
Efficient Storage Schemes for Desired Service Rate Regions

∗Fatemeh Kazemi, †Sascha Kurz, ‡Emina Soljanin, and ∗Alex Sprintson
∗Dept. of ECE, Texas A&M University, USA (E-mail: {fatemeh.kazemi, spalex}@tamu.edu)

† Dept. of Mathematics, University of Bayreuth, Germany (E-mail: sascha.kurz@uni-bayreuth.de)
‡Dept. of ECE, Rutgers University, USA (E-mail: emina.soljanin@rutgers.edu)

Abstract— A major concern in cloud/edge storage systems
is serving a large number of users simultaneously. The service
rate region is introduced recently as an important performance
metric for coded distributed systems, which is defined as the set
of all data access requests that can be simultaneously handled
by the system. This paper studies the problem of designing a
coded distributed storage system storing k files where a desired
service rate region R of the system is given and the goal is 1)
to determine the minimum number of storage nodes n(R) for
serving all demand vectors inside the set R and 2) to design the
most storage-efficient redundancy scheme with the service rate
region covering the set R. Towards this goal, we propose three
general lower bounds for n(R). Also, for k = 2, we characterize
n(R), i.e., we show that the proposed lower bounds are tight,
via designing a novel storage-efficient redundancy scheme with
n(R) storage nodes and the service rate region covering R.

I. INTRODUCTION

Motivation: The past two decades have seen an explosive
growth in the amount of data stored in the cloud data centers
which was accompanied by a rapid increase in the volume of
users accessing it. To handle these ever-increasing demands
in a fast and reliable manner, chunks of a data object are
stored redundantly over multiple storage nodes through either
replication or erasure coding. Although replication has been
typically preferred due its simplicity, it can be expensive in
terms of storage. Erasure codes have been shown to be effec-
tive in achieving various goals such as providing reliability
against node failures (e.g., [1]), ensuring availability of stored
content during high demand (e.g., [2]), enabling the recovery
of a data object from multiple disjoint groups of nodes (e.g.,
[3]), and providing fast content download (e.g., [4]–[6]).

Serving a large number of users simultaneously is a major
concern in cloud storage systems and is considered as one
of the most significant considerations in the design of coded
distributed systems. The service rate region has been recently
recognized as an important performance metric for coded
distributed systems which is the set of all data access requests
that can be simultaneously served by the system [7]–[13].
It has been shown that erasure coding of data objects can
increase the overall volume of the service rate region through
handling skews in the request rates more flexibly [7]–[9].

Part of this research is based upon work supported by the National
Science Foundation under Grants No. CIF-1717314, as well as work while
some authors were in residence at the Schloss Dagstuhl Research Institute
during the Algebraic Coding Theory for Networks, Storage, and Security
Seminar in 2018. The authors thank Dr. Y. Zhang for helpful discussion.

The service rate problem considers a distributed storage
system in which k files f1, . . . , fk are stored across n servers
using a linear [n, k]q code. The requests to download file fi
arrive at rate λi, and the service rate of each server is µ. A
goal of the service rate problem is to determine the service
rate region of this system which is the set of all request rates
λ = (λ1, . . . , λk) that can be served by this system.

Previous Work: All the existing studies on the service rate
problem focus on characterizing the service rate region of a
given coded storage scheme and finding the optimal request
allocation, that is, the optimal policies for splitting incoming
requests across the nodes to maximize the service rate region
(see [7]). In [8], the service rate region was characterized for
MDS codes when n ≥ 2k, binary simplex codes and systems
with arbitrary n when k = 2 . The service rate region of
the systems with arbitrary n when k = 3 was determined
in [9]. A connection between the service rate problem and
the fractional matching problem is established in [10]. Also,
it has been shown that the service rate problem can be viewed
as a generalization of the batch codes problem. In [11], we
characterized the service rate regions of the binary first order
Reed-Muller codes and binary simplex codes using a novel
geometric technique. Also, we showed that given the service
rate region of a code, a lower bound on the minimum distance
of the code can be derived.

