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ABSTRACT
The Rossby wave instability (RWI) is a promising mechanism for producing large-scale
vortices in protoplanetary discs. The instability operates around a density bump in the disc, and
the resulting vortices may facilitate planetesimal formation and angular momentum transfer in
the disc dead zone. Most previous works on the RWI deal with 2D (height-integrated) discs.
However, vortices in 3D may have different dynamical behaviours from those in 2D. Recent
numerical simulations of the RWI in 3D global discs by Meheut et al. have revealed intriguing
vertical structure of the vortices, including appreciable vertical velocities. In this paper we
present a linear analysis of the RWI, in 3D global models of isothermal discs. We calculate
the growth rates of the Rossby modes (of various azimuthal wave numbers m = 2–6) trapped
around the fiducial density bump and carry out 3D numerical simulations to compare with our
linear results. We show that the 3D RWI growth rates are only slightly smaller than the 2D
growth rates, and the velocity structures seen in the numerical simulations during the linear
phase are in agreement with the velocity eigenfunctions obtained in our linear calculations. This
numerical benchmark shows that numerical simulations can accurately describe the instability.
The angular momentum transfer rate associated with Rossby vortices is also studied.

Key words: accretion, accretion discs – hydrodynamics – instabilities – planets and satellites:
formation – protoplanetary discs.

1 IN T RO D U C T I O N

Vortices may play an importance role in protoplanetary discs and
planet formation. First, long-lived anticyclonic vortices concentrate
dust grains in their centres and accelerate the growth of metre-sized
solids (Barge & Sommeria 1995; Tanga et al. 1996; Bracco et al.
1999; Godon & Livio 2000; Johansen, Andersen & Brandenburg
2004; Heng & Kenyon 2010), leading to the formation of planetes-
imals. Secondly, vortices may generate disordered (turbulent) flow,
which induces angular momentum transfer in the radial direction.
This is particularly relevant to accretion in the disc dead zone (e.g.
Gammie 1996; Terquem 2008), where the gas is not ionized by
stellar radiation nor by cosmic rays, and turbulence driven by mag-
netorotational instability is ineffective. Finally, vortices can also
form at the edge of planetary gaps (de Val-Borro et al. 2007; Yu
et al. 2010; Lin & Papaloizou 2011a,b), thereby affecting the rate
of planet migration. In these different contexts, but mainly for the
concentration of solids particles, it is important to understand the
3D velocity structure of the vortices.

�E-mail: meheut@space.unibe.ch

A promising mechanism for producing vortices is the Rossby
wave instability (RWI; Lovelace et al. 1999; Li et al. 2000, 2001).
The RWI is fundamentally related to Kelvin–Helmholtz instabil-
ity of shearing flows and Rayleigh’s inflection point theorem (e.g.
Papaloizou & Pringle 1985; Papaloizou & Lin 1989; Lithwick
2009). For 2D (vertically integrated) barotropic discs, the RWI relies
on the existence of an extremum in the background fluid vortensity,
defined by

ζ = (∇ × v) · ẑ
�

= κ2

2��
, (1)

where � is the disc surface density, v the fluid velocity, � the disc
rotation rate and

κ2 = 2�

r

d

dr
(r2�) (2)

is the square of the radial epicyclic frequency (so that κ2/2� is
the vorticity). Since Rossby waves propagate along the gradient
of vortensity, the instability can be understood as arising from the
interaction between two Rossby waves standing on each side of
the vortensity extremum. In protoplanetary discs, the vortensity ex-
tremum is expected to form at the boundaries of the dead zone, as
the difference in accretion rate in these regions forms a bump in the
density profile (Inaba & Barge 2006; Varnière et al. 2006; Terquem
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2008; Kretke et al. 2009). Recent magnetohydrodynamic simula-
tions (Dzyurkevich et al. 2010) are beginning to address various
complex physics related to the formation of this density/pressure
bump.

