
CLASSIFICATION OF INDECOMPOSABLE 2r-DIVISIBLE CODES SPANNED BY BY
CODEWORDS OF WEIGHT 2r

SASCHA KURZ

ABSTRACT. We classify indecomposable binary linear codes whose weights of the codewords are divisible
by 2r for some integer r and that are spanned by the set of minimum weight codewords.
Keywords: linear codes, divisible codes, classification
MSC: 94B05.

1. INTRODUCTION

A binary [n, k]2 code C is a k-dimensional subspace of the n-dimensional vector space Fn
2 , i.e., we

consider linear codes only. Elements c ∈ C are called codewords and n is called the length of the
code. The support of a codeword c is the number of coordinates with a non-zero entry, i.e., supp(c) =
{i ∈ {1, . . . , n} : ci 6= 0}. The (Hamming-) weight wt(c) of a codeword is the cardinality | supp(c)| of
its support. A code C is called ∆-divisible if the weight of all codewords is divisible by some positive
integer ∆ ≥ 1, see e.g. [8] for a survey. A classification of all ∆-divisible codes seems out of reach unless
the length is restricted to rather small values.

Given an [n, k]2 code C, the [n, n− k]2 code C⊥ =
{
x ∈ Fn

2 . xT y = 0∀y ∈ C
}

is called the orthog-
onal, or dual of C. A code is self-orthogonal if C ⊆ C⊥ and self-dual if C = C⊥. A self-orthogonal
code is 2-divisible. In [6] self-orthogonal codes which are generated by codewords of weight 4, which
then are 4-divisible, are completely characterized. Here we want to generalize that result, see [6, Theorem
6.5], and characterize 2r-divisible codes that are generated by codewords of weight 2r. Further related
work includes the classical result of Bonisoli characterizing one-weight codes [1] and the generalization
to two-weight codes where one of the weights is twice the other [3].

2. PRELIMINARIES

We call a code C non-trivial if its dimension dim(C) = k is at least 1. Using the abbreviation
supp(C) = ∪c∈C supp(c), we call | supp(C)| the effective length neff of C. Here we assume that all
codes are non-trivial and that the effective length neff equals the length n (or n(C) to be more precise).
We emphasize this by speaking of an [n, k]2 code. A matrix G with the property that the linear span of its
rows generate the code C, is a generator matrix of C. A generator matrix G is called systematic if it starts
with a unit matrix. Each code admits a systematic generator matrix. The assumption that the effective
length neff is equal to the length n is equivalent to the property that generator matrices do not contain a
zero-column. By Ai(C) we denote the number of codewords of weight i in C and by Bi(C) the number
of codewords of weight i in C⊥. Mostly, we will just write Ai and Bi, whenever the code C is clear
from the context. In our setting we have A0 = B0 = 1 and B1 = 0. In general, the Ai and the Bi are
related by the so-called MacWilliams identities, see e.g. [4]. The first four MacWilliams identities can be
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rewritten to: ∑
i>0

Ai = 2k − 1, (1)∑
i≥0

iAi = 2k−1n, (2)

∑
i≥0

i2Ai = 2k−1(B2 + n(n + 1)/2), (3)

∑
i≥0

i3Ai = 2k−2(3(B2n−B3) + n2(n + 3)/2). (4)

In this special form they are also called the first four (Pless) power moments, see [5]. The weight dis-
tribution of C is the sequence A0, . . . , An and the weight enumerator of C is the polynomial w(C) =
w(C;x) =

∑n
i=0 Aix

i.
Two codes C,C ′ are equivalent, notated as C ' C ′, if there exists a permutation in Sn sending

C into C ′. The direct sum of an [n, k]2 code C and an [n′, k′]2 code C ′ is the [n + n′, k + k′]2 code
C⊕C ′ = {(c1 + c′1, . . . , cn + c′n) : (c1, . . . , cn) ∈ C, (c′1, . . . , c

′
n) ∈ C ′}. If D can be written as C⊕C ′

it is called decomposable, otherwise indecomposable [7].

