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Monopolistic Intermediation in the Gehrig (1993)
Search Model Revisited

Simon Lörtscher∗

December 26, 2003

Abstract

We modify the basic Gehrig (1993) model. In this model, individual
agents are either buyers or sellers. They can choose between joining the
search market, joining the monopolistic intermediary or remaining inac-
tive. In the search market, agents are randomly matched and the price at
which exchange takes place is set bilaterally. If agents join the intermedi-
ary, buyers have to pay an ask price set in advance by the intermediary.
Likewise, if sellers decide to deal through the intermediary, they get the bid
price set by the intermediary. As Gehrig shows, this model has an equi-
librium in which the search market and the market of the monopolistic
intermediary are simultaneously open. The intermediary makes positive
profits because he trades at a positive ask-bid spread, and the set of indi-
vidual agents is tripartite: High valuation buyers and low cost sellers deal
through the intermediary, buyers and sellers with average valuations and
average costs are active in the search market, and low valuation buyers and
high cost sellers remain inactive. We modify this basic model by imposing
a sequential structure. We assume that the monopolistic intermediary first
has to buy the good from sellers on the input market before he can sell it
to buyers on the output market. As a consequence of the sequential struc-
ture, the subgame following capacity setting has a unique subgame perfect
equilibrium with an active search market. On the equilibrium path, the
equilibrium analyzed by Gehrig is replicated.
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Michael Manz, Gerd Mühlheusser Jean-Charles Rochet, Yves Schneider and Manuel Wälti for
valuable comments and discussions. Any remaining errors are mine.
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1 Introduction

A question models of perfect competition leave unanswered is which institution

coordinates the decisions of the great number of agents necessary for perfect

competition to work. While attributing the role of the coordination mechanism

to prices, these models typically remain silent about the origin of these prices.

A second issue that remains open is how exchange of the goods takes place. If

a thousand sellers and thousand buyers trade some good at a given price, these

models do not say how and where the agents exchange the good. Since questions

relating to the microstructure of markets are not treated in these models, the

microeconomic model of perfect competition can be said to lack a microeconomic

foundation.

In this (and a forthcoming companion) paper, we deal with some of these

questions. Building on the work of Gehrig (1993), we study a model in which a

monopolistic intermediary coordinates the decisions of buyers and sellers willing

to trade with him at the ask and bid prices he quotes. Another subset of buyers

and sellers is active in a search market where goods are exchanged without the

intermediary’s services. In this model, (ask and bid) prices originate from a profit

seeking intermediary. The intermediary establishes the exchange of the good for

those traders who are willing to trade through him, while prices in the search

market are determined through a bargaining process and the good is exchanged

from an individual seller to an individual buyer. Intermediation is a profitable

business because search market participants are matched at random and therefore

those buyers and sellers who could exchange the good with the greatest mutual

benefit will, in general, not find each other. As a consequence, the search market

will not exhaust all potential gains from trade. The dispersed rather than the

asymmetric nature of information gives thus rise to profitable intermediation.

Therefore, the model departs from the strand of literature focussing on asymme-

tries of information that give rise to - financial - intermediaries (e.g. Diamond

and Dybvig, 1983; Diamond, 1984; Freixas and Rochet, 1997; Dixit, 2001). The

intermediary in our type of model does not reduce or eliminate inefficiencies due

to informational advantages of one party involved in trade and its strategic use

thereof. What intermediation in this type of model achieves is that those buyers

and sellers who have the most to gain can trade with greater certainty and at a
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price which leaves them a greater gain than they can expect from search market

participation.

We think there is a fair justification to not a priori distinguish between fi-

nancial intermediaries like banks or insurance companies on the one hand and

non-financial intermediaries like retailers on the other hand. After all, why should

financial intermediaries by their very nature be characterized as mitigating in-

efficiencies due to asymmetries of information while non-financial intermediaries

arise for some other reasons, like, say, increasing returns to scale? Of course, it

is beyond question that asymmetric information is important for the businesses

financial intermediaries are engaged in. The requirement of a collateral in credit

contracts is hard to understand without referring to asymmetric information. But

granting this does not imply that such asymmetries are of no or only of minor im-

portance in other industries like, say, retailing. A simple transaction like buying

food can involve considerable uncertainties and risks because quality differences

can be hard to detect for customers before consuming the good. Therefore, re-

ducing these uncertainties may just be one of the services provided by retailers.

This is very similar to the services provided by a financial intermediary, whose

job consists among other things of making sure that the credit-takers are worth

the credits given. In retailing, intermediaries make sure that the producers are

worth the credit the consumers give them when buying their products. Accord-

ingly, the fees retailers charge to producers are just the analogue to the collateral

banks require when they give credit. Thus, the non-financial intermediary may

mitigate the same sort of problems arising from asymmetric information as fi-

nancial intermediaries.1 On the other hand, retailing is certainly a profitable

business for other reasons, too. It allows customers to find at less cost what

they are looking for. This sort of service is provided by banks as well, of course.

Though a person might find a more profitable opportunity for a credit contract

outside a bank, searching for such an opportunity typically involves the costs of

time spent searching for (and the risk of not finding) this opportunity. Hence,

financial and non-financial intermediaries might provide basically the same sort

of services with respect to the dispersed nature of information, too, namely that

of mitigating or eliminating search cost.

1See also Friedman (1962, p.146) for a suggestion to view retailers as providing, among other
things, these kinds of services.
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The immediate goal of the present research is to incorporate Cournot (or

Cournot-like) competition between intermediaries into the model set out by Gehrig

(1993). In order to do so, we have to modify the model in two main ways. First,

we introduce a dynamic (or sequential) structure, so that the intermediary can

only start selling after he has finished buying. As a consequence of this sequen-

tial structure, the number of (subgame perfect) equilibria is reduced considerably.

This is what we do in this present paper. In a companion paper, we then intro-

duce competition between capacity constrained intermediaries à la Kreps and

Scheinkman (1983).

This paper is also related to Spulber (1996), Rust and Hall (2003) and Nee-

man and Vulkan (2002). What distinguishes this paper from Spulber’s and Rust

and Hall’s work is that though we introduce a dynamic structure, our model is

basically a static one-shot game. Its structure is the same as that of a partial equi-

librium model, with the exception that a ”central market place” is not taken as

given. This is also what makes the difference to Neeman and Vulkan (2002), who

study whether agents will choose to trade in a decentralized or in a centralized

market, but do not explain how the centralized market operates. An important

contrast to Spulber (1996) is that the prices the intermediary sets are publicly

observable. Dixit (2001) finally studies profit maximizing intermediation in a

model where the basic informational friction is the trust-worthiness of individ-

ual agents. Intermediaries in his model provide information about past behavior

of agents and enforce contracts. However, extending our model to asymmetric

information is beyond the scope of the present and the companion paper.

The paper is structured as follows. Section 2 describes, the basic model.

Section 3 derives the solution of the dynamic intermediation game, and Section

4 concludes. Discussions of issues concerning rationing and the structure of the

Gehrig model are relegated to the Appendix.

