studied, inappropriate com
parison of GF status with antibiotic decimation of 
commensals, variations in feeding regimens, time 
point of diet switch, and the analysis of different end
points (Table 1). For this reason, detailed reports on 
atherosclerotic phenotypes with gnotobiotic mouse 
atherosclerosis models are timely and required to 
achieve a complete picture on the contribution of 
the microbiota to atherogenesis. In this addendum 
article, we provide additional information on athero
sclerotic lesion formation at the aortic root and the 
aortic arch, comparing the same group of GF Ldlr−/- 

mice with their CONV-R Ldlr−/- counterparts, kept 
for 16 weeks on irradiated HFD.18

Similar to recent work on germ-free Apoe- 
deficient mice kept on an atherogenic HFD,6 our 
study on GF Ldlr−/- mice did not find an impact of 
the gut microbiota on atherosclerotic lesion size, 
neither in the aortic root, nor in the aortic arch. 
These results are consistent with unchanged carotid 
artery lesion areas in 16 weeks HFD-fed GF Ldlr−/- 

mice relative to CONV-R Ldlr−/- mice, reported in 
our previous study, implicating the microbiota in 
atherothrombosis and adhesion-induced platelet 
activation.18 While in this study we found increased 
total plasma cholesterol levels and increased lipopro
tein levels in GF Ldlr−/- mice on a chow diet, which is 
due to the microbiota’s role in cholesterol 
excretion,20 the lipoprotein profile was unchanged 
at conditions of excess cholesterol from the diet 
(0.2% cholesterol). In particular, at conditions of 
limited cholesterol in the diet, the microbiota has 
a critical role in the deconjugation, dehydroxylation, 
and oxidation of primary bile acids, thus promoting 
their excretion.29–33 On the other hand, the relatively 
high cholesterol content of the HFD used in our 
study and the late endpoints of the analyses could 
in principle explain why there was no difference in 
aortic root and aortic arch lesion size between HFD- 
fed GF Ldlr−/- mice and CONV-R Ldlr−/- mice.

It is well established that the dietary cholesterol 
content strongly influences aortic root lesion size.23 

Hence, the dietary cholesterol content and the 
applied feeding regimen may influence the extent 
of atherosclerosis in terms of plaque size and cel
lular plaque composition with respect to the ana
lyzed vascular bed. This may at least in part explain 
the seemingly controversial data of different mouse 
atherosclerosis studies addressing the role of the 
microbiota in atherogenesis (Table 1).1,4-6,18,21,22,34 

In late atherosclerosis, at 14 weeks of HFD feeding, 
female Ldlr−/- mice kept on the same HFD we used 
in our studies show significantly increased total 
cholesterol levels, low-density lipoprotein choles
terol, and significantly reduced relative aortic root 
lesions compared with age-matched male Ldlr−/- 

mice.24 Likewise, larger lesion areas were reported 
in young female Apoe−/- mice on chow diet at the 
age of 16 weeks compared with age-matched male 
Apoe−/- mice.35 Increased lesion area was also 
found by en face aorta analyses.36 Altogether, 
these studies indicate that in addition to the genetic 
mouse atherosclerosis model, the dietary choles
terol content, sex, and the chosen endpoint of the 
feeding regimen are pivotal for the conclusions 
drawn from functional microbiome studies on 
atherosclerosis.

Of note, our study did not exclude that specific 
microbes could impact atherogenesis. Diet has 
a dominant influence in shaping the diversity and 
composition of the gut microbial ecosystem.18 As 
metagenomics studies have identified specific 
taxa2,3,37-39 and as there is ample experimental evi
dence suggesting that microbiota composition may 
significantly influence the development of athero
sclerotic lesions,9,40 future functional microbiome 
studies should aim to understand how specific diets 
affect the abundance of specific gut microbes linked 
to atherosclerosis. Similar to the selective inhibition 
of trimethylamine (TMA)-lyase enzymes of gut 
microbes associated with atherosclerosis,39 this may 
lead to new pharmacologic interventions that may 
prevent atherogenesis by targeting specific metabolic 
functions of gut microbes.40 Furthermore, there cer
tainly is a need for in-depth knowledge on the pro
tective role of some community members and the 
dietary conditions that increase their relative 
abundance.9,10
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In addition to specific bacteria, also certain 
microbial-associated molecular patterns (MAMPs) 
were recognized to contribute to chronic inflam
mation, driving atherogenesis by influencing differ
ent leukocyte subsets.41–43 Studies with germ-free 
mouse models have revealed that gut microbiota- 
derived compounds promote steady-state granulo
poiesis and regulate the lifespan of neutrophils and 
inflammatory monocytes.44–46 In our study on 
hyperlipidemic Ldlr−/- mice, we could confirm the 
influence of the gut microbiota, as total leukocyte 
counts and in particular the proportion of mono
cytes and neutrophils were significantly reduced, 
whereas we found a slight increase in the propor
tion of lymphocytes in GF Ldlr−/- mice.18 This was 
also reflected by reduced counts of rolling and 
adherent leukocytes at the uninjured carotid artery 
lesion. Unexpectedly, the observed reduction in 
blood monocytes in the blood of GF Ldlr−/- mice 
on an HFD was not associated with diminished 
macrophage content in the aortic root lesions or 
with a smaller necrotic core area, but this might be 
due to the high cholesterol content of the HFD and 
the late time point analyzed (16 weeks). In support 
of a reduced fibroproliferative response, we found 
reduced numbers of vascular smooth muscle cells 
but unchanged staining of the vascular RNS marker 
3-NT in the aortic root plaques. This is in accor
dance with previous work that did not detect chan
ged vascular superoxide formation, comparing 
dihydroethidium staining in the aorta of unchal
lenged GF to CONV-R C57BL/6 WT mice.13 

