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Participatory Bayesian network modeling to understand driving 1 

factors of land-use change decisions: insights from two case studies in 2 

northeast Madagascar 3 

 4 

Forest frontiers worldwide reveal trade-offs that are key in mitigating global 5 

change. In the forest frontiers of northeast Madagascar, land-use changes result 6 

from decisions made by smallholder farmers. In the past, subsistence needs led to 7 

increasing shifting cultivation, resulting in forest degradation and deforestation. 8 

This study focuses on investigating the role of locally determined factors in land-9 

use change decisions in the forest frontier context. Therefore, we developed a 10 

Bayesian network-based land-use decision model that represents the causalities 11 

between factors influencing land-use decisions and takes into account local 12 

decision-makers’ knowledge. The approach is applied in two comparative case 13 

studies in northeast Madagascar. Results show that farmers mostly aim at 14 

extending the cultivation of cash crops. These results and the causal mechanisms 15 

disentangled for the forest frontier of northeast Madagascar help understand 16 

change mechanisms and hence, support decision-making to attain the Sustainable 17 

Development Goals.   18 

Keywords: Bayesian networks; land-use decision modeling; drivers; land-use 19 

change; modeling.  20 

1. Introduction 21 

Land cover and land-use change are among the most important drivers of global change, 22 

impacting ecosystems and ultimately their capacity to supply ecosystem services 23 

(Lambin et al., 2001; de Groot, Wilson, and Boumans, 2002; Turner, Lambin, and 24 

Reenberg, 2007). Several indicators that monitor progress toward achieving Sustainable 25 

Development Goal 15 (SDG 15) (United Nations, 2018) —protect, restore, and promote 26 

sustainable use of terrestrial ecosystems; sustainably manage forests; combat 27 

desertification; and halt and reverse land degradation and halt biodiversity loss—show 28 
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an improvement in forest protection measures. However, the indicators also show a 1 

decline in forest area and its productivity (United Nations, 2018). Currently, 2 

deforestation remains the most significant land-use change in tropical countries, 3 

generally resulting from commercial agricultural, subsistence, and mining activities, but 4 

also from urban expansion and infrastructure construction (Geist and Lambin, 2001; 5 

Swenson et al., 2011; Hosonuma et al., 2012; Sonter et al., 2015; Garrett et al., 2018). 6 

In tropical regions, forests are converted into shifting cultivation and export-oriented 7 

crops, causing a loss of valuable forest goods, of support and regulation services, and of 8 

the provision of cultural and aesthetic benefits (Kull, 2000; Moser, 2008; Gibbs et al., 9 

2010). For the case of Madagascar, shifting cultivation is still an important land-use 10 

practice in forested areas (Styger et al., 2007; Waeber et al., 2015) that remains the 11 

main land-use change in rural areas. Land-use change research shows that shifting 12 

cultivation expanded in northeast Madagascar between 1990 and 2017, as this practice 13 

ensured rice production in the area (Llopis et al., 2019).   14 

A large body of research has addressed these land-use and land-cover changes and 15 

identified a wide array of drivers and determinants in the process of expanding or 16 

intensifying agriculture expansion to increase food production (e.g., Chowdhury, 2006; 17 

Mottet et al., 2006; Levers et al., 2016; Schulp et al., 2019) or protecting forest for 18 

biodiversity conservation (e.g., Rindfuss et al., 2007; Lambin and Meyfroidt, 2011). 19 

Although many studies have investigated the effects of socioeconomic opportunities 20 

and constraints created by markets, policies, and institutions on land-use and land-cover 21 

change (Lambin et al., 2001; Lambin, Geist, and Lepers, 2003; Bürgi, Hersperger, and 22 

Schneeberger, 2005), the integrated consideration of biophysical, societal, and 23 

economic factors and their causal relationships at various scales of the landscape in the 24 

forest frontier context are still an important challenge, and highly needed to tackle 25 
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sustainable land management for fulfilling the SDG 2030 targets (United Nations, 1 

2018).  2 

Land-use models are often used to better detangle the complexity of factors defining 3 

choices in land-use decisions (Rindfuss et al., 2008; Noszczyk, 2018). Bayesian 4 

networks  model represents causal relationships through their directed acyclic graph, 5 

combining empirical data from different sources (statistics, reports, other models, etc.) 6 

with expert knowledge (Aalders and Aitkenhead, 2006; Marcot et al., 2006; Celio, 7 

Koellner, and Grêt-Regamey, 2014). As Bayesian networks are based on probability 8 

theory, they handle uncertainty, particularly when there is lack of data about the system 9 

(Cain, 2001; Kocabas and Dragicevic, 2007; Uusitalo, 2007). Bayesian networks have 10 

been used to understand causal relationships in water resources management (e.g., 11 

Bromley, 2005; Castelletti and Soncini-Sessa, 2007; Zorrilla et al., 2010), wildfire 12 

expansion (e.g., Dlamini, 2010), ecosystem services assessment (e.g., Sun and Müller, 13 

2013; Landuyt, Broekx, and Goethals, 2016; Shaw et al., 2016), biodiversity 14 

conservation and management (e.g., Marcot et al., 2001, 2006; Pollino et al., 2007; 15 

Ticehurst et al., 2007), and the agricultural sector (e.g., Pérez-Miñana, Krause, and 16 

Thornton, 2012). Aalders (2008) used Bayesian networks to model decisions and 17 

behavior of land managers as drivers of land-use change in mountain regions of 18 

Scotland. Bashari et al. (2009) developed decision support tools for rangeland 19 

management using Bayesian networks in Queensland, Australia. Celio et al. (2014) 20 

modeled effects of land-use decision-making in a spatially explicit manner using 21 

Bayesian networks in a pre-alpine area of Switzerland.  22 

In this contribution, we investigate the influence of the combined effect of biophysical 23 

and socioeconomic factors driving land-use change decisions in the forest frontier 24 
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context. To tackle the data-poor environment, we developed a spatially explicit 1 