2 The Basic Model

Our model world consists of a large number of individuals who can engage in

trade in a decentralized (search) market. More specifically, there is a continuum of

buyers willing to buy one unit of an indivisible good of homogenous quality (which

is known to every one). Their preferences are described by reservation prices r
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which are uniformly distributed over the unit interval, r ∼ U [0, 1] . If a buyer

with reservation price r buys the product at price p (where the volunteer nature

of exchange and individual rationality require p ≤ r), his utility gain is r−p. This

generates an aggregate demand schedule D(p) = 1 − p, p ∈ [0, 1], which can be

interpreted as a (Walrasian) market demand. Analogously, sellers’ preferences are

described by reservation prices or unit costs of production s which are uniformly

distributed on the unit interval [0, 1]. If a seller with reservation price s sells the

product at price p (where again volunteer exchange under individual rationality

requires p ≥ s), his utility gain is p− s, so that aggregate supply is S(p) = p, p ∈
[0, 1]. A buyer with reservation price r owns another good that he can exchange

for the good in question. This good is called money. We assume that buyers have

money and that sellers accept money in exchange for the good. Given the demand

function D(p) = 1 − p and the supply function S(p) = p, the Walrasian market

outcome is characterized by price pW = 1
2

and quantity exchanged QW = 1
2
.

At the core of the model is the assumption that there is no benevolent auc-

tioneer quoting market clearing prices and coordinating trading activities at zero

costs. Therefore, the agents are forced to establish the allocation by their own

actions. The dispersed nature of information makes search for a trading partner

costly insofar as search is time consuming and involves uncertainty. Following

Gehrig, we assume that only individuals with expected utility gain from search

market participation greater than zero enter the search market. When buyers

and sellers enter the search market, they are matched at random by some match-

ing technology. As Spulber (1999, p. 561) observes, the search market is static

in the sense that search market participants are randomly and pairwise matched

at most once. Gehrig (1993, p.102/3, emphasis added) describes the matching

technology as follows:

The technology is such that each market participant on the short side

of the market is matched with some probability λ ∈ [0, 1] with an

agent of the opposite type. The matching probabilities of agents on

the long side consequently are adjusted by the relative numbers and,

therefore, less than λ.

When a seller and a buyer are matched, they bargain over the price. We

briefly review the most prominent bargaining procedures and then explain why

we choose an even sharing rule.
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Brief Review of Bargaining Procedures In Gehrig (1993), search mar-

ket offers are take-it-or-leave-it offers and the trader who can make the offer is

determined by nature. Accordingly, agents’ reservation prices are always private

information, so that the trader who makes the offer does not know the reservation

of the other trader. Consequently, the optimal offer depends on (the distribu-

tion of) traders active in the search market. As an alternative, Spulber (1999)

suggests to introduce alternating offers à la Rubinstein (1982) so as to get rid of

the asymmetry of information inherent in the assumption that reservation prices

are private information in the bargaining process. In a Rubinstein alternating

offers game, both reservation prices and subjective discount factors are assumed

to be knowledge common to both parties engaged in the process. Finally, Freixas

and Rochet (1997, exercise 2.1) assume that reservation prices are known when a

buyer and a seller have been successfully matched and that the two parties share

the gains from trade r − s evenly, provided r − s > 0. (If r − s ≤ 0 there is

no trade.) We refer to this as the solution under an even sharing rule. Interest-

ingly, this corresponds to the Nash bargaining solution (Mas-Collel et al., 1995,

p. 842).2

Even Sharing Lacking a generally accepted theory and/or robust empirical

evidence about people’s bargaining behavior, one procedure is as good as any

other. However, it should be noted that the even sharing rule coincides with the

expected payoff of the Rubinstein alternating offers game if both players have

the same discount factor and if both players have the same chance of making

the first offer. (This is shown in Appendix B.) Since for the game as a whole,

it is this expected payoff that matters only, the even sharing rule can therefore

be seen as a combination of the Gehrig and the Spulber-Rubinstein procedure if

the person who makes the first offer is determined by nature. Moreover, because

adding a Rubinstein bargaining game to the last stage of the game (with nature

determining the first mover) yields the same results as simply assuming that

the gains from trade are shared evenly, we assume that buyers and sellers who

are successfully matched learn each other’s reservation price and then share the

2The Nash bargaining solution is the partition p which maximizes
∏

i∈N Ui(p), where Ui(p)
is individual i’s utility gain under p. Denote the aggregate utility gain from cooperation by U .
In our case, U = r − s := x > 0, Uσ = p, Uβ = x − p, so that

∏
i∈N Ui = UσUβ = p(x − p),

which is maximized at p = x
2 .
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gains from trade evenly. Not doing so would only make the whole game more

cumbersome and necessitate a lot of notation not needed otherwise.3

The Dynamic Intermediation Game

Next we describe the dynamic intermediation game with a monopolistic inter-

mediary. The main differences to the original model is the time structure of

the game and as a consequence of this, a reduction of the number of (subgame

perfect) equilibria with an active search market (see Gehrig, 1993; Freixas and

Rochet, 1997; Spulber, 1999). In Appendix A.2 we also clarify what happens

with agents who get rationed by the intermediary.

In the presence of intermediation, buyers and sellers face three decisions. They

can either join the intermediary, enter the search market or choose to remain

inactive. Using Gehrig’s notation, we denote by Iσ (Iβ) the set of all sellers

(buyers) who join the intermediary. The set of sellers (buyers) active in the

search market is denoted by Sσ (Sβ), and the set of sellers (buyers) who decide

not to be active is denoted by Zσ (Zβ). Finally, we denote by Ωσ (Ωβ) the set of all

sellers (buyers), so that by definition Zσ ≡ Ωσ\(Iσ ∪ Sσ) and Zβ ≡ Ωβ\(Iβ ∪ Sβ).

The (Lebesgue) measure of these sets is denoted by υ(.).

In the first stage, the intermediary sets a maximum quantity he is willing

to buy q, to which we refer as a capacity constraint, and he quotes the bid

price b at which he is willing to buy. Sellers decide whether they want to sell

to the intermediary. In the second stage, which begins after buying is finished,

the intermediary sets the ask price a at which he is willing to sell. Buyers decide

whether they want to join the intermediary. It is assumed that the intermediary’s

prices and the sets of individuals joining the intermediary are observed by all

agents without costs. In the presence of an intermediary, the market where

buyers interact with the intermediary will be called output market and the place

where sellers interact with the intermediary will be called input market. The

intermediary is also assumed to accept money in exchange for the good. Because

the intermediary first buys and then sells, he is assumed to have enough money

to buy from the sellers the quantity he wants to buy.

The intermediary must have two technologies individual search market traders

do not have. The first one is an information or communication technology, i.e.

3This is the same motivation as in Rubinstein and Wolinksy (1987, p. 283).



2 THE BASIC MODEL 8

the capacity to communicate to all traders the prices at which he is willing to

trade. The second one is the capacity to trade the volume the intermediary wants

to trade (counters, transportation facilities etc.), which will be referred to as

capacity constraint. If more sellers join the intermediary than he can serve given

his capacity constraint, some sellers get rationed. Likewise, if more buyers join

the intermediary than he can serve, some buyers will get rationed. Throughout,

we assume that sellers and buyers who get rationed by the intermediary cannot

go back to the search market.

Let us summarize. The intermediation game with a monopolistic intermediary

has three stages.

1. Input Market: The intermediary determines a maximum quantity - a

capacity constraint q - he is willing to buy and sets a bid price b. After

observing b, sellers decide simultaneously whether to join the intermediary.

Up to q, the intermediary is obliged to buy any quantity sellers want to

sell to him. For all those sellers who join the intermediary, the game is

over, regardless of whether they can actually sell or not.4 When a seller

with cost s has joined the intermediary, this information becomes public.

Accordingly, the aggregate quantity bought by the intermediary, denoted

as qb, becomes public information, too. These assumptions imply that

qb = min[q, υ(Iσ)].

2. Output Market: On the output market, the intermediary sets an ask

price a at which he has to sell any quantity buyers want to buy up to his

whole stock qb. If υ(Iβ) < qb, the intermediary can dispose of the extra

units for free. For buyers who decide to join the intermediary the game is

over, regardless of whether they can buy or get rationed. The set of buyers

who have joined the intermediary is observed by all players remaining in

the game.