Main Contributions: In this paper, we consider a prac-
tical setting of designing a coded distributed storage system
where we are asked to store k files redundantly across some
number of storage nodes in the system. Also, we are given
a bounded subset R ⊂ Rk≥0 as a desired service rate region
for this distributed storage system. Our goal is: 1) to find the
minimum number of storage nodes n(R) (or a lower bound
on n(R)) required for serving all demand vectors λ inside
the desired service rate region R, and 2) to design the most
storage-efficient redundancy scheme with service rate region
covering the set R. In fact, in this paper, unlike the existing
work, we focus on designing the underlying erasure code for
covering a given service rate region with minimum storage.
Towards this goal, we present three different lower bounds
for n(R). Also, we show that for k = 2, these bounds are
tight and we design an efficient storage scheme that achieves
the desired service rate region while minimizing the storage.
Due to the space constraints all the proofs are omitted and
can be found in [14].

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by EPub Bayreuth

https://core.ac.uk/display/343204679?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

II. PROBLEM SETUP AND FORMULATION

A. Basic Notation

Throughout this paper, we denote vectors by bold-face
lower-case letters and matrices by bold-face capital letters.
Let Z≥0 and N, respectively, denote the set of non-negative
integers, and the set of positive integers. For k ∈ N, let 0k
and 1k, respectively, denote the all-zero and all-one column
vectors of length k. Let ei be a unit vector of length k, having
a one at position i and zeros elsewhere. For any i ∈ N, we
define [i] , {1, . . . , i}. Let Fq be the finite field of order q,
and Fnq be the n-dimensional vector space over Fq . Let [n, k]q
denote a q-ary linear code C of length n and dimension k. We
denote the cardinality of a set or multiset S by #S. Let 〈S〉
and conv(S), respectively, denote the span and the convex
hull of the set S of vectors. For two vectors x = (x1, . . . , xk)
and y = (y1, . . . , yk), let x ≤ y define xi ≤ yi for all i ∈ [k].

B. Coded Storage System

Consider a coded storage system wherein k files f1, . . . , fk
are stored redundantly across n servers using a linear code
of length n and dimension k over Fq with generator matrix
G. Suppose all files are of the same size, and all servers
have a storage capacity of one file. A set Y is a recovery
set for file fi if the unit vector ei can be recovered through
a linear combination of the columns of G indexed by the
set Y , i.e., if there exist coefficients αj’s ∈ Fq such that∑
j∈Y αjgj = ei where gj denotes the jth column of G.

For each file, w.l.o.g. we consider reduced recovery sets
defined as the recovery sets that are not a proper superset
of any other recovery sets for that file. In other words, the
reduced recovery sets are obtained by considering non-zero
coefficients αj’s and linearly independent columns gj’s. Let
Yi = {Yi,1, . . . , Yi,ti} denote the ti recovery sets for file fi.

We assume that the service rate of each server is µ, i.e.,
each server can resolve the received requests at the average
rate µ. We further assume that the requests to download file
fi arrive at rate λi, i ∈ [k]. The request arrival rates for the
k files are denoted by the demand vector λ = (λ1, . . . , λk).
We consider the class of scheduling strategies that assign a
fraction of requests for a file to each of its recovery sets. Let
λi,j be the portion of requests for file fi that is assigned to
the recovery set Yi,j , j ∈ [ti].

C. Service Rate Region

The demand vector λ can be served by a coded distributed
storage system with generator matrix G ∈ Fk×nq and service
rate µ iff there exists a set {λi,j : i ∈ [k], j ∈ [ti]}, referred
to as a valid allocation, that satisfies the constraints below:

ti∑
j=1

λi,j = λi, for all i ∈ [k], (1a)

k∑
i=1

∑
j∈[ti]
`∈Yi,j

λi,j ≤ µ, for all ` ∈ [n], (1b)

λi,j ∈ R≥0, for all i ∈ [k], j ∈ [ti]. (1c)

The constraints (1a) guarantee that the demands for all
files are served, and the constraints (1b) ensure that the total
rates assigned to each server is not more than its service rate.