Bayesian network of farmers’ decision-making in a participatory process. In addition, 2 

we investigated whether the importance of the factors driving land-use change decisions 3 

varies across the case study sites. We focused on comparing the factors that trigger 4 

shifting cultivation in two sites located in northeast Madagascar, which have 5 

experienced strong expansion of subsistence rice production and cash crop cultivations 6 

in the last 20 years (Zaehringer, Eckert, and Messerli, 2015; Ministère de 7 

l'Environnement de l'Ecologie et des Forêts MEEF, 2017; Llopis et al., 2019).  8 

2. Methods 9 

2.1. Conceptual framework and terminology 10 

Land managers’ decisions are at the center of land-use change. This is true for the 11 

conversion of natural landscapes to agricultural cultivation, or the change of a specific 12 

area of land from one use to one another, or a change in the management and practice 13 

on the land (Aalders, 2008; Malek et al., 2019). These changes may generate 14 

environmental problems, both locally and globally (Foley et al., 2005).  15 

In a socio-ecological system, land-use change is a function of multiple factors 16 

that are called drivers or determinants interacting at different levels. For example, at the 17 

local level, institutions regulating the management of village plots are seen as drivers; at 18 

the regional level, accessibility can be a determinant of landscape layout (Turner and 19 

Meyer, 1993; Groeneveld et al., 2017). These factors are differentiated in terms of their 20 

source, importance, and outcome. On the one hand, drivers or driving forces designate 21 

factors related to human, social, or land system forces that directly or indirectly cause 22 

land or environmental change for which knowledge is not necessarily sufficient to 23 

explain the causal mechanism (Turner, 1989; Millennium Ecosystem Assessment, 2003; 24 
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Meyfroidt, 2016). On the other hand, “determinant” or “spatial determinant” denotes 1 

“variables that are frequently used as location factors in land change models” or as “a 2 

series of biophysical and socio-economic factors [which] can explain the spatial 3 

distribution or other spatial characteristics (spatial pattern or structure) of land systems” 4 

(van Asselen and Verburg, 2012; Meyfroidt, 2016). Furthermore, a “predisposing 5 

factor” or “trigger” refers to a causal factor that is relatively unimportant in explaining 6 

land-use change, but which may be an important cause of the precise location or timing 7 

or realization of an event (Meyfroidt, 2016). 8 

In this study, we developed the causal network based on local people’s 9 

perspective of causality. Hence, the network structure and therein contained nodes are 10 

drivers of land-use change. The drivers were selected because, e.g., farmers chose 11 

“slope” as a cause for their land-use decision.  12 

2.2. Study sites  13 

Madagascar is a “hotspot” of biodiversity because it is a tropical country where 14 

5% of the world’s biodiversity resides, but also where natural resource degradation is 15 

increasing, including a rapid annual deforestation rate of 0.5% from 2000 to 2010 16 

(Myers et al., 2000; Lambin, Geist, and Lepers, 2003; Wilmé, Goodman, and Ganzhorn, 17 

2006; Office National pour l’Environnement et al., 2013). On the occasion of the Vth 18 

World Parks Congress in Durban, South Africa, in 2003, Madagascar committed to 19 

increase the total size of protected areas from 1.7 million hectares to 6 million hectares 20 

over the next five years to guarantee conservation of the unique biodiversity of the 21 

world’s fourth largest island (Terborgh, 2004; Ratsirarson, 2006). However, about 22 

36,000 hectares of natural forests were lost each year in Madagascar between 2005 and 23 

2010. The rate of annual deforestation within Protected Areas (PAs) managed by the 24 
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Madagascar National Parks has been 0.2%, which is half of the national rate (Harper et 1 

al., 2007; Office National pour l’Environnement et al., 2013).  2 

Madagascar’s forests are subject to major conversions, including mining, 3 

protected areas, commercial and subsistence agriculture, etc. Subsistence agriculture 4 

using fire is the primary factor of deforestation in Madagascar for households without 5 

access to irrigable land parcels (Kull, 1998, 2000; Zaehringer et al., 2016). Slash-and-6 

burn agriculture, also known as “tavy”, “jinja” or “hatsake” remains the traditional and 7 

most common land use in Madagascar (Styger et al., 2007).  8 

This study was carried out in northeast Madagascar in two forest frontier sites. Each is 9 

composed of two villages within the District of Maroantsetra, Region of Analanjirofo. 10 

The northern study site included to the villages of Mahalevona and Fizono, and the 11 

southern one the villages of Morafeno and Beanana (Figure 1). The southern site (the  12 

Morafeno commune) is located on hilly land near Makira Natural Park, characterized by 13 

a steep and rugged relief, while the northern site (the Mahalevona commune) lies in a 14 

downstream plain with low hills further northeast toward the forest of Masoala National 15 

Park (Andriamanana, 2014; Rakotoarison, 2014). 16 

The area is characterized by a peri-humid tropical climate with an average of 234 rainy 17 

days per year and experiences cyclones regularly (Ranoarisoa, 2012). The majority of 18 

the households in the region belong to the  Betsimisaraka ethnic group 19 

(Rasolofomanana, 2009). Most of the households’ activity is related to agriculture. Of 20 

particular importance is the cultivation of cash crops, such as cloves, vanilla, and coffee. 21 

Rice is cultivated in irrigated paddy rice fields and in upland shifting rice fields, called 22 

“jinja” or “tavy” locally (Rasolofomanana, 2009). Table 1 provides an overview of the 23 

current shares of land uses in the two case study sites. 24 
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1 

Figure 1: Case study area: northeast Madagascar.  2 

 3 

Sites Northern site (Mahalevona) Southern site (Morafeno) 

Population characteristics 

Village Mahalevona Fizono Morafeno Beanana 

Number of inhabitants 9834 3851 1889 721 

Main categories of land use (percentage) 

Forest 30.92 50.07 8.92 56.77 

Shifting cultivation  17.08 33.54 45.70 36.59 

Mixed agroforestry  27.94 10.29 34.26 2.30 

Irrigated paddy rice  8.05 1.93 2.12 0.49 

Pastures and cloves 3.44 0.48 0.30 0.05 

Pastures 4.24 1.15 0.10 0.04 

Dense plantation of 

cloves  

3.18 1.40 4.83 2.06 

Housing 0.55 0.11 0.57 0.15 

Others (river stream, 

not cultivated, bare soil 

and sand)  