Lemma 2.1. Let C be an indecomposable [n, k]q code. If k ≥ 2, then C contains an indecomposable[
≤ n− 1, k − 1

]
q

code C ′ as a subcode.

PROOF. Let G be a systematic generator matrix of C. We will construct C ′ by row-wise building up
a generator matrix. To this end let R be the set of rows and set C = ∅. For the start pick some row
r ∈ R add it to C and remove it from R. As long as # < k − 1 we choose some element r ∈ R with
supp(r)∩ supp(c) 6= ∅ for at least one c ∈ C. Since C is indecomposable such a row r must indeed exist.
Again, add r to C and remove it fromR. �

In other words, indecomposable codes can always be obtained by extending indecomposable subcodes.

Corollary 2.2. Each indecomposable [n, k]q code C contains a chain C0 ⊆ C1 ⊆ · · · ⊆ Ck = C of
indecomposable subcodes such that dim(Ci) = i and the effective length is strictly increasing.

Given some [n, k]2 code C we can restrict the coordinates of the codewords to some subset I ⊆ N :=
{1, . . . , n}, i.e., CI = {cI : c ∈ C}, where cI denotes the codeword c restricted to the positions in I .
Special cases are the code Csupp(c) restricted to some codeword c ∈ C and the corresponding residual
code CN\ supp(c). Note that the dimensions of both codes is at most k − 1 but can be strictly less. If C
is 2r divisible for some positive integer r, then a residual code of C is 2r−1-divisible, see e.g. [9, Lemma
13], so that also the corresponding restricted code is 2r−1-divisible.

If all non-zero codewords of a binary linear code have the same weight, then the code is a replication
of a simplex code, see [1]. For the reader’s convenience we prove a specialization of that result.

Lemma 2.3. Let C be an [n, k]2 code where all non-zero codewords have weight 2a. Then, k ≤ a + 1

and C ' Sa+1−k
k−1 .

PROOF. By Lemma 3.1 there exists a code C ′ with C = C ′a+1−k. By construction all non-zero code-
words of C ′ have weight 2k−1. Using equations (1)-(3) we compute n = 2k− 1 and B2 = 0. Since there
are only 2k − 1 different non-zero vectors in Fk

2 we have C ′ ' S0
k−1, so that C ' Sa+1−k

k−1 . �

3. THE CHARACTERIZATION

We want to prove our main characterization result for indecomposable 2r-divisible [n, k]2 codes that
are generated by codewords of weight 2r in Theorem 3.7. To this end, we describe some families of
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codes and then derive some auxiliary results. So, by Sl we denote the (l + 1)-dimensional simplex code,
i.e., dim(Sl) = l + 1 and wSl

(X) = 1 + (2l+1 − 1) · X2l

, where l ≥ 0. So, Sl is 2l-divisible and
has effective length n = 2l+1 − 1. By Al we denote the

[
2l+1, l + 2, 2l

]
1st-order Reed-Muller code,

which geometrically corresponds to the affine (l + 1)-flat, i.e., Sl+1 − Sl+ in terms of point sets. So,
dim(Al) = l+ 2 and wAl

(X) = 1 +
(
2l+2 − 2

)
·X2l

+ 1 ·X2l+1

, i.e., it is 2l-divisible and has effective
length n = 2l+1. By Rl we denote the l-dimensional code generate by the l codewords having a 1 at
position 1 and a second one at position i + 1 for 1 ≤ i ≤ l. So, Rl has dimension dim(Rl) = l, effective
length n = l + 1 and is 21-divisible. If C is a code then by Cm we denote the code that arises if we
replace every 0 by a block of 2m consecutive zeroes and every 1 by a block of 2m consecutive ones. So,
especially we have C0 = C. In general the dimension does not change, the effective length is multiplied
by 2m and a 2l-divisible code is turned into a 2l+m-divisible code. For the weight enumerator we have
w(Cm;x) = w(C;xm).