The service rate region of an erasure coded storage system
with the generator matrix G and service rate µ, denoted by
S(G, µ) ⊆ Rk≥0, is defined as the set of all demand vectors
λ that can be served by the system. In what follows, w.l.o.g.
we assume that µ = 1 and abbreviate S(G, 1) as S(G).

Note that there are several generator matrices that span the
same linear code, i.e., whenever the row span of two matrices
G and G′ coincides, they span the same code. However, the
service rate regions of generator matrices G and G′ of the
same linear code might not be the same, i.e., S(G) 6= S(G′).

D. Geometric description of Linear Codes

Here, we briefly review some preliminaries regarding the
notions of projective space, multiset, and projective multisets
induced by linear codes that we will use in Sec.II-E. For more
details, see e.g., [15], [16].

Definition 1. For a vector space V of dimension v over
Fq , the projective space of V , denoted as PG(V), is the set
of equivalence classes of V \ {0v} under the equivalence
relation ∼ defined as x ∼ y if there is a non-zero element
α ∈ Fq such that x = αy.

Note that the 1-dimensional subspaces of V are the points
of the projective space PG(V). The 2-dimensional subspaces
of V are the lines of PG(V) and the v − 1 dimensional
subspaces of V are called the hyperplanes of PG(V).

For a vector space V of (geometric) dimension v over Fq ,
the projective space PG(V) is also denoted by PG(v−1, q),
referred to as projective space of (algebraic) dimension v − 1
over Fq . This notion makes sense since up to isomorphism,
the PG(V) only depends on the order q of the base field and
the dimension v of the vector space V . Thus, PG(v − 1, q)
can be defined as the set of v-tuples of elements of Fq , not all
zero, under the equivalence relation given by (x1, · · · , xv) ∼
(αx1, · · · , αxv), α 6= 0, α ∈ Fq . The definition implies that
if (x1, · · · , xv) is a point in PG(v−1, q), its scalar multiple
(by any non-zero scalar α ∈ Fq) (αx1, · · · , αxv) is the same
point in PG(v − 1, q).

A multiset, unlike a set, allows for multiple instances for
each of its elements. A multiset S on a base set X is defined
with its characteristic function, denoted as χS : X → N,
mapping x ∈ X to the multiplicity of x in S. The cardinality
of S is computed as #S =

∑
x∈X χS(x). The multiset S is

also called #S-multiset. As a simple example, consider the
multiset S = {a, a, b, b, b, c} on the base set X = {a, b, c}
that is identified with χS(a) = 2, χS(b) = 3 and χS(c) = 1.

Let G be the generator matrix of an [n, k]q code C that is
a k-dimensional subspace of the n-dimensional vector space
Fnq . Let gi, i ∈ [n] be the ith column of G. Then, each gi
is a point in the projective space PG(k − 1, q), and G :=
{g1, g2, . . . , gn} is an n-multiset of points in PG(k − 1, q)
where each point is counted with the appropriate multiplicity.
In general, G is called the n-multiset induced by C.

Proposition 1. There exists a one-to-one correspondence
between the equivalence classes of full-length q-ary linear
codes and the projective equivalence classes of multisets in
finite projective spaces.