3. Search Market: Sellers and buyers who have not joined the intermediary

may join the search market. Those who participate in the search market

meet randomly. The matching technology is such that all traders in the

search market are matched with probability λ ∈ [0, 1] if the set of sellers and

4See Appendix A.2.
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buyers active in the search market have the same measure. Otherwise, the

traders on the long side of the search market are matched with probability

γiλ, where γi =
υ(Ij)

υ(Ii)
< 1 with i = σ, β, j 6= i. There is no further possibility

to trade after a match has been established. For those who are not matched,

the game is over. A buyer r and a seller s who are successfully matched

share the gains from trade evenly by agreeing on the price r−s
2

if r− s > 0.

If r − s ≤ 0, they do not exchange the good. After that, the game is over.

Strategies There are three types of agents, sellers s, buyers r and the monop-

olistic intermediary I. A strategy for seller s is

τs = (Is(b, q); Ss(a, b, q, Iσ, Iβ)) . (1)

Similarly, for a buyer a strategy is

ρr = (Ir(a, b, q, Iσ, ), Sr(a, b, q, Iσ, Iβ)) , (2)

where the functions Ii(.) and Si(.) specify the conditions under which agent i

joins the intermediary or the search market, respectively, i = s, r. Note that

both for sellers and buyers, we do not have to specify the decision to be inactive,

because it is contained in the case where an agent decides to join neither the

intermediary nor the search market. Finally, for the intermediary, a strategy is

ϕ = (q, b; a(Iσ)) , (3)

where q and b are real positive numbers and a(Iσ) is a real valued function. In

general, a strategy for this game is a complicated expression, because there are

many states of the world for which each agent must have a complete contingent

plan. For example, every small change in the set of sellers deciding to join the

intermediary will require a different optimal response by all other players in sub-

sequent periods. Since there is an infinity of such contingencies, it will not be

possible to write down these strategies in closed forms in general.

3 Results

We first show that a slight modification of Proposition 1 of Gehrig (1993) applies

for the dynamic intermediation game with even sharing, so that the space over

which strategies must be defined can be reduced considerably.
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Proposition 1 (Gehrig (1993), Proposition 1) In any equilibrium with an

active search market,5 there are critical reservation values r and r, such that the

set of buyers can be partitioned into three subsets . If r ∈ [0, r), then r ∈ Zβ; if

r ∈ [r, r], then r ∈ Sβ and if r(r, 1], then r ∈ Iβ. There are critical unit costs

s and s, such that the set of sellers can be partitioned into three subsets (in any

equilibrium with an active search market). If s ∈ [0, s), then s ∈ Iσ; if s ∈ [s, s],

then s ∈ Sσ and if s ∈ (s, 1], then s ∈ Zσ.

The Proposition is proved with the help of the following three Lemmas.

Lemma 1 (Gehrig (1993), Lemma 1) For any positive ask bid spread a−b >

0, some traders will be active in the search market.

Proof : Buyers with r < a and sellers with s > b can expect positive utility

gains from search market participation.¥

Lemma 2 (Gehrig (1993), Lemma 2) In equilibrium, the sets of inactive buy-

ers and sellers, Zβ and Zσ, are closed and convex sets such that 0 ∈ Zβ and

1 ∈ Zσ.

Proof : Let buyer r be inactive and suppose r̃ < r is active. Then r could

imitate r̃ and get at least his payoff, whereas his payoff when inactive is zero.

Completely symmetric reasoning applies for sellers. Finally, buyer 0 and seller 1

remain inactive because they never expect a positive gain from trade.¥

Lemma 3 (Modification of Lemma 3, Gehrig (1993)) In any equilibrium

with an active search market (i.e. Sσ 6= ∅, Sβ 6= ∅),
(i) r0 ∈ Sβ ⇒ r /∈ Iβ for r < r0 and

(ii) s0 ∈ Sσ ⇒ s /∈ Iσ for s > s0.

Proof : Parts of the proof very closely mimic the one by Gehrig (1993). We

denote by αi, i = σ, β a seller’s and a buyer’s probability of being rationed when

joining the intermediary. This probability is the same regardless of the seller’s

5We have added this phrase because there is also an equilibrium where no one joins the
search market. If no one goes to the search market, unilateral deviation to join the search
market does obviously not pay. However, as long as there is no fix cost of joining the search
market, in this equilibrium, two continua of agents play weakly dominated strategies.
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and buyer’s valuations s and r. That is, we consider the case with proportional

rationing.6 Also, we denote by γi, i = σ, β a seller’s and a buyer’s probability

of being successfully matched in the search market with probability λ. Thus,

for example a seller is matched with probability λγσ = λ min[
υ(Sβ)

υ(Sσ)
, 1]. Since

each agent has measure zero, αi and γi, i = σ, β can be taken as given by every

individual agent.

We first consider (ii) of Lemma 3 of Gehrig. Two cases can be distinguished,

the case where there is rationing at the intermediary’s, i.e. ασ < 1, and the case

where there is no rationing, i.e. ασ = 1. We consider the latter case first. Note

that s0 ∈ Sσ ⇔ γσUσ(s0) ≥ ασ(b− s0), where Uσ(s0) is the expected utility gain

of seller s0 of search market participation for υ(Sβ) = υ(Sσ). (For the case under

consideration now, we have ασ = 1.) Let F (r) be the cumulative distribution

function of buyers active in the search market. Then, we have

Uσ(s0) = λ

∫

s0≤r

r − s0

2
dF (r), and (4)

Uσ(s) = λ

∫

s≤r

r − s

2
dF (r). (5)

Because s > s0, Uσ(s0) > Uσ(s). Subtracting (5) from (4) we get

Uσ(s0)− Uσ(s) = λ

∫

s0≤r

s− s0

2
dF (r)− λ

∫

s0≤r≤s

sdF (r), or

Uσ(s) = Uσ(s0)− λ

∫

s0≤r

s− s0

2
dF (r) + λ

∫

s0≤r≤s

sdF (r).

Since s > 0, λ
∫

s0≤r≤s
sdF (r) > 0, so that

Uσ(s) > Uσ(s0)− λ

∫

s0≤r

s− s0

2
dF (r).

Because λ
∫

s0≤r
s−s0

2
dF (r) < s− s0,

Uσ(s) > Uσ(s0)− (s− s0).

Multiplying both sides by γσ, 0 < γσ ≤ 1, we get γσUσ(s0) > γσUσ(s)−γσ(s−s0),

so that

γσUσ(s) > γσUσ(s0)− (s− s0).

6If rationing is efficient, then, for example, the q sellers with the lowest costs joining the in-
termediary will be able to sell with probability one, and all others with probability 0. Therefore,
the proof for the case with efficient rationing is much simpler than with proportional rationing.
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But s0 ∈ Sσ ⇔ γσUσ(s0) ≥ ασ(b − s0) (where for the case we are considering

ασ = 1). Therefore,

γσUσ(s) > (b− s0)− (s− s0) = b− s,

where b − s is the utility gain for s of joining the intermediary. Thus, s > s0

will not join the intermediary if s0 joins the search market. For buyers, the case

(i) under the assumption αβ = 1 is completely analogous and can be found in

Gehrig (1993, p.114/5).

Next, let us consider (ii) with ασ < 1. The utility gain of seller s from joining

the search market γσUσ(s) is certainly as great as the utility he gets when making

a deal in exactly the same matches as seller s0 does (in a sense, this is the value

s attributes to the expected deals s0 accepts).7 That is,

γσUσ(s) ≥ γσλ

∫

s0≤r

r − s

2
dF (r)

= γσUσ(s0)− (s− s0)γσλ

∫

s0≤r

1

2
dF (r).