Lemma 3.1. Let q = pe be a prime power and C be a q-ary linear code (considered as a powerset of
Fn
q ) that is qr-divisible, where re ∈ N≥0. For each ∅ ⊆M ⊆ S ⊆ C with 1 ≤ |S| ≤ r + 1 we have that

qr+1−|S| divides #IM,S(C), where

IM,S(C) = {i ∈ supp(S) : i ∈ supp(c)∀c ∈M ∧ i /∈ supp(c)∀c ∈ S\M} .

PROOF. For M = ∅ we have IM,S(C) = ∅, so that #IM,S(C) = 0 and the statement is trivially true.
In the following we assume M 6= ∅ and prove by induction on #S. For the induction start let S = {c}.
Due to our assumption we have M = {c}, so that IM,S(C) = # supp(c) = wt(c), which is divisible
by qr+1−|S| = qr. Now let |S| ≥ 2 and c̄ ∈ M be arbitrary. With I = supp(c̄) we set C ′ = CI ,
i.e., the restricted code. As noted in Section 2, C ′ is qr−1-divisible (since |S| ≤ r + 1 implies r ≥ 1).
We set M ′ = {cI : c ∈M\{c̄}} and S′ = {cI : c ∈ S\{c̄}}, so that ∅ ⊆ M ′ ⊆ S′ ⊆ C ′. Since
#S′ = #S − 1 and IM,S(C) = IM ′,S′(C ′) the statement follows from the induction hypothesis. �

Corollary 3.2. In the setting of Lemma 3.1 we have that qr+1−|S| divides the cardinality of supp(S).

PROOF. Since
supp(S) = ∪c∈S supp(c) =

∑
∅⊆M⊆S

IM,S(C),

the statement follows directly from Lemma 3.1. �

Lemma 3.3. Let C = Ra
l for integers l ≥ 1 and a ≥ 0, c′ be a further codeword with weight 2a+1 and

∅ 6= supp(c′)∩ supp(C) 6= supp(C). If C ′ := 〈C, c′〉 is 2a+1-divisible, then either C ′ ' Ra
l+1 or l = 2,

a ≥ 1, and C ′ ' Sa−1
2 .

PROOF. As an abbreviation we set ∆ := 2a+1 and note that C is ∆-divisible. If l = 1, then C =
{0, c}, where wt(c) = ∆. From Lemma 3.1 we conclude that ∆

2 divides |supp(C) ∩ supp(c′)|. Since
supp(C) = supp(c) and ∅ 6= supp(C) ∩ supp(c′) 6= supp(C), we have |supp(C) ∩ supp(c′)| = ∆

2 .
Thus, C ′ ' Ra

2 = Ra
l+1.

Now we assume l ≥ 2. For 1 ≤ i ≤ l + 1 we set Pi :=
{
j ∈ N : ∆

2 (i− 1) + 1 ≤ j ≤ ∆
2 i
}

and
fi(c) := |supp(c) ∩ Pi| for each codeword c ∈ C ′. Note that fi(c) ∈

{
0, ∆

2

}
for all c ∈ C and all

1 ≤ i ≤ l + 1. Moreover, for each 1 ≤ i < j ≤ l + 1 there exists a codeword ci,j ∈ C with
fi(c

i,j) = fj(c
i,j) = ∆

2 and fh(ci,j) = 0 otherwise. Now suppose that there is an index 1 ≤ i ≤ l + 1

with 0 < fi(c
′) < ∆

2 . For each index 1 ≤ j ≤ l + 1 with i 6= j we have

wt(ci,j + c′) = wt(ci,j) + wt(c′)− 2 · wt(ci,j ∩ c′) = 2∆− 2fi(c
′)− 2fj(c

′),

so that wt(ci,j + c′) = ∆ and fi(c
′) + fj(c

′) = ∆
2 . Since l ≥ 2 there exists at least another index in

{1, . . . , l + 1} ∩ {i, j}, so that this implies fh(c′) = ∆
4 for all 1 ≤ h ≤ l + 1. Thus, ∆ = wt(c′) >∑l+1

h=1 fh(c′) implies l = 2 and C ′ ' Sa−1
2 . Otherwise we have fh(c′) ∈

{
0, ∆

2

}
for all 1 ≤ h ≤ l + 1,
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i.e., there exists an index 1 ≤ i ≤ l + 1 with fi(c
′) = ∆