So far, most of the studies of the RWI have considered 2D (height-
integrated) discs (e.g. Tagger & Melia 2006; Varnière & Tagger
2006; Lyra et al. 2009; Regály et al. 2012). However, while 2D vor-
tices are long-lived (but see Chang & Oishi 2010), the situation is
not clear in three-dimensions (see Barranco & Marcus 2005; Shen,
Stone & Gardiner 2006; Lesur & Papaloizou 2009), and it is impor-
tant to study the formation of vortices and their stability in 3D discs.
On the analytical side, Umurhan (2010) used local shallow-water
approximation to examine the RWI in idealized situations where
the density bump is replaced by step functions. Lithwick (2009)
considered vertically unstratified discs in shearing box approxima-
tion. Some 3D aspects of other instabilities controlled by corotation,
such as the Papaloizou–Pringle instability in rotating tori, have also
been studied in previous works (e.g. Papaloizou & Pringle 1985;
Goldreich, Goodman & Narayan 1986; Latter & Balbus 2009).
However, the 3D aspect of the RWI, where Rossby waves are self-
trapped around the density bump, has not been studied.

Recently, Meheut et al. (2010, 2012) carried out global 3D nu-
merical simulations of the RWI in a full 3D disc. The simulations
showed that the RWI can develop in 3D discs as in 2D, but the re-
sulting Rossby vortices have significant vertical structure, contrary
to what was expected. In particular, the vertical velocity plays an
important role in the long-term evolution of the vortices (Meheut
et al. 2012). Indeed, the elliptical instability (Kerswell 2002; Lesur
& Papaloizou 2009) that is responsible for the decay of unstratified
(or with no vertical flow) vortices is a 3D mechanism, and may be
affected by the vertical structure. Moreover, the vertical velocity
can modify the concentration of solids inside the vortices, thereby
influencing the formation of planetesimals.

The goal of this paper is to provide an understanding of the 3D
structure of Rossby vortices that has been observed in the 3D simu-
lations of the RWI. To this end, we carry out global linear analysis of
the RWI in full 3D discs and compare our results with those obtained
from numerical simulations. Our paper is organized as follows. We
first present the 3D linear perturbation equations (Section 2) and the
numerical methods for solving the eigenvalue problem (Section 3).
The results of our linear calculations are described and discussed
in Section 4. In order to compare with the results of Meheut et al.
(2010), we present in Section 5 full numerical simulations of the de-
velopment of Rossby vortices using the same setup and parameters
as our linear analysis. We conclude in Section 6.

2 EQUATIO N S

The linear perturbation equations for stratified 3D discs are similar
to those given in Zhang & Lai (2006) in their study of the tidal
excitation of 3D waves in discs (see also Okazaki, Kato & Fukue
1987; Tanaka, Takeuchi & Ward 2002). Here we summarize the
notations and key equations relevant to our analysis.

2.1 Governing equations

We consider a geometrically thin gas disc and adopt cylindrical
coordinates (r, ϕ, z). The governing equations read:

ρ
∂v

∂t
+ (v · ∇)ρv = −∇p − ρ∇	G (3)

∂ρ

∂t
+ ∇ · (ρv) = 0, (4)

where ρ is the density, p the pressure, v the velocity. The disc is
assumed to be non-self-gravitating, the gravitational potential 	G

is the due to the central star only. We will consider an isothermal
equation of state, p = c2

s ρ, with cs the constant sound speed.
The unperturbed disc has velocity ve = (0, r�, 0), where the

angular velocity � = �(r) is taken to be a function of r alone.
Thus the vertical density profile is given by

ρe(r, z) = �√
2πh

exp(−Z2/2), with Z = z/h, (5)

where h = h(r) = cs/�⊥ is the disc scale height, � = �(r) =∫
dz ρe is the surface density, and �⊥ is the vertical oscillation

frequency of the disc and is equal to the Keplerian frequency �K =
(GM/r3)1/2, where G is the gravitational constant and M the central
star mass.