Hence, in future studies, it will be interesting to 
explore if the absence of a gut microbiota influences 
the expression of growth factors in the developing 
atherosclerotic lesions, thus affecting the migration 
and proliferation of vascular smooth muscle cells.47 

In line with the lower number of vascular smooth 
muscle cells, plasma follistatin (Fst) levels were 
reduced in HFD-fed GF Ldlr−/- mice compared to 
their CONV-R counterparts.48 In contrast to WT 
mice on a normal diet, inflammation markers Tnf, 
IL1a, and Cxcl9 were downregulated in HFD-fed 
GF Ldlr−/- mice compared to HFD-fed CONV-R 
Ldlr−/- mice. Thus, despite unaltered macrophage 
numbers in the atherosclerotic lesions, GF mice 
display reduced inflammation detected by circulat
ing markers.

In addition, we detected a reduction of Gfra1 in 
GF Ldlr−/- mice. Recently it has been shown that 
low Gfra1 levels result in enterocolitis with abnor
mal mucin production and retention causing 
epithelial damage.49 Conversely, lack of microbiota 
increases circulating markers of proteins that are 
expected to be expressed in the intestine in HFD- 
fed GF Ldlr−/- mice. It will be of interest whether 
such unexpected markers reflect changes in gut 
permeability that are influenced not only by com
mensal microbiota but also HFD.

Therefore, future work should explain if the 
observed differences in vascular smooth muscle cell 
content in the aortic root plaques are related to 
increased collagen synthesis and if this also applies 
to carotid artery plaques.50 This aspect is of particular 
relevance, since vascular smooth muscle cell-derived 
collagen fibers could promote plaque rupture- 
induced atherothrombosis and adhesion-dependent 
platelet activation, as indicated by increased phospha
tidylserine exposure in HFD-fed CONV-R Ldlr−/- 

mice relative to HFD-fed GF Ldlr−/- mice.18,20 To 
grasp the influence of the microbiome on cellular 
plaque composition during atherogenesis, a time- 
course analysis of atherosclerotic lesion development 
with a well-defined feeding regimen on gnotobiotic 
atherosclerosis mouse models is required.

Age is believed to strongly impact the pathogen
esis of aortic atherosclerosis. Therefore, previous 
experimental studies, investigating the effect of 
microbiota on atherosclerotic lesion development, 
have used age-matched animals.1,4,6 In contrast, 
our study included mice of varying age at the start 
of HFD. Importantly, age was not significantly cor
related with absolute and relative plaque size in the 
aortic root and aortic arch. Additionally, the effect 
of GF housing conditions was not significant even 
after accounting for age differences. Thus, our 
study provides statistical evidence that conflicting 
results on the role of microbiota on atherogenesis 
might stem from factors other than age. However, it 
is important to mention that our results might be 
attributable to the late time point analyzed. 
Additional studies with animals of wider age 
range or a systematic meta-analysis of existing 
reports would be instrumental to resolve the com
plex interaction of age, diet, and gut microbiota on 
the development of atherosclerotic lesions.
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Materials and methods