2 and fh(c′) = 0 otherwise. If i 6= 1 we consider
c′ + c1,i to conclude that C ′ = Ra

l+1. �

Lemma 3.4. Let C be a binary, non-trivial, indecomposable 21-divisible linear code that is spanned by
codewords of weight 2. Then, C ' R0

l for some integer l ≥ 1.

PROOF. We will prove by induction on the dimension k of C. The induction start k = 1 is obvious.
For the induction step let C ′ be an indecomposable subcode of C with dimension k − 1, see Lemma 2.1.
From the induction hypothesis we conclude C ′ ' R0

k−1, so that Lemma 3.3 gives C ' R0
k. �

Note that S1
0 ' R0

1, S0
1 ' R0

2, and A0
1 ' R0

3.

Lemma 3.5. Let C be a binary, non-trivial, indecomposable ∆-divisible linear code that is spanned by
codewords of weight ∆, where ∆ = 2a and a ∈ N>0. Let c′ be a further codeword with weight ∆ and
∅ 6= supp(c′) ∩ supp(C) 6= supp(C) such that C ′ := 〈C, c′〉 is ∆-divisible.
(1) If C ' S0

a then C ′ ' A0
a.

(2) If C ' S1
a−1 then C ′ ' S0

a or C ′ ' A1
a−1.

(3) If a ≥ 1 and C ' A0
a then a = 1 and C ′ = R0

4.
(4) If a ≥ 2 and C ' A1

a−1 then a = 2 and C ′ ' R1
4.

(5) If a ≥ 3 and C ' A2
a−2 then a = 3 and C ′ ' R2

4.

PROOF. We note that 1 ≤ n(C ′)− n(C) ≤ ∆− 1. Since n(C) ≤ 2∆ in all cases the non-zero weights
in C ′ are either ∆ or 2∆.
(1) From equations (1)-(2) we compute A2∆ = 2n(C ′)− 4∆ + 1, i.e., A2∆ ≥ 1. Let D be the residual

code of a codeword of weight 2∆ in C ′ (C ′\C). By construction D is ∆
2 -divisible, projective, and

has an effective length of at most ∆ − 2 < 2 · ∆
2 − 1. Thus, Lemma 2.3 implies that D is a trivial

code, i.e., n(D) = 0 and n(C ′) = 2∆. With this we have A2∆ = 1 and C ′ ' A0
a.

(2) From equations (1)-(2) we compute A∆ = 4∆ − 2 − n(C ′) and A2∆ = n(C ′) − 2∆ + 1, i.e.,
n(C ′) ≥ 2∆− 1. If n(C ′) = 2∆− 1 then A2∆ = 0 and Lemma 2.3 gives C ′ ' S0

a. If n(C ′) = 2∆
then A2∆ = 1 and adding the all-one word to C gives C ′ ' A1

a−1. In the remaining cases we have
n(C ′) > 2∆ and A2∆ ≥ 1. Let D be the residual code of a codeword of weight 2∆ in C ′ (C ′\C).
By construction D is ∆

2 -divisible, has column multiplicity at most 2, and has an effective length of
at most ∆− 3 < 2 · ∆

2 − 2. Thus, Lemma 2.3 implies that D is a trivial code – contradiction. (The
two possibilities with column multiplicity 1 or 2 would have an effective length of ∆− 1 or ∆− 2,
respectively.)