An [n, k]q code can be described by a generator matrix G
or as discussed by an n-multiset G of points in PG(k−1, q).
In what follows, for the ease of notation, we restrict ourselves
to the binary field. We associate the points of PG(k − 1, 2)
with the non-zero vectors in Fk2\{0k}, then we interpret each
such vector as the binary expansion of the corresponding
integer i ∈ [`] where ` := 2k − 1. We denote by vi the
vector corresponding to the integer i ∈ [`]. As two examples,
in F3

2 \{03}, the vectors v3 = (0, 1, 1) and v4 = (1, 0, 0) are
corresponding to the integers 3 and 4, respectively. In order to
uniquely characterize a multiset of points G in PG(k−1, 2),
we use multiplicities ni ∈ Z≥0, i ∈ [`], counting the number
of occurrences of the vector vi ∈ Fk2 \ {0k}, i ∈ [`], in the
generator matrix G. Thus, we have

∑
i∈[`] ni = n. Also, due

to the correspondence between a generator matrix G and a
multiset of points G, we write S(G) instead of S(G) for the
service rate region and we will directly define S(G) later on.

E. Geometric Interpretation of the Service Rate Region

A recovery set for file fi, i ∈ [k], is a subset Y ⊆ [`] such
that the span of the set {vj | j ∈ Y } contains the unit vector
ei. A recovery set Y for fi is called reduced if there does
not exist a proper subset Y ′ (Y with ei ∈ 〈{vj | j ∈ Y ′}〉.
For q = 2 and a reduced recovery set Y , there is no need
to specify the index i of the file that is recovered since∑
j∈Y vj = ei. However, this is not necessarily true for

q > 2. As an example, in F3 the set {e1 + e2, e1 + 2e2}
spans a 2-dimensional subspace containing both e1 and e2,
while none of these two unit vectors are contained in the span
of a proper subset. Since we assume q = 2, we will mostly
speak just of a recovery set without specifying the index i of
the file that it recovers. By Yi we denote the set of all reduced
recovery sets for file fi, where i ∈ [k]. As an example, for
k = 3 we have Y2 = {{2}, {4, 6}, {1, 3}, {5, 7}, {1, 4, 7}}.
Note that the maximum cardinality of a reduced recovery set
is k, which can indeed be attained.

Let αi,Y be the portion of request rates for file fi assigned
to the recovery set Y ∈ Yi. Given a multiset of points G in
PG(k− 1, 2), described by the multiplicities nj , j ∈ [`], the
service rate region S(G) is the set of all vectors λ ∈ Rk≥0

for which there exist αi,Y ’s, satisfying the following:∑
Y ∈Yi

αi,Y = λi, for all i ∈ [k], (2a)

k∑
i=1

∑
Y ∈Yi
j∈Y

αi,Y ≤ nj , for all j ∈ [`], (2b)

αi,Y ∈ R≥0, for all i ∈ [k], Y ∈ Yi. (2c)

Recall that the constraints (2a) guarantee that the demands
for all files are served, and constraints (2b) certify that no
node receives requests at a rate in excess of its service rate.

As noted, for q = 2, each reduced recovery set uniquely
characterizes the file it recovers, that is, Yi’s where i ∈ [k]
are pairwise disjoint and form a partition of Y := ∪i∈[k]Yi.
With this we can simplify the above characterization, i.e., the
service rate region S(G) is the set of all vectors λ ∈ Rk≥0 for
which there exists αY , satisfying the following constraints:∑

Y ∈Yi

αY ≥ λi, for all i ∈ [k], (3a)∑
Y ∈Y
j∈Y

αY ≤ nj , for all j ∈ [`], (3b)

αY ∈ R≥0, for all i ∈ [k], Y ∈ Yi. (3c)

F. Problem Statement

After these preparations, we can state the problems that we
explore to address in this paper. Consider a practical scenario
where we are asked to store k files redundantly across some
number of nodes in a coded distributed storage system. Also,
we are given a bounded subset R ⊂ Rk≥0 as a desired service
rate region for this distributed storage system. Two natural
questions arising in the design of this storage system are the
following: 1) What is the minimum number n(R) of storage
nodes (or servers) required for serving all demand vectors
λ inside the desired service rate region R? 2) What is the
most storage-efficient redundancy scheme with service rate
region covering the set R (i.e., how should the files be stored
redundantly in n(R) storage nodes)?