Now two cases have to be distinguished: (1) ασ > γσλ
∫

s0≤r
1
2
dF (r) and (2)

ασ ≤ γσλ
∫

s0≤r
1
2
dF (r). It will be shown first that in case (1) s will not join the

intermediary for s > s0 and second that in case (2), Sσ = Sβ = ∅.
For case (1), it is true that

γσUσ(s) > γσUσ(s0)− ασ(s− s0).

Add and subtract ασb on the right-hand side to get

γσUσ(s) > γσUσ(s0)− ασ(b− s0) + ασ(b− s).

But because s0 joins the search market, Uσ(s0) − ασ(b − s0) ≥ 0. Therefore,

γσUσ(s) > ασ(b− s), where ασ(b− s) is s’s expected utility gain from joining the

intermediary. Thus, for s > s0, s will not join the intermediary if s0 ∈ Sσ.

The case for buyers being completely symmetric, it will not be added here.

In case (2), for any seller s < s0 we would have

γσUσ(s) ≥ γσUσ(s0) + ασ(s0 − s)

= γσUσ(s0)− ασ(b− s0) + ασ(b− s).

7Note that s is not required to be greater than s0.
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Because s0 ∈ Sσ, γσUσ(s0) − ασ(b − s0) ≥ 0. Thus, γσUσ(s) > ασ(b − s) and

therefore, s ∈ Sσ for s < s0. Because this holds for any s < s0, then if s0 ∈ Sσ

for one s0, then Iσ = ∅. But this contradicts ασ = q
υ(Iσ)

< 1. Therefore, it must

be that Sσ = ∅. Completely analogous reasoning applies for buyers, establishing

that Sβ = ∅. This completes the proof of Lemma 3.¥
Note that Sσ = Sβ = ∅ and αi < 1, i = σ, β can happen only if a = b and

if for all s ≤ b, s ∈ Iσ and for all r ≥ a, r ∈ Iβ. Now all sellers s > b and

buyers r < a will be inactive, so that indeed r0 ∈ Zβ ⇒ r /∈ Iβ for r < r0 and

s0 ∈ Zσ ⇒ s /∈ Iσ for s > s0, which is just Gehrig’s Lemma 2.

Proof of Proposition 1: These three Lemmas state that the sets of inactive

buyers and sellers and the sets of buyers and sellers active in the search market

are convex and directed sets. Therefore, only buyers with high reservation prices

and sellers with low costs can potentially gain by trading with the intermediary.

¥

Rationing in the Dynamic Game As a consequence of the dynamic struc-

ture, rationing occurs in a way slightly different from the one in Gehrig’s paper.

Sellers are rationed if and only if the ”number” of sellers willing to sell at bid

price b exceeds the capacity q the intermediary has set (i.e. iff υ(Iσ) > q), while

buyers are rationed if and only if the number of buyers willing to buy at ask price

a exceeds the quantity the intermediary has in stock, which is min[υ(Iσ), q]. This

is in contrast to the game in Gehrig’s setting, where rationing of sellers (buyers)

occurs if and only if υ(Iσ) > (<)υ(Iβ). Note that this is so independent of the

rationing rule that applies in case rationing occurs.

3.1 Input Supply and Output Demand Functions

For a > b, Gehrig’s Lemma 1 implies that all buyers with r ∈ [s, r] and all sellers

with s ∈ [s, r] are active in the search market so that Sβ = Sσ = [s, r]. Therefore,

in any equilibrium with a > b, γβ = γσ = 1. Moreover, because reservation prices

of all agents are uniformly distributed on the unit interval, we know that for r ∈
Sβ, r ∼ U [s, r] and for s ∈ Sσ, s ∼ U [s, r]. Therefore, dF (r) = 1

r−s
dr and dG(s) =

1
r−s

ds, where F (r) and G(s) are the cumulative distribution functions of buyers

and sellers active in the search market. Since all previous actions are assumed

to be observable, s and r will be known when agents decide whether to join the
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search market. Therefore, it suffices to condition this decision on s and r, so that

a strategy for seller s can be written as τs = (Is(b, q); Ss(a, b, q, s, r)). Similarly,

for a buyer a strategy can be written as ρr = (Ir(a, b, q, s); Sr(a, b, q, s, r)), and

for the intermediary, a strategy simplifies to ϕ = (q, b; a(s)). This allows us to

compute explicitly the expected utility gains from search market participation

and to characterize completely agents’ equilibrium strategies in the game. This

is what we do next.

We begin by briefly describing the equilibrium of the bargaining subgame.

With even sharing, a buyer r and a seller s who are matched in the search

market share the gains from trade r−s equally, provided r−s > 0. We will refer

to seller s and buyer r as the critical seller and buyer. The expected utility gain

for seller s with s ∈ [s, r] from search market participation is then

Uσ (s) = λ

∫ r

s

(r − s)

2
dF (r) =

λ

2

1

r − s

∫ r

s

(r − s)dr

=
λ

2

[
r2

2
− rs

]r

s

r − s
=

λ

4

(r − s)2

r − s
,

which is the same as that derived by Gehrig under the alternative bargaining

schedule with take-it-or-leave-it offers. Thus, for the critical seller s we have

Uσ (s) =
λ

4
(r − s) . (6)

Likewise, for a buyer with reservation price r ∈ [s, r] the expected utility gain

from being active in the search market is

Uβ (r) = λ

∫ r

s

(r − s)

2
dG(s) =

λ

2

1

r − s

∫ r

s

(r − s)ds

=
λ

4

(r − s)2

r − s
,

so that for the critical buyer

Uβ (r) =
λ

4
(r − s) = Uσ (s) . (7)

Now, the utilities of critical buyers and sellers participating in the search mar-

ket in equation (7) can be used to derive the reservation prices of these agents

for joining the intermediary. If buyers and sellers joining the intermediary are
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rationed with probability αβ ≤ 1 and ασ ≤ 1, buyer r is indifferent8 between

joining the intermediary and joining the search market if and only if

αβ(r − a) =
λ

4
(r − s) (8)

and seller s is indifferent if and only if

ασ(b− s) =
λ

4
(r − s). (9)

For αβ = ασ = 1, solving equation (8) and (9) yields

a (r, s) =
4− λ

4
r +

λ

4
s and b (s, r) =

4− λ

4
s +

λ

4
r. (10)

Thus, a (r, s) and b (s, r) are reservation prices of buyer r and seller s for joining

the intermediary, given all s < s and all r > r have joined the intermediary and

provided there is no rationing.

Recall that we assume that buyers and sellers who are indifferent between

joining the intermediary and joining the search market join the search market.

If the intermediary quotes ask price a = a (r, s) and bid price b = b (s, r) and if

there is no rationing, buyers with r > r and sellers with s < s will then join the

intermediary. Note that if there is to be no rationing on the input market, the

capacity constraint q needs to be at least as great as s. On the other hand, the

quantity the intermediary sells on the output market cannot exceed the quantity

bought on the input market, which is denoted as qb. Note that this is the quantity

bought by the intermediary. Clearly, qb = min[s, q]. Thus, without rationing,

r ≥ 1− qb.

There being 1 − r buyers whose reservation prices are greater than or equal

to r, quantity demanded at ask price a (r, s) is 1− r. Let qd denote this quantity.

Note that this is quantity demanded at the intermediary’s. For the same reasons

as for buyers, there are s sellers who are willing to sell at bid price b (r, s),

provided the buyer with the highest reservation price in the search market is

buyer r. Therefore, s is equal to the quantity the intermediary can buy at the

bid price b (r, s), which is qb. If we replace r by 1 − qd and s by qb in equation

(10), we get the inverse output demand and (inverse) input supply functions

a
(
qd, qb

)
=

4− λ

4
− 4− λ

4
qd +

λ

4
qb (11)

8Throughout, we assume that all agents - buyers, sellers and the intermediary - are risk
neutral.
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and

b
(
qd, qb

)
=

λ

4
− λ

4
qd +

4− λ

4
qb, (12)

while the output demand and the input supply functions are

qd
(
a, qb

)
= 1− 4

4− λ
a +

λ

4− λ
qb, (13)

and

qb
(
b, qd

)
= − λ

4− λ
+

4

4− λ
b +

λ

4− λ
qd. (14)

Note that the ask price elasticity of output demand, given qb, is

ε
(
a, qb

)
:= − 4a

4− λ− 4a + λqb
. (15)

Note also that these functions are valid only under the provision that there is an

active search market from which some agents can expect positive utility gains.

This requires that r > s. If r ≤ s, agents lose the outside option of search market

participation. In this case, seller s would join the intermediary whenever b > s

and a buyer r will buy from the intermediary whenever a < r. Graphically, there-

fore, beyond the point of intersection of the (inverse) output demand function

a
(
qd, qb

)
with the (inverse) Walrasian demand function 1− qd, the willingness to

pay for intermediated trade is given by the (inverse) Walrasian demand function.

Therefore, the reservation prices of buyers an intermediary faces are actually

given by the maximum of these two functions

min
[
a

(
qd, qb

)
, 1− qd

]
. (16)

It is easy to verify that the intersection of a
(
qd, qb

)
with 1 − qd is at the point

where 1− qd = qb.

Analogously, the (inverse) input supply function b
(
qd, qb

)
in equation (12) is

valid only to the left of the intersection with qb. Beyond that point, expected

utility gain from search market participation in not positive, and the reservation

prices for trading through the intermediary are given by the (inverse) Walrasian

supply function. Hence, the sellers’ reservation prices the intermediary faces are

given by the maximum of these two functions

max
[
b
(
qd, qb

)
, qb

]
. (17)

Again, the point of intersection is where 1− qd = qb.
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Quantity  

Price  

1 

1 

(Walrasian) 
Demand 1-P 

(Walrasian) 
Supply P 

Search constrained 
Output Demand  

Search constrained 
Input Supply  

a(q)  

b(q)  

Figure 1: Walrasian and search market constrained demand and supply functions.

If quantity bought equals quantity sold, i.e. qd = qb = q, trade by the

intermediary is said to be balanced. In this case, the inverse demand and supply

functions are

a (q) :=
4− λ

4
− 2− λ

2
q (18)

b (q) :=
λ

4
+

2− λ

2
q. (19)

Under balanced trade, the input supply function is

qb (b) :=
4b− λ

2 (2− λ)
, (20)

so that under balanced trade the inverse output demand function can be written

as a function of b only

a
(
qb (b)

)
= 1− b. (21)

Figure 1 depicts the Walrasian demand and supply functions and the search con-

strained output demand and input supply functions for the intermediary, under

the assumption that intermediated trade is balanced.
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3.2 Subgame Perfect Equilibria

Next, we analyze the subgame perfect equilibria of the dynamic intermediation

game. These are described in Proposition 2 below. We call the subgame that

begins after capacity has been built ”capacity constrained subgame” and show

that the capacity constraint subgame has a unique subgame perfect equilibrium

with an active search market. Before we turn to Proposition 2, we state and

prove the following Lemmas.

Because whether or not there is rationing on the input side may affect output

demand, in principle we have to distinguish these two cases when analyzing the

output market subgame. However, as we show in Lemmas 4 and 5, whether or

not there has been rationing on the input side, it will not be in the interest of the

intermediary to ration buyers on the output market. That is, if the intermediary

has bought quantity q and if all s ∈ [0, s) have joined the intermediary (where

q < s), there is an ask price a such that a buyer wants to join the intermediary

if and only if r > 1− q. This result is summarized in Lemma 4.

Lemma 4 For q ≤ s ≤ 1
2

and for a = 4−λ
4

(1−q)+ λ
4
s, in any equilibrium, r ∈ Iβ

if and only if r ∈ (1− q, 1].

Proof : Buyer r0 := 1−q is indifferent between joining the search market and

joining the intermediary, since r = r0 is the solution to

r − 4− λ

4
(1− q)− λ

4
s =

λ

4
(r − s).

Since we have assumed that indifferent buyers join the search market, r0 ∈ Sβ.

However, for any r > r0, the utility gain from joining the intermediary is greater

than the utility gain from search market participation. To see this, consider buyer

with r = r+
0 , where r+

0 denotes a reservation price marginally greater than r0.

His utility gain from buying from the intermediary is greater than his expected

utility gain from joining the search market under the hypothesis that he is the

critical buyer. Therefore, r = r+
0 will join the intermediary. From Lemmas 2 and

3 it then follows that r ∈ Iβ for any r ≥ r+
0 . ¥

Lemma 5 For a given r and a given s, buyer r’s reservation price for joining

the intermediary, a(r, s), is greatest if αβ = 1.
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Proof : Solving αβ(r − a) = λ
4
(r − s) (see equation (8)) for a yields a =

4αβ−λ

4
r + λ

4
s. Clearly, this is greatest for αβ = 1. ¥

Together, Lemmas 4 and 5 state that (1) there is an ask price such that all

that has been bought (with or without rationing on the input side) can be sold

without rationing on the output market and that (2) rationing of buyers is not

in the intermediary’s interest because it only decreases the reservation price of

buyer r for joining the intermediary.9 Thus, the intermediary will not set an ask

price below the one at which he can sell everything. What has not be shown,

however, is whether it is in the intermediary’s interest to sell everything he has

bought (i.e. to set an ask price such that qd = qb). Lemma 6 states the condition

under which the intermediary wants to sell everything.

Lemma 6 The unique subgame perfect ask price function for the intermediary

is

a∗
(
qb

)
= max

[
a (q) ,

1

2

]
,

for any qb.

Proof:

By assumption, there are no costs involved with disposing any quantity the

intermediary cannot sell. It is also assumed that there are no costs associated

with selling. Therefore, if the quantity bought allows him to do so (that is,

if qb is large enough), the monopolistic intermediary will sell exactly the quan-

tity for which elasticity of output demand is −1. (Otherwise, he will set the

market clearing price, which is greater than the price at which elasticity is -1.)

The intersection between the (inverse) output demand function and the (inverse)

Walrasian demand function in (16) being given by

qd = 1− qb,

this intersection occurs at qd < 1
2

for qb > 1
2
. Thus, for qb > 1

2
,

min
[
a

(
qd, qb

)
, 1− qd

]
= 1− qd.

9Note that this does not involve any quantity effects, yet; a(r) decreases not because more
buyers have to be attracted by the intermediary in order to have rationing, which in turn
requires a to go down. Merely because he is less likely to get served does the reservation price
of r for joining the intermediary decrease.
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That is, the relevant (inverse) demand function is the (inverse) Walrasian demand

function, the elasticity of which is −1 for a = 1
2
. Hence, for a

(
qd, qb

)
> 1 − qd,

a∗
(
qb

)
= 1

2
.

For qb < 1
2
, the relevant inverse demand function is a (q). The elasticity of

output demand is -1 (see equation (15) above) for

a =
4− λ + λqb

8

∣∣∣∣
qb∈[0,1]

≤ 1

2
,

but for qb < 1
2
, a ≤ 1

2
will not be market clearing. Without selling less, therefore,

the intermediary can increase a up to the price for which a = a (q), where a(q) is

the ask price function for balanced trade as defined in (18). But because in this

range, demand is elastic, the intermediary has no incentive to increase a beyond

this point and to sell less than qb, so that for a
(
qd, qb

)
< 1− qd, a∗

(
qb

)
= a (q).

¥
What is not yet clear is under which conditions a seller will decide to join the

intermediary. Inspection of the inverse input supply function b(s, r) in (10) shows

immediately that this decision depends among other things on the reservation

price of the critical buyer active in the search market, r. But since this price

depends on the quantity the intermediary sells (which depends on the quantity

he buys), this reservation price depends in turn on the decision of all sellers to

join or not to join the intermediary, which in turn depends on their expectations

what the intermediary and buyers will do in stage 2 of the game, and so on. This

is a potential source of indeterminacy: If all other sellers with s < s sell, then

selling might be optimal for an individual seller, while if all others do not sell,

then not selling will be optimal for him as well. However, based on the insights

provided by Lemmas 4 and 6, the following Lemma shows that this indeterminacy

disappears.

Lemma 7 For q ≤ q ≤ 1
2

and b = b(q), s ∈ Iσ if and only if s ∈ [0, q), where

b(q) is as defined in (19).

Proof: The proof consists of a iterating the same argument. The argument

consists of two parts.

(1) There exists a set of sellers with positive measure whose dominant strategy

is to sell at bid price b(q), even if all buyers are active in the search market (i.e.
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even if the intermediary does not sell anything). Formally, ∃ s1 > 0 such that
λ
4
(1− s) ≤ b(q)− s for all s ≤ s1. To see this, solve λ

4
(1− s1) = b(q)− s1 for s1

to get s1 = 2(2−λ)
4−λ

q > 0. Note that unless λ = 0, s1 < q.

(2) By virtue of Lemmas 4 and 5 the intermediary will want to sell everything

he has bought and the buyers with r ∈ (1 − s1, 1] will join the intermediary.

Therefore, the buyer with the highest reservation price active in the search market

will be r = 1 − s1. Given this, ∃ s2 > s1 such that λ
4
(1 − s1 − s) ≤ b(q) − s

for all s ∈ (s1, s2]. To see this, solve λ
4
(1 − s1 − s2) = b(q) − s2 to get s2 =[

1 + λ
(4−λ)

]
2(2−λ)
(4−λ)

q > s1 for λ > 0.

(3) Iterating step (1) and (2) n times, we get

sn+1 =

[
1 +

λ

4− λ
+

(
λ

(4− λ)

)2

+ ... +

(
λ

(4− λ)

)n
]

2 (2− λ)

(4− λ)
q

=

[
n∑

i=0

(
λ

(4− λ)

)i
]

2 (2− λ)

(4− λ)
q.

Let n go to infinity. Since 0 < λ
(4−λ)

< 1 for λ > 0, limn→∞
∑n

i=0

(
λ

(4−λ)

)i

= 4−λ
2(2−λ)

so that limn→∞ sn+1 = q. ¥
Lemma 7 eliminates the multiplicity of equilibria present in Gehrig’s original

model (in the capacity constrained subgame).10 Note that in determining sk, k =

1, ..., n the fact that the intermediary will sell what the sellers with s ∈ [sk−1, sk)

sell has not been used.

There is a resemblance between this mechanism and a suggestion made by

Spulber (1999, p.125), who says that

... inventory holdings by intermediaries could reduce buyer and seller

concerns about being rationed, which could also alter the equilibrium

outcome.

Due to the sequential structure of the game, the intermediary can be seen as

holding inventories at the beginning of the output market subgame. At least some

buyers then have a dominant strategy to buy from the intermediary. Sellers in

turn take this into account when making their decisions to sell to the intermediary.

In a sense, by selling to the intermediary and through the intermediary’s inventory

10Without variable costs of building capacity, there is a continuum of capacity constraints
the intermediary can set in equilibrium.
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holding, sellers can induce the buyers to buy from the intermediary and thereby

to leave the search market.

Next we show that rationing will not occur on the input market for q ≤ 1
2
.

Lemma 8 Bid prices b > b(q) cannot be part of an equilibrium strategy.

Proof : Because we know from the previous Lemma that with b = b(q) the

intermediary buys q when setting b(q), b > b(q) has no quantity effect. The only

positive effect it has for the intermediary is that it increases s in case sellers with

s > s are attracted and thereby increases a(r, s). The negative effect is, of course,

that it is a higher bid price, which by itself decreases the intermediary’s profits.

It can be shown that the negative effect outweighs the positive effect: For s to be

indifferent between joining the intermediary and the search market, this requires

the following equality to hold

ασ(b− s) =
λ

4
(1− q − s),

where we have used the fact that the intermediary will sell on the output mar-

ket what he has bought on the input market (see Lemmas 4, 5 and 6). Note

that ασ = q
s
. Plugging this expression in we get after some re-arranging b =

s
(

λ
4

1
q

+ 4−λ
4
− λ

4
s
q

)
. Define this function as b(s, q). Bid price b > b(q) will not

pay if

a(q, s)− b(s, q) < a(q)− b(q),

where a(q, s) := 4−λ
4

(1− q) + λ
4
s like in Lemma 4.11 This inequality implies

4− λ

4
− 4− λ

4
q − 2− λ

2
s− λ

4

s

q
(1− s) <

2− λ

2
− (2− λ)q

⇔
−2− λ

2
s− λ

4

s

q
(1− s) <

4− λ

4
(1− q)− 2− λ

2
q.

But because s > q, −2−λ
2

s < −2−λ
2

q. Therefore, if the inequality

−λ

4

s

q
(1− s) <

4− λ

4
(1− q)

11Strictly speaking, for b > b(q) not to pay, a(1− q, s)−max[b(s, q), s] < a(q)− b(q) suffices,
which certainly holds if the above inequality holds; see (17) above.
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holds, then b > b(q) does not pay. Since the right-hand side is positive for any

q < 1, while the left-hand side is negative for any s ∈ (0, 1), the inequality holds

always. Therefore, b > b(q) does not pay.¥
What remains to be determined is the optimal bid price b∗ and the capacity

constraint q the intermediary sets in stage 1. We first consider the optimal bid

price and then the optimal capacity constraint.

Lemma 9 The optimal bid price is b∗ = 1
4

+ λ
8
. If b = b∗, all sellers with reser-

vation prices s < 1
4

will sell to the intermediary.

Proof: We can neglect the constraint q ≤ q∗, which can still be chosen

accordingly. (We only have to assume that q is large enough so that quantity qb

can be bought.) We observe first that bid prices b inducing qb (b) > 1
2

cannot be

optimal. For if the bid price b is such that qb (b) > 1
2
, the intermediary’s profits

are

π (b) = [a− b] qb (b) =

[
1

2
− b

]
qb (b) ,

where a∗
(
qb

)
= 1

2

∣∣
qb> 1

2

has been used. But for qb (b) > 1
2
, the search market shuts

down (because r <s) and sellers’ reservation prices for intermediated trade are

given by b = qb (see (17) above). Therefore, profits are

π (b) =

[
1

2
− qb

]
qb

∣∣∣∣
qb> 1

2

< 0,

which cannot be an optimum given the intermediary’s outside option of π = 0.

Second, by Lemma 8 bid prices b > b (q) can be ruled out. Given a∗
(
qb

)
=

max
[
a

(
qd, qb

)∣∣
qd=qb , 1

2

]
in the second stage of the game (see Lemma 6) and given

that for any bid price b (q)|q≤min( 1
2
,q), q sellers are willing to sell to him (see Lemma

7), the intermediary’s first stage maximization problem is

max
b

π (b) = [a (q (b))− b] q (b) ,

where q (b) is given by (20) and a (q (b)) is given by (21). Thus,

π (b) = [1− 2b]
4b− λ

2 (2− λ)
.