4.60 1.03 3.20 1.55 

Table 1 : Population and main land use of the study area (source: Recensement 2015 4 

Service de la population District de Maroantsetra). 5 
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Compared to the central highlands of Madagascar, where economic and demographic 1 

factors such as population growth, state policies, market incentives, and access to land 2 

and water resources have been identified as important factors for the conversion of 3 

forest into cultivated area (Kull, 1998, 2000; Moser, 2008; Gibbs et al., 2010), northeast 4 

Madagascar is characterized by important upland rice cultivation leading to conversions 5 

of forest into shifting cultivation areas. In this region, biophysical characteristics of the 6 

plots condition the choice of land use (van Vliet et al., 2012; Zaehringer, Eckert, and 7 

Messerli, 2015; Ramboatiana et al., 2018), and shifting cultivation was the most 8 

prominent land use replacing forest between 1995 and 2011 (Zaehringer, Eckert and 9 

Messerli, 2015; Llopis et al., 2019). 10 

2.3. Bayesian network-based land-use decision modeling approach 11 

A Bayesian network consists of three elements: nodes as variables, arrows, which 12 

represent causal links between the nodes, and conditional probability tables (CPTs), 13 

quantifying the strength of two or more nodes’ connection (Neapolitan, 2003; Kjærulff 14 

and Madsen, 2008; Korb and Nicholson, 2010). In the present study, we used the 15 

available participatory Bayesian network-based Land-Use Modeling APproach 16 

(BLUMAP), which was developed to help conceptualize and parameterize the model in 17 

collaboration with concerned actors and stakeholders. Celio, Koellner, and Grêt-18 

Regamey (2014) used this approach to take into account biophysical factors and local 19 

actors’ decisions influencing land-use change and to represent uncertainties of land-use 20 

changes in a spatially explicit manner. A spatially explicit model refers to a model that 21 

combines a model with land-use maps and other related ecological and socioeconomic 22 

geodata related to land-use decision-making (Dunning et al., 1995; Noszczyk, 2018). 23 

The network is used to calculate posterior probabilities for each land-use category on 24 
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each raster cell. Thus, the Bayesian network is updated by our current state of 1 

knowledge (e.g., the slope of a location or the status of a regulation for the site), and the 2 

posterior probabilities determine future land use. Biophysical factors such as slope will 3 

remain constant. However, comparing their importance to other factors driving land-use 4 

change and including their effect for each location separately help analyze land-use 5 

change decision-making. 6 

The setup procedure of the model followed several existing guidelines (Cain, 2001; 7 

Bromley, 2005; Marcot et al., 2006; Carmona and Varela-Ortega, 2007; Chen and 8 

Pollino, 2012; Barreteau et al., 2014) and connected the elaborated Bayesian network 9 

with spatial data. In three concerted field visits, data was collected, processed, and fed 10 

back to the participating group of local farmers and regional experts. In the following, 11 

we elaborate on the different steps (Figure 2).  12 

 13 

Figure 2: Participatory Bayesian network-based Land-Use Modelling APproach 14 

(BLUMAP) adapted for the case study context. 15 

2.3.1. Elaboration process of the BN 16 

To elaborate the Bayesian network structure, we conducted explorative interviews with 17 

the four village heads and 17 farmers, who were informed by the village heads and had 18 

agreed to participate, using a questionnaire which covered four aspects (land-use 19 

change, causes, related actors, and ecosystem services), and a workshop in each village. 20 
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During the workshop, a cause and effect network was constructed. Through content 1 

analysis inspired by Mayring (2000), we analyzed the interviews and workshop 2 

transcripts to identify additional important factors driving land-use change and their 3 

inter-relations. This content analysis allowed us to gather all factors through all texts 4 

from fieldwork. We used an inductive analysis of all transcripts and established 5 

categories while reading. 6 

We validated the causal-effect network structure of the Bayesian network in four 7 

workshops, each conducted in one of the villages. As the Bayesian network is composed 8 

of different causal chains, we presented a series of causal chains to workshop 9 

participants and asked them if we should remove or modify the names of the variables, 10 

and if they would like to add more factors and information.  11 

The network is motivated by the theory of planned behavior (Ajzen, 1991). Thus, we 12 

used the distinction between intention and behavior as a structuring element. We 13 

considered decisions of land-use change as the behavior. Land-use LU_t1 is influenced 14 

by diverse factors related to institutions, events, biophysical context, and the farmer’s 15 

intention. Intention, in turn, is influenced by factors related to the household situation 16 

and the economic context; more concretely, the node Farmer intention is influenced by 17 

factors related to household situation, such as Annual incomes, Savings, Farm trained, 18 

etc. The final Bayesian network structure is shown in Figure. A.1 a, and b, in Appendix 19 

A; and Table A.1 shows the descriptions of nodes.  20 

We parametrized the Bayesian network CPTs using different sources of data. (a) To 21 

include the diversity of the decisions made by individual farmers, we conducted a 22 

household survey from November to December 2016 at both sites (Table 2). We 23 

interviewed 35 household heads at the northern site and 36 at the southern site. Then, 24 
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we designed case files using 173 cases at the plot level obtained from the household 1 

survey and used the expectation-maximization (EM) learning algorithm provided by 2 

Netica to populate the CPTs. This algorithm is a robust method for performing 3 

maximum likelihood estimation on the parameters from incomplete data sets (Zou and 4 

Yue, 2017). (b) During a stakeholder workshop at the regional level, we conducted a 5 

scenario exercise we called an “imagine exercise” that used little stories, which aimed 6 

to obtain data to populate complicated nodes with more than two parent nodes (Cain, 7 

2001). (c) We observed the farmers’ daily activities and behavior during our fieldwork 8 

to verify the rationale behind decision of change. (d) We conducted semi-structured 9 

interviews with experts in soil sciences and hydrology from ESSA-Forêts (University of 10 