For each desired service rate region R ⊂ Rk≥0, the goal
is to characterize (or derive a lower bound on) the minimum
number of nodes n(R) such that there exists a generator
matrix G with R ⊆ S(G) (or alternatively, a multiset of
points G in PG(k − 1, q) with R ⊆ S(G)). Thus, deriving
lower bounds and constructive upper bounds for n(R) is
of great significance in the context of designing distributed
storage systems, which we aim to address in this paper.

III. MAIN RESULTS

In this section, first we investigate a few structural proper-
ties and formulate the problem of determining n(R). Then,
using a geometric approach, we derive multiple lower bounds
on n(R) and finally we show that for k = 2 the derived lower
bounds are tight by proposing an storage-efficient scheme.

A. Structural Properties of the Service Rate Region

Here, before we present integer linear programming (ILP)
formulations for the determination of n(R) we first study a
few structural properties.

Lemma 1. For R ⊂ Rk≥0, we have n(R) = n(conv(R)).

Definition 2. For a set S ⊆ Rk≥0, the lower set S↓ is defined
as S↓:=

{
x ∈ Rk≥0 | ∃y ∈ S : x ≤ y

}
.

Lemma 2. For a subset R ⊂ Rk≥0, we have n(R) = n(R↓).

Taken the above two observations into account, we want
to parameterize a large class of reasonable subsets R ⊂ Rk≥0

through a function T : 2[k] → N that maps the subsets of [k]
to integers in N, where T (∅) = 0.

Definition 3. Let T : 2[k] → N with T (∅) = 0. We define

R(T) :=

{
λ ∈ Rk≥0 |

∑
i∈S

λi ≤ T (S)∀∅ 6= S ⊆ [k]

}
By construction R(T) is a convex polytope and R(T)↓=

R(T), i.e., R(T) is its own lower set. (See e.g., [11].) Note
that in some cases, the values of the function T : 2[k] → N
can be modified without changing R(T).

Lemma 3. For each function T : 2[k] → N, with T (∅) = 0,
there exists a monotone and subadditive function T ′ : 2[k] →
N, with T ′(∅) = 0, such that R(T) = R(T ′).1

Definition 4. For a subset R ⊂ Rk≥0 with property R↓= R,
we say that a finite set S ⊂ Rk≥0 is a generating set of R
if conv(S)↓= R. Moreover, we call S minimal if no proper
subset of S is a generating set of R.

Note that in what follows, without explicitly mentioning,
we consider the minimal generating sets for each R ⊂ Rk≥0.
As an example, consider the function T : 2[2] → N given by
T (∅) = 0, T ({1}) = T ({2}) = 2, and T ({1, 2}) = 3. Here,
a generating set of R(T) is given by {(1, 2), (2, 1)}. Note
that the generating set ofR(T) is always unique, sinceR(T)
is a polytope that can be written as R(T) = conv(V), where
V is the set of vertices of the polytope. The generating set
of R(T) is obtained from V by removing all vectors v ∈ V
such that there exists a vector v′ ∈ V with v ≤ v′. Next, we
present an ILP formulation for the determination of n(R).

Proposition 2. For a desired service rate region R ⊂ Rk≥0,
assume R↓= R. Let

{
λ(1), . . . ,λ(m)

}
be the generating set

of R. Then, n(R) coincides with the optimal target value of

min
∑
j∈[`]

nj (4)

s.t.
∑
Y ∈Yj

αiY ≥ λ
(i)
j ∀i ∈ [m], j ∈ [k]∑

Y ∈Y
j∈Y

αiY ≤ nj , ∀j ∈ [`],∀i ∈ [m]

αiY ∈ R≥0, ∀i ∈ [m],∀Y ∈ Y
nj ∈ N, ∀j ∈ [`]

where λ(i)
j is the jth element of the λ(i) and αiY is the portion

of requests coming from λ(i) assigned to the recovery set Y .