The first order condition is

0 =
2− 8b + λ

2− λ
,
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and the second order condition
(− 8

2−λ
< 0

)
is satisfied as well, so that b∗ = 1

4
+ λ

8

and q (b∗) = 1
4
. ¥

Note that Lemma 9 implies that equilibrium profits are π∗ (b∗) = 2−λ
16

and

equilibrium quantity traded is 1
4
, provided the capacity constraint is greater than

or equal to 1
4
.

What therefore remains to be determined is the optimal capacity constraint

q∗. Since we have assumed no costs of building capacity, any capacity constraint

greater than or equal to 1
4

will allow the intermediary to earn his the equilibrium

profits π∗. Therefore, in any equilibrium, q∗ ≥ 1
4
.

Together with the modified Proposition 1 of Gehrig, Lemmas 4 through 9

imply that the capacity constrained subgame of the dynamic intermediation game

has a unique subgame perfect equilibrium with an active search market. This

equilibrium is summarized in the following Proposition. Let ϕ | q be a strategy

of the intermediary in the capacity constrained subgame and assume q ≥ 1
4
.

Proposition 2 For q ≥ 1
4
, the capacity constrained subgame of the dynamic

intermediation game has a unique subgame perfect equilibrium with an active

search market, in which

τ ∗s = (I iff b ≥ max [b (q) |q≥q>s, s] , S iff r > s) ∀s ∈ [0, 1]

ρ∗r =
(
I iff a ≤ min

[
a (q) |r≥1−qb , 1− r

]
, S iff r > s

) ∀r ∈ [0, 1] and

ϕ∗ | q =
(

b = 1/4 + λ/8, a∗(qb) = a(q)
)
,

where the functions a (q) and b (q) are the inverse demand and inverse supply

functions as defined in equation (18) and (19) above.

Because capacity building is costless, there is a continuum of otherwise iden-

tical subgame perfect equilibria in the full game. In all of these equilibria, the

intermediary sets q∗ ≥ 1
4
.

Proof : From Lemma 4 we know that if the s ≥ qb = q sellers with the

lowest reservation prices have joined the intermediary and thereby cannot be on

the search market, there is an ask price a(q, s) such that buyer r will join the

intermediary if and only if r > 1 − q. Lemmas 5 and 6 state that rationing on

the output market (which would occur only if a < a(q)) and selling less than

the quantity he has bought (which would occur only if a > a(q)) is not in the
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Figure 2: The equilibrium outcome.

intermediary’s interest, provided q ≤ 1
2
. This establishes that a∗(qb) = a(q) for

q ≤ q ≤ 1
2
. Lemma 8 says that rationing on the input market is not in the

intermediary’s interest, so that b ≤ b(q) in equilibrium. Lemma 9 determines the

optimal bid price and the quantity traded by the intermediary, while Lemma 7

establishes uniqueness in the capacity constrained subgame. Finally, from the

modified Proposition 1 of Gehrig we know that all low cost sellers and all buyers

with high reservation prices deal with the intermediary and that those sellers and

buyers with average reservation prices are active in the search market, while the

remaining traders are not active. ¥
In this equilibrium, quantity traded by the intermediary is 1

4
. All sellers with

reservation prices s < 1
4

and buyers with reservation prices r > 3
4

trade with

the intermediary. The ask price set by the intermediary is 3
4
− λ

8
, and the bid

price 1
4

+ λ
8
. Sellers and buyers with reservation prices s, r ∈ [

1
4
, 3

4

]
are active in

the search market and sellers with valuations s > 3
4

and buyers with reservation

prices r < 1
4

remain inactive. The intermediary’s equilibrium profits are 2−λ
16

, as

illustrated in Figure 2.

The intermediary trades with the subsets of buyers Iβ and Iσ. The sets of

buyers and sellers active in the search market are Sβ and Sσ, while the sets of
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sellers and buyers Zβ and Zσ remain inactive. Note that there are other payoff

equivalent equilibria, which are, however, not subgame perfect. For example,

setting a(qb) = 3
4
− λ

8
would induce the same equilibrium payoffs. But if e.g.

qb < 1
4
− z, where z is a positive number smaller than 1

4
, a(qb) = 3

4
− λ

8
is not

optimal, so that a(qb) = 3
4
− λ

8
is not a subgame perfect strategy.

4 Conclusions

In this paper, we have modified the Gehrig (1993) model by imposing a sequential

structure. According to this modification, a monopolistic intermediary first sets

a capacity constraint and a bid price. Up to the capacity constraint, the inter-

mediary is committed to buy any quantity sellers are willing to sell to him at the

bid price he sets. The intermediary starts selling only after having finished the

acquisition of the inputs. As a consequence of this structure, the capacity con-

strained subgame has a unique subgame perfect equilibrium with an active search

market. This is in contrast to the original model, which exhibits a multiplicity

of equilibria (which are not payoff equivalent). In addition, we have addressed

a problem concerning rationing and the structure of the model (see Appendix

A.2). We consider the following extensions. In a companion paper, we introduce

competition between capacity constrained intermediaries. As another extension,

one could introduce a fix cost of search market participation. Further extensions

could introduce asymmetric information or analyze the model for (more) general

distributions of buyers’ and sellers’ reservation prices.



A INTERMEDIATION AND RATIONING 27

Appendix

A Intermediation and Rationing

A.1 Excursion on Rationing

Rationing occurs whenever the price is such that the market does not clear.

Though either side of the market can get rationed, rationing is more often dis-

cussed as occurring on the demand side.

A.1.1 Rationing on the Output market

Typically, economists describe rationing by a rule which states what parts of

demand get served at the (non-market clearing) price. Such a rule is called a

rationing rule. In the literature, basically two rationing rules are used (see e.g.

Tirole, 1988; Vives, 1999). One rule is often called random or proportional ra-

tioning rule (PR for short), and the other one efficient rationing rule (ER). The

difference between the two rules is easiest to see by investigating the differences

between the residual demand functions. These functions depict what part of

the market demand remains unserved after rationing has occurred. Assume that

there are two sellers selling given stocks q1 and q2 at prices p1 and p2. Let market

demand be D (p) and assume p1 < p2. If we are to have rationing at price p1, it

must be that D (p1) > q1. In this case and under PR, seller 2 faces the residual

demand function

DR
PR (p1, p2, q1) = D (p2)

D (p1)− q1

D (p1)
, (22)

while under ER, seller 2 faces the residual demand function

DR
ER (p2, q1) = D (p2)− q1. (23)

That is, under ER the buyers with the highest reservation prices get served at

the non-market clearing price p1, while under PR a proportional fraction of all

buyers with willingness to pay greater than p1 get served, where proportional

means that q1

D(p1)
of all buyers willing to pay p1 get served, and 1 − q1

D(p1)
get

rationed.
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A.1.2 Rationing on the Input market

Rationing on the input market is completely analogous. Let S(p) be the aggregate

supply function for an input factor and let q1 and q2 be capacity constraints such

that firm i cannot buy more than qi. Then, assuming p1 > p2 and S(p1) > q1

(for otherwise there is no rationing) the residual supply function firm 2 faces is

under PR and

SR
PR (p1, p2, q1) = S (p2)

S (p1)− q1

S (p1)
, (24)

and under ER it is

SR
ER (p2, q1) = S (p2)− q1. (25)

A.2 Rationing and the structure of the basic model

As mentioned above (see footnote 4), the assumption that rationed traders cannot

go back to the search market is crucial. This point deserves some emphasis

because it may help prevent misunderstandings. Note that Gehrig (1993, p.106)

writes:

... intermediaries may ration the long side and send unsuccessful

traders back to the search market

and Spulber (1999, p.121) says:

Those rationed by the intermediary can move on to the matching

market.