2.2 Linear perturbation equations

We now consider linear perturbation of the disc. For simplicity,
we shall assume that the perturbation is isothermal, so that the
(Eulerian) density and pressure perturbations are related by δp =
c2

s δρ. The linear perturbation equations read

∂u
∂t

+ (ve · ∇)u + (u · ∇)ve = −∇η, (6)

∂δρ

∂t
+ ∇ · (ρeu + veδρ) = 0, (7)

where u = δv is the (Eulerian) velocity perturbation, and η ≡
δp/ρe is the enthalpy perturbation. Without loss of generality, the
perturbation variables are assumed to depend on t and ϕ as

u, η, δρ ∝ exp(imϕ − iωt), (8)

where the azimuthal mode number m > 0 is an integer and ω is the
(complex) wave frequency. Equations (6) and (7) then reduce to

−iω̃ur − 2�uϕ = − ∂

∂r
η, (9)

−iω̃uϕ + κ2

2�
ur = − im

r
η, (10)

−iω̃uz = − ∂

∂z
η, (11)

−iω̃
ρe

c2
s

η + 1

r

∂

∂r
(rρeur ) + im

r
ρeuϕ + ∂

∂z
(ρeuz) = 0. (12)

Here ω̃ is the ‘Doppler-shifted’ frequency:

ω̃ = ω − m�, (13)

and κ is the radial epicyclic frequency defined by equation (2).
We consider radiative boundary condition such that waves prop-

agate away from the density bump at both the inner and outer
boundaries of the disc (e.g. Yu & Li 2009). They are defined as
follows. We take

dur0,2

dr
= ikur0,2,

dδh0,2

dr
= ikδh0,2, (14)

we then substitute these equations into the disc perturbation equa-
tions; we will arrive at a complex polynomial at the boundary that
determines the value of k. Then we choose the appropriate root of

C© 2012 The Authors, MNRAS 422, 2399–2406
Monthly Notices of the Royal Astronomical Society C© 2012 RAS



3D Rossby wave instability 2401

the polynomial so that the group velocity is in the outgoing direc-
tion. We also implement the null radial velocity boundary condition
to check how the eigenvalues are affected by different boundary
conditions.

To separate out the z-dependence, we expand the perturbations
with Hermite polynomials Hn (see Okazaki et al. 1987; Kato 2001;
Ogilvie 2008):⎡
⎢⎢⎣

η(r, z)

ur (r, z)

uϕ(r, z)

⎤
⎥⎥⎦ =

∑
n

⎡
⎢⎢⎣

ηn(r)

urn(r)

uϕn(r)

⎤
⎥⎥⎦ Hn(Z),

uz(r, z) =
∑

n

uzn(r) H ′
n(Z), (15)

where H ′
n = dHn/dZ, and the Hermite polynomial is defined by

Hn(Z) ≡ (−1)neZ2/2dn(e−Z2/2)/dZn. Note that H0 = 1, H1 = Z
and H2 = Z2 − 1.

With the expansion in (15), the fluid equations (9)–(12) become

−iω̃urn − 2�uϕn = − d

dr
ηn + nμ

r
ηn

+ (n + 1)(n + 2)μ

r
ηn+2, (16)

−iω̃uϕn + κ2

2�
urn = − im

r
ηn, (17)

−iω̃uzn = −ηn

h
, (18)

−iω̃
ηn

c2
s

+
(

d

dr
ln r� + nμ

r

)
urn + μ

r
ur,n−2 + d

dr
urn

+ im

r
uϕn − n

h
uzn = 0, (19)

where

μ ≡ d ln h/d ln r. (20)

We note here that for the isothermal discs we consider, we have
μ 	= 0. Eliminating uϕn and uzn from equations (16)–(19), we have

dηn

dr
= 2m�

rω̃
ηn − D

ω̃
iurn

+ μ

r
[nηn + (n + 1)(n + 2)ηn+2], (21)

durn

dr
= −

[
d ln(r�)

dr
+ mκ2

2r�ω̃

]
urn + 1

iω̃

(
m2

r2
+ n

h2

)
ηn

+ iω̃

c2
s

ηn − μ

r
(nurn + ur,n−2), (22)

where we have defined

D ≡ κ2 − ω̃2 = κ2 − (ω − m�)2. (23)

If we only consider the n = 0 term in the expansion (15), then
uz = 0 and equations (21)–(22) reduce to the dynamical equations
for 2D discs. However, since μ 	= 0, equations (16)–(19) are an
infinite set of coupled ordinary differential equations and the n = 0
component is coupled to the n = 2, 4, . . . components, giving rise
to non-trivial vertical structure. In our linear calculation below, we
will truncate the Hermite series at n = 2 and only include the n =
0 and 2 components.