(3) From equations (1)-(2) we compute A∆ = 16∆−2−4n(C ′) and A2∆ = 4n(C ′)−8∆+1. Let D be
the residual code of a codeword of weight 2∆ in C ′\C. By construction D is ∆

2 -divisible, projective,
contains the all-1 codeword, and has an effective length of at most ∆− 1. Thus, Lemma 2.3 implies
that D ' Sa−1

0 , where a = 1. So, C = R0
3 and Lemma 3.3 yields C ′ = R0

4.
(4) From equations (1)-(2) we compute A∆ = 8∆ − 2 − 2n(C ′) and A2∆ = 2n(C ′) − 4∆ + 1. Let

D be the residual code of a codeword of weight 2∆ in C ′\C. By construction D is ∆
2 -divisible, has

maximum column multiplicity at most 2, contains the all-1 codeword, and has an effective length
of at most ∆ − 1. Thus, Lemma 2.3 implies that either D ' S0

0 or D ' S1
0 . In the first case we

have ∆ = 2 and a = 1, which is not possible. In the second case we have ∆ = 4, a = 2, and
C ' A1

1 ' R1
3, so that Lemma 3.3 implies C ′ ' R1

4.
(5) From equations (1)-(2) we compute A∆ = 4∆ − 2 − n(C ′) and A2∆ = n(C ′) − 2∆ + 1. Let D

be the residual code of a codeword of weight 2∆ in C ′\C. By construction D is ∆
2 -divisible, has

maximum column multiplicity at most 4, contains the all-1 codeword, and has an effective length of
at most ∆−1. Thus, Lemma 2.3 implies that either D ' S0

0 , D ' S1
0 , or D ' S2

0 . Since we assume
a ≥ 3, only a = 3 and ∆ = 8 is possible, where C ' R2

3, so that Lemma 3.3 implies C ′ ' R2
4.

�
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Note that if we drop the condition supp(C ′) 6= supp(C), then A1
a−1 can be extended to A0

a and A2
a−2

can be extended to A1
a−1.

Lemma 3.6. Let C be a binary, non-trivial, indecomposable 22-divisible linear code that is spanned by
codewords of weight 4. Then, C ' R1

l for some integer l ≥ 1 or either C ' Sl
2−l or C ' Al

2−l for some
l ∈ {0, 1}.

PROOF. First note that the mentioned families of codes satisfy all assumptions. If dim(C) ≤ 2 then
Lemma 3.1 implies that there is some code C ′ with C = C ′1, i.e., we can apply Lemma 3.4. If dim(C) ≥
3 we apply Corollary 2.2 and consider the corresponding chain C0 ( C1 ( · · · ( Ck = C, where
k = dim(C). Lemma 3.1 gives the existence of a binary, non-trivial, indecomposable 21-divisible linear
code C ′ with C2 = C ′2 that is spanned by codewords of weight 2. Thus, Lemma 3.4 gives C ′ ' R0

2

and C2 ' R1
2. Lemma 3.3 then gives C3 ' R1

3 or C3 ' S0
2 . If C3 ' R1

3 then recursively applying
Lemma 3.3 yields Cl ' D1

l for all 3 ≤ l ≤ k. If C3 ' S0
2 and k ≥ 4, then Lemma 3.5 gives C4 ' A0

2

and k = 4 (since A0
2 cannot be extended). �

Note that S1
1 ' R1

2 and A1
1 ' R1

3.

Theorem 3.7. For a positive integer a let C be a binary, non-trivial, indecomposable 2a-divisible linear
code that is spanned by codewords of weight 2a. Then, C ' Ra−1

l for some integer l ≥ 1 or either
C ' Sl

a−l or C ' Al
a−l for some l ∈ {0, 1, . . . , a− 1}.