Antananarivo), which helped fill the CPTs of the intermediary nodes “soil fertility” and 11 

“water”. (e) Finally, we conducted a review of the literature and audiovisual materials 12 

(see Appendix B) to get insights into the change from forest to other land-use categories 13 

and the importance of the driving factors of this particular process.  14 

Using steps (a) and (b), we established a basic parameterization of key conditional 15 

probabilities. Next, we used steps (c) and (d) to apply trends starting from the key 16 

conditional probabilities to deduct the missing CPTs values (Cain, 2001). For the final 17 

parametrization of the node LU_t1, we applied the trends and compiled all data from the 18 

different sources in Microsoft Excel. Cases of CPTs for which we could not elaborate 19 

information were parametrized with a uniform probability distribution. For CPT cases 20 

that had values from one source (e.g., a workshop), those values were considered, and 21 

for those that had values from multiple sources, the means were calculated. This 22 

allowed us to parameterize CPTs with high numbers of conditional probabilities. 23 

  24 
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STEP ACTIVITY 

NO. OF PARTICIPANTS 

TIME Northern site 
(Mahalevona) 

Southern site 
(Morafeno)   

1: 

Set up and 

parameterize 

BN Model 

Workshop with 

national experts 

(Antananarivo) 

4 
November 

2016 

Workshop with 
regional experts 
(Maroantsetra) 

12 
Field visit 1 : 

11 April - 28 

April 2016 

 

Explorative 
interviews 

6 

 
11 

Focus group with 
farmers 

6 

 
13 

Workshop with 

regional stakeholders 

(Maroantsetra) 

11 
Field visit 2 : 10 
November – 20 

December 
2016 

 

Workshop with 

farmers at village 

level 

Mahalevona: 9 

Fizono: 21 

 

Morafeno: 4 
Beanana: 10 

Workshop with 
national experts 

(Antananarivo) 
7 June 2017 

Workshop with 
regional stakeholders 

(Maroantsetra) 
11 

Field visit 2 : 10 
November – 20 

December 
2016 

 

Household survey 35 

88 plots 

 

 

36 

85 plots 

Ethnographic 
observation 

- 

3:  

Validate and 

Re-

parameterize 

BN Model 

Workshop with 
regional stakeholders 

(Maroantsetra) 
12 

Field visit 3: 30 
January-15 
February 2018 

 Workshop with 
farmers at village 
level 

Mahalevona: 14 

Fizono: 11 

 

Morafeno: 10 

Beanana: 19 

Table 2: Number of participants during each activity and field visit duration. 1 

2.3.2. Iterative process for calibrating and validating the model 2 

Using preliminary land-use change scenarios, we conducted a qualitative validation 3 

process during workshops, where stakeholders informed us about the relevance of the 4 
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variables for triggering land-use change and assessed the model outputs based on first 1 

parametrization for accuracy (Celio, Brunner and Grêt-Regamey, 2012). We conducted 2 

five two-hour workshops with farmers, economic operators in cash crops sector, state 3 

representatives, and representatives of nongovernment organizations (NGOs) at the 4 

village and regional levels, considering the three dimensions of change motivated by 5 

Pontius and Millones (2011): quantity, dynamics, and allocation. During the quantity 6 

exercise, stakeholders were asked if the quantity of land-use change matched their 7 

beliefs. For the dynamics dimension, we conducted 30-minute exercises, during which 8 

we presented land-use change pathways from an established initial condition of a given 9 

land use. For the allocation criteria, we presented land-use change trajectories in two 10 

time steps, 2016–2023 and 2023–2030, and asked groups of three to five participants to 11 

comment on the proposed patterns of change. Each group reported separately according 12 

to the specific characteristic of the plot and the information they had about it.  13 

The results gained we source from the target node LU_t1 that shows the probability of 14 

occurrence of each land-use category after a decision period. To represent path 15 

dependency, one determining factor of LU_t1 is LU_t0 that represents the land-use at 16 

the beginning of the decision period (see Appendix A, Figure. A.1). Results showed that 17 

the developed Bayesian network model represented a group view of farmers. At the 18 

plot-specific level, (see Appendix C, Figure. C.1) and from the individual farmers’ 19 

perspectives (allocation measure), local actors agreed only partly with the proposed 20 

land-use changes. However, on a generic level, with group consensus at the village level 21 

(dynamic measure), the local actors widely agreed with proposed land-use changes 22 

pathways (see Appendix C, Figure. C.2), and similarly at the regional level (see 23 

Appendix C, Figure. C.3).  24 
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To produce the model output for the dynamic validation exercise, we used five-to 1 

seven-year time steps, i.e., t1 and t2 corresponding to 2023 and 2030, respectively. 2 

However, most of the land-use change rates evoked by farmers were faster than the 3 

proposed time steps, except the change from shifting cultivation to the mixed 4 

agroforestry system (SC-MAFS) for the southern site (Morafeno). Farmers, at first, did 5 

not take into account the time lags due to the removal of one crop and its replacement 6 

by another, meaning the time until a change is perceived in the landscape. In summary, 7 

the interval of five to seven years was widely accepted once participants agreed on the 8 

aspects that should be covered by this time interval.  9 

Based on stakeholders’ remarks during the validation step, we recalibrated the Bayesian 10 

network by adding nodes and then adjusting CPTs. As we obtained group results from 11 

the validation exercises, we translated the answers into probabilities. Focusing on an 12 

identical starting land-use category in two time steps, we calculated the ratio of groups 13 

indicating the same land-use change pathway to the total number of participating groups 14 

and fed it into the CPTs.  15 

2.3.3. Geodata preparation  16 

To prepare base maps for modeling, we used ArcGIS 10.2.2. We reclassified the 17 

initial land-use categories of Llopis et al. (2019) produced by a participatory and remote 18 

sensing-based approach (Zaehringer et al., 2018) into aggregated categories (see 19 

Appendix D) including Dense Plantation of cloves (DP), Shifting Cultivation (SC), 20 