Animals – B6.129S7Ldlrtm1Her/J mice (1) (Ldlr−/- 

mice) were purchased from The Jackson 
Laboratory (Bar Harbor, ME, USA) and were trea
ted as previously described. Briefly, Ldlr−/- mice 
were rederived as germ-free (GF) by aseptic hyster
ectomy. Ldlr−/- and WT mice on a C57BL/6 J back
ground were maintained as a GF mouse colony in 
sterile flexible film mouse isolator systems checking 
weekly for the germ-free status of the mice by 
detection of 16S rDNA by PCR and by bacterial 
culture. All experimental animals were 4–14 weeks 
old male or female mice housed in the 
Translational Animal Research Center (TARC) of 
the University Medical Center Mainz under specific 
pathogen-free (SPF, CONV-R) or GF conditions in 
EU type II cages with 2–5 cage companions with 
standard autoclaved lab diet and water ad libitum, 
22 ± 2°C room temperature and a 12 h light/dark 
cycle. All groups of mice were free of clinical symp
toms. All procedures performed on mice were 
approved by the local committee on legislation on 
protection of animals (Landesuntersuchungsamt 
Rheinland-Pfalz, Koblenz, Germany; 23177–07/ 
G12-1-100; 23 177–07/G 16-1-013).

Treatment of mice

Ldlr−/- mice were fed for 16 weeks with an adjusted 
calories diet (42% from fat, vacuum-packaged, irra
diated, and microbial analyzed, TD.88137, Envigo, 
Venray, the Netherlands).

Analysis of atherosclerotic lesions

For analysis of mouse atherosclerotic lesions, the 
aortic roots at zero-level were stained for lipid 
depositions with Oil-Red-O or HE (hematoxylin- 
and-eosin) staining. In brief, hearts with aortic root 
were embedded in Tissue-Tek O.C.T. compound 
(Sakura) for cryo-sectioning. Atherosclerotic lesions 
were quantified in 5 µm transverse sections and 
averages were calculated from 3 to 5 sections for 
each mouse. For analysis of the cellular composition 
or inflammation of atherosclerotic lesions, sections 
were stained with an antibody to MAC2 (AbD 
Serotec), or SMA (Dako), Nuclei were counter- 
stained by 4ʹ,6-Diamidino-2-phenylindol (DAPI). 

After incubation with a secondary FITC- or Cy3- 
conjugated antibody (Life Technologies), sections 
were analyzed using a Leica DMLB fluorescence 
microscope and charge-coupled device (CCD) cam
era. Blinded image analysis was performed using 
Diskus, Leica Qwin Imaging (Leica Lt.) or Image 
J software. For each mouse and staining, 2–3 root 
sections were analyzed and data were averaged.

3-Nitrotyrosine immunostaining

The cryosections were dried at 37°C for 1 h, then 
fixed at −20°C in acetone for 10 minutes. To block 
the nonspecific bindings, the sections were incu
bated with 2.5% horse normal serum (Vector 
laboratories, Burlingame, CA94010) for 60 minutes. 
Sections were stained for 3-nitrotyrosine made in 
rabbit (Millipore, Germany) diluted 1:100 in anti
body dilution medium (Agilent, Germany) over
night. Following the species of primary antibody, 
an appropriate biotinylated secondary antibody 
was used following the manufacturer’s instructions. 
For immunochemical detection ABC reagent 
(Vector) and then DAB reagent (Peroxidase sub
strate Kit, Vector) as substrate were used.

Proximity ligation assay

Simultaneous-targeted protein profiling of 92 pro
teins of the Mouse Exploratory panel (Olink 
Proteomics AB, Uppsala, Sweden) was performed 
in 1 µl of once-thawed citrate anticoagulated 
plasma samples by real-time PCR using the 
Fluidigm BioMarkTM HD real-time PCR plat
form based on multiplexing proximity extension 
assay (PEA) technology (Olink Proteomics AB).51 

For exploratory data analysis, a principal compo
nent analysis of the Olink NPX values was per
formed using the R version 3.6.3 prcomp() 
function. A linear model was fitted to all data for 
individual Ldlr−/- mice or WT respectively with 
housing condition as a factor to model the effect 
of GF conditions using the R version 3.6.3 lm() 
function. Log2 fold changes and associated 
p-values were calculated by Student’s t-test and 
returned by the summary function of the R lm fit 
object. P-values less than 0.05 were considered 
statistically significant.
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Statistical analysis

Data are presented as mean ± SEM and/or individual 
data points. Statistical calculations were performed 
with GraphPad Prism 5 (GraphPad Software Inc., 
San Diego, CA, US) using the independent samples 
Student’s t-test to compare two groups. Pearson cor
relation coefficients and 2-way ANCOVA were calcu
lated with R version 3.5.3 (R Core Team, Austria, 
Vienna). P-values less than 0.05 were considered sta
tistically significant.
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