PROOF. We prove by induction on a. Lemma 3.4 and Lemma 3.6 give the induction start, so that we can
assume a ≥ 3 in the following. First note that the mentioned families of codes satisfy all assumptions. If
dim(C) ≤ a then Lemma 3.1 implies that there is some code C ′ with C = C ′1, i.e., we can apply the
induction hypothesis. If dim(C) ≥ a + 1 we apply Corollary 2.2 and consider the corresponding chain
C0 ( C1 ( · · · ( Ck = C, where k = dim(C). Lemma 3.1 gives the existence of a binary, non-trivial,
indecomposable 2a−1-divisible linear code C ′ with Ca = C ′2 that is spanned by codewords of weight
2a−1. Then the induction hypothesis gives that either Ca ' Ra−1

a , Ca ' S1
a−1, or Ca ' A2

a−2. In the
first case recursively applying Lemma 3.3 yields Cl ' Ra−1

l for all a ≤ l ≤ k. If either Ca ' S1
a−1 or

Ca ' A2
a−2 we can apply Lemma 3.5 to conclude Ca+1 ' S0

a, Ca+1 ' A1
a−1, or a = 3 and C4 ' R2

4.
In the latter case we have Cl ' R2

l for all 4 ≤ l ≤ k due to Lemma 3.3. Otherwise either k = a + 1 or
Ca+2 ' A0

a and k = a + 2 due to Lemma 3.5. �

4. AN APPLICATION TO PROJECTIVE 3-WEIGHT CODES

When deciding the question whether a code with certain parameters exist one often checks whether the
MacWilliams identities admit a non-negative integer solution. If so, then sometimes more combinatorial
are necessary. In the proof of e.g. [2, Lemma 24] the existence of an [51, 9]2 code with weight enumerator
w(C) = 1 + 2x8 + 406x24 + 103x32 had to be excluded in a subcase. Since the sum of two codewords
of weight 8 would have a weight between 8 and 16 this is impossible. Using the classification result of
Theorem 3.7 this can easily be generalized.

Proposition 4.1. Let C be a ∆-divisible [n, k]2 code, where ∆ = 2r for some positive integer r. If C
does not contain a codeword of weight 2∆, then A∆ ∈

{
2i − 1 : 0 ≤ i ≤ r + 1

}
.

PROOF. Let C ′ be the subcode of C spanned by the codewords of weight ∆ and C ′ = C1 ⊕ · · · ⊕ Cl

the up to permutation unique decomposition into indecomposable codes. Since C ′ does not contain a
codeword of weight 2∆ we have l ≤ 1. For l = 0 we obviously have A∆ = 0. If l = 1, then Theorem 3.7
gives C1 ' Sr−i

i , where 0 ≤ i ≤ r, and A∆ = 2i+1 − 1. �

In general, if we know that an [n, k]2 code is ∆ := 2r-divisible and contains some codewords of weight
∆ one can consider the decomposition C ′ = C1 ⊕ · · · ⊕ Cl of the subcode C ′ spanned by codewords of
weight ∆. Obviously, we have
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(1) w(C ′) =
∏l

i=1 w(Ci), i.e., especially A∆(C ′) =
∑l

i=1 A∆(Ci);
(2) dim(C) ≥ dim(C ′) =

∑l
i=1 dim(Ci);

(3) n(C) ≥ n(C ′) =
∑l

i=1 n(Ci);
(4) ω(C) ≥ ω(C ′) =

∑l
i=1 ω(Ci), where ω(D) denotes the maximum weight of a codeword in D.

With respect to Theorem 3.7 we remark
(1) A∆(Sl

r−l) = 2r+1−l − 1, dim(Sl
r−l) = r + 1 − l, n(Sl

r−l) = 2r+1 − 2l, and ω(Sl
r−l) = ∆ for

0 ≤ l ≤ r;
(2) A∆(Al

r−l) = 2r+2−l − 2, dim(Al
r−l) = r + 2− l, n(Al

r−l) = 2∆ = 2r+1, and ω(Al
r−l) = 2∆ for

0 ≤ l ≤ r − 1;
(3) A∆(Rr−1

l ) =
(
l+1
2

)
, dim(Rr−1

l ) = l, n(Rr−1
l ) = ∆

2 · (l + 1), and ω(Rr−1
l ) = dl/2e ·∆ for l ≥ 1.