Figure 1. Radial profile of the surface density and vortensity ζ . The radius
is in units of r0, and the surface density is normalized to �0.

3 SE T U P A N D M E T H O D O F S O L U T I O N

We consider the following Gaussian density bump in the disc:

�/�0 = 1 + χ exp

[
− (r − r0)2

2σ 2

]
, (24)

where r0 and σ are the position and the width of the bump. We
choose the bump parameters

χ = 0.25, σ/r0 = 0.05, (25)

and normalize r0 = 1. The sound speed is given by cs/(r0�0) = 0.1,
where �0 is the Keplerian orbital frequency at r0. The corresponding
surface density and vortensity profiles are shown in Fig. 1.

Equations (16)–(19) are transformed into an eigenvalue problem
and solved using two different methods and numerical codes.

Method (1). We adapt the code (MODINT) originally developed
by Tagger & Pellat (1999) in their study of the accretion–ejection
instability in 2D magnetized discs. We add the equations associated
with the n = 2 components in the code, but the method is otherwise
similar. The radial direction is discretized on a grid logarithmically
spaced with a resolution of 255 points. The density is defined at the
centre of the grid cells, whereas the velocities are defined at the cell
boundaries. Although the problem is now 3D, it is simpler than the
one studied in Tagger & Pellat (1999), as there is no magnetic field.
This allows us to solve the set of equations on the real integration
axis, which give more accurate eigenvectors.

Method (2). We use the relaxation method to solve this two-point
boundary eigenvalue problem as detailed in Press et al. (1992). The
computation cost is relatively low in this method and we can afford
higher resolution. Typically, we use 800 uniform grid points in our
calculation.

Since the Rossby waves are concentrated around the density
bump, we choose for both codes the inner boundary at rin/r0 =
0.4 and the outer boundary at rout/r0 = 1.6. The two codes give the
same results when the same null radial velocity boundary conditions
are adopted.

4 R E S U LT S O F L I N E A R C A L C U L AT I O N S

As noted above, we have implemented two types of boundary con-
ditions to solve the linear eigenvalue problem. The radiative bound-
ary condition is preferred, since it corresponds to the spontaneous
growth of perturbations around the density bump without energy in-
put from the regions outside the bump. But whatever the boundary
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Figure 2. The RWI growth rate (in units of �0) as a function of the azimuthal
mode number m obtained by linear calculations for 2D (dashed line) and 3D
(solid line) discs.

conditions, our calculations show that for the choice of disc param-
eters and computational domain adopted in this paper, the complex
eigenvalues ω are almost identical. This can be understood since
only a small amount of wave energy is leaked out of the Rossby
zone as outgoing (away from the density bump) density waves.

Fig. 2 shows the linear growth rate of the 3D Rossby mode trapped
around the density bump as a function of the azimuthal wavenumber
m. The 2D result, obtained by including only the n = 0 terms in the
expansion (15), is also shown for comparison. We see that the 3D
growth rates are only slightly smaller than the 2D ones under the
same conditions (see Section 4.1 below). In all cases, we find that

the real part of the mode frequency ωr close to m�0, with ωr/m�0

= 0.974 for m = 2 and 0.986 for m = 6.
Fig. 3 depicts the eigenfunctions of the m = 4 mode. For each

variable, we show the n = 0 and 2 components, except for the
vertical velocity which has a null n = 0 component. The amplitudes
of the eigenfunctions are normalized so that the maximum value
of the radial velocity perturbation |ur0| equals unity (this maximum
occurs at r 
 r0). Note that the Rossby mode is confined around the
corotation radius (where ωr = m�), which is close to the density
bump. But the mode can leak out as spiral density waves inside the
inner Lindblad resonance (where ω − m� = −κ) and outside the
outer Lindblad resonance (where ω − m� = κ). (See e.g. Tsang
& Lai 2008; Lai & Tsang 2009, for discussion on the wave zones
for Rossby waves and density waves.) The n = 0 spiral wave (as a
function of r) satisfies the WKB amplitude relation for η0 (Tsang
& Lai 2008):