Mixed AgroForeStry (MAFS), irrigated Paddy Rice (PR), Pastures and Cloves (PC), 21 

Pastures (P), Forest (F), Housing (H), and Artisanal Mining (AM). These land-use 22 

categories follow the terminology of local actors by separating the broad categories in 23 

their land-use. 24 



 

15 

 

Slope was created by processing digital elevation model data of the area provided by 1 

DLR/Airbus, using the slope tool in Spatial Analyst Extension of ArcGIS. Boundaries 2 

of protected areas were provided by the Wildlife Conservation Society and the 3 

Madagascar National Parks, which are the institutional managers of Makira Natural 4 

Park and Masoala National Park, respectively. We obtained water availability maps 5 

using a participatory approach. Local stakeholders mapped the water-scarce areas 6 

during the validation workshops. Based on the land-use map, participants drew 7 

polygons of water availability areas, and we digitalized these polygons using ArcMap. 8 

Subsequently, we converted all model input maps (vector) into a 50×50 m raster.  9 

2.3.4. Sensitivity analysis  10 

In Netica, we ran a sensitivity analysis on all factors to understand the relative 11 

importance of land-use change drivers on the model output maps using the Shannon 12 

measure of mutual information (Pearl, 1988). Mutual information I(X, Y) is also known 13 

as “cross entropy”, and “is a measure of the information shared by X and Y (i.e., the 14 

reduction in entropy from observing Y)” (Kjærulff and Madsen, 2008). If X is the 15 

variable of interest, then I(X, Y) is a measure of the value of observing Y (Kjærulff and 16 

Madsen, 2008). It is calculated as follows:  17 

𝐼 (𝑋, 𝑌) = 𝐻(𝑋) − 𝐻(𝑋|𝑌)                             (1) 18 

𝐼(𝑋, 𝑌) = ∑ ∑ 𝑃(𝑥, 𝑦) log[
𝑃(𝑥,𝑦)

𝑃(𝑥)𝑃(𝑦)
]

𝑦
𝑛=0

𝑥
𝑛=0         (2) 19 

where H(X) is the entropy, and H(X|Y) is the entropy of X given an observation on Y. 20 

Lowercase indicates the actual instantiation, and P(x,y) reflects the joint probability of 21 

finding X and Y (Kjærulff and Madsen, 2008; Norsys, 2011). It has values between 0 22 

and 1, where 1 denotes a uniform distribution between all possible states (maximum 23 
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uncertainty), and 0 denotes complete certainty about the state of the target node.  1 

2.3.5. Production of Bayesian network model output maps  2 

To produce maps of future land-use change according to different scenarios, we used a 3 

C-programmed platform that can combine a Bayesian network with geospatial data 4 

(Stritih et al., 2020). The platform provided outputs for the target node of the Bayesian 5 

network at each iteration.  6 

For the production of model outputs, we used the Bayesian network feature of 7 

providing evidence for nodes. Farmer characteristics of were kept constant at each 8 

iteration (updated with soft evidence). In addition, we used slope and water availability 9 

maps to update the respective nodes (with hard evidence). For the “status quo” scenario, 10 

we used soft evidence, which means that we were uncertain about a specific state but 11 

certain about its distribution (Peng, Zhang, and Pan, 2010). Outputs were spatially 12 

explicit probabilities of each state of the target nodes, that is, the probability of 13 

occurrence for each land use in target node LU_t1.  14 

 15 
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3. Results  1 

After the iterative setup process, we distinguished six groups of factors driving land-use 2 

decisions:  3 

(a) Household situation and its objectives: Farmer intention, Rice production, Rice 4 

sufficiency months, Savings, Annual incomes, Farm trained, Need of land, 5 

Mouths to feed. 6 

(b) Economic factors related to markets: International and local Prices of cash 7 

crops. 8 

(c) Societal factors that reflect the situation within the community: State of the 9 

irrigation system, Clearing of forest, and Theft. 10 

(d) Biophysical factors: Number of shifting cycle, Soil fertility, Water sufficiency, 11 

and Slope.  12 

(e) Institutional factors: Conservation status, Acceptance of conventions on 13 

conservation and trade by the government of Madagascar. 14 

(f) Events triggering land-use change: Cyclones and Pests. 15 

3.1. Relative importance of factors driving land-use change decisions 16 

Based on the two developed Bayesian networks (see Appendix A, Figure. A.1 and 17 

Table A.1), we identified the importance of biophysical and socioeconomic factors in 18 

the farmers’ decision-making. While the farmers’ intention (Mutual Information, I = 19 

0.06) is driving land-use change at the northern site (Mahalevona), land-use change at 20 

the southern site (Morafeno) is most sensitive to the presence of the conservation area 21 

(Mutual Information, I = 0.04; Figure 3). Contextually, the northern site (Mahalevona) 22 

provides important opportunities for cash crop cultivation, as the terrain is flatter than at 23 
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the southern site (Morafeno) where features hilly and upland areas. In contrast, at the 1 

southern site (Morafeno), the protected area forces farmers to optimize their remaining 2 

cultivated area to cover minimal needs. Theft is also an important driver of land-use 3 

change in northeast Madagascar, and even more important at the northern site 4 

(Mahalevona; I = 0.02621) than at the southern site (Morafeno; I = 0.00040) (Figure 3). 5 

According to the farmers living in the northern site (Mahalevona), despite thefts on their 6 

plots, the farmers keep planting cash crops and even expand the mixed agroforestry 7 

systems to compensate for their losses. The process is also spurred by the soaring 8 

vanilla prices.  9 

Slope is a much more important factor of land-use change at the southern site 10 

(Morafeno) than at the northern site (Mahalevona) (Figure 3). The flatter topography at 11 

the northern site (Mahalevona) allows farmers to establish irrigated paddy rice fields or 12 

to cultivate other crops, such as vegetables. Due to hilly land constraints, at the southern 13 

site (Morafeno) farmers keep producing rice in shifting cultivation systems. Although 14 

both sites are located in forest frontier contexts, the large flat areas at the northern site 15 