A more sophisticated example, compared to Proposition 4.1, occurs in the area of binary projective 3-
weight codes. Projective codes, i.e., those with B2 = 0, having few weights have a lot of applications and
have been studied widely in the literature. Here we consider [n, k]2 codes with weights in {0,∆, 2∆, 3∆}
and length n = 4∆, where ∆ = 2r for some positive integer r.

Theorem 4.2. For an integer r ≥ 2 let ∆ = 2r and C be a projective ∆-divisible [4∆, k]2 code with
non-zero weights in {∆, 2∆, 3∆}. Then k ≤ 2r + 3. If k = 2r + 3 and r ≥ 3 then C is isomorphic to a
code with generator matrix A0

r−1 A0
r−1 0 0

0 0 S0
r 0

1 0 1 1

 ,

where 0 and 1 are matrices of approbriate sizes that entirely consist of 0’s or 1’s, respectively

PROOF. Using equations (1)-(3) and B2 = 0 we compute A∆ = 2k−r−1 − 3 ≥ 1. Consider the
decomposition C ′ = C1 ⊕ · · · ⊕ Cl of the subcode C ′ spanned by codewords of weight ∆. Since
ω(C) = 3∆, we have 1 ≤ l ≤ 3. If ω(Ci) = ∆ for all 1 ≤ i ≤ l, i.e., Ci = Sji

r−ji for some
0 ≤ ji ≤ r − 1, then A∆(C ′) =

∑l
i=1 A∆(Ci) ≤ l · (2∆− 1) ≤ 3 ·

(
2r+1 − 1

)
, so that k < 2r + 4. If

ω(C1) = 2∆, then due to Theorem 3.7 we have either C1 ' Rr−1
3 , C1 ' Rr−1

4 , or C1 ' Aj
r−j for some

0 ≤ j ≤ r − 1, so that A∆(C1) ≤ 2r+2 − 2. Since then l ≤ 2, ω(C2) ≤ ∆, and A∆(C2) ≤ 2r+1 − 1,
we have A∆(C ′) =

∑l
i=1 A∆(Ci) ≤ 3 ·

(
2r+1 − 1

)
, so that k < 2r+ 4. If ω(C1) ≥ 3∆, then l = 1 and

ω(C1) = 3∆, so that Theorem 3.7 gives C1 ' Rr−1
5 or C1 ' Rr−1

6 , i.e., A∆(C ′) ≤ 21 ≤ 3 ·
(
2r+1 − 1

)
,

so that k < 2r + 4. Thus, we have k ≤ 2r + 3 in all cases.
For k = 2r + 3 we need a more detailed analysis of the possible decompositions C ′ = C1 ⊕ · · · ⊕Cl.

First we note ω(Ci) ∈ {∆, 2∆, 3∆}, A∆ = 2r+2 − 3 ≥ 1, so that Ci 6' A0
r , and 1 ≤ l ≤ 3. Let us

start to consider the case ω(Ci) = ∆ for all i, i.e., A∆ = 2r+1−ji − 1 for some 0 ≤ ji ≤ r (Ci = Sji
r−ji

for some 0 ≤ ji ≤ r). If ji ≥ 1 for all i, then A∆(C ′) ≤ 3 · (2r − 1) < 2r+2 − 3, so that we assume
j1 = 0. Since 2r+2 − 3 = 2r+1 − 1 is equivalent to r = 0, we have l ≥ 2. If l = 2 and j2 = 0, then
A∆(C ′) ≥ 2r+2 − 2 > 2r+2 − 3. If l = 2 and j2 ≤ 1, then A∆(C ′) ≤ 2r+1 − 1 + 2r − 1 < 2r+2 − 3
for r ≥ 1. Thus, we have l = 3. If j2 = 0 or j3 = 0, then A∆(C ′) ≥ 2 ·

(
2r+1 − 1

)
> 2r+2 − 3.