|η0(r)| ∝
(

c2
s |D|

r2�2

)1/4

(26)

and similar relations for ur0 and uϕ0. The n = 2 component is
driven by the coupling with the n = 0 component. The vertical
velocity has a small but non-zero amplitude, and as this is a pure
n = 2 component, its amplitude increases with height, whereas the
other variables (ur, uϕ and δρ) are dominated in the Rossby wave
region by the vertically constant component (n = 0). This means

Figure 3. Eigenfunctions of the m = 4 mode. The dotted line shows the real part, the dashed line the imaginary part and the solid line the absolute value. The
vertical dot–dashed lines give the positions of the inner and outer Lindblad resonances. The radius is in units of r0; see also Section 4.
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3D Rossby wave instability 2403

that the vertical velocity component cannot be neglected when the
flow pattern is of importance, as for instance for the study of the
concentration of dust in the vortices. In other words, the thin disc
approximation does not capture the full structure of the instability
(see also Section 5).

4.1 Angular momentum flux

A useful way to understand the RWI is to examine the angular
momentum flux carried by the wave. The time-averaged transfer
rate of the z-component of angular momentum across a cylinder of
radius r is given by (see e.g. Lynden-Bell & Kalnajs 1972; Goldreich
& Tremaine 1979; Tanaka et al. 2002)

F (r) =
〈

r2
∫ ∞

−∞
dz

∫ 2π

0
dϕ ρe(r, z)ur (r, ϕ, z, t)uϕ(r, ϕ, z, t)

〉
,

(27)

where 〈〉 stands for the time average. Using ur (r, ϕ, z, t) =
Re [urnHn(Z)ei(mϕ−ωt)], uϕ(r, ϕ, z, t) = Re [uϕnHn(Z)ei(mϕ−ωt)],
we find that the angular momentum flux associated with the n com-
ponent of the m mode is (see Zhang & Lai 2006)

Fn(r) = n! πr2� Re
(
urnu

∗
ϕn

)
. (28)

Fig. 4 shows the angular momentum fluxes for the n = 0 and 2
components of the m = 4 mode. Around the density bump, the flux
is dominated by the n = 0 component. Thus it is not surprising
that the 3D linear growth rate is close to the 2D value (see Fig. 2).
Indeed, the growth of the RWI arises from the positive F0 around
the corotation (close to the density bump): since the perturbation
inside (outside) the corotation carries negative (positive) angular
momentum, a net outward angular momentum transfer across the
corotation induces mode growth.

The finite n = 2 wave component arises from its coupling to the
n = 0 component. As detailed in Zhang & Lai (2006) (see their
section 6.2), n ≥ 1 waves propagating across the corotation are
strongly attenuated, and the corotation acts as a sink for waves with
n ≥ 1 (see also Papaloizou & Pringle 1985; Kato 2003; Li, Goodman
& Narayan 2003; Latter & Balbus 2009). This is consistent with
the behaviour of F2 around the corotation: we see from the insert

Figure 4. Angular momentum flux as defined by equation (28) for the n =
0 (upper panel) and n = 2 (lower panel) components of the m = 4 mode. The
radius is in units of r0 and the flux in units of �0r

4
0 �2

0. In the lower panel,
the dashed line shows F0, and the insert shows a blow-up of F2 around the
density bump.

of Fig. 4 that F2 changes sign from positive to negative across the
corotation radius. This explains our numerical result (see Fig. 2)
that the 3D RWI growth rate is smaller than the 2D growth rate.

5 C O M PA R I S O N TO N U M E R I C A L
SI MULATI ONS

We have performed full numerical simulations with the same disc
configuration and parameters as those used in our linear calcu-
lations. The comparison to simulations is important for different
reasons.