(Mahalevona) allow farmers to cultivate irrigated paddy rice fields in addition to 16 

shifting cultivation (Figure 3). This is not the case at the southern site (Morafeno), 17 

which has a more rugged terrain, and only a few farmers own small-scale paddy rice 18 

fields. Thus, rice is produced mostly through shifting cultivation. This reason explains 19 

why the value of probability of shifting cultivation in the Bayesian network target node 20 

LU_t1 (see Appendix A, Figure. A.1 a and b) at the southern site (Morafeno) is higher 21 

(prior probability P=38.6%) than at the northern site (Mahalevona) (prior probability 22 

P=23.2%). 23 
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Changes from any types of land -use into pastures or pastures and cloves are rarely 1 

found at the southern site, because farmers do not need pasture land as they neither have 2 

nor need zebus for upland rice farming (see Appendix E, Figure. E.1 b). Factors related 3 

to water availability are similar at both sites, although northeast Madagascar is the 4 

rainiest region of Madagascar (Figure 3). Water system management, however, differs 5 

between the two sites. At the northern site (Mahalevona), there are dams and canals to 6 

irrigate the paddy rice fields although some are dysfunctional because of damages, 7 

leading to the drying up of some paddy rice fields. At the southern site (Morafeno), in 8 

addition to the scarcity of flat land for paddy rice fields, irrigation infrastructure is 9 

nonexistent. Farmers rely on traditional canals to irrigate the few paddy rice fields they 10 

own.  11 

 12 

Figure 3: Sensitivity of land-use change to various societal, economic, and biophysical 13 

factors. LU_t1 is the target node. Values are given in terms of Mutual Information (I). 14 

Only factors whose difference of (I) values between the two sites are higher than 0.001 15 

are shown. 16 
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3.2. Dynamics of shifting cultivation 1 

Focusing on factors driving changes from the land-use category shifting cultivation to 2 

other categories, Farmer intention was the most important factor at the northern site 3 

(Mahalevona). In contrast, the factor Slope outweighed the others at the southern 4 

(Morafeno) (see Appendix E, Figure. E.1 a, and b). In addition, we found that the 5 

dynamics of shifting cultivation differs between the sites. That is, shifting cultivation is 6 

more persistent at the southern site (Morafeno) than at the northern site (Mahalevona). 7 

In technical terms, we put hard evidence on “Shifting cultivation” of LU_t0 to 8 

determine the probability of occurrence of LU_t1. While at the southern site (Morafeno) 9 

after a time step of five to seven years, shifting cultivation remains shifting cultivation 10 

(P = 56.28%), at the northern site (Mahalevona), the land use with the highest 11 

probability is the mixed agroforestry system (P = 51.33%). Shifting cultivation is 12 

converted into mixed agroforestry systems for planting mainly vanilla and cloves (see 13 

Appendix E, Table E.1). The change of shifting cultivation, thus, is slower at the 14 

southern site (Morafeno) than at the northern site (Mahalevona). At the southern site 15 

(Morafeno), the change of shifting cultivation into mixed agroforestry takes ten years, 16 

while it takes only four years at the northern site (Mahalevona).  17 

Figure 4 demonstrates that the high probability of occurrence of mixed agroforestry is 18 

clustered at the northern site (Mahalevona). This land-use type is more spatially 19 

extended than at the southern site (Morafeno). In addition, at the southern site 20 

(Morafeno), the probability of occurrence of land -uses, namely, shifting cultivation and 21 

mixed agroforestry, is low for plots near the protected area (Figure 4).  22 
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 1 

Figure 4: As the model is spatially explicit, these maps show various land-uses with 2 

respect to their probability of occurrence in 2023 and 2030 for the village Beanana (part 3 

of the southern site Morafeno) and the village Fizono (part of the northern site 4 

Mahalevona).  5 

 6 

4. Discussion  7 

We used a Bayesian network-based land-use decision modeling approach to better 8 

understand drivers of land-use change in the forest frontier context of Madagascar. The 9 

spatially explicit model outputs showed differences in terms of the importance of 10 

shifting cultivation between two sites, which induce differences in terms of trajectories 11 
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of this land-use change. 1 

Farmers’ decisions are highly dependent on their households’ economic situations. At 2 

the two case study sites, slope and water availability are among the most important 3 

factors for land-use change, which match the current understanding that these 4 

biophysical factors highly influence the type of crops farmers adopt (Ramboatiana et 5 

al., 2018). Delineation of a protected area can ultimately determine farmers’ decisions, 6 

which supports the concept that rules and institutions regulating land -use influence 7 

land-use change (Irwin and Geoghegan, 2001; Ramboatiana et al., 2018; Llopis et al., 8 

2019).  9 

At the northern site (Mahalevona), whether there is enough land available for farming 10 

or not, the farmers’ intention is a key driver of land-use change. The farmers’ objective 11 

is to cultivate more cash crops, triggering changes from shifting cultivation to mixed 12 

agroforestry, or to keep their mixed agroforestry cultivated parcel. The farmers’ 13 

intention to focus on cash crops results from several factors: First, this part of 14 

Madagascar has been subject to the production of cash crops, namely, cloves, coffee, 15 

and vanilla, since colonization, and it became a tradition of each household to cultivate 16 

cash crops; in addition, the region’s climate supported this development. Second, the 17 

farmers’ income depends mostly on selling cash crops, which allows them to buy the 18 

extra -quantity of rice that they need as their own rice production is insufficient. Third, 19 

as clove crops are a perennial crop and require several years to reach maturity, the 20 

farmers might not be able to adapt their crop choices quickly and easily in response to 21 

price volatility (Llopis et al., 2020). 22 

Farmer intention is less important than conservation status of the area in the southern 23 
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site (Morafeno). The farmers’ intention can, also be overruled by institutional decisions, 1 

when agricultural land is placed under conservation, as shown by other authors (Lambin 2 

and Meyfroidt, 2011). The implementation of such protected areas is often driven by 3 

distant decisions at the national government level, even internationally (Andriamihaja et 4 

al., 2019) through a top-down process (Scales, 2014), often ignoring the socio-5 

ecological context (Gardner et al., 2018). The Masoala National Park was created in 6 