If j2 ≥ 1, j3 ≥ 1, and j2 + j3 ≥ 3, then A∆(C ′) ≤ 2r+1 − 1 + 2r − 1 + 2r−1 − 1 < 2r+2 − 3.
The only possibility with A∆(C ′) = 2r+2 − 3 is j1 = 0, j2 = j3 = 1. However, in this case we have
n(C ′) =

(
2r+1 − 1

)
+
(
2r+1 − 2

)
+
(
2r+1 − 2

)
= 2r+2 +

(
2r+1 − 5

)
> 2r+2 = n for r ≥ 2.

If ω(Ci) = 3 for some i, then l = 3 and Theorem 3.7 gives C1 ' Rr−1
5 or C1 ' Rr−1

6 , so that
A∆(C ′) =

(
6
2

)
= 15 or A∆(C ′) =

(
7
2

)
= 21. Since 2r+2 − 3 < 15 for r ≤ 2 and 2r+2 − 3 > 21 for

r ≤ 3, this is not possible. Thus, there exists an index i with ω(Ci) = 2. W.l.o.g. we assume ω(C1) = 2.
From Theorem 3.7 we conclude C1 ' Rr−1

4 or C1 ' Aj
r−j for some integer 0 ≤ j ≤ r−1. If l = 2, then

ω(C2) = ∆, so that in any case we have A∆(C ′) = A∆(C1) + 2x − 1 for some integer 0 ≤ x ≤ r + 1.
If C1 ' Rr−1

4 , then the equation A∆(C ′) = 2r+2 − 3 = 10 + 2x − 1 has the unique integer solution
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r = 2 and x = 2, which corresponds to C ′ ' R1
4 ⊕ S1

1 ' R1
4 ⊕ R1

2. (The equation is equivalent to
2r+2 = 12 + 2x, so that r ≥ 2. For r ≥ 2 we have x ≥ 5, so that the left hand side is divisible by 8 while
the right hand side is not.) In the remaining cases we have C1 ' Aj

r−j , so that A∆(C1) = 2r+2−j − 2.
Thus, we have to consider the Diophantine equation A∆(C ′) = 2r+2 − 3 = 2y − 2 + 2x − 1, where
y = r + 2− j. The only integral solution is y = x = r + 1, i.e., j = 1, C1 ' A1

r−1, and C2 = S0
r .

To sum up, for k = 2r+3 and r ≥ 2, up to permutations, the only possibility is l = 2, C1 ' A1
r−1, and

C2 = S0
r with dim(C ′) = 2r+ 2 and n(C ′) = 2r+2− 1 = 4∆− 1. Having fixed k = 2r+ 3 we can use

equations (1)-(3) to compute A∆(C) = 2r+2−3 and A3∆(C) = 2r+2−1. Since dim(C)−dim(C ′) = 1
and A3∆(C ′) = 2r+1 − 1 < 2r+2 − 1, we can assume that C = 〈C ′, c′〉 with wt(c′) = 3∆. Since C
is projective from the 2∆ coordinates of the C1 ' A1

r−1-part exactly the half have to be ones (and the
other half have to be zeroes) in c′. Thus, c′ has a one in each of the remaining 2∆ coordinates, so that C
is isomorphic to a code with generator matrix

G =

A0
r−1 A0

r−1 0 0
0 0 S0

r 0
1 0 1 1

 ,

�

We remark that for r = 1 there exists a corresponding code of dimension 2r + 4, i.e., there is a unique
projective [8, 6]2 code with weight enumerator 1 + 13x2 + 354 + 15x6. For r = 2 there exist more than
one isomorphism types of codes of dimension 2r + 3, i.e., there exist exactly two isomorphism types of
projective [16, 7]2 codes with weight enumerator 1 + 13x4 + 99x8 + 14x12. (For the additional code we
have C ′ = R1

4⊕R1
2, dim(C ′) = 6, and n(C ′) = 16. Since n(C) = n(C ′), dim(C)−dim(C ′) = 1, and

C is projective, we have C = C ′2.) For r = 3 the non-existence of a projective [32, 10]2 code with weight
enumerator 1 + 61x8 + 899x16 + 63x24 can not be concluded directly from the MacWilliam identities.
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