(i) In our linear calculations, we included only the first two el-
ements (n = 0, 2) of the Hermite polynomial decomposition, the
higher order terms being neglected. The non-linear simulations can
confirm if this approximation is correct.

(ii) The previous simulations of Meheut et al. (2010) showed
unexpected vertical structure in the Rossby waves. New simulations
with the same setup as the linear analysis can confirm if the vertical
structure is correctly handled and if the simulations are not altered
by the numerical methods or boundary conditions.

5.1 Numerical methods

The numerical methods used for this study are very similar to the
one of Meheut et al. (2012). We used MPI-AMRVAC (Keppens et al.
2012) with the total variation diminishing Lax–Friedrich scheme
with a third-order accurate Koren limiter. The grid is cylindrical
with r/r0 in the range of [0.4, 1.6], z/r0 in the range of [0, 0.6]
and full azimuthal range [0, 2π] is covered. This vertical extension
of the grid corresponds to six scale height at r0. A high vertical
extension of the grid is needed to resolve the vertical structure of
the disc at the outer edge of the grid. The grid is fixed during the
simulation but the initial resolution is determined to fit the regions of
high-density gradient. The base resolution is (128, 32, 32) and up to
four level of refinement are allowed, reaching a resolution of (2048,
512, 512) near r0. The boundary conditions are the same as Meheut
et al. (2012) with a null radial velocity at the boundaries. This
boundary condition is slightly different from the radiative boundary
condition. However, as discussed in Section 4, the two different
boundary conditions produce nearly identical linear mode frequency
and growth rate.

In the simulations, the initial mid-plane density profile is given
by

ρM (r) = 1√
2πh

{
1 + χ exp

[
− (r − r0)2

2σ 2

]}
. (29)

The vertical profile of the density is then chosen to achieve hydro-
static equilibrium:

ρe(r, z) = ρM (r) exp

[
GM

c2
s

(
1√

r2 + z2
− 1

r

)]
. (30)

This gives a surface density profile very similar to equation (24).
The azimuthal velocity is determined by force balance in the radial
direction.

The small difference from the linear analysis resides in the upper
region of the simulation where the density reaches very low values.
In the simulations, there is a floor value for the density. To check
if this difference is of importance, we have performed some tests,
one with a floor density of one-tenth of its initial value and one
where the height of the numerical box has been doubled. We find a
negligible difference in the resulting growth rates.

C© 2012 The Authors, MNRAS 422, 2399–2406
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One simulation has been performed without any perturbation to
check that the initial state is indeed an equilibrium state. For the
other simulations, we add small perturbations in the radial velocity:

vr

r0�0
= ε sin(mϕ) exp

[
− (r − r0)2

2σ 2

]
, (31)

with ε ∼ 5 × 10−4 and m = 2, 3, . . . , 6.

5.2 Results of the simulations

Starting from the initial perturbation (31) for a given m, the sim-
ulation follows the exponential growth of the instability and the
saturation phase on time-scale of a few tens of rotations. The exact
time-scale to reach saturation depends on the azimuthal mode num-
ber m. A fit of the exponential growth can give the growth rate γ of
the RWI. An example (for m = 3) is shown in Fig. 5 and the density
and radial velocity perturbation during the linear phase (t�0 ∼ 18)
are shown in Fig. 6. The azimuthal mode number (m = 3) is clearly
seen in this figure.

Fig. 7 shows the linear RWI growth rates obtained from the 3D
simulations for different m values. We point out here that the esti-
mated growth rate depends on the defined position of the beginning
and the end of the linear phase. The growth rates of the different m
values are then given with an uncertainty of 5–10 per cent due to
the difficulty to find the best fit for the linear growth. The results
are compared with the mode growth rates from our linear pertur-
bation calculations. We see that the numerical growth rates are in
good agreement with the linear perturbation theory results. For the
m ≥ 4, the non-linear simulations give slightly smaller growth rates
as compared to the linear perturbation results. This could be due
to the higher numerical viscosity on the smaller scale modes or to
the higher (n > 2) terms in the Hermite decomposition that have
not been considered in the linear approach and that would be more
important for higher m.