1997, but the expansion of protected areas in Morafeno is the result of the Malagasy 7 

government’s policy since the Vth World Parks Congress in Durban, South Africa in 8 

2003, during which the government committed to triple the surface of protected areas. 9 

The influence of conservation status are apparent not only in the land-use management 10 

at the boundaries of the parks but also in the agricultural training of farmers, which 11 

encourages them to adopt alternatives in exchange for their commitment to stop “tavy” 12 

(Brimont et al., 2015). As a result, farmers act and adapt their use of land according to 13 

the situation. Constraints due to the protected area boundaries at the southern site 14 

(Morafeno) influence farmers to reuse the land. This last observation confirms the idea 15 

that farmers might intensify their shifting cultivation (Brimont et al., 2015) and convert 16 

the remaining non-protected forests not only to increase their rice production but also 17 

out of fear of losing the legitimate property of the land, because traditionally whoever 18 

clears the land owns it (Andrianirina-Ratsialonana and Burnod, 2012).  19 

The rate of change to shifting cultivation is dependent on the biophysical factors and 20 

household situation of a site. At the southern site (Morafeno), expansion of shifting 21 

cultivation is observed, and previous shifting cultivation is still maintained for one more 22 

time step (2023), which is not occurring at the northern site (Mahalevona) where 23 

shifting cultivation becomes very rare after one time step. The spatially explicit model 24 
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outputs showed differences in terms of timing of land-use change between the sites 1 

while expansion of the mixed-agroforestry system is generalized at the two sites. This 2 

last observation may partially distort the idea that shifting cultivation would remain the 3 

main use of land in northeast Madagascar (Heinimann et al., 2017). We hypothesize 4 

that conservation regulations influence not only decision-making (see above), but also 5 

the dynamics. Due to the implementation of conservation restrictions for the Makira 6 

Protected Area, farmers at the southern site have difficulty finding new plots to cultivate 7 

because they are not allowed to clear new fields. This might slow the speed of land-use 8 

change and lead the farmers to maintain the same land-use, here shifting cultivation, on 9 

the same plots until soil fertility decreases which is still consistent with the results that 10 

conservation restrictions may shorten the fallow periods for “jinja” resulting in 11 

decreased fertility (Brimont et al., 2015). 12 

Similar to Celio, Koellner, and Grêt-Regamey’s finding, in 2014, the Bayesian network-13 

based land-use decision modeling approach can identify the combined effect of locally-14 

determined factors driving land-use change and their causalities in a data-poor 15 

environment. In addition, the participatory approach made it possible to investigate and 16 

understand the farmers’ decision-making context (Bromley, 2005) and causalities in the 17 

decision-making. The stakeholders involved in our participatory approach considered 18 

better understanding of the drivers of land-use change highly useful. Nevertheless, 19 

compared to methods of BN parametrization used by, e.g., Celio, Koellner, and Grêt-20 

Regamey (2014), we chose to use methods more adapted to the local context, such as 21 

the imagine exercise. Although understanding conditional probabilities is difficult for 22 

all persons, we tried to reduce this barrier as much as possible while taking into account 23 

the low rate of literacy in the study sites.  24 
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Thus, to secure sustainable land in forest frontiers, land management strategies should 1 

consider biophysical, societal, institutional factors and household intention. The results 2 

of this study can support rural territory planning and management by providing 3 

information about key factors of local decision-making and future development of the 4 

landscape of Maroantsetra. The participatory setup process and the resulting maps are 5 

means to the end to support participatory land-use planning processes. Tools for 6 

supporting such processes using, for example, visualizations help rationalize strategic 7 

planning such as the national project “Projet Agriculture Durable par une Approche 8 

Paysage (PADAP)”. This project, a national cross-sectoral project underway since 2018, 9 

aims to increase agricultural productivity while sustainably managing natural resources 10 

in five landscapes in northwest and east of Madagascar by designing development and 11 

management plans for these landscapes as a the first step. It did not include the 12 

landscape of Maroantsetra (Ministère de l’Agriculture de l’Elevage et de la Pêche, 13 

2018), however, future similar project in the northeast Madagascar could rely on results 14 

of this study.  15 
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Appendices 

Appendix A 

Figure. A.1. Bayesian Networks of land-use decisions at the two case study sites: a) 

southern site (Morafeno), b) northern site (Mahalevona). The target node is the land-use 

after one time-step (LU t1), whose states represent the modeled land-use categories (cf. 

Appendix D). In our Bayesian network four broad categories of drivers influence the 

target node LU t1 (red), biophysical factors (yellow), societal factors (light 

blue),economic factors (grey), household’s situation (white), institutions (green) and 

events (blue). Value of CPTs 50:50 means there was no data available. 
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Table A.1. Description of the Bayesian networks variables 

Nodes Categories Definition States 

Land-Use t0  - Current land-use Dense Plantation Clove, Housing, 

Mixed Agroforestry, Paddy Rice, 

Pasture, Pastures Cloves, Forest, 

Shifting Cultivation, Artisanal 

Mining 

 

Land-Use t1 - Land-use after one time-step 

Farmer intention Household’s situation Intention of farmer or household 

concerning his farm 

More CC, More paddy rice field, 

More shifting field, Mining 

activity 

Annual incomes Household’s situation Household annual incomes agricultural or 

others, unity is Ariary 

More than 10 000 000/ Less than 

10 000 000 
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Savings Household’s situation Whether households have savings during 

the year 

Yes/ No 

Sufficiency months Household’s situation Number of months household finish its 

rice production 

Less than 6/ More than 6 

Rice production Household’s situation Household annual production of rice   Less than 900 Kg/ More than 900 

Kg 

Mouths to feed Household’s situation Number of household member to feed Less than 4/More than 4 