We now show that (1) that the assumption that ”rationed traders are sent

back to the search market” would not fit with the remainder of Gehrig’s analysis

and (2) that the assumption that rationed traders cannot go back to the search

market is crucial for the model. We begin with (1).

If some agents, e.g. sellers, are rationed at the intermediary’s with probability

(1 − ασ), the expected utility gain for seller s from joining the intermediary is,

according to Gehrig (1993, equations (3.1), (3.2) and (A.2))

Wσ(s) := ασ(b− s). (26)

But if s can join the search market if he gets rationed, then his utility gain from

joining the intermediary is rather

Wσ(s) = ασ(b− s) + (1− ασ)γσUσ(s),
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because with the probability that he gets rationed he joins the search market,

where he grasps expected utility gain γσUσ(s).12

But even more importantly, if agents can join the search market after being

(proportionally) rationed by the intermediary, this affects the expected utility

gains from search market participation. Assume again that sellers are rationed,13

so that the fraction (1 − ασ) of sellers with reservation prices s < s will subse-

quently be active in the search market. The consequences of this will be first that

all buyers with r ∈ (0, s] will join the search market, so that the set of inactive

buyers is reduced to the buyer with r = 0. All other buyers can now expect

positive utility gains from search market participation. Thus, Gehrig’s Proposi-

tion 1 would not hold (or only hold for a case with measure zero), since r were

almost 0. Second, there would be more buyers than sellers active in the search

market, which by itself is not a problem. However, the reservation prices of sellers

active in the search market were no longer uniformly distributed. Rather, this

distribution would have a kink at s. In Gehrig’s setting with take-it-or-leave-it

offers, this has a third consequence, namely that the optimal offers for buyers

active in the search market are hard to compute if rationing occurs (and if a

proportional rationing rule applies). Thus, it will not be trivial to compute the

expected utility from search market participation for the critical buyer r, which

will certainly not be Uβ(r) = λ
4
(r − s).

This gets us to the claim (2), namely that the assumption that rationed

traders cannot go back to the search market is crucial for the model. Suppose

they could. Then, rationing on the input side would have two effects for the

expected utility gain from search for buyers. The positive effect for buyers is that

the set of sellers active in the search market increases, so that all else equal, their

utility increases. The negative effect is that the probability of being successfully

matched, γβ ≡ min[υ(Sσ)
υ(Sβ)

, 1], decreases, since now there are more buyers active in

12Interestingly, rationing would so far not affect the reservation price to deal with the inter-
mediary, provided γσ = 1 with or without rationing. To see this, consider the critical buyer s
for whom

ασ(b− s) + (1− ασ)Uσ(s) = Uσ(s)

holds, so that as before b− s = Uσ(s).
13In Gehrig’s and Spulber’s setting, the game is played in simultaneous moves, so that it is

immaterial on which side rationing occurs. But in the dynamic game of this paper, rationing
of buyers is not a credible threat by the intermediary because it is not time consistent. This is
why we concentrate here on rationing of sellers.
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the search market than sellers, implying γβ < 1.

For a seller s, the expected utility gain from search decreases because there

are more buyers with r ≤ s active in the search market, so that the probability

of being matched to a buyer with whom he cannot engage in mutually beneficial

trade increases.

Since the reservation prices to trade with the intermediary increase as the

utility gain from search market participation decreases, it is in the intermedi-

ary’s interest to make this utility gain small. The cost of inducing rationing on

the input side is, of course, that the intermediary has to pay a bid price above

the one at which the market (or capacity) clears. However, with proportional

rationing and without fix cost of search market participation, it suffices to set b

only marginally above the market clearing price. Then, ασ < 1, which induces

all buyers with r ≤ s to join the search market. In the limit as lim ασ → 1,

therefore, υ(Sσ) = r − s and υ(Sβ) = r, so that γβ < 1, which unambiguously

decreases buyers’ utility gain from search market participation and thus increases

their reservation prices for buying from the intermediary. Therefore, if rationing

is proportional and if rationed traders can join the search market, it would be in

the interest of the intermediary to (marginally) ration the input side. Thus, the

assumption that rationed traders cannot join the search market is crucial for the

model.

B Rubinstein Alternating Offers Bargaining

Following Freixas and Rochet (1997), we have assumed that buyers and sellers

who are matched share the gains from trade evenly, if there are any such gains

(i.e. if r − s > 0). Alternatively, we could assume that when two traders are

successfully matched, the reservation prices r and s are common knowledge to

both parties. Provided r > s, the buyer and the seller engage in a Rubinstein

alternating offers bargaining game, where they have the same discount factor δ.

The player who can make the first move is determined by flipping a fair coin.

The reason for assuming that the player to make the first offer is determined by

chance is merely that it allows us to get rid of the discount factor δ outside the

bargaining subgame.

When a seller s and a buyer r meet, they have a cake of size (r − s) to
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share, if r > s. Otherwise, they cannot engage in mutually beneficial trade, and

the search market ends without utility gain for both of them. Let the common

discount rate be δ. Then, if the buyer is given the chance to make the first offer,

he offers himself 1
1+δ

(r − s), leaving δ
1+δ

(r − s) to the seller. That is, the price

pr the buyer sets solves

r − pr =
1

1 + δ
(r − s) ,

so that

pr =
δr + s

1 + δ
,

which the seller accepts. On the other hand, if the seller is given the chance to

make the first offer, he gives himself the fraction 1
1+δ

of the cake and leaves δ
1+δ

to the buyer. That is, the seller sets a price ps that solves

ps − s =
1

1 + δ
(r − s) ,

so that

ps =
r + δs

1 + δ
.

Let the chance that a buyer or a seller can make the first offer be equal. Then,

the price a buyer or a seller can expect on average if a match is successful (i.e. if

r > s), is

1

2
(pr + ps) =

1

2

(
δr + s

1 + δ
+

r + δs

1 + δ

)

=
r + s

2
.

See also Rubinstein (1982), Shaked and Sutton (1984), Mas-Collel et al. (1995,

p.298) and Gibbons (1992); Spulber (1999) introduces Rubinstein bargaining into

a model in this spirit.
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B.1 Expected utility gain from Search

The expected utility gain for a seller s with s ∈ [s, r] from search market partic-

ipation is then

Uσ (s) =
λ

2

∫ r

s

(ps − s)
1

r − s
dr +

λ

2

∫ r

s

(pr − s)
1

r − s
dr

=
λ

2

∫ r

s

(ps + pr − 2s)
1

r − s
dr =

λ

2

∫ r

s

(r − s)
1

r − s
dr

=
λ

2

[
r2

2
− rs

]r

s

r − s
=

λ

4

(r − s)2

r − s
,

which is the same as in the Gehrig model.

Thus for the critical seller s

Uσ (s) =
λ

4
(r − s) .

Likewise, for a buyer with reservation price r ∈ [s, r] the expected utility gain

from being active in the search market is

Uβ (r) =
λ

2

∫ r

s

(r − ps)
1

r − s
ds +

λ

2

∫ r

s

(r − pr)
1

r − s
ds

=
λ

2

∫ r

s

(2r − pr − ps)
1

r − s
dr

=
λ

2

∫ r

s

(r − s)
1

r − s
ds

=
λ

4

(r − s)2

r − s
,

so that for the critical buyer

Uβ (r) =
λ

4
(r − s) = Uσ (s) .
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