The ILP formulation (4) underlies a massive combinatorial
explosion. Indeed, when the number of files k increases, the
number of recovery sets #Y grows doubly exponential, i.e.,
#Y gets quite large even for moderate values of k. To obtain
a lower bound on n(R), one simple way is to consider the
ceiling of the optimal target value for the LP relaxation of the
ILP (4). However, this approach again suffers from the same
drawback and runs into a similar problem since to list all the
constraints of the LP relaxation of the ILP (4), one needs to

1A function T : 2[k] → N is monotone iff T (U) ≤ T (V) holds for all
∅ ⊆ U ⊆ V ⊆ [k], and is subadditive iff T (U ∪ V) ≤ T (U) + T (V).

explicitly know all possible recovery sets which becomes
increasingly complex when the number of files k increases.
Thus, introducing a technique which is not depending on the
enumeration of recovery sets is of great significance. Towards
this goal, we introduce a novel geometric approach.

B. Using Geometric Approach to derive Bounds on n(R)

Here, we present three lower bounds for n(R(T)) that are
obtained using a geometric technique.

Lemma 4. Let G be the generator matrix of an [n, k]q code
and G be the corresponding multiset of points of cardinality
n which is described by point multiplicities nj where j ∈ [`].
If
{
λ(1), . . . ,λ(m)

}
be the generating set of R, then we have

∑
j :vj∈PG(k−1,2)\H

nj ≥ max

 ∑
s∈E(H)

λ(i)
s | i ∈ [m]

 , (5)

where H is a hyperplane of PG(k − 1, 2) and

E(H) = {h ∈ [k] | eh /∈ 〈{v | v ∈ H}〉}

is the set of indices h such that the hyperplane H does not
contain the unit vector eh, i.e., eh lies in PG(k−1, 2)\H .

Corollary 1. If
{
λ(1), . . . ,λ(m)

}
is the generating set of R,

then n(R) is lower bounded by the optimal target value of

min
∑
j∈[`]

nj (6)

s.t. (5) holds ∀ hyperplane H of PG(k − 1, 2)

nj ∈ N ∀j ∈ [`].

Note that the ILP of Corollary 1 contains 2k−1 constraints
and (integer) variables. So, with respect to the LP relaxation
of the ILP (4), we have obtained a smaller formulation for
the determination of a lower bound on n(R).

Definition 5. Consider the P =
{
x ∈ Rk | Ax ≤ b,x ≥ 0

}
as a polytope in Rk with description (A,b). We say that a
constraint a(i)x ≤ bi is redundant, where a(i) denotes the
ith row of A, if P =

{
x ∈ Rk | A′x ≤ b′,x ≥ 0

}
, where

A′ and b′ obtained from A and b by removing the ith row,
respectively. We say that a constraint a(i)x ≤ bi is strictly
redundant if there does not exist x̄ ∈ P with a(i)x̄ = bi.

For example, consider T : 2[2] → N defined as T (∅) = 0,
T ({1}) = T ({2}) = T ({1, 2}) = 1. Consider the polytope
P =

{
λ ∈ R2 |

∑
i∈U λi ≤ T (U), ∅ 6= U ⊆ {1, 2},λ ≥ 0

}
.

The inequalities λ1 ≤ T ({1}), λ2 ≤ T ({2}) are redundant,
while the inequality λ1 + λ2 ≤ T ({1, 2}) is not redundant
since e.g. the vector (1, 1) is not contained in the polytope.
Here, none of the inequalities are strictly redundant since the
vectors (1, 0), (0, 1) are contained in the polytope.

Theorem 1. Given T : 2[k] → N for some k ∈ N, we have

n(R(T)) ≥

⌈∑
∅6=U⊆[k] T (U)

2k−1

⌉
,

where none of the constraints
∑
i∈U λi ≤ T (U) are strictly

redundant in Rk≥0.

As we will show shortly the lower bound of Theorem 1
is indeed tight if k = 2 and T is monotone and subadditive.
However, this bound is not tight in general for K ≥ 3. In [14]
we provide an example that shows for K = 3 this bound is
not tight, while none of the constraints are strictly redundant.

Corollary 2. For some k ∈ N and X ∈ N, given the function
T : 2[k] → N defined as T (∅) = 0, T (U) = X for all subsets
∅ 6= U ⊆ [k], we have

n(R(T)) ≥

⌈
X ·

(
2k − 1

)
2k−1

⌉
.

Moreover, if X = t · 2k−1 for some integer t, then the lower
bound is tight.

Next, two more general lower bounds for n(R(T)), similar
to that of Theorem 1, are provided that are obtained in the
search of finding a tighter lower bound for k ≥ 3.

Theorem 2. For some integer k ≥ 2, let T : 2[k] → N be a
function such that none of the constraints

∑
i∈U λi ≤ T (U)

are strictly redundant in Rk≥0. Then, for each i ∈ [k] we have

n(R(T)) ≥
⌈
αi+βi

2

⌉
where

αi =

⌈∑
∅6=U⊆[k]\{i} T (U)

2k−2

⌉
, βi =

⌈∑
{i}⊆U⊆[k] T (U)

2k−2

⌉
.

Theorem 3. For some integer k ≥ 2, let T : 2[k] → N be a
function such that none of the constraints

∑
i∈U λi ≤ T (U)

are strictly redundant in Rk≥0. Then, for each j ∈ [`] we have

n(R(T)) ≥

⌈∑
∅6=U⊆[k] : #(U∩J)≡0 (mod 2) T (U)

2k−2

⌉
,

where J ⊆ [k] such that vj =
∑
h∈J eh.

Example 1. For some x ∈ N, let T : 2[3] → N be defined via
T ({1}) = T ({2}) = T ({3}) = T ({1, 2}) = T ({1, 3}) = x
and T ({2, 3}) = T ({1, 2, 3}) = 2x. Based on Theorem 1,
we have n(R(T)) ≥

⌈
9x
4

⌉
, and according to Theorem 3,

considering j = 3 we have n(R(T)) ≥
⌈

5x
2

⌉
. So, for x ≥ 3,

the lower bound obtained from Proposition 3 is tighter the
one obtained from Theorem 1.

C. Storage-Efficient Schemes for k = 2

Let w.l.o.g. (based on Lemma 3) the function T : 2[2] → N
be monotone, subadditive, and satisfy T (∅) = 0. Note that
for k = 1 each T : 2{1} → N is monotone and subadditive,
while for k = 2 the conditions can be summarized to

max{T ({1}), T ({2})} ≤ T ({1, 2}) ≤ T ({1}) + T ({2}).

The following Lemma describes the generating set of R(T).

Lemma 5. If T : 2[2] → N is monotone, subadditive, and
satisfies T (∅) = 0, the generating set of R(T) is given by

S =
{(
T ({1}), T ({1, 2})− T ({1})

)
,(

T ({1, 2})− T ({2}), T ({2})
)}
.

We remark that #S in Lemma 5 is 2 or 1, where the latter
happens iff T ({1, 2}) = T ({1}) + T ({2}).

Lemma 6. Let {λ} be the generating set of R and n be an
integral solution of the ILP of Corollary 1. If λ ∈ R2

≥0 and
G is the multiset corresponding to the n, then λ ∈ S(G),
i.e., there exists a feasible choice of αY satisfying (3a)-(3c).

Definition 6. For a set ∅ 6= S ⊂ N, we denote by Simpl(S)
the set of non-zero vectors in 〈{ei | i ∈ S}〉 over F2.

Proposition 3. For each ∅ 6= S ⊆ [k], # Simpl(S) = 2s−1
and S(Simpl(S)) = R(T), where s = #S and T : 2[k] → N
is given by T (U) = 2s−1 for all U ⊆ [k] satisfying U∩S 6= ∅
and T (U) = 0 otherwise (for all U ⊆ [k] with U ∩ S = ∅).

Theorem 4. For the desired service rate region R given by

R =
{
λ ∈ R2

≥0 : λ1 ≤ X,λ2 ≤ Y, λ1 + λ2 ≤ Σ
}
,

where X,Y,Σ are non-negative integers with max{X,Y } ≤
Σ ≤ X + Y , we have n(R) =

⌈
X+Y+Σ

2

⌉
.

REFERENCES

[1] A. G. Dimakis, K. Ramchandran, Y. Wu, and C. Suh, “A survey
on network codes for distributed storage,” Proceedings of the IEEE,
vol. 99, no. 3, pp. 476–489, 2011.

[2] K. Shanmugam, N. Golrezaei, A. G. Dimakis, A. F. Molisch, and
G. Caire, “Femtocaching: Wireless content delivery through distributed
caching helpers,” IEEE Transactions on Information Theory, vol. 59,
no. 12, pp. 8402–8413, 2013.

[3] A. S. Rawat, D. S. Papailiopoulos, A. G. Dimakis, and S. Vishwanath,
“Locality and availability in distributed storage,” IEEE Transactions
on Information Theory, vol. 62, no. 8, pp. 4481–4493, 2016.

[4] G. Joshi, E. Soljanin, and G. W. Wornell, “Efficient replication of
queued tasks for latency reduction in cloud systems,” in 2015 53rd
Annual Allerton Conf. on Commun., Control, and Comput., 2015.

[5] ——, “Efficient redundancy techniques for latency reduction in cloud
systems,” TOMPECS, vol. 2, no. 2, pp. 12:1–12:30, 2017.

[6] M. F. Aktaş, S. Kadhe, E. Soljanin, and A. Sprintson, “Download time
analysis for distributed storage codes with locality and availability,”
arXiv:1912.09765, Dec 2019.

[7] M. Aktas, G. Joshi, S. Kadhe, F. Kazemi, and E. Soljanin, “Service
rate region: A new aspect of coded distributed system design,”
arXiv:2009.01598, Sep 2020.

[8] M. Aktaş, S. E. Anderson, A. Johnston, G. Joshi, S. Kadhe, G. L.
Matthews, C. Mayer, and E. Soljanin, “On the service capacity region
of accessing erasure coded content,” in 2017 55th Annual Allerton
Conf. on Commun., Control, and Comput., 2017.

[9] S. E. Anderson, A. Johnston, G. Joshi, G. L. Matthews, C. Mayer, and
E. Soljanin, “Service rate region of content access from erasure coded
storage,” in 2018 IEEE Information Theory Workshop (ITW), 2018.

[10] F. Kazemi, E. Karimi, E. Soljanin, and A. Sprintson, “A combinatorial
view of the service rates of codes problem, its equivalence to fractional
matching and its connection with batch codes,” in 2020 IEEE Inter-
national Symposium on Information Theory (ISIT), June 2020.

[11] F. Kazemi, S. Kurz, and E. Soljanin, “A geometric view of the service
rates of codes problem and its application to the service rate of the first
order Reed-Muller codes,” in 2020 IEEE International Symposium on
Information Theory (ISIT), June 2020.

[12] P. Peng and E. Soljanin, “On distributed storage allocations of large
files for maximum service rate,” in 2018 56th Annual Allerton Conf.
on Commun., Control, and Comput. IEEE, 2018.

[13] M. Noori, E. Soljanin, and M. Ardakani, “On storage allocation for
maximum service rate in distributed storage systems,” in 2016 IEEE
International Symposium on Information Theory (ISIT), 2016.

[14] F. Kazemi, S. Kurz, E. Soljanin, and A. Sprintson, “Efficient storage
schemes for desired service rate regions,” arXiv, 2020.

[15] S. Dodunekov and J. Simonis, “Codes and projective multisets,” The
Electronic Journal of Combinatorics, vol. 5, no. 1, p. 37, 1998.

[16] A. Beutelspacher, B. Albrecht, and U. Rosenbaum, Projective geom-
etry: from foundations to applications. Cambridge Uni. Press, 1998.