Figure 5. The amplitude of the density perturbation (on a logarithmic scale)
as a function of time (in units of 1/�0) in the m = 3 simulation. The y-axis
shows the logarithm of the surface density perturbation δ�, where δ� =
maxr,ϕ |� − 〈�〉ϕ |. The two solid lines represent linear fits to the exponential
growth phase of the RWI. The difference in the fitted linear growth rates is
about 5 per cent.

Figure 6. Perturbed density (left) and radial velocity (right) in the mid-plane
at t�0 ∼ 18 in the m = 3 simulation.

Figure 7. Growth rate obtained for different azimuthal modes with the
two methods: the linear analysis (solid line) and the non-linear simulations
(dashed line).

Some velocity streamlines in a vertical frame of the disc are
plotted in Fig. 8 showing one of the vertical roll structures we are
studying in this paper.

To compare the flow velocity and density structures obtained
from the simulations with the linear eigenfunctions, we can apply
Fourier transform in the azimuthal direction to the numerical flow
outputs. Fig. 9 gives an example (for the m = 4 mode at time �0t

 18) of these numerically determined ‘eigenfunctions’. Note that
the density, radial and azimuthal velocities are evaluated at the disc
mid-plane, whereas the vertical velocity is plotted slightly above
the mid-plane. This figure should be compare with Fig. 3, where
the same eigenfunctions from the linear perturbation theory are
shown. Here we have not separated the different vertical compo-
nents but one can see that the n = 0 component dominates except
obviously for uz. In Fig. 10, we have plotted the amplitude of the
azimuthal velocity eigenfunction obtained with the two methods
and with the same normalization, so they can be directly compared.
However, for the linear calculation only n = 0 is taken into account,
whereas the multiple components of the vertical structure have not
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Figure 8. Velocity streamlines in a vertical frame at t�0 ∼ 18.

been separated in the numerical simulations. The good agreement
between our numerical simulations and linear analysis indicates that
the simulations can correctly describe the RWI. The complicated
radial structure of the mode in the corotation region coupled with
the vertical structure is responsible for the complexity of the flow,
as plotted in Fig. 8.

Figure 10. Direct comparison of the linear (solid line) and numerical
(dashed line) approaches for the azimuthal velocity component. The same
normalization has been used for the two approaches.

Figure 9. Numerical ‘eigenfunctions’ of the m = 4 mode obtained with the non-linear code at t�0 ∼ 18. The dotted line is the real part, the red dashed line is
the imaginary part and the solid line is the amplitude of the m = 4 element of the azimuthal Fourier transform of the physical quantities.
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6 C O N C L U S I O N

In this paper we have carried out linear analysis of the RWI in
3D stratified isothermal discs. Our linear calculations show that the
vertical velocity inside the Rossby vortices, which was obtained in
previous numerical simulations (Meheut et al. 2010), is expected
when the disc scale height varies with the disc radius. This vertical
velocity is of crucial importance for understanding the concentra-
tion of dust inside the vortices and the formation of planetesimals.
Detailed comparison with 3D numerical simulations show that the
simulations of Meheut et al. (2010, 2012) can correctly handle the
RWI in 3D. Hence these simulations are robust tools to study the
non-linear and long-term evolution of this instability. We have also
shown that the linear growth of Rossby waves is only slightly af-
fected by the disc vertical stratification, with similar mode growth
rates in 3D as in 2D. The small reduction of the 3D mode growth
rate is due to the absorption of the wave component with vertical
structure at the corotation resonance.

We have also calculated the angular momentum flux carried by the
Rossby vortices. This shows that the growth of the instability is due
to the exchange of angular momentum between two Rossby waves
on each side of the density bump. The angular momentum transfer
tends to reduce the initial density bump. This is an important feature
of the RWI as it may lead to the transfer of angular momentum
through the dead zone of protoplanetary discs. To fully understand
this process and the competition with the bump formation process,
one will need a self-consistent simulation including a dead zone
inside an ionized disc. In the mean time, analytical model of these
processes, as the one presented here, can give a first insight of this
dynamical evolution.
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