Farm trained Household’s situation Whether household receive training or 

not on agriculture 

Yes/ No 

Need of land Household’s situation Whether household need more arable 

land or not 

Yes/ No 

Migrants Household’s situation Whether the household is migrant 

meaning not from the region 

Yes/ No 

Local price of cash crops  Economic  Local price of cash crops (vanilla, cloves) Increase/Decrease 
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International price of 

cash crops 

Economic International price of cash crops Increase/Decrease 

Soil fertility Biophysical situation Fertility of soil Low/High 

Shifting cycle Biophysical situation Number of times successive shifting 

cultivation household did on the parcel 

More than 3/Less than 3 

Water Biophysical situation Availability of water on the plot Insufficient/Sufficient 

Irrigation system Societal situation State of irrigation system OK/Not OK 

Forest clearing Societal situation Existence of forest clearing upstream of 

the plot 

Yes/No 

Slope Biophysical situation Gradient state of the plot  Flat/ Sloping 

Conservation status Institution Conservative status of the area Protected/Not protected 

Theft Societal situation Whether there is theft in the plot or not Yes/No 

Cyclone Events Whether the plot is hit by the cyclon Yes/No 

Pests Events Whether cultivation is ravaged by pests Yes/No 
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Government trend  Institution Current decision trend of the government  PA extension/ CC extension 

Conservation 

conventions 

Institution Whether the government accept and sign 

conservation convention or not 

Yes/No 

Trade conventions Institution Whether the government accept and 

signed trade convention or not 

Yes/No 
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Appendix B 

List of references of literature and audio-visual material reviewed:  

 

Andrianarimisa, A. et al. (2013) ‘Transfert de gestion et conservation de la biodiversité 

de Makira Transfert de gestion et conservation de la biodiversité de Makira , Nord-Est 

de Madagascar’, in Rôle et place des transferts de gestion des ressources naturelles 

renouvelables dans les politiques forestières actuelles à Madagascar, p. 8. doi: 

10.13140/2.1.2455.3602. 

Birkinshaw, C. and Randrianjanahary, M. (2007) ‘The Effects of Cyclone Hudah on the 

Forest of Masoala Peninsula , Madagascar’, Madagascar Conservation & Development, 

2(1), pp. 17–20. 

Brimont, L. et al. (2015) ‘Achieving Conservation and Equity amidst Extreme Poverty 

and Climate Risk: The Makira REDD+ Project in Madagascar’, Forests, 6, pp. 748–768. 

doi: 10.3390/f6030748. 

Burivalova, Z. et al. (2015) ‘Relevance of Global Forest Change Data Set to Local 

Conservation : Case Study of Forest Degradation in Masoala National Park , 

Madagascar’, Biotropica, 47(2), pp. 267–274. 

Ormsby, A. and Kaplin, B. A. (2005) ‘A framework for understanding community 

resident perceptions of Masoala National Park , Madagascar’, Environmental 

Conservation, 32(2), pp. 156–164. doi: 10.1017/S0376892905002146. 

 BBC News (2018). Vanilla thieves of Madagascar, 

https://www.youtube.com/watch?v=9nFzAT3cUws 
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Appendix C 

Actors validated outputs following scenarios on price of cash crops (Increase and 

Decrease) and water availability (Sufficient or Insufficient). The following charts show 

validation results considering views of actors on three levels: Plot, Village, and Region 

levels. t1: corresponds to 2023 and t2 to 2030; n=number of validation participants.   

 

Figure. C.1. Plot level 

 

Figure. C.2. Village level 
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Figure. C.3. Region level 
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Appendix D 

Reclassification of initial land-use categories for modeling (adapted from Llopis, J. et 

al., 2019) 

Initial land-use categories Modeled land-use categories  

Clove plantation young 

Clove from fallow 

Clove plantation dense 

Dense plantation of cloves (DP) 

Shifting cultivation shrub-grass fallow  

Forest degraded burned 

Shifting cultivation shrub fallow  

Shifting cultivation tree fallow  

Shifting cultivation, cultivated 2016 

Shifting cultivation grass fallow 

Shifting cultivation shrub-grass fallow 

Shifting cultivation (SC)  

Clove plantation sparse, unmaintained  

Multitree agroforest, open  

Multitree agroforest, close  

Clove-dominated agroforest  

Bamboo forest, separation between fields 

Mixed AgroForeStry (MAFS)  

Dried irrigated rice fields  

Irrigated rice fields 

irrigated paddy rice (PR)  

Clove and pasture land Pastures and cloves (PC) 

Pasture with no trees 

Pasture with trees (others than clove) 

Pastures (P) 

Forest Forest (F) 

Population center, hamlet, isolated building Housing (H) 

- Artisanal mining (AM) 
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Appendix E 

Table E.1. Probability of change concerning shifting cultivation 

LUt1  

Probability of LU in t=1 

Mahalevona Morafeno 

Evidence  

Lu t0 : Shifting 

cultivation   

Lu t0 : Shifting 

cultivation  

Slope : flat  

Lu t0 : Shifting 

cultivation  

Slope : Sloping  

Lu t0 : Shifting 

cultivation   

Lu t0 : Shifting 

cultivation  

Slope : flat  

Lu t0 : Shifting 

cultivation  

Slope : Sloping  

Dense Plantation of Clove    1.74 3.74 0.70 10.18 7.90 11.1 

Housing                 0.32 0.34 0.31 0.11 0.14 0.099 

Mixed Agroforestry       51.33 49.4 52.3 26.02 34.4 22.7 

Paddy Rice                1.87 4.88 0.31 5.85 16.3 1.74 

Pasture                   0.32 0.34 0.31 1.23 1.14 1.26 

Pastures and Cloves           1.80 0.34 2.55 0.11 0.14 0.099 

Forest                  0.32 0.34 0.31 0.11 0.14 0.99 

Shifting Cultivation     41.97 40.3 42.9 56.28 39.7 62.8 

Artisanal Mining        0.32 0.34 0.31 0.11 0.14 0.099 
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Figure. E.1.a. Importance of factors in terms of land-use at the northern site (Mahalevona) 
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Figure. E.1.b. Importance of factors in terms of land-use at the southern site (Morafeno)
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