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A B S T R A C T

Differential software testing is important for software quality assurance as it aims to auto-
matically generate test inputs that reveal behavioral differences in software. The concrete
analysis procedure depends on the targeted result: differential testing can reveal diver-
gences between two execution paths (1) of different program versions or (2) within the
same program. The first analysis type would execute different program versions with the
same input, while the second type would execute the same program with different in-
puts. Therefore, detecting regression bugs in software evolution, analyzing side-channels
in programs, maximizing the execution cost of a program over multiple executions, and
evaluating the robustness of neural networks are instances of differential software analysis
with the goal to generate diverging executions of program paths.

The key challenge of differential software testing is to simultaneously reason about mul-
tiple program paths, often across program variants, in an efficient way. Existing work in
differential testing is often not (specifically) directed to reveal a different behavior or is
limited to a subset of the search space.

This PhD thesis proposes the concept of Hybrid Differential Software Testing (HyDiff)
as a hybrid analysis technique to generate difference revealing inputs. HyDiff consists of
two components that operate in a parallel setup: (1) a search-based technique that inexpen-
sively generates inputs and (2) a systematic exploration technique to also exercise deeper
program behaviors. HyDiff’s search-based component uses differential fuzzing directed by
differential heuristics. HyDiff’s systematic exploration component is based on differential
dynamic symbolic execution that allows to incorporate concrete inputs in its analysis.

HyDiff is evaluated experimentally with applications specific for differential testing. The
results show that HyDiff is effective in all considered categories and outperforms its com-
ponents in isolation.
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Z U S A M M E N FA S S U N G

Differentielles Testen ist ein wichtiger Bestandteil der Qualitätssicherung von Software,
mit dem Ziel Testeingaben zu generieren, die Unterschiede im Verhalten der Software
deutlich machen. Solche Unterschiede können zwischen zwei Ausführungspfaden (1) in
unterschiedlichen Programmversionen, aber auch (2) im selben Programm auftreten. In
dem ersten Fall werden unterschiedliche Programmversionen mit der gleichen Eingabe
untersucht, während bei dem zweiten Fall das gleiche Programm mit unterschiedlichen
Eingaben analysiert wird. Die Regressionsanalyse, die Side-Channel Analyse, das Max-
imieren der Ausführungskosten eines Programms und die Robustheitsanalyse von Neu-
ralen Netzwerken sind typische Beispiele für differentielle Softwareanalysen.

Eine besondere Herausforderung liegt in der effizienten Analyse von mehreren Pro-
grammpfaden (auch über mehrere Programmvarianten hinweg). Die existierenden Ansätze
sind dabei meist nicht (spezifisch) dafür konstruiert, unterschiedliches Verhalten präzise
hervorzurufen oder sind auf einen Teil des Suchraums limitiert.

Diese Arbeit führt das Konzept des hybriden differentiellen Software Testens (HyDiff)
ein: eine hybride Analysetechnik für die Generierung von Eingaben zur Erkennung von
semantischen Unterschieden in Software. HyDiff besteht aus zwei parallel laufenden Kom-
ponenten: (1) einem such-basierten Ansatz, der effizient Eingaben generiert und (2) einer
systematischen Analyse, die auch komplexes Programmverhalten erreichen kann. Die such-
basierte Komponente verwendet Fuzzing geleitet durch differentielle Heuristiken. Die sys-
tematische Analyse basiert auf Dynamic Symbolic Execution, das konkrete Eingaben bei
der Analyse integrieren kann.

HyDiff wird anhand mehrerer Experimente evaluiert, die in spezifischen Anwendungen
im Bereich des differentiellen Testens ausgeführt werden. Die Resultate zeigen eine effek-
tive Generierung von Testeingaben durch HyDiff, wobei es sich signifikant besser als die
einzelnen Komponenten verhält.
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1I N T R O D U C T I O N

Software engineering is the ”systematic application of scientific and technological knowledge,
methods, and experience to the design, implementation, testing, and documentation of soft-
ware”, as defined by the IEEE [212]. A key insight in the community is that "programming-
in-the-large" [210] is much more complex than "programming-in-the-small", and hence,
requires a proper engineering approach [215]. Early works in software engineering research
urge for appropriate programming languages [210] as well as tools and methods [209]. The
objective of software engineering research has to be the study of how to develop software
(in the large), in order to provide the scientific knowledge and methods to do so. It searches
for techniques to improve, simplify, and support software development. A crucial part of
software development is software quality assurance facilitated by software testing [212], as it
searches for errors in software. Therefore, software testing also plays an important role in
software engineering research [11]. A special area in this research field is differential software
testing, which aims to identify behavioral differences in software.

terminology – behavioral difference

Behavioral difference means a difference in the execution behavior of a program.
Such a difference can be represented by several forms, e.g., a difference in the direct
output of a program, a difference in the execution time, or also a difference in the
covered code fragments. Differential program analysis (here also called differential
software testing) means the analysis of one or multiple programs in order to reveal
behavioral differences.

Such a testing technique is usually applied in software maintenance to perform regression
testing [85, 92, 93, 96, 97, 101], where the goal is to reveal differences between two succes-
sive software versions. Software maintenance is an important application area of software
testing. Software does evolve with the reality, in which it is deployed [213, 215]. There-
fore, new and modified functionalities need to be verified with regard to various quality
attributes. Other flavors of differential program analysis are important for areas like soft-
ware security (e.g., worst-case complexity analysis [131, 145, 146] or side-channel analysis
[104, 110, 121]) and software reliability (e.g., robustness analysis of neural networks [157, 181,
184, 187]). This thesis focuses on differential program analysis of software and how such
a testing approach can be performed efficiently. This chapter continues with the motivation
for differential software testing, the research problem, an overview of the state of the art, and
current limitations. Finally, this chapter provides an overview of the research methodology
and a summary of the contributions made by this thesis.

1.1 motivation

Software testing is an essential part of software development, which is widely applied
by practitioners and is also in the focus of numerous research projects [11]. The goal is to
provide confidence in the correctness of software by searching for errors in its behavior. The
manual creation of test cases can be very expensive and time consuming [99]. Therefore,
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recent research has focused on automated test input generation [54, 55, 7, 9, 62, 11]. Identified
errors can be investigated and fixed, and so, software testing contributes to the quality of
the software. Differential software testing specifically investigates behavioral differences
and comes in various flavors.

For instance, automated regression test generation aims to generate inputs that trigger
divergences between two successive software versions [85, 87, 92, 93, 96, 97, 101, 103]. Such
differences can be observed, e.g., along the control-flow or in the actual output of the
execution. Changes in software can interfere with the existing functionality, and hence, can
have unintended side-effects [99, 103], also known as regression errors. This includes changes
that intend to fix a prior error, but introduced another or have been incomplete, also known
as faulty bug fixes [86, 94, 98]. Having efficient techniques for regression testing is crucial
for testing evolving software [87].

In the area of software security, differential analysis can be used for automated vulner-
ability detection, e.g., with regard to worst-case execution paths or side-channels. Algorithmic
complexity vulnerabilities can be exploited to cause a denial of service attack [131, 140, 145,
146]. The research field for algorithmic complexity analysis is very active and many seri-
ous attacks have been demonstrated, e.g., attacks based on vulnerable hash table imple-
mentations [134] as well as on the Linux kernel [132, 152]. Other examples are attacks
on network security systems [148, 149] and attacks on string searching algorithms [151].
Besides the vulnerability detection, the characterization of the algorithmic complexity of
a program helps to reason about performance bottlenecks [133] and to identify and de-
sign compiler optimizations [141]. Another type of security attack involves the exploitation
of side-channels. Side-channel vulnerabilities have the potential to reveal sensitive infor-
mation during program execution: A potential attacker could observe the non-functional
characteristics of the program behavior, such as the execution time, memory consumption,
response size, network traffic, or power consumption, to infer secret information. The re-
lated work on side-channel analysis shows evidence that side-channel attacks are practical
and can have serious security consequences [108, 109, 113, 119]. For example, some early
work on timing attacks identifies vulnerable implementation of cryptography algorithms
like Diffie-Hellman, RSA, and DSS [116]. More recently, exploitable timing side-channels
have been discovered for Google’s Keyczar Library [126], the Xbox 360 [127], and imple-
mentations of RSA encryption [108, 109]. Other popular examples are the Meltdown [118,
125] and Spectre [115] side-channel attacks, which show how to exploit critical vulnerabil-
ities in modern processors to uncover secret information. The above mentioned security
vulnerabilities show that there is an increased need for techniques to efficiently discover
such vulnerabilities, so that they can be mitigated or resolved.

A novel application of differential analysis is the robustness analysis of neural networks
for input classification. This kind of analysis aims to identify two inputs that differ only
very slightly, i.e., for a human almost imperceptible, but for which the neural network pro-
duces a different output (i.e., it results in different classifications) [161, 185]. The differences
between such inputs are also called adversarial perturbations and represent major safety and
security issues. For example neural networks are applied in autonomous cars for the identi-
fication of street signs or other traffic participants, where perturbations are easily possible,
e.g., by changes in the lighting conditions or fog [186]. Adversarial perturbations in such an
environment mitigate the software’s reliability, and hence, can have serious consequences
for the safety of the involved traffic participants [181, 184], as it could be observed in recent
accidents [190, 194]. Neural networks are also used in the area of software security, where



1.2 research problem 3

adversary inputs can be exploited to bypass security measures [180]. Therefore, it is crucial
to have efficient techniques to systematically test neural networks.

1.2 research problem

This thesis addresses the problem of differential software testing: the automated generation
of test inputs that reveal behavioral differences in software. As discussed in the previous
section, differential software testing is an active research area with numerous applications.
The search for behavioral differences can be separated into two categories: It can reveal
divergences between two execution paths (1) of different program versions or (2) within
the same program. Figure 1 illustrates these two types of differential analysis. Category

input1

program P

input2

program P

2

=?
behavior1

behavior2

x

y
input

program P

program P’

1

=?
behavior1

behavior2

x

Figure 1: Two categories of differential software testing.

(1) (on the left side of Figure 1) searches for input x that leads to a different execution
behavior between program P and its successive variant P’. Note that generally P and P’

can be completely different programs. However, this thesis is focusing here on regression
testing, which assumes that there are only some changes between P and P’. Category (2)
(on the right side of Figure 1) searches for two different inputs x and y that lead to a
different execution behavior for (the same) program P. Depending on the application it can
be interesting how similar the two inputs are.

Both analysis categories require multiple program executions, which makes differential
software testing a challenging problem. This research problem is investigated in the context
of the mentioned applications:

A1 Regression analysis – The search for behavioral differences with the same input in
successive program versions.

A2 Worst-case complexity analysis – The search for worst-case triggering inputs that
perform significantly different than the average case.

A3 Side-channel analysis – The search for side-channel vulnerabilities in security-critical
applications, which involves analyzing correlations between resource usage over mul-
tiple program paths.

A4 Robustness analysis of neural networks – The search for adversarial behaviors in
neural networks, which requires reasoning about multiple network executions.
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1.3 existing approaches and limitations in a nutshell

Regression analysis. Many techniques for regression analysis are based on symbolic exe-
cution [85, 96, 97, 74, 101, 102] in order to perform a systematic exploration and are directed
to execute updated areas in the new program version. These techniques can generate test
inputs that execute updated program areas, but they are not designed to also exercise the
changed program behavior because they do not include the old program version in their
analysis. Therefore, the results can include false negatives. Shadow symbolic execution
[93] attempts to solve this problem by executing both program versions simultaneously.
However, it might miss divergences due to its strong focus on the concrete inputs of an
existing test suite. Search-based techniques like BERT [92], DiffGen [100], and EvoSuiteR

[99] are either not specifically directed to expose regression errors or are limited because
they cannot solve specific constraints in the program.

Worst-case complexity analysis. The related work on worst-case complexity analysis has
a strong focus on static analysis [131, 145], which requires an exhaustive symbolic execu-
tion and might not be feasible in practice. Fuzzing based techniques [143, 146, 153] apply
random mutations, and hence, might not be able to reach deep program behavior [81].

Side-channel analysis. Work on side-channel analysis covers techniques like static analy-
sis [104, 110], abstract interpretation [112, 117, 120], and symbolic exploration [121], which
have the general problem to miss vulnerabilities due to unrealistic models and assump-
tions, and have scalability issues. Other approaches rely on Monte Carlo sampling [111,
114] to quantify the information leakage, but might lead to imprecise results in practice.

Robustness analysis of neural networks. Many existing testing techniques for neural
networks are guided by quantitative coverage metrics [170, 174, 178, 184, 196], and hence,
are not suited for a differential exploration or the generation of adversarial inputs. Other
techniques focus on differential testing of different neural networks [181, 197], which can
lead to the identification of adversarial inputs. However this is not the intended purpose.
Adversarial input detection at runtime [189] or defensive mechanisms [180] can help to
mitigate the consequences of adversarial attacks, but do not provide an actual differential
analysis of neural networks. There are promising approaches that try to generate inputs
that trigger miss-classifications by applying hardly perceptible perturbations to the input
[165], but they rely on expert knowledge of the erroneous root cause (e.g., blurry images,
fog, or rain) [186], the solving of hard optimization problems [158, 161, 171, 176, 185], or
expensive matrix manipulations [179]. So far there are only a few works that apply classic
program analysis techniques to neural networks [163, 164].

conclusion – related work

Existing techniques in the various areas of differential testing come with their own
disadvantages: Many of them are not directed to differential behavior, are not able
to solve necessary constraints to reach deep program behavior, or rely on exhaustive
exploration. They are limited in the effectiveness of their analysis. An efficient and
effective testing approach asks for a hybrid execution setup [75, 146]. Therefore, there
is a need for a hybrid differential testing technique.
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1.4 overview of the research method

This thesis proposes the concept of Hybrid Differential Software Testing (HyDiff), which
combines search-based testing with a systematic exploration technique. More specifically,
this concept aims to combine the speed of search-based fuzzing [81] and the systematic
exploration of symbolic execution in a parallel setup. Both components perform their own
differential analysis, while they exchange (interesting) inputs to support each other. This
provides a generally applicable, differential software testing approach, which in particular
can be applied to the mentioned application scenarios.

The evaluation of HyDiff investigates whether it can reveal behavioral differences in
software and how the hybrid combination performs in contrast to its components in isola-
tion. HyDiff is evaluated based on a quantitative analysis with benchmarks taken from the
four application scenarios: (A1) regression analysis, (A2) worst-case complexity analysis,
(A3) side-channel analysis, and (A4) robustness analysis of neural networks.

1.5 contributions

In summary, the core contributions made by this thesis are:

C1 the concept of differential fuzzing (e.g., to reveal side-channels); note that the testing
for output inconsistencies between two different implementations of the same thing
(e.g., two implementations of a PDF viewer) has been also denoted as differential
testing / fuzzing [34], but represents a different type of analysis

C2 the concept of differential dynamic symbolic execution, as a technique to perform a
symbolic exploration driven by differential heuristics

C3 the concept of hybrid analysis in differential program analysis

C4 the concept of a hybrid setup for applying fuzzing and symbolic execution in parallel
(as an alternative to the execution in sequence [77, 81, 82])

1.6 thesis outline

This thesis first introduces the foundations of this work (Chapter 2) followed by the research
method (Chapter 3). The following three chapters represent the core of this thesis and de-
scribe hybrid differential software testing and its components in detail: differential fuzzing
(Chapter 4), differential dynamic symbolic execution (Chapter 5), and their hybrid combination
(Chapter 6). Afterwards the presented approach is evaluated in four application areas of
differential software testing (Chapter 7). The thesis ends with a conclusion about the con-
ducted research and its results (Chapter 8). The following paragraph describes each chapter
in more detail:

Chapter 2 - Foundations describes existing work on which HyDiff is based on. This
chapter introduces fuzzing, symbolic execution, and hybrid testing approaches first and
then explains the existing approaches for a hybrid program analysis. Afterwards this chap-
ter discusses the related work on differential program analysis in the areas of regression
analysis, worst-case complexity analysis, side-channel analysis, and the robustness analysis
of neural networks.

Chapter 3 - Research Method & Contribution presents hybrid differential software test-
ing as the combination of differential fuzzing and differential dynamic symbolic execution.
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This chapter also presents the investigated research goal and its research questions. Af-
terwards the chapter discusses the chosen evaluation strategy and how it aligns with the
evaluations of the related work.

Chapter 4 - Differential Fuzzing introduces the concept and technical details of differ-
ential fuzzing. The chapter shows how fuzzing can be guided to perform a differential
analysis and illustrates the concept with an example taken from the area of regression test-
ing. This chapter concludes with a preliminary evaluation of the method by comparing it
with coverage-guided fuzzing.

Chapter 5 - Differential Dynamic Symbolic Execution introduces the concept and tech-
nical details of differential dynamic symbolic execution. It explains its differential symbolic
exploration strategy and discusses the central data structure in detail. This chapter illus-
trates the concept with the same example as for differential fuzzing and concludes with a
preliminary evaluation by comparing it with coverage-based symbolic execution.

Chapter 6 - Hybrid Differential Analysis combines the previously described techniques
to a hybrid differential analysis, in which both components are executed in parallel. This
chapter provides the details of the hybrid setup and illustrates the concept with an example,
which shows how the strength of both components can be combined to overcome their
individual challenges.

Chapter 7 - Validation presents an extensive evaluation of the presented approach in
four application areas of differential software testing: regression analysis, worst-case com-
plexity analysis, side-channel analysis, and the robustness analysis of neural networks. For
each type of differential analysis this chapter provides examples and details of how the
proposed hybrid concept can be applied. It discusses the obtained results and answers the
research questions formulated in Chapter 3. Furthermore, the chapter discusses the threats
to validity of the conducted research.

Chapter 8 - Conclusion summarizes the contributions and discusses the impact of the
conducted research as well as future work in the area of hybrid differential software testing
and the applied test input generation techniques.



2F O U N D AT I O N S

This chapter discusses the background of the existing work in the area of fuzzing, symbolic
execution, and hybrid analysis. Furthermore, it discusses the related work on the applications
of differential analysis: regression analysis, worst-case complexity analysis, side-channel
analysis, and robustness analysis of neural networks. This chapter summarizes the related
work and highlights their limitations. The content is partially based on the background
and related work sections in the published works of Badger [3], DifFuzz [1], HyDiff [6],
ShadowJPF [4], and ShadowJPF+ [5].

2.1 fuzzing

The term fuzzing was coined by Miller et al. [30] in their work on reliability testing of UNIX
utilities. Their goal was to crash the utilities by using random generated input strings. They
have been able to crash 24% of the tested subjects, which has been unexpected for the
authors because they had the intuition that since the kernel and utility programs are used
frequently, they should be well tested. They presented their approach as a complement for
existing testing and verification techniques, to generate inputs in an inexpensive way that
reveal failures (i.e., crashes or hangs). Furthermore, they already proposed the application
of fuzzing to identify security holes.

2.1.1 Blackbox, Greybox, and Whitebox Fuzzing

Nowadays numerous fuzzing techniques have evolved, which can be classified based on
how much application knowledge is used during the testing process. The fuzzing commu-
nity distinguishes blackbox fuzzing, greybox fuzzing, and whitebox fuzzing [17].

Blackbox Fuzzing. Blackbox fuzzing techniques cannot use the source code for their anal-
ysis, and hence, apply random testing on the program. Popular representatives are the
Peach fuzzer [46] and Randoop [31]. Peach is a commercial fuzzing framework for,
e.g., the automated testing of device drivers. Randoop randomly generates sequences of
method calls for the testing of Java programs. It uses the observation of the program output
to avoid redundant and illegal inputs.

Whitebox Fuzzing. Whitebox fuzzing techniques can use the complete source code for their
analysis, i.e., they can apply a wide range of program analysis techniques to guide the
input generation process. A popular representative is Sage (Scalable Automated Guided
Execution) [21] as whitebox fuzzing technique for security testing. Sage uses dynamic
symbolic execution to collect the constraints for a concrete input. These constraints are
systematically negated and solved with a constraint solver in order to generate new inputs.
Their directed approach to generate new constraints by negating all conditions in a path
constraint is called generational search and maximizes the number of newly generated inputs
with one symbolic execution run. Sage gets applied at Microsoft [21, 44] with a remarkable
impact. Other popular whitebox (symbolic execution based) fuzzing approaches are KLEE
[54] and S2E [18], which systematically traverse the state space (also see the following
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Figure 2: Conceptual overview of coverage-based, mutational fuzzing as performed by AFL [38].

Section 2.2). Additionally, there also taint-based approaches like BuzzFuzz [19], which uses
a dynamic taint analysis to identify regions in the original seed input file that are relevant
to reach deeper program behaviors. It uses the information about these regions to direct
the fuzzing process.

Greybox Fuzzing. The goal of greybox fuzzing is to keep the computation overhead low
but still be able to guide the input generation. Typically, it uses some lightweight instru-
mentation of the application to gain some knowledge, e.g., about the program coverage, to
guide the fuzzing process. Popular representatives are LibFuzzer [37] and American Fuzzy
Lop (AFL) [38]. AFL builds the basis for the implementation of the differential fuzzing ap-
proach proposed in this thesis, and hence, it is described in more detail later in this section.

Fuzzing approaches can not only be distinguished based on their context knowledge, but
also on how they generate new inputs: search-based fuzzing and grammar-based fuzzing [48].

2.1.2 Search-based Fuzzing

The goal of search-based software engineering (SBSE) is to solve software engineering prob-
lems with machine-based search algorithms [22]. The leveraged search algorithms vary
from very simple, random generation of inputs (random search), over hill climbing that op-
timizes a fitness function to climb to a local optimum, simulated annealing as a similar ap-
proach as hill climbing but which avoids local optima, up to genetic algorithms to perform
a global search by mutating initial inputs to a broader, more interesting population [22].
Search-based fuzzing covers the problem of finding test inputs by using a search algorithm
[48]. The choice of the underlying search strategy depends on the actual problem or ap-
plication under test. Search-based fuzzers typically implement a genetic algorithm for the
input generation because they generate new inputs by mutating existing ones, and hence,
reuse existing semantic context that has been present in the previous population [23]. These
fuzzing techniques are also called mutative approaches [23]. A popular representative is the
already mentioned AFL [38, 39], whose workflow is shown in Figure 2.

American Fuzzy Lop (AFL). AFL operates on input files, i.e., all mutations are performed
on the bit or byte level of the file. Step 1 in Figure 2 represents the input for AFL’s fuzzing
process, which are some initial seed input files. AFL technically requires at least one non-
failing input file. Non-failing means that AFL can execute the program under test with the
given file without any crash or timeout.

The central data structure of AFL is the fuzzing queue, which holds the mutation corpus
(cf. step 2 in Figure 2). The input size has a large impact on the fuzzing performance
[39], and hence, the typical approach is to first trim the test inputs before mutation (cf.
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step 3 in Figure 2). Afterwards, AFL applies its mutation operators repeatedly on these
inputs to generate new (mutated) inputs (cf. step 4 in Figure 2). Therefore, AFL uses two
types of fuzzing strategies: deterministic and random [39, 41]. The deterministic mutation
operations include sequential bit and byte flips, simple arithmetics like sequential addition
and subtraction of small integers, and sequential insertions of known interesting integers
(e.g., 0, 1, Integer.MAX_VALUE). The random mutation operations include, e.g., random
single-bit flips, random block deletions and insertions, and input splicing (i.e., the crossover
operator on two test inputs at a random location). In addition to the mutation operators,
AFL can be setup with a dictionary that can be filled with input specific syntax tokens. This
mechanism is used to simulate an input grammar (see paragraph below). Each generated
mutant needs to get evaluated for its usefulness in the following fuzzing process.

The original AFL implementation is purely coverage-based: it will keep mutated inputs
in its fuzzing corpus, if they increase the overall branch coverage. In order to measure
the coverage AFL uses a lightweight instrumentation of the program. AFL executes the
mutated input with the instrumented program and tries to fit the input in three categories:
coverage-increasing, crashing, and hanging. Coverage-increasing inputs are kept in the
fuzzing queue for further mutations (cf. step 6 in Figure 2). Crashing inputs are copied
in the crashes bucket, so that the user can use this input to debug the program. Similarly,
AFL stores inputs, whose execution runs into a timeout, in the hangs bucket for the user.
All other inputs get discarded. AFL can be directly applied on the program under test,
but if the analysis requires some pre-processing of the input, then the common way is to
implement a fuzzing driver (cf. step 5 in Figure 2). The fuzzing driver is a small program on
its own, which parses the input file, extracts the necessary information, and executes the
program under test with the required setup.

While AFL is applicable for C programs, there exist extensions for other program lan-
guages. For example Kersten et al. [26] present Kelinci, a tool that applies AFL on instru-
mented Java programs. AFL has been applied on many applications and has found many
vulnerabilities for example in Adobe Reader, Mozilla Firefox, Internet Explorer, Apple Sa-
fari, and the iOS kernel [38]. Additionally, AFL is part of OSS-Fuzz [45], which provides
open source projects the ability to apply fuzzing for their projects. As of the January 2020,
OSS-Fuzz reported that it has found over 16, 000 bugs in 250 open source projects [45].
Furthermore, AFL has been the starting point for many research activities around fuzzing.

Advanced fuzzers based on AFL. Böhme et al. [17] formulate coverage-based greybox
fuzzing as a systematic exploration of the state space of a Markov chain. They identified
that coverage-based greybox fuzzers like AFL generate many inputs that actually trigger
the same behavior, and hence, loose efficiency. They present their tool AFLFast, which
focuses its search on low-frequency paths by leveraging power schedules to control the
number of mutants generated from an existing input in the fuzzing corpus. In their evalu-
ation, Böhme et al. show that AFLFast generates significantly more crashes than AFL by
increasing the covered program locations.

Later on, Böhme et al. [16] extended the coverage-guided fuzzing idea of AFL to directed
greybox fuzzing with their tool AFLGo. It enables directed fuzzing for, e.g., patch testing,
crash reproduction, static analysis report verification, or information flow detection.

The work by Lemieux and Sen [28] targets the same problem as AFLFast [17], namely the
low program coverage of AFL. In contrast to AFLFast, their approach does not determine
which input to mutate, but how to mutate the input. Additionally, they focus on hitting
rarely covered branches, instead of low-frequency paths as in [17]. With their tool FairFuzz,
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which is also based on AFL, they propose a targeted mutation strategy that tries to focus on
mutation operators that likely will generate mutants to hit so far rarely covered branches.

Li et al. [29] propose with their technique Steelix a combination of coverage-based
fuzzing with a light-weight static analysis. They propose to use this light-weight static
analysis together with some binary instrumentation to not only provide coverage infor-
mation but also state information that pinpoints interesting bytes in the input. Interesting
bytes are meant to influence constraints in the code that hinder fuzzing to get deeper into
the program’s logic. This information helps the fuzzer to concentrate its mutations on these
parts, and hence, overcome the constraints. More specifically, the static analysis filters out
comparisons in the program that appears to be relevant for deeper program’s behavior.
The binary instrumentation uses this information to specifically instrument the program’s
binary at these locations. Therefore, not the complete binary is instrumented so that the
execution overhead is kept low. Furthermore, the fuzzer uses the feedback from the in-
strumentation to pinpoint relevant bytes in the input to guide its adaptive mutations to
increase the coverage.

Pham et al. [35] show that random byte mutations can be ineffective for complex input
structures, and hence they propose new mutations operators that act on an abstract view
of the input structure. Their work on smart greybox fuzzing (aka AFLSmart) implements
these mutation operators combined with a novel power schedule that aims to spend more
time on fuzzing inputs that will likely pass the input parsing stage of applications. Their
evaluation showed that AFLSmart can improve the coverage and identify more vulnera-
bilities than AFLFast and AFL.

Guarantees of fuzzing. As discussed in this section, fuzzing can be very effective in iden-
tifying program bugs, especially security vulnerabilities. But since it does not perform a
systematic exploration of the search space, it is in general not possible to provide formal
correctness guarantees. Böhme [15] proposes a framework that models software testing and
analysis as species discovery (STADS). STADS provides statistical correctness guarantees
for fuzzing approaches like AFL. It helps to answer questions like “When should fuzzing
be stopped?” or “What is the probability of discovering a crash with the next generation?”.

2.1.3 Grammar-based Fuzzing

Grammar-based fuzzing belongs to the generative approaches that use a grammar that defines
valid input structures. The grammar enables the fuzzer to generate syntactically valid in-
puts for a program [20, 23, 36]. It addresses the problem of traditional fuzzers like AFL,
which generates new inputs with random mutation operators. This approach might fail to
generate valid inputs for programs, which expect highly structured inputs [36].

Godefroid et al. [20] propose grammar-based whitebox fuzzing as a dynamic sym-
bolic execution technique, which generates constraints that can be checked with a custom
grammar-based constraint solver. This constraint solver checks whether the path constraint
is satisfiable with regard to a given grammar-based specification of the valid input space.
In their experiments they compare their approach with the code generation module of
Internet Explorer 7. They show that their approach significantly increases code coverage
while using three times fewer tests.

Wang et al. [36] present Superion, a grammar-aware greybox fuzzing technique, which
contains (1) a grammar-aware trimming strategy, and (2) two grammar-aware mutation
strategies. Input trimming in fuzzers is used to minimize the test input in order to allow
a fast processing, but can in general lead to violations of the input’s structure as they are
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performed grammar-blind [36]. Superion’s trimming strategy incorporates an input gram-
mar to ensure syntax-validity of trimmed test inputs. The standard mutation operators
in fuzzers perform random mutations like bit flips or value insertions, which are again
grammar-blind and hence can violate the input’s structure. Superion’s includes grammar-
aware mutation strategies, e.g., insert values only at syntactically valid positions, as they
operate on the level of the abstract syntax tree (AST). Their evaluation, which compares
Superion to AFL and jsfunfuzz [43], shows that grammar-aware fuzzing significantly im-
proves the bug finding capabilities by also increasing the code coverage.

Pavese et al. [33] use an input grammar to generate structured inputs that are very
different from the common usage scenarios. They take as input a context-free grammar
together with a set of sample inputs. By parsing the sample inputs Pavese et al. determine
the probability of the grammar productions. Assuming that the sample inputs represent
common inputs, they can retrieve uncommon inputs by inverting the probabilities.

Holler et al. [23] present LangFuzz, a blackbox fuzzing tool that combines generative
and mutative fuzzing in order to generate syntactically and semantically correct code frag-
ments to test interpreters. LangFuzz takes three input sources: a language grammar, some
sample code and a test suite. It works in three phases: (1) It learns code fragments from the
sample code and the test suite. Afterwards, (2) it generates test cases based on the provided
language grammar and based on mutations of the code in the test suite. The knowledge
about the learned language fragments is used during the mutation process to know which
parts can be mutated. Finally, (3) LangFuzz uses the obtained test cases to execute the in-
terpreter under test, while it checks for crashes and assertion failures. Holler et al. applied
their grammar-based fuzzer on the Mozilla JavaScript interpreter and discovered several
severe vulnerabilities.

The work by Padhye et al. [32] also combines generative and mutative fuzzing. They
leverage a parametric generator, which maps a sequence of bytes to a syntactically valid
input for the application. These generators are meant to generate a structured input (e.g.,
an XML file) based on the given parameter represented as sequence of bytes. Padhye et
al. propose the idea that bit-level mutations in this parameter correspond with structural
mutations in resulting generated input. Therefore, their implementation Zest performs
standard mutations (e.g., random insertions and deletions of bytes) on this parameter to
generate various valid inputs to explore the semantic stage of the application.

Even though the grammar specification of the application’s input might be publicly avail-
able in some cases [36], the need for such grammars is a general limitation of grammar-
based fuzzers. The same is valid for parametric generators as in the case of [32]. In order to
mitigate this limitation Höschele and Zeller [24, 25] propose their technique AUTOGRAM
to automatically mine input grammars.

summary – fuzzing

This thesis focuses on coverage-guided, mutational fuzzers because the above dis-
cussed research around AFL has shown that such a search-based fuzzing approach
can be highly effective and does not make strong assumptions like the existence of
a grammar specification. In order to compensate the limitations of fuzzing, a com-
plementary component in a hybrid approach can be a systematic exploration of the
search space as performed by symbolic execution. Therefore, the next section dis-
cusses the foundations of symbolic execution.
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2.2 symbolic execution

Symbolic execution means the execution of a program not with concrete inputs but with
symbolic inputs. Symbolic inputs represent a set of concrete inputs, usually only limited to
a specific datatype. Since the symbolic inputs are variable in their nature, symbolic execu-
tion will end up with exploring all reachable paths of a program, and hence, represents
a systematic exploration technique. The original idea of symbolic execution was indepen-
dently developed by James C. King [61, 62], Lori A. Clarke [55, 56], and Boyer et al. [52].
King [61, 62] defined symbolic execution for a simple programming language that does
only allow integer variables. His motivation was to provide a practical alternative between
program testing and program proving. Clarke [55] proposed an automatic test data genera-
tion tool based on symbolic execution that analyzes programs written in ANSI FORTRAN.
In a later work Clarke and Richardson [56] propose different models for symbolic execu-
tion, which determine how to choose the next path for exploration. They already define
the notion of dynamic symbolic execution and also discuss applications like verification,
test data selection, and debugging. Boyer et al. [52] proposed a system similar to King [61,
62] but for the analysis of programs written in a subset of LISP.

2.2.1 Example

In order to illustrate symbolic execution please consider the code snippet in Listing 1 and
the corresponding symbolic execution tree in Figure 3.

Listing 1: Sample program symbolic execution.

1 int x, y;

2 if (x > y) {

3 x = x + y:

4 y = x - y;

5 x = x - y;

6 if (x > y)

7 assert false;

8 } �
The sample code represents a conditional swap of values: it swaps the content of two inte-
ger variables x and y so that the larger value will be finally contained in variable y. Such a
swap operation can be used for example in sorting algorithms. The symbolic execution tree
represents the state space explored during symbolic execution. Each state during symbolic
execution is characterized by the path condition, the mapping between variables and symbolic
expressions, and a pointer to the next instruction. The path condition (or path constraint) rep-
resents the accumulated constraints on the control flow of the program, which need to be
satisfied to reach the state.

Symbolic execution uses symbolic values for the program execution and the following
explanation assumes that both variables are treated symbolically. Therefore, both get ini-
tialized with symbolic values (cf. node 1 in Figure 3). The capital X and Y hereby denote
corresponding symbolic values. The constraint [TRUE] in the front of node 1 shows that the
analysis does not assume any preconditions to reach the first node. The next step in sym-
bolic execution is the branching instruction in line 2 (cf. Listing 1). Node 2 in the symbolic
execution tree shows the condition using the symbolic values from the mapping. The path
constraint remains unchanged.
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[TRUE] x=𝐗, y=𝒀

[TRUE] 𝐗 > 𝒀 ?

[𝐗≤𝒀] END [𝐗>𝒀] x=𝐗+𝒀

[𝐗>𝒀] y=𝐗+𝒀-𝒀=𝐗

[𝐗>𝒀] x=𝐗+𝒀-𝐗=𝒀

[𝐗>𝒀] 𝒀 > 𝐗 ?

[𝐗>𝒀∧𝒀≤𝐗] END [𝐗>𝒀∧𝒀>𝐗] assert false

False

False

True

True

1

2

3 4

5

6

7

8 9

Figure 3: Symbolic execution tree for the sample code in Listing 1.

In the next step symbolic execution needs to fork the execution because it can either
follow the False branch or the True branch. At this point both branches are satisfiable with
regard to the current path constraint. The exact exploration strategy of symbolic execution
depends on its implementation. This examples follows a deterministic depth-first search
beginning with the False branch. Therefore, the next execution step is the node 3. The path
constraint is updated based on the made choice: the condition in line 2 is assumed to be
False, which means that the path constraint is updated to the negated condition: X 6 Y.

Afterwards, symbolic execution uses a constraint solver to solve the updated path con-
straint. If a path constraint is no longer feasible, i.e., the constraint solver cannot find a
satisfiable model, symbolic execution will abort this execution path and backtrack to the
previous branching point. Node 3 represents the code part where no swapping is neces-
sary and ergo the execution is finished afterwards, denoted by the END. Also in this case
symbolic execution backtracks to the previous branching point in order to investigate un-
explored branches. Therefore, the next step is to enter the if condition in line 3 that leads
to the creation of node 4. The path constraints is updated to X > Y and the instruction in
line 3 is executed. The arithmetic instruction x = x + y needs to be applied in the symbolic
domain, and hence, the mapping between variable x is updated to the symbolic expression
X+ Y. Similarly, the following assignments in lines 4 and 5 (represented in node 5 and 6)
update the mapping so that eventually x holds the symbolic expression Y and y holds the
symbolic expression X. In other words: x and y swapped their values. The path constraint
is not updated during this process because there is no branching involved.

Afterwards, symbolic execution reaches the branching instruction in line 6 (represented
in node 7) and forks the execution accordingly. It begins again with False branch (cf.
node 8) and updates the path constraint to X > Y ∧ Y 6 X. In this branch the swapping
was successful and the program finishes, which is denoted with the END. Then symbolic
execution backtracks and investigates the True branch (cf. node 9). This branch checks
whether there has been an error during swapping so that the value of x is still greater
than the value of y. The path constraint is updated to X > Y ∧ Y > X. At this point
symbolic execution would not continue exploring this branch because this path constraint
is unsatisfiable: Y cannot be smaller and greater than X at the same time. Therefore, the
assertion failure in line 7 is not reachable. Symbolic execution explored all feasible paths,
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and hence, is finished. The obtained feasible path constraints can be used to generate test
inputs to test these paths or to generate a test suite for a specific coverage criterion.

2.2.2 Tools

Early limitations in all of those techniques have been the limited reasoning ability since
they usually applied only on simple programming languages and the lack of efficient con-
straint solving techniques. However, symbolic execution experienced renewed interest in
the recent years because of the increased availability of computational power and deci-
sion procedures [11]. Popular symbolic execution engine are for example KLEE [54] and
Symbolic PathFinder (SPF) [60, 67].

KLEE applies on LLVM bytecode and includes an extensive environment modeling. A
large issue in symbolic execution is the handling of native operations and interactions with
the environment like I/O operations on the file system. Typically there are two solutions:
(1) switch to a concrete mode to perform a dynamic symbolic execution for the interaction
(which of course limits its state space exploration as a concrete execution only represents
one possible path), or (2) leverage models that contain the semantics of the desired action.
KLEE contains such models, e.g., for the interaction with the file system, which makes
KLEE highly applicable in a practical context.

SPF is based on Java PathFinder (JPF) [59, 72], a model checker for Java bytecode. JPF
builds it own virtual machine so that it can interpret each bytecode instruction. SPF adapts
this implementation to handle the bytecode execution symbolically.

2.2.3 Advanced Symbolic Execution Techniques

Symbolic execution comes with a couple of limitations: path/state explosion, complex path
constraints, and the handling of native calls.

Tackling path explosion. The path explosion problem of symbolic execution is inherent
due to its nature of a systematic exploration: Since it tries to explore all possible branches
in a program, there is an exponential growth in the number of execution paths. Therefore,
pure symbolic execution quickly reaches its scalability limitations in a practical environ-
ment. Loops and recursion are for special concern since they may lead to an infinite num-
ber of execution paths. This general issue gets usually addressed by a bounded symbolic
execution (BSE). In BSE the exploration of a path will be aborted after a pre-defined bound
on the search depth or the number of extracted path constraints. Alternatively, one can
stop the analysis when a desired coverage is achieved.

The introduction of abstractions in the analysis can help to reduce the number of paths
and broaden the coverage of symbolic execution. Loop abstractions or summaries [58, 68,
71] help to incorporate the semantics of loops in symbolic execution to reduce the explo-
ration effort and increase the overall coverage. Abstract state matching in symbolic execu-
tion [73] means to check whether a symbolic state subsumes another symbolic state. This
includes to check the subsumption of the symbolic data objects and the valid implications
of the corresponding path constraints.

Compositional symbolic execution. Another research direction is compositional symbolic
execution by Anand et al. [49]. A compositional analysis summarizes the results for lower-
level function in the program so that these results can be reused in a larger analysis. For
example when a function gets called multiple times in the program, symbolic execution
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can first analyze this function in isolation and reuse the resulting path conditions in a
larger exploration. Additionally, Anand et al. proposes demand-driven compositional sym-
bolic execution. It means that there is a certain target to reach with less effort as possible.

Similarly, Ma et al. [63] propose directed symbolic execution to guide the exploration to
designated targets in the program. Both approaches leverage an interprocedural control flow
graph (ICFG) to drive their analysis. The interprocedural control flow graph connects var-
ious (intraprocedural) control flow graphs (CFGs) that describe the control flow within a
function or a method. The ICFG describes how the control flows of the functions are con-
nected based on their calling hierarchy inside the program. The key component of both
approaches [49, 63] is to efficiently identify a feasible path in the ICFG to the designated
target by traversing feasible paths in the local CFGs. Distance calculations on the ICFG like
the shortest distance between two nodes in graph or the reachability calculation of nodes
can be used to guide such an exploration.

Parallel symbolic execution. Furthermore, symbolic execution can be accelerated by par-
allelization [53, 70] because in general there is no sharing between the sub-trees in the
symbolic execution tree. Therefore, the symbolic execution tree can be partitioned in two
or more parts than can be processed separately. The challenge in partitioning is to identify
in good balancing between the partitions: a well balanced partition can lead to a linear
speedup, whereas a poor balancing results in no speed up at all. The literature describes
simple static partitioning approaches [70], as well as dynamic partitioning [53].

Decision Procedures. In terms of solving complex path constraints the performance of
symbolic execution strongly depends on the decision procedures. Decision procedures are
used to determine the satisfiability of a path constraint. Symbolic execution techniques typ-
ically use Satisfiability Modulo Theory (SMT) solvers, which can compute the satsifiability of
formulas in first-order logic with associated background theories like integer arithmetic,
arrays, bit-vectors, and Strings. State-of-the-art solvers are Z3 [64] and CVC4 [51]. Addition-
ally, there exist specialized solvers for handling, e.g., formulas including String constraints,
like ABC [50].

Dynamic symbolic execution. Pure symbolic execution is a static analysis technique,
which might be faced with the problem that some program components cannot be eval-
uated symbolically. For example native calls or function calls to third-library code. This
limitation can be tackled by the usage of dynamic variants of symbolic execution to sim-
plify the constraints. Dynamic symbolic execution in general means that the analysis follows
the execution of a concrete input but collects the symbolic constraints and expressions
along this path.

DART / Concolic testing. Godefroid et al. [57] propose DART as a automated unit test-
ing technique based on dynamic symbolic execution. They collect the constraints during
concrete execution and systematically negate conjuncts of the constraints, e.g., the last con-
junct, to generate new inputs that explore new execution paths. If a modified constraint is
not feasible, e.g., because the constraint is too complex for the decision procedures, then
DART would leverage random concrete values to solve the constraint. On a high level,
their approach works in three steps: (1) the automated extraction of the interface of the
program under test by using static source code parsing, (2) the automatic generation of
a test driver for random testing of the program, and (3) the dynamic analysis of the pro-
gram and automatic generation of new test inputs. Sen et al. [69] follow a similar approach
with their technique CUTE, but specifically tackle the problem of constraints over dynamic
data structures that include pointer operations. They introduce the term concolic testing
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as a cooperative combination of concrete and symbolic execution. The already discussed
technique SAGE by Godefroid et al. [21] (cf. Section 2.1) present their whitebox fuzzing
approach as an extension of concolic testing. They use generational search to maximize the
modified constraints resulting from one run.

Păsăreanu et al. [66] propose mixed concrete and symbolic reasoning, where the path
constraint gets splitted in a simple and in a complex part (e.g., native calls or non-linear
constraints). The simple part can be solved with an existing decision procedure. The result-
ing solution is used to simplify the complex part.

Fitness guided symbolic execution. Furthermore, there are dynamic symbolic execution
techniques to address the path explosion problem like Fitnex by Xie et al. [74]. They pro-
pose to use a fitness guided path exploration which assigns flipping priorities to branching
nodes based on a calculated fitness value. The constraints at the node with the highest
flipping priority gets flipped, i.e., negated to follow unexplored branches. The fitness values
are calculated to measure how close the execution is to cover a given target predicate.

Online vs. offline symbolic execution. The literature distinguishes in general between
two types of symbolic execution: online and offline [75, 80].

Offline symbolic execution runs the program and extracts a path constraints that is
solved by a decision procedure. Afterwards it re-runs the program with the newly obtained
input to extract another path constraint to be solved. This offline techniques is applied in
concolic testing with CUTE [69], DART [57], and SAGE [21].

Online symbolic execution represents the traditional symbolic execution as implemented
in KLEE and SPF. The symbolic execution forks at a branching point by duplicating states
and path constraints. Therefore, online symbolic execution does not require re-runs but
can simply backtrack to the last branching point. However, this type of symbolic execution
usually leads to a high memory usage because it needs to store the state information, which
might become quickly infeasible for complex programs.

summary – symbolic execution

This thesis focuses on an offline dynamic symbolic execution that can be guided by
several differential metrics. Since it is driven by concrete inputs, it can incorporate
the results from a fuzzing engine (cf. previous Section 2.1). For an efficient test
input generation technique, both components (fuzzing and symbolic execution) are
combined in a hybrid analysis approach. Such hybrid techniques are discussed in
the next section.

2.3 hybrid analysis

This section starts with summarizing the strengths and limitations of fuzzing and sym-
bolic execution, and further describes existing hybrid solutions for combining these two
techniques.

2.3.1 Strengths and Limitations of Fuzzing

Mutational fuzzing is considered as an effective testing technique, which can quickly gen-
erate a lot of inputs. Due to its random nature it can quickly generate malformed and
unexpected test inputs to check the program for crashes and unexpected behaviors [30,
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80]. Therefore, it is known to find shallow bugs [81], e.g., in the input parsing component
(also called syntactic stage [32]). While it is considered to be inexpensive, it is also known
to be incomplete [76, 30, 81] because it might miss bugs that occur deeper in the program
execution (also called semantic stage [32]). Such deeper program behaviors are guarded
by specific constraints that are unlikely to be hit with random mutations. Therefore, it is
usually recommended as a complementing testing technique [30].

2.3.2 Strengths and Limitations of Symbolic Execution

Symbolic/concolic execution represents a systematic exploration of the state space of the
program, and hence, can solve constraints that guard deeper program behaviors [81]. While
it is known for its input reasoning abilities [81], it suffers from the path explosion issue, which
makes it hardly applicable in a practical environment because it can, similarly to fuzzing,
get stuck in shallow parts of the program [78, 81].

2.3.3 Existing Hybrid Techniques

Existing research on hybrid software testing combines fuzzing and symbolic execution in a
couple of setups, e.g., fuzzing and symbolic execution in an alternating way or beginning
with symbolic execution to generate seed inputs for a subsequent fuzzing run. Note that
the main goal in the existing techniques is to increase the coverage with the generated test
inputs and not to perform a differential analysis.

Symbolic execution followed by fuzzing. Brian S. Pak [80] proposes hybrid fuzzing,
which starts with symbolic execution of the program under test to discover frontier nodes
within a given resource budget. Frontier nodes are either nodes at the end of an execution
path or are intermediate nodes, at which symbolic execution aborted the execution because
it exceeded the resource budget. Pak’s technique [80] generates concrete inputs that reach
the identified frontier nodes and uses them as initial seed inputs for a fuzzing run. There-
fore, symbolic execution is used to generate valid seed inputs for fuzzing. Pak’s evaluation
showed that their hybrid concolic testing can cover almost 4x the branches that are covered
by random testing and almost 2x that of concolic testing. However, the concept misses a
feedback loop back from fuzzing to symbolic execution.

Fuzzing followed by symbolic execution. Ognawala et al. [79] propose a compositional
fuzzing approach that is aided by targeted symbolic execution. Their technique Wildfire

builds on the compositional testing framework Macke [65] and starts with parallel fuzzing
of isolated functions based on AFL. It collects the reported crashes and afterwards deter-
mines the feasibility of reported vulnerabilities by leveraging targeted symbolic execution
with an extended version of KLEE. Furthermore, Wildfire is a fully automated approach
which, e.g., also generates the fuzzing drivers.

Alternating offline and online symbolic execution. Cha et al. [75] propose the technique
Mayhem by introducing hybrid symbolic execution as a combination of online and offline
symbolic execution. In that sense Mayhem is not explicitly combining fuzzing with sym-
bolic execution but explores hybrid combinations of symbolic execution techniques. In
order to identify exploitable bugs in binaries, Mayhem’s analysis alternates between on-
line and offline mode. It starts in the online mode and as soon as the analysis reaches a
memory limit it stops and generates checkpoints. These checkpoints contain the state in-
formation about the current non-finished execution paths. Afterwards Mayhem picks one
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of the checkpoints and uses offline symbolic execution to efficiently restore this execution.
Then Mayhem restarts its online execution from there. Cha et al. [75] show in their eval-
uation that hybrid symbolic execution needs less memory than online symbolic execution
and is faster than offline symbolic execution.

Alternating fuzzing and symbolic execution. One of the earliest work on hybrid analysis
is the paper on hybrid concolic testing by Majumdar and Sen [77]. They propose the com-
bination of random testing and concolic testing as an interleaving of both techniques. It
starts with the concrete execution based on randomized input (aka random testing) and
as soon as it cannot make any coverage improvements, it switches to concolic testing of
the last seen input. Therefore, it concollicaly executes the input and generates new path
constraints by negating parts of the constraint. As soon as concolic testing identifies an
input that improves the program coverage it switches back to concrete execution with an
updated input based on the results on concolic testing. The testing technique stops as soon
as there is a bug/crash found. Otherwise it alternates between random testing and concolic
testing within a given resource budget.

EvoSuite by Fraser and Arcuri [7–9] is a test case generation techniques based on a
genetic algorithm with the goal to generate a test suite, which fulfills a given coverage
criterion. The genetic algorithm in EvoSuite suffers from the general problems of covering
specific program parts only with a low probability. Their intuition is that dynamic symbolic
execution can help to find these values, although symbolic execution comes with its own
problems (see above). Therefore, Galeotti et al. [76] propose a hybrid setup as an adap-
tive approach, which combines EvoSuite with dynamic symbolic execution. The search
starts with the genetic algorithm and based on its feedback it is determined whether the
current problem is suitable for dynamic symbolic execution. Therefore, they do not apply
expensive symbolic execution when it is actually not necessary.

The technique Driller by Stephens et al. [81] proposes a sequential setup, in which
fuzzing and concolic execution are executed in sequence. Starting the exploration with
fuzzing, concolic execution gets started as soon as fuzzing gets stuck, i.e., it does not make
any progress in terms of coverage. The concolic execution component tries to generate
inputs that would push the fuzzer deeper in the program execution. Afterwards fuzzing
get started again and the process repeats. The technique Munch by Ognawala et al. [78]
proposes a similar approach, in which fuzzing and symbolic execution are executed in
sequence, although they differ on how they guide the symbolic execution. Both techniques,
Driller and Munch, execute only one technique at once, and hence, might miss potential
analysis power.

Yun et al. [82] report that hybrid fuzzers like Driller [81] still do not scale to real-world
applications and name the concolic execution component as the main performance bottle-
neck. They therefore propose Qsym as a concolic executor that is tailored for the support
of hybrid fuzzing by applying a couple of optimizations. For example they symbolically
execute only a small subset of the instructions that are required to generate the necessary
constraints. The instruction selection is based on a fine-grained instruction-level taint track-
ing, which is feasible because Qsym can quickly switch between execution models. Qsym

does not use any models for external environments but simply considers them as black
boxes which get executed concretely. This can result in unsound test cases that do not pro-
duce new coverage, but is cheaper than symbolic execution of the actual environment or
the models. Furthermore, they apply optimistic solving which tries to solves only parts of a
path constraint when the complete constraint is not solvable.
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summary – hybrid analysis

All in all, the software testing community has already produced hybrid testing strate-
gies that combine fuzzing and symbolic execution. However, the existing approaches
mostly aim at increased program coverage and do not focus on differential analysis.

2.4 differential program analysis

The previous sections described the fundamentals in software testing, in particular with the
search-based technique fuzzing and with the systematic exploration technique symbolic
execution. This section presents the fundamentals of differential program analysis, its possible
application areas, and the state-of-the-art techniques for the specific applications. The goal
of differential analysis is to identify behavioral differences as introduced in Chapter 1.

While most related work on differential program analysis mean the comparison between
multiple program variants (aka regression analysis) [85, 87, 92, 93, 96, 97, 101, 103], differ-
ential analysis can also mean to find different execution paths within the same program
instance. For example such an analysis can try to find very expensive program paths. Ex-
pensive paths show a different behavior in terms of a given cost function compared to the
other paths in the program. This analysis is called worst-case complexity analysis [131, 140,
145, 146]. Other occurences of differential analysis are side-channel analysis [109, 113, 119]
and the robustness analysis of neural networks [181, 184]. Independent of the specific kind
of analysis, differential program analysis is a hard problem since it needs to reason about
multiple program executions. The following sections describe the foundations and related
work on the mentioned differential analysis types.

2.4.1 Regression Analysis

Regression testing/analysis is concerned with validating the change(s) between two succes-
sive software versions [101]. Figure 4 shows the recap of the two categories in differential
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Figure 4: First category of differential software testing: regression analysis.

analysis as introduced in Section 1.2. Regression testing represents category (1) (the left
side of Figure 4). It searches behavioral differences between two program variants exe-
cuted with the same input. The typical approach uses an existing test suite and reruns it
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on the new software version [92]. However, running a complete test suite has two prob-
lems: (1) It might be not feasible because there are too many tests. Therefore, it is necessary
to perform test case selection by prioritization or minimization of the test suite [87, 103].
(2) The existing test suite might not test the changed behavior because it was not relevant
before, and hence, it needs some test suite augmentation [87, 92, 101, 103]

The testing techniques presented in this thesis do not focus on generating test suites,
but focus on generating test inputs (for an existing test driver) that specifically trigger a
changed behavior. The goal is to identify regression errors. The following paragraphs sum-
marize the relevant research in the related areas, which can be separated in techniques
based on symbolic execution, search-based techniques, and verification approaches.

Regression Analysis based on Symbolic Execution. Person et al. [96] argue that identi-
fying differences based on differing source code fragments is to imprecise and often leads
to false positives, e.g., by simple formatting changes. Therefore, they propose Differential
Symbolic Execution (DSE) for the analysis of two program versions based on method sum-
mary generation and equivalence checking. DSE starts with symbolic execution of the two
program versions and constructs over-approximating method summaries. Afterwards DSE
checks whether the summaries are equivalent, for which they use two different notions
for equivalence: functional equivalence and partition-effects equivalence. Functional equiva-
lence checks for the same black-box behavior: the same input must lead to the same result.
Partition-effects equivalence checks for functional equivalence and whether the programs
equivalently partition the input space: the same input must lead to the same result by tak-
ing the same path. If the summaries are not equivalent, then DSE will provide deltas for
the precise characterization of the inputs that show a different behavior.

In a subsequent work Person et al. [97] propose Directed Incremental Symbolic Execution
(DiSE), which combines static analysis and symbolic execution to characterize the effect of
program changes. It starts with an inter-procedural analysis to detect the parts of the con-
trol flow graph (CFG) that are affected by the changes. This information are used to guide
the symbolic execution of the new (modified) version of the program by only allowing the
exploration of paths that can reach the affected locations.

Yang et al. [102] introduce memoized symbolic execution (Memoise) as a technique to reuse
previous symbolic execution runs. Memoise uses a trie-based data structure to store the
key elements of symbolic execution, i.e., the branching decisions that included symbolic
values. An already executed path can be efficiently replayed by following the stored choices
in the trie. Therefore, memoized symbolic execution can significantly reduce the cost for
multiple symbolic executions of a program during software testing. Additionally, Yang
et al. propose the usage of Memoise for the regression analysis by re-executing symbolic
execution only on the change-affected trie parts.

Shadow Symbolic Execution. Palikareva et al. [93] propose shadow symbolic execution (SSE)
to generate inputs for testing software patches. Similar to the previous discussed tech-
niques [97, 102], SSE does not aim to generate a high-coverage test suite, but to generate
test inputs that specifically exercise divergences between two program versions. In con-
trast to the other techniques SSE does not apply only on the new program version, but
executes both the old (buggy) and new (patched) versions in the same symbolic execu-
tion instance. This requires that both programs are merged into a change-annotated, unified
version by applying simple annotation rules. Each change-annotation represents a func-
tion call change(oldExpression, newExpression), where the arguments show the old and
the new expressions respectively. Table 1 shows the change-annotations as introduced by
Palikareva et al. [93].
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Table 1: Change-annotations by shadow symbolic execution [93].

Change Type Example

Update assignment x = x + change(E1, E2);

Update condition if(change(E1, E2)) ...

Add extra assignment x = change(x, E);

Remove assignment x = change(E, x);

Add conditional if(change(false, C)) ...

Remove conditional if(change(C, false)) ...

Remove code if(change(true, false)) ...

Add code if(change(false, true)) ...

The last two change types in Table 1 show a conservative handling of code changes
in case no other more fain-grained change-annotation can be found. These change types
simply represents the removing or adding of straightline code blocks.

Every change-annotation does in principle introduce a so-called Shadow expression that
holds information about both program versions. For example in the case of updating an
existing assignment: x = x + change(E1, E2); the variable x holds two expressions, x +

E2 for the new version and x + E1 for the old version.
SSE performs dynamic symbolic execution on such a unified program version, which is

implemented in two phases: (1) the concolic phase, and (2) the bounded symbolic execution
(BSE) phase. In the first phase, SSE simply follows the concrete execution of test inputs
from an existing test suite, while it checks for divergences along the control-flow of the two
versions. This exploration is driven by the idea of four-way forking. In traditional symbolic
execution every branching condition introduces two forks to explore the true and false

branches. Shadow symbolic execution instead introduces four forks to investigate all four
combinations of true and false branches for both program versions. As long as there is
no concrete divergence, SSE follows the so-called sameTrue and sameFalse branch, which
denotes that both concrete executions take the same branches. Additionally, SSE checks
the satisfiability of the path constraints for the other two branching options, where both
versions take different branches. These branches are called diffTrue and diffFalse paths.
For every feasible diff path, SSE generates a concrete input and stores the divergence point
for later exploration by the second phase. As long there is no concrete divergence, SSE
continues until the end of the program.

When SSE hits the mentioned addition or a removal of straightline code blocks, it
immediately stores a divergence point. This conservative handling leads to an over-
approximation of the diff paths because the added/deleted code may not necessarily lead
to an actual divergence.

The second phase performs bounded symbolic execution (BSE), only on the new version,
from the stored divergence points to further investigate the divergences.

At the end, Palikareva et al. [93] perform some post-processing of the generated inputs
to determine whether they expose some observable differences, e.g., by comparing the
outputs and the exit codes. Palikareva et al. [93] implemented their approach on top of the
KLEE symbolic execution engine [54].

Limitations of Shadow Symbolic Execution. Shadow symbolic execution as introduced
by Palikareva et al. [93] is driven by concrete inputs from an existing test suite. While this
exploration strategy tries to focus on constraining the search space, it might miss important
divergences as it strongly depends on the quality of these initial test inputs. In particular
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SSE might miss deeper divergences in the BSE phase because of limiting prefixes in the path
constraints. Since BSE is started from the identified divergence points, it inherits the path
constraint prefix from the concrete input that has been followed to find this divergence. In
general, when there are several paths from the beginning of the program to this divergence,
the concrete input might lead to a prefix that is not necessary and could limit the further
exploration of deeper divergences.

Furthermore, SSE might miss divergences straight away due to a similar reason: Inputs
that touch changes, i.e., they trigger the change-annotations, still could miss divergences
when the concrete execution does not touch an actual divergence point. Hitting at least one
change-annotation is trivially necessary since otherwise no change is exercised. The change-
annotations introduce the Shadow expressions that are necessary to detect a divergence
in the control-flow. However, this is necessary but not sufficient to trigger a divergence.
Therefore, the existing inputs have to cover changes and the divergence points so that SSE
can find them.

Search-Based Regression Testing. Orso et al. [89, 92] introduce behavioral regression testing
(BERT) that essentially uses a blackbox regression technique to generate random test cases
that expose behavioral differences between two software versions. BERT works in three
phases: (1) In the first phase it generates large number of test cases for a specific software
module. (2) In the second phase it runs the generated test case on the two software versions
to check for differences. (3) In the last phase it collects the differences and filters duplicates,
so that the reports can be presented to the developers. Their test case generation is based
on Randoop [31] and Agitar’s JUnit Factory [12].

Taneja and Xie [100] follow a similar approach with their technique DiffGen as they
also use random testing to generate test cases that expose observable differences. They add
additional branches to the code with the goal to expose a regression error. For example,
given two versions of a Java class, DiffGen first detects modified methods. Afterwards it
synthesizes a driver that sequentially calls both versions of such a method. Then DiffGen

adds a comparison at the end of the driver that compares the outcomes and raises an asser-
tion error when a difference is detected. Afterwards, they use random test case generation
to test this synthesized and instrumented driver. Therefore, as soon as a generated test case
covers the new inserted branches, then DiffGen has identified a difference.

Shamshiri et al. [99] propose an extension of EvoSuite [7–9] for regression testing, called
EvoSuiteR. Shamshiri et al. use a genetic algorithm to generate test cases that specifi-
cally propagate regression errors to an output difference between the two software ver-
sions. EvoSuiteR starts with an initial population of a random generated test suite and
applies random mutations. The mutant selection is based on a fitness function that takes
into account three differential metrics: (1) structural coverage, (2) object distance, and (3)
control-flow distance. Structural coverage is used to generally increase the coverage by the
test cases. The object distance measure the difference between the execution traces and the
resulting objects. The control-flow distance measures for every branch how close the exe-
cutions are to a divergence. After the analysis, EvoSuiteR collects the difference revealing
test cases and adds assertions into the test so that the developer can easily see the behav-
ioral differences. Although, Shamshiri et al. aim at generating a whole test suite to identify
regression errors and not only specific test inputs, their approach is relevant for this thesis
because they use similar differential metrics.

Although there exists no regression fuzzing approach so far, existing techniques on di-
rected fuzzing like AFLGo [16] (cf. Section 2.1.2) could be applied on regression testing
problems. However, this directed analysis can only be guided to suspicious locations, but
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cannot explicitly be targeted to a differential behavior. Nevertheless, guiding the fuzzing
process into areas of changed code is a key ability in finding regression bugs.

Regression Verification. Böhme et al. [84, 85] introduce Partition-Based Regression Verifi-
cation (PRV). PRV provides an incremental way to verify differential input partitions in
context of regression verification. The differential input partitions are calculated via sym-
bolic execution and are specified by a symbolic condition, which defines the subset of
valid inputs for the partition. The inputs will get grouped into the same partition if they
reach the same syntactic changes, and if they propagate the same differential state to the
output. Afterwards, the input partitions get classified to be either equivalence-revealing or
difference-revealing. The incremental approach allows to still give guarantees even when
the analysis is interrupted or only a partial analysis is possible. Therefore, PRV represents
an alternative to regression test generation.

Another differential verification approach is for example SymDiff by Lahiri et al. [90].
SymDiff aims at identifying output differences and uses the modular verifier Boogie [83]
to create verification conditions that can be solved with the SMT solver Z3 [64].

The techniques proposed in this thesis do not provide any formal guarantees, although
it would be interesting to explore the employment of statistical guarantees [15]. However,
it remains a tradeoff between providing results with formal guarantees and the scalability
necessary for the analysis of real-world applications.

summary – regression analysis

Shadow symbolic execution by Palikareva et al. [93] shows some great potential
in guiding the exploration to divergences, but its strong dependency on concrete
inputs limits its exploration capabilities. Search-based approaches like Shamshiri et
al. [99] have shown to be effective, although still might miss divergences due to their
random nature. Xu et al. [101] studied several test suite augmentation techniques
and concluded that genetic and concolic approaches are effective and complement
each other in terms of code coverage. Therefore, this thesis focuses on a hybrid
technique.

2.4.2 Worst-Case Complexity Analysis

Figure 5 shows the recap of the two categories in differential analysis as introduced in
Section 1.2. Worst-case complexity analysis and the other applications described in the
following Sections 2.4.3 and 2.4.4 represent category (2) (the right side of Figure 5). In this
category the differential analysis searches behavioral differences within the same program
that is executed twice with different inputs. The goal of worst-case complexity analysis
(WCA) is to identify an input that performs very different than most of the other inputs: an
input that maximizes the specified cost metric. In this context the analysis can be called
differential. However, this analysis is simpler than the other presented applications because
it does not reason about multiple paths at the same time. Inputs that trigger worst-case
executions represent serious algorithmic complexity (AC) vulnerabilities and could be used
to perform complexity attacks [132, 134, 148, 149, 151, 152].

WCA based on fuzzing. Recent techniques in WCA have explored fuzzing for its pur-
pose. Petsios et al. [146] propose SlowFuzz as a resource-usage-guided evolutionary search.
Their fitness function counts the number of instruction executed for a particular mutated
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Figure 5: Second category of differential software testing: worst-case complexity analysis, side-
channel analysis, and robustness analysis of neural networks.

input and keeps inputs that exceed the so-far observed execution cost. SlowFuzz builds
on top of LibFuzzer [37] and is a domain-independent as it simply generates inputs for a
given application.

Similarly, PerfFuzz by Lemieux et al. [143] generate inputs that trigger algorithmic com-
plexity vulnerabilities. In contrast to SlowFuzz, they maximize not the number of executed
instructions, but the execution counts for all program locations. Therefore, they collect for
each execution the hit counts of each edge in the control flow graph and keep inputs that
executes more edges than any other previous input.

Wei et al. [153] propose Singularity, a technique that performs pattern fuzzing for WCA.
Instead of searching for specific inputs, they look for input patterns that maximize the
resource usage of the application.

Le et al. [142] use grammar-based fuzzing to identify inputs that are not covered by
the initial grammar but trigger worst-case behaviors in the target program. Le et al. [142]
start with the intuition that the given grammar is only approximate, and hence, need to
be first extended to correctly represent the input space of the target program. Therefore,
their technique Saffron works in two phases: (1) First they generate valid inputs files
with the given grammar, which are used as seed inputs for traditional coverage-based
fuzzing. The fuzzing will generate inputs that are not covered by the grammar but might
be still accepted by the target program. Afterwards they repair the initial grammar with the
identified inputs. (2) In the second phase, Saffron uses the updated grammar to generate
inputs in a cost-guided manner by favoring rules that lead to an increased cost.

WCA based on symbolic execution. Burnim et al. [131] propose the usage of symbolic
execution for the automated test input generation to perform WCA. Their technique is
called WISE (Worst-case Inputs from Symbolic Execution) and uses an exhaustive state
exploration for small input configurations. Based on the resulting path constraints they
learn branching policies that lead to a worst-case execution, ideally also for larger input
configurations. They apply these path policies for larger input sizes and show that their
technique can discover AC vulnerabilities. Luckow et al. [145] later introduce SPF-WCA
for a similar analysis. Their path policies also take into account the history of executions
and the calling context of the analyzed procedures.

Chen et al. [133] use probabilistic symbolic execution to generate performance distribu-
tions of an application. They take as input the target program and a usage profile, which
defines the likelihood of inputs. Their approach works on two phases: First they symboli-
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cally execute paths with a high probability, which will represent the paths that get executed
by the majority of the inputs. In the second phase they concentrate the exploration on low-
probability paths to identify special conditions for the program’s behavior. They generate
test inputs for the extracted path constraints and execute them on the target program. The
resulting cost measurements can be used to generate a performance distribution that plots
the input probability over the program execution times. Their tool PerfPlotter can be
used to reveal performance problems with their associated usage probabilities. Further-
more, they can compare the performance distributions of multiple program versions to
detect performance regressions.

Zhang et al. [155] use symbolic execution to automatically generate a test suite for load
testing. They perform an exhaustive symbolic exploration up to a specific exploration
depth. While incrementally increasing this depth, they focus on paths that show a high
resource consumption. The resulting path constraints can be solved to generate a test suite.

Other techniques for WCA. Static analysis techniques [129, 136, 137, 150] leverage tech-
niques like invariant generation and expression abstraction to compute upper bounds on
the time complexity of programs.

Holland et al. [140] propose a two-step approach for the detection of AC vulnerabilities.
First of all, they use a technique based on static analysis to identify loops in the applica-
tion as potential reasons for AC vulnerabilities. In the second step, they apply a dynamic
analysis on the identified loops to trigger an excessive resource consumption. Their static
analysis investigates the control-flow of the application and displays the resulting loop
structures to a human analyst. The analyst can then select loops, which should be further
analyzed. The dynamic analysis automatically instruments the loops with workload probes
to measure the timing behavior.

Many techniques focus on the worst-case execution time (WCET) analysis with a strong
focus on real-time systems [138, 139, 144, 154]. In order to manage the analysis the typical
approach is to limit the analysis of loops to finite bounds while estimating the worst-case
execution time for the system.

Profilers [130, 135, 147] are used to identify potential performance bottlenecks in appli-
cations. Their results depend on the test inputs used for profiling. Profiling techniques can
be used to pinpoint suspicious components of the application, which can later be used as
targets for a more detailed performance analysis.

summary – worst-case complexity analysis

The existing WCA techniques mostly focus on fuzzing, static analysis, or symbolic
execution. Fuzzing techniques like SlowFuzz [146] are promising although they lack
the general problems on mutational fuzzing. The evaluation for WCA in this thesis
is partially based on [146]. The fuzzing technique proposed later in this thesis fol-
lows a similar approach but adds more metrics to have a broader fitness function
for the differential analysis. Furthermore, it adds a dynamic symbolic execution to
complement the fuzzing process. The existing WCA techniques based on symbolic
execution perform exhaustive explorations, which may not be feasible in practice as
they do not scale on large programs.
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2.4.3 Side-Channel Analysis

Side-channel analysis tries to identify leakages of secret information by observing the non-
functional system behavior, like execution time, memory consumption, or response mes-
sage sizes. Imagine an authentication scenario at a webpage: a potential attacker wants to
guess the password for an existing user. The main-channel in this scenario would be the
actual response, which includes the information of the password check: correct password or
incorrect password. A side-channel could be for example the execution time or the memory
consumption; basically every metric, which can be gathered during a program execution.
The side-channel analysis searches for an observation that depends on the secret infor-
mation, in this case the server-side password. If there is a dependent observation, then it
would mean that the program execution leaks information about the secret.

Example. A typical example for a side-channel vulnerability is a password comparison
algorithm, which leaks information about the stored (secret) password via the runtime of
the algorithm, also referred as timing side-channel. Listing 2 shows such an unsafe password
comparison algorithm. The algorithms takes two arrays as parameters, one array for the
(public) user input pub and the stored (secret) password sec. It starts with comparing the
length of both arrays and will return false if both lengths do not match. As long as both
arrays have the same length, the algorithm continues with comparing the passwords byte
by byte. As soon as there is a mismatch, the algorithm will return false, and only if all
byte values match, the algorithm will finally return true. Therefore, this unsafe algorithm
has two early-returns, in lines 3 and 7, which are the reason for the vulnerability.

Listing 2: Unsafe password checking sample

1 boolean pwcheck_unsafe(byte[] pub, byte[] sec) {

2 if (pub.length != sec.length) {

3 return false;

4 }

5 for (int i = 0; i < pub.length; i++) {

6 if (pub[i] != sec[i]) {

7 return false;

8 }

9 }

10 return true;

11 } �
In order to avoid the timing side-channel, it would be necessary to iterate over the complete
public input without having such early returns.

Non-interference. If there is no possibility that a potential attacker can infer any secret
information by an observation of the system, then the program would be considered secure.
This intuitive property is called non-interference.

One way to check this property is self-composition [106]. The high level idea of self-
composition is to reduce the problem of information flow analysis to the analysis of two
copies of the same program, where the secret inputs are different, but the public values
stay the same. The program analysis then checks whether these two copies create the same
observation. More formally, let P be a program, and PJpub, secK denote the execution of the
program P with inputs pub and sec. As it is common in the security literature, the input
is broken down to a tuple of public (low) values and secret (high) values. Furthermore, let
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c(.) denote the evaluation of a program execution with respect to a particular cost function
representing the resource usage (e.g., execution time or response size) of the program. The
non-interference requirement can then be formalized as follows:

∀pub, sec1, sec2 : c(PJpub, sec1K) = c(PJpub, sec2K)

The property states that any two secrets are indistinguishable through the side-channel ob-
servations and therefore can not be revealed by an attacker.

Coming back to the example of the password checking algorithm (cf. Listing 2). Such an
analysis based on self-composition would consider one public input (the password guess
by the attacker) and varies the secret input (the server-side password). The only difference
for these two execution setups is the difference in the secret input, and hence, every differ-
ence in the observations is caused by the difference in the secret input. Therefore, if there
is a difference in the observation for these two execution setups, then it would mean that
the observation depends on the secret input and that the potential attacker can observe
a different behavior for different passwords. Such an observation could eventually help
her/him to retrieve information about the server-side password [122, 123].

ε-bounded non-interference. In practice the non-interference requirement might be too
strict for the side-channel analysis of real-world programs. Particularly for timing chan-
nels, small differences in computations may be usual but by an attacker imperceptible.
Recent research in side-channel detection [104, 110] have observed this problem and pro-
posed the checking of an ε-bounded non-interference in [110]: not only programs with
zero interference can be accepted as secure, but also programs where the difference be-
tween observations is too small (below a threshold ε) to be exploitable in practice. The
corresponding formalization looks like:

∀pub, sec1, sec2 : |c(PJpub, sec1K) − c(PJpub, sec2K)| < ε

The above property can be checked by enumerating all possible combinations of public
and secret values, and measuring all possible resource usage metrics along corresponding
the program executions. However, this becomes quickly infeasible for real-world programs.

Please note that the mentioned dependency between observation and secret input is
only correct under the assumption that there is no other influence on the program behavior
besides the given inputs, which might be not true when for example the program uses some
seed to randomize its non-functional behavior to avoid side-channel attacks. In such a case
the presented technique would be less effective in detecting the vulnerabilities, also because
they are less exploitable (also check the paragraph below that explains the underlying
attacker model). Please further note that such analysis only provides the identification of
the vulnerability. It is not clear whether such a vulnerability can be exploited, i.e., whether
a potential attacker can create an attack strategy to actual gain information about the secret.
Nevertheless, the vulnerability can be identified and should be considered dangerous as
long as it is unclear whether it can be exploited.

Attacker model. The attacker model defines which assumptions are made about the abil-
ities of a potential attacker. Therefore, these are the assumptions made for this research
work, which are similar to the assumptions by state-of-the-art previous work on side-
channel detection [104, 110]:

• The program is deterministic and the side-channel measurements are precise.
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• The attacker can not observe anything else besides the side-channel information. This
also means that the attacker does not use the main-channel to infer information.

• Any variations measuring resource usage are caused by the application itself. There-
fore, the analysis is not focused on side-channels related to the hardware architecture
or the physical environment.

These assumptions are realistic as stated in the related work [110]. For better illustration
please consider the following attacker scenario, which has been similarly described by [110].
In a server-client scenario in a distributed environment, the attacker is physically separated
from the victim application. Therefore, the attacker has no chance to observe any physical
side-channel. For a network with encrypted communication, the attacker has no access the
the content of the network packages like the actual content of sent messages. The attacker
can only infer information based on the observation during the communication with the
server, e.g., the response times and response sizes. Furthermore, due to the physical dis-
tribution between attacker and the victim application, the attacker cannot instrument the
application to observe any hardware-level side-channel.

Side-channel detection based on static analysis. Two state-of-the-art side-channel detec-
tion techniques are Blazer by Antonopoulos et al. [104] and Themis by Chen et al. [110].
Both are based on static analysis.

Blazer [104] uses decomposition instead of self-composition to prove the absence of
timing side-channels. They construct a partition of the execution traces by splitting the
traces in secret-independent branches. They collect traces that have the same cost when
having the same public input. Afterwards they show that each component in the partition
fulfills the property that the running time of the traces depends on the public and not
on the secret input. Therefore, they prove that the program does not include any timing
side-channel. On the other hand, when their techniques cannot find such a partition, they
conclude that the program is not secure.

Themis [110] introduces the notion of the already mentioned ε-bounded non-interference
for the side-channel detection in realistic environment and proposes the usage of Quantita-
tive Cartesian Hoare Logic (QCHL). Hoare Logic [10] proposes a formal system to reason
about the correctness of programs. The key element in Hoare Logic is the Hoare Triple
P {Q} R, which states the connection between precondition P, the program Q and the
postcondition R. The idea is to annotate the program with assertions, i.e., expressions that
represent the current program state, which can be later used to infer the postcondition
from the precondition. The formal system of Hoare Logic defines several axioms and rules
that can be used to derive new assertions. Cartesian Hoare Triples are formulas that relate
to k-different program runs, and hence, allow to reason about multiple programs runs.
Themis’s QCHLs further allow to quantify the expression in the formulas, which enables
the detection of resource-related side-channel vulnerabilities.

Side-channel detection based on symbolic execution. Păsăreanu et al. [121] propose the
usage of symbolic execution and Max-SMT solving to detect and quantify side-channel vul-
nerabilities. Max-SMT attempts to find a satisfiable assignment for a weighted first-order
formula while maximizing the sum of the satisfied clauses. They first use symbolic execu-
tion to extract the path constraints that depend on the public and the secret information.
They partition the path constraints based on their resulting cost. Then they formulate a
Max-SMT problem by constructing clauses for each cost observation and give each clause
the weight 1. The Max-SMT solver returns then a value for the public input that maximizes
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the number of clauses, i.e., the number of different observation. The number of possible
observations correlates with the information gain about the secret. Therefore, this method-
ology is used to generate a public input that leads to the maximum information leakage.
Furthermore, Păsăreanu et al. [121] propose a multi-run analysis, where they generate
a sequence of public inputs that lead to the maximum leakage, which corresponds to a
multi-run attack. Additionally, by leveraging model counting Păsăreanu et al. can assess
the uncertainty about the secret after certain number of side-channel measurements.

Based on the work of Păsăreanu et al. [121], Bang et al. [105] propose the computation
of leakage specifically for programs that perform string manipulations. They focus on side-
channels where the attacker can explore each segment of a secret, called side-channels with
segmented oracles.

Other techniques like [122, 123] focus specifically on the synthesis of side-channel attacks
with similar techniques to [105, 121], namely symbolic execution, Max-SMT solving and
model counting.

Brennan et al. [107] propose a symbolic path cost analysis for the detection of side-
channel vulnerabilities. Their approach called CoCo-Channel tries to detect paths in the
control flow that differ with regard to their execution cost. First of all they detect branch
conditions that depend on the secret input information by leveraging taint tracking. Then
they decompose the control flow of the program to a set of nested loops and branch com-
ponents. They assign symbolic cost expressions to each component based on their nesting
relationships. By leveraging a constraint solver CoCo-Channel checks whether a differ-
ence in the cost is satisfiable.

Other side-channel detection techniques. Xiao et al. [128] propose Stacco that uses dif-
ferential, non-directed fuzzing for the detection of side-channel vulnerabilities related to
SSL/TLS protocol implementation.

Chothia et al. [111] and Kawamoto et al. [114] propose the usage of Monte Carlo sam-
pling to perform statistical estimation of the information leakage in Java programs. Al-
though they show promising results by providing quantitative measures, their techniques
might be imprecise in practice. Other successful approaches use abstraction interpretation
to identify side-channel vulnerabilities related to the application’s cache [112, 117, 120].

Furthermore, Hawblitzel et al. [88] propose a complete, full-system verification approach
to prove end-to-end security. Their technique includes the proving of non-interference of
the information flow. However, it lies in the nature of a full-system verification that it does
not scale to real-world programs.

summary – side-channel analysis

The existing approaches for the detection of side-channels are strongly based on
static and symbolic analysis. Therefore, they have scalability issues and depend on
models to enable an effective analysis. This thesis proposes the usage of dynamic
techniques like directed fuzzing for the detection of side-channels in combination
with a novel variant of shadow symbolic execution.

2.4.4 Robustness Analysis of Neural Networks

Artificial neural networks (ANNs) belong to a class of statistical learning algorithms in
machine learning [168]. They are inspired by the biological neural networks in brains and
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Figure 6: General architecture of a neural network.

represent organized networks of various neurons [167, 172]. In the remaining thesis ANNs
are denoted simply as neural networks (NNs). Neural networks are used for the compu-
tation of information based on data, where the neurons represent the processing units.
Similar to signal processing, the input data are processed in multiple stages up to the final
output of the network. NNs are used for classification problems like pattern recognition in
signals, images, and texts in areas like natural language processing [159], financial trading
systems [188], and medical diagnoses [173]. Neural networks are also used for filtering and
clustering of data [156, 166], and to synthesize game strategies [183]. This work focuses on
neural networks for classification problems like image classification.

Figure 6 shows the general architecture of a neural network: The neurons are typically
organized in multiple layers. There is an input layer that takes in the input data, and an
output layer that represents the final outcome. In between there can be multiple hidden
layers. A deep neural network (DNN) is a neural network typically with many hidden
layers and is associated with deep learning strategies [195]. The neurons are connected to
the neurons in the other layers, while each connection has an associated weight that de-
termines the impact of the value at the source neuron on the value of the target neuron.
Furthermore, the propagation of the value at a neuron for the next neuron can be influ-
enced by so-called propagation/activation functions. The weights are learned during the
training phase, for which there exist different training strategies depending on the actual
application and available training sets.

In supervised learning the weights are learned with existing training data that consist of
concrete inputs with their expected outputs. The learning process works in two phases: (1)
forward- and (2) backward propagation. In the first phase the network simply executes the
given test input with the current weight values (in the beginning they are usually initialized
with random values). The generated output is compared with the expected output. The
second phase modifies the weight values so that the error, i.e., the difference between
expected and obtained output, is minimized.

Unsupervised learning follows the same principle, but instead of having test data with
expected outputs, the testing data come with a cost function. The backward propagation
would then modify the weights so that the cost function is minimized.

A general issue of machine learning (ML) techniques is their explainability [182]. For ex-
ample in the case of neural networks the sequence of neuron activations and their weights
hardly support the understanding of why the output is generated. Due to their limited
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explainability it is important to have techniques to thoroughly test neural networks. One
type of testing is the robustness analysis of neural networks, which aims to determine how
the network behaves when inputs slightly differ (in the ideal case only to an imperceptible
degree). A robust network would be expected to still end up with the same conclusion/
classification for the original input and a slightly modified input [184].

This section summarizes current techniques for the testing of neural networks with spe-
cial focus on the robustness analysis and the adversarial input generation.

Quantitative coverage metrics. Testing techniques like DeepGauge by Ma et al. [174],
DeepXplore by Pei et al. [181], and DeepConcolic by Sun et al. [184] propose the usage
of neural network specific quantitative coverage metrics to assess the test inputs and guide
the test input generation. They introduce coverage metrics based on neuron-level coverage
like basic neuron coverage, MC/DC coverage, and neuron boundary coverage, but also
layer-level coverage criteria like top-k neuron coverage.

Sun et al. [184] further propose concolic testing on neural networks to increase the pro-
posed coverage metrics. Additionally they post-process the resulting test suite and check
whether there are pairs of inputs that are close to each other and lead to a different output.
Therefore, they search for adversarial inputs that can be used to assess the robustness of
the neural network.

Odena and Goodfellow [178] and Xie et al. [196] both introduce coverage-based fuzzing
tools for neural networks. Their frameworks TensorFuzz [178] and DeepHunter [196]
show good performance in generating test inputs for neural networks.

Kim et al. [170] propose a test adequacy criterion called Surprise Adequacy for Deep Learn-
ing Systems (SADL). SADL measures the difference in network behavior between the test
input and the training data. Their intuition is that the test input should not trigger a com-
pletely different behavior than the training data. They propose the usage of SADL metrics
that can guide the input generation for a more effective retraining of neural networks.

Techniques guided by coverage metrics can effectively generate test data for neural net-
works, but are not guided to a differential exploration or adversarial input generation.

Differential testing. Pei et al. [181] and Xie et al. [197] propose the differential testing of
neural networks by comparing the results for different neural networks. Therefore, these
techniques represent the differential testing of two implementations that can lead to the
identification of adversarial inputs, although it is not the main purpose.

Pei et al. [181] introduce the whitebox framework DeepXplore that aims to find inputs
that maximize the coverage and differences between different networks for the same clas-
sification problem. The neural networks therefore have similar functionalities. They formu-
late an optimization problem, which can be solved by gradient-based search techniques.

Xie et al. [197] introduce their blackbox genetic algorithm DiffChaser to reveal differ-
ences between a neural network and several optimized variants. Their technique can be
also seen as regression testing approach for evolving networks.

Adversarial attacks. Adversarial input generation tries to find inputs that lead to a mis-
classification in the neural network but only slightly differ from a correct classified input.
In the ideal case this small difference is actually not perceptible to a human tester.

Goodfellow et al. [160] propose the alternating training of two neural networks. The
discriminative network D is trained so that it can correctly classify data from the training
set and data generated by the other network G. The generative network G is trained to
maximize the error in network D and is called the generative adversarial net.
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Guo et al. [165] propose DLFuzz to apply differential fuzzing on neural networks. The
employed mutations aim to generate inputs that increase the neuron coverage and the
prediction difference between original input and mutated input. In contrast to traditional
fuzzing where the mutations represent random changes in the input, DLFuzz formulates
an optimization problem to identify small changes in the input that lead to increased
coverage and differences in the prediction. Based on the obtained gradient they generate
perturbations of the selected seed input.

Tian et al. [186] present DeepTest for the directed, systematic testing of neural networks
with a special focus on the image processing in autonomous driving. They aim at revealing
erroneous behavior while maximizing the neuron coverage with the generated test inputs.
Therefore, they apply realistic image transformations to the input like rotating, scaling,
but also simulating different realistic driving conditions with blurring and adding rain or
fog. Their mutation strategies are based on expert knowledge of erroneous root cause, and
hence, highly effective for specific application scenarios.

Other techniques like [158, 161, 171, 176, 185] try to trigger missclassifications by apply-
ing hardly perceptible perturbations, which they formulate as an optimization problem.
Such hard optimization problems are typically approximated with L-BFGS [177] or expen-
sive matrix manipulations [179].

Furthermore, there are techniques that aim to detect adversarial inputs at runtime [189].
Wang et al. [189] apply the suspicious input on a slightly mutated neural network and on
the original neural network. Then they check whether the networks disagree on the clas-
sification. Additionally, there a defensive mechanisms like [180], which apply defensive
distillation as a technique to train neural networks specifically to be more robust on per-
turbations in the input. Such techniques help to mitigate the consequences of adversarial
attacks, but do not provide an actual differential analysis of neural networks.

Classical program analysis on neural networks. So far there are only a few works that
apply classic program analysis techniques to neural networks. Ma et al. [175] transfer the
concept of mutation testing on neural networks. With their technique DeepMutation they
mutate neural networks, on which they execute the test data to assess their quality.

Gopinath et al. [162] propose DeepSafe as a technique that identifies regions in the
input space, for which the neural network is known to be robust. These areas are called
safe regions and mean that all inputs in these regions are classified verifiably correct. For
the verification they leverage Reluplex [169], a special SMT solver for neural networks. In
a later work, Gopinath et al. [163, 164] introduce DeepCheck that applies a lightweight
symbolic execution approach to identify pixels in an input image that have a high impact
on the classification process inside the neural network. They further use these important
pixels to create adversarial 1-/2-pixel attacks.
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summary – robustness analysis of neural networks

The existing work on robustness analysis misses hybrid techniques that are specifi-
cally driven to expose differential behavior. Differential fuzzing techniques like [165]
and [186] are very promising as they can be very effective in generating adversarial
inputs for a specific context. However, they miss their general applicability. Symbolic
execution based techniques like [163, 164] and [184] are computational expensive and
need better guidance. The testing technique proposed later in this thesis combines
fuzzing with symbolic execution to overcome these problems. Nevertheless, the anal-
ysis of neural networks is a challenging task and remains a stress-testing situation
also for a hybrid technique.





3R E S E A R C H M E T H O D & C O N T R I B U T I O N

This chapter discusses the research methodology and the core technical and conceptual
contributions of this thesis. In the beginning it presents the assumptions taken for the pre-
sented approach, followed by the concept of hybrid differential software testing. Afterwards
the chapter discusses the core technical and conceptual contributions. Finally, the chapter
introduces the research questions that are used to evaluate the contributions and discusses
the evaluation strategy.

3.1 assumptions

The general need for differential testing techniques has been already motivated in Section
1.1. The overall goal of the presented techniques in this thesis is to generate test inputs
that expose behavioral differences. The assumption thereby is that existing tests, like a re-
gression test suite, are not sufficient to expose the behavioral differences. This assumption
is valid because existing work has shown that regression test suites need augmentation to
cover the changed behavior [87, 92] as well as prioritization or minimization to make its ex-
ecution feasible [87, 103]. The assumption is also valid for other applications of differential
software testing that aim to discover security vulnerabilities or to show robustness issues.
They represent unexpected behavior that is challenging to avoid [107, 110, 146, 186] and
there are usually no existing tests to discover them. Therefore, there is a need to generate
these inputs. Furthermore, the presented techniques are designed to be effective with only
one valid seed input that is used to initially execute the application under test. They do
not assume a large test suite to derive any information. This increases the applicability of
the presented techniques because they only make little assumptions about the availability
of existing tests for the application. The presented techniques allow multiple seed inputs,
which makes it possible to use an existing test suite (or at least some selected inputs) to
guide the differential analysis. However, this is not necessary.

3.2 concept : hydiff

The concept of Hybrid Differential Software Testing (HyDiff) is to combine powerful tech-
niques to tackle the problem of test input generation to reveal behavioral differences in soft-
ware. As introduced in Chapter 1 differential program analysis aims to find behavioral dif-
ferences. This is a difficult problem because it generally requires to reason about multiple
program executions. The discussion of the existing work on differential analysis (cf. Section
2.4) shows that there is yet no hybrid differential software testing approach. Furthermore,
the existing single approaches for a differential analysis have their own limitations.

Fuzzing. As representatives of inexpensive, random-based exploration fuzzing techniques
(cf. Section 2.1) can generate a large number of inputs in a short time period due to their
low overhead. Therefore, fuzzing is known for its input generation speed [77, 81]. However,
fuzzing is based on random operators and is usually implemented as blackbox or greybox
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Figure 7: Conceptual overview of the parallel hybrid exploration.

technique. It lacks the knowledge about the program to go beyond complex constraints
that guard deeper program behavior [81].

Symbolic Execution. Existing approaches based on (dynamic) symbolic execution (cf. Sec-
tion 2.2) provide a systematic exploration of the state space, which can be guided by sev-
eral heuristics. They have the full knowledge about the program, and hence, can unleash
the full spectrum of program analysis techniques to, e.g., reach low-probability branches.
However, the scope of symbolic execution is usually limited to smaller programs because
its systematic exploration encounters the path explosion problem and expensive path con-
straints solving [77, 81]. Therefore, it does not scale to real-world applications.

Hybrid Analysis. This thesis proposes the usage of a hybrid approach, which combines
random-based exploration (fuzzing) and systematic exploration (symbolic execution). The
hybrid setup includes the exchange of interesting inputs between both single approaches
that run in parallel. Therefore, both approaches can benefit from each other and the overall
analysis can explore a larger state space, while quickly generating results.

In order to illustrate this idea, Figure 7 shows the overall concept of the proposed hybrid
analysis. By running fuzzing and symbolic execution in parallel, both single techniques can
perform their own exploration and can incorporate interesting inputs from the other com-
ponent as well. This supports fuzzing to overcome narrow constraints in the program by
importing inputs from symbolic execution, which is a whitebox technique that can analyze
and solve these constraints with a constraint solver. Additionally, this hybrid concept also
provides guidance for symbolic execution to focus on interesting program areas triggered
by inputs from the fuzzing component.

The term interesting depends on the specific type of the differential analysis. For example
in the context of regression analysis, an interesting input exposes a divergence between two
program versions, while in the context of worst-case complexity analysis an interesting
input maximizes the cost of the program execution. In order to enable a hybrid differential
analysis, both single techniques need to be able to perform a differential analysis on their
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own. The existing techniques for fuzzing and symbolic execution (cf. Section 2.4) need to
be adapted and extended.

Differential fuzzing (DF). The fuzzing process consists of a loop between input selection
and input mutation (cf. the upper box in Figure 7). The input mutation applies various
mutation operators to generate new inputs. The input selection determines which mutated
inputs are reported as interesting and which are kept for following evolutions. In order
to perform an differential analysis, the input selection is driven by differential heuristics.
This general concept of differential fuzzing is not known yet, so that it is necessary to extend
existing fuzzing techniques for a differential analysis. In contrary, the ability to synchronize
with parallel fuzzing instances is already implemented in existing fuzzers (e.g., AFL [38]).
This feature can be reused to exchange inputs with the symbolic execution component.

Differential dynamic symbolic execution (DDSE). The (dynamic) symbolic execution
consists of a loop between input assessment, exploration, and input generation (cf. the lower
box in Figure 7). The input assessment performs a concolic execution of concrete inputs,
which includes the analysis of the executed branches based on differential heuristics. This
analysis results in the identification and ranking of unexplored branches. The highest
ranked, unexplored branch is used as starting point for some additional symbolic explo-
ration. The resulting constraints of newly explored paths are extracted and used to generate
new concrete inputs. These inputs are again assessed with concolic execution, which also
reports interesting inputs for the fuzzing component. The concept of differential symbolic
execution is already known (e.g., [85, 93, 96, 97, 102]), but does come with a couple of
limitations and without the ability to incorporate new inputs during the analysis (cf. Sec-
tion 2.4). The above presented concept of differential dynamic symbolic execution is a new
dynamic symbolic execution technique for the differential analysis.

Contributions. Overall, this thesis makes the following contributions:

C1 The concept of differential fuzzing that incorporates various differential metrics to
allow a general differential analysis. In particular it allows the search for side-channel
vulnerabilities because it also uses cost metrics to determine the cost difference of two
executions. Please note that the term differential fuzzing has been also used to describe
the testing for output inconsistencies between two different implementations of the
same application, e.g., two implementations of a PDF viewer, file parsers, or security
libraries [34]. However, this represents a different type of analysis.

C2 The concept of differential dynamic symbolic execution as a technique to perform
a dynamic symbolic exploration driven by differential heuristics, which allows to
incorporate concrete inputs during the analysis. This allows the continuous guidance
of the symbolic exploration to interesting program behaviors.

C3 The concept of a general hybrid approach in differential program analysis, which
combines the strengths of single techniques in this research field. This concept closes
a gap in the research of differential program analysis that is currently performed
by specialized techniques with their own advantages and disadvantages. The hybrid
concept allows to combine their advantages and compensate their disadvantages.

C4 The concept of a hybrid setup for applying fuzzing and symbolic execution in par-
allel as an alternative to already existing hybrid approaches [77, 81, 82] in test input
generation. The parallel environment allows that both techniques can continue their
own powerful differential analysis while being supported by the results of the other
component.
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3.3 research questions

The main research interest in hybrid differential software testing is to expose software
bugs related to differential behavior. Finding such bugs is essential to improve the soft-
ware quality in general. The four contributions C1-4, as described in the previous section,
aim at providing efficient and effective techniques to contribute to this research interest.
In particular, they aim at supporting software developers in creating reliable and secure
software, and hence, also facilitate the main research idea in software engineering, namely
to support software development with methods, techniques, and tools (cf. Chapter 1).

In order to validate the made contributions, the evaluation in this research investigates
the following research questions:

RQ1 How good is differential fuzzing and what are the limitations?
This questions evaluates the contribution C1, the concept of differential fuzzing, and
how it performs on differential software testing when applied in isolation.

RQ2 How good is differential dynamic symbolic execution and what are the limitations?
Analogous to RQ1, this question evaluates the contribution C2, the concept of dif-
ferential dynamic symbolic execution, and how it performs on differential software
testing when applied in isolation.

RQ3 Can the hybrid approach outperform the single techniques?
This questions evaluates C3 and C4 with regard to the basic intuition of the hybrid
combination that it performs better than the single techniques (C1 and C2) on differ-
ential software testing.

RQ4 Can the hybrid approach not only combine the results of fuzzing and symbolic execution,
but also amplify the search itself and generate even better results than each approach on its
own?
This questions follows RQ3 to evaluate C3 and C4 in more detail. RQ4 investigates
whether the components can benefit from each other and whether the hybrid ap-
proach can generate significantly better results.

RQ5 Can the proposed hybrid differential software testing approach reveal behavioral differences
in software?
This question considers all contributions C1-4 and evaluates whether the proposed
techniques represent an important contribution to the overall research interest.

Summarized, the questions RQ1, RQ2, and RQ3 evaluate how the two components of
HyDiff proceed and whether the combination of both is worthwhile. The fourth question,
RQ4, evaluates whether the hybrid setup amplifies the exploration. The last question, RQ5,
evaluates the general effectiveness of the proposed approach.

3.4 evaluation strategy

The research questions are evaluated based on a quantitative analysis with experiments
and benchmarks in specific application areas of differential program analysis:

A1 Regression analysis is one of the main applications of differential program analysis
where the goal is to identify behavioral differences between two successive software
versions. Regression analysis is also one of the "most extensively researched areas in
[software] testing" [11] and is therefore the major focus of HyDiff.
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A2 Worst-case complexity analysis searches for worst-case execution paths, which rep-
resent a serious threat to the system under test. Similar to the next application A3
it is a highly relevant application in the security area. The current need for such
techniques is also recognized by the US Defense Advanced Research Projects Agency
(DARPA), which recently organized the Space/Time Analysis for Cybersecurity (STAC)
program [204] that supported the development of new analysis techniques to iden-
tify algorithmic complexity and side-channel vulnerabilities. In comparison with the
other applications worst-case complexity analysis is simpler because it does not re-
quire the reasoning about multiple execution paths at the same time.

A3 Side-channel analysis searches for information leakages that are caused by diverg-
ing cost-behaviors within the same application. As already mentioned for A2, side-
channel analysis is highly relevant and in the focus of recent research projects. The
popular Meltdown [118, 125] and Spectre [115] side-channel attacks also gave it some
publicity outside the research community. Side-channel analysis is difficult because
it requires the reasoning about multiple execution paths at the same time and addi-
tionally involves the handling of cost behaviors.

A4 Robustness analysis of neural networks is a relatively novel application of differen-
tial program analysis where the goal is to identify vulnerabilities in neural networks
with regard to their robustness. It requires reasoning about multiple network execu-
tions, which makes it very expensive, and hence, serves as a stress testing application
of HyDiff and its components.

State of the art in evaluation strategies. Various fuzzing techniques have been published in
the recent years (e.g., [16, 17, 28, 32, 146, 35]) and the de facto standard evaluation approach
is to perform experiments on a benchmark suite by comparing a baseline fuzzer with the
new proposed solution. The evaluation subjects consist mostly of command-line tools with
known vulnerabilities and the presentation of newly found vulnerabilities. The mostly used
evaluation metric is the number of crashes found by the fuzzer. Fuzzing algorithms are
based on random exploration, and hence, need some careful evaluation to make sure that
measured effects are no coincidental behavior. Arcuri and Briand [14] present guidelines on
how to evaluate randomized algorithms. A general concern addressed by their guidelines
is to thoroughly describe the experiment setup. It is necessary to specify the numbers of
conducted experiment runs as well as the employed statistical tests that have been used
to draw conclusions from the data. They recommend to run each randomized algorithm
at least 1000 times or to explain the reasons if this is not possible. “The objective is to
strike a balance between generalization and statistical power” [14]. Therefore, it would be
reasonable to have less experiment repetitions if the algorithms are evaluated on a large set
of artifacts. The choice of artifacts thereby can have a large impact on the performance of
the algorithms under test, and hence, requires a well-defined and well explained selection.
Furthermore, Arcuri and Briand urge for the appropriate usage of statistical methods, like
the Mann-Whitney U-test to detect statistical differences. Additionally, they recommend to
report all available statistical data (means, standard deviations, p-values, etc.) to help the
meta-analysis and to visualize them, e.g., with box plots.

Four years after the publication of Arcuri’s and Briand’s work, Klees et al. [27] studied
recent publications of fuzzing techniques and assessed the conducted evaluations. They
report that they have found problems in all evaluations, and hence, performed own exper-
imental evaluations of fuzzers to gain more insights and deduce general guidelines for the
assessment of fuzzing techniques. Important steps are amongst others to perform multiple
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runs with statistical tests to distinguish the distributions, to have benchmark subjects with
known properties, the measurement of goal-specific metrics (like the number of identified
crashes for most of the fuzzing techniques) instead of simple coverage metrics, and the
plotting of the performance over time.

Symbolic execution techniques [54, 63, 93, 67, 97, 69, 102] are usually evaluated on sev-
eral micro benchmarks and real-world applications. Typically different analysis types are
compared by measuring code coverage metrics, the time to fail an assertion, the number of
solver queries, or in general the time and memory cost for the exploration.

Hybrid approaches like [75, 77, 78, 81] focus as well on command-line tools. For example
in the area of vulnerability detection hybrid approaches [81] are evaluated on subjects
taken from the DARPA Cyber Grand Challenge (CGC) Qualifying Event data set [203],
which already includes known vulnerabilities. The evaluation metrics combine usually the
metrics from the components, i.e., in case of combining symbolic execution and fuzzing, it
is often code coverage and the number of vulnerabilities/crashes found.

The state-of-the-art approaches in the specific application areas follow the evaluation ap-
proaches of the underlying techniques and focus their benchmark selection and evaluation
metric design on the specifics of the application area. For regression testing there exists an
regression benchmark for C programs, namely CoREBench [198], which includes subjects
taken from repositories and bug reports of four open-source software projects: Make, Grep,
Findutils, and Coreutils. The included subjects are known to have real regression errors.
However, the related work in regression testing also uses subjects with seeded regression
errors like in [85, 97, 102]. For worst-case complexity analysis, the fuzzing approach Slow-
Fuzz [146] is evaluated one several textbook algorithms, like sorting algorithms or a hash
table implementation, for which the worst-case complexity is known. Similarly, the sym-
bolic execution approach SPF-WCA [145] focus on a micro-benchmark. As evaluation met-
ric the actual slowdown of the application, i.e., measured execution time, is mainly used.
For the side-channel analysis, the related work [104, 107, 110, 121] uses micro-benchmarks,
textbook algorithms and subjects from the DARPA Space/Time Analysis for Cybersecurity
(STAC) program [204], which are known to include side-channel vulnerabilities. For the ro-
bustness analysis of neural networks, the related works [157, 160, 181, 184, 187] use models
generated based on popular data sets like MNIST [201] and CIFAR-10 [200]. The proposed
techniques are evaluated based on coverage metrics like neuron coverage and the number
of different identified classifications.

HyDiff’s evaluation strategy. The evaluation strategy of HyDiff and its components aligns
with the above described state of the art in evaluation strategies in the leveraged techniques
and in the covered application areas. Therefore, for each application area the proposed hy-
brid differential analysis approach is evaluated on several micro- and macro-benchmarks,
including real-world applications. Table 2 shows an overview of the data sets used in the
benchmarks. For the evaluation of the application A1 regression analysis the subjects are
taken from multiple versions of the Traffic collision avoidance system (TCAS) [208] as well
as subjects from the Defects4J benchmark [199]. Additionally, HyDiff is evaluated on sub-
jects from Apache Commons CLI library [202].

For the evaluation of application A2 worst-case complexity analysis the subjects are
chosen based on the evaluation of the approach SlowFuzz [146], since it is the most related
work in this context. The data set includes textbook algorithms like Insertion Sort and
regular expression matching from the Java JDK. It also includes algorithms from the STAC
program [204] and real-world applications, e.g., Apache Commons Compress [205].



3.4 evaluation strategy 41

The evaluation of application A3 side-channel analysis includes subjects from the eval-
uation of two state-of-the-art static analysis tools Blazer [104] and Themis [110]. Their
subjects consist smaller micro-benchmarks with Java programs up to 700 LOC as well as
large, real-world applications up to 20K LOC. Additionally, the evaluation includes more
subjects from the STAC program [204] and the modular exponentiation known from the
RSA encryption technique [116].

The evaluation of application A4 robustness analysis of neural networks uses a neural
network trained on the MNIST dataset [193]. In multiple experiment setups the model is
investigated for its robustness with regard to changes in the input.

Table 2: Overview of the benchmark data sets.

Application Subjects Source

A1 Regression analysis Traffic collision avoidance system (TCAS) [208]

Math-{10,46,60} and Time-1 from Defects4J [199]

Apache CLI [85, 202]

A2 Worst-case complexity Insertion Sort, QuickSort JDK 1.5

analysis Regular expression matching JDK 1.8, [207]

HashTable, Image Processor [204]

Apache Commons Compress [205]

A3 Side-channel analysis Blazer benchmark [104]

Themis benchmark [110]

Ibasys [204]

modular exponentiation: RSA_modpow [121]

A4 Robustness analysis MNIST dataset [193]

of neural networks

HyDiff’s evaluation metrics. The evaluation of the research questions uses several met-
rics, which capture the interesting characteristics that differ with the specific application.
The focus of applications A1 (regression analysis) and A4 (robustness analysis of neural
networks) is the difference in the output. Therefore, the metrics for the experiments in these
application contexts capture the number of obtained output differences as well as the time
to the first identified output difference. The differences in the branching behavior (denoted
as decision difference) is used as an additional indicator for behavioral differences. The
following list summarizes the metrics used for the evaluation in A1 (cf. Section 7.2) and A4

(cf. Section 7.5):

• t +odiff: the average time to first output difference (lower is better)

• tmin: the minimum time (over all runs) needed to find the first output difference
(lower is better)

• #odiff: the average number of identified output differences (higher is better)

• #ddiff: the average number of identified decision differences (higher is better)

The focus of application A2 (worst-case complexity analysis) is not on output differences
or any kind of difference value because the analysis does not reason about multiple paths
at once. The goal of the application is to maximize the execution cost with regard to a given
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cost function (e.g., number of executed instructions or memory usage). Therefore, the main
characteristic to assess HyDiff and its components for A2 is the maximum execution cost
triggered by the generated inputs. The following list summarizes the metrics used for the
evaluation of A2 (cf. Section 7.3):

• c: the average maximum cost obtained within the given time bound (higher is better)

• cmax: the maximum cost obtained over all runs (higher is better)

• t : c > 0: the average time to find the first input, which improves the cost value with
regard to the initial input as baseline (lower is better)

The focus of application A3 (side-channel analysis) is on different side-channel observa-
tions between execution paths. The side-channel information is measured as execution cost
with regard to a given cost function, and hence, A3 focuses on the cost difference. The out-
put and decision differences might be helpful to guide the search, but they cannot reveal a
side-channel vulnerability. Similarly, the actual cost values of the execution paths are not as
relevant as for A2 because the degree of difference (and not the single values) is essential.
The following list summarizes the metrics used for the evaluation of A3 (cf. Section 7.4):

• δ: the average maximum cost difference obtained within the given time bound (higher
is better)

• δmax: the maximum cost difference obtained over all runs (higher is better)

• t : δ > 0: the average time to find the first input, which improves the δ value with
regard to the initial input as baseline (lower is better)

Additionally, for each application the evaluation includes charts for the development
over time of the measured differential metrics. This temporal perspective allows the dis-
cussion of the techniques with regard to the complete analysis time, in addition to the
discussion at specific points in time.

3.5 summary

This thesis proposes HyDiff as a hybrid differential software testing approach, which com-
bines random-based exploration with systematic exploration. The investigated research
questions cover the investigation of HyDiff’s components as well as of the hybrid com-
bination. In particular this thesis investigates whether the combination of two differential
exploration techniques does not only combine their results, but also amplifies their ex-
ploration. The proposed evaluation strategy focuses on the state of the art in the related
work, and hence, follows a quantitative evaluation based on micro- and macro-benchmarks.
Therefore, the wide field of differential analysis is separated into four specific application
areas. The following chapters describe in detail the various components included in the
proposed hybrid analysis, followed by the validation of the approach.
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This chapter introduces differential fuzzing (DF) for the detection of behavioral differences
and shows why state-of-the-art fuzzers cannot provide a differential analysis out of the box.
The chapter starts with the explanation on how fuzzers can be guided for a differential
analysis. It continues with a simple example and afterwards provides the discussion of
the technical details. The chapter concludes with a preliminary evaluation of the presented
differential fuzzing approach. Preliminary concepts and results for DF have been described
in the following publications:

• Badger [3] proposes a differential fuzzing strategy for worst-case complexity analy-
sis,

• DifFuzz [1] picks up the guided fuzzing idea by Badger and proposes a differential
fuzzer for the identification of side-channel vulnerabilities, and

• HyDiff [6] improves a general differential fuzzer based on the gained insights in
Badger and DifFuzz.

4.1 overview

Fuzzing is a powerful technique to generate inputs that reveal errors (e.g., crashes) in pro-
grams. Recent fuzzing research efforts focus on optimizing the search process to find more
crashes and cover more code [17, 28, 29, 32, 35]. The metrics to select new inputs from the
mutated inputs for keeping in the mutation corpus is based only on the ability to increase
the code coverage. Leveraging a fuzzer for differential program analysis appears to be inter-
esting due to the fact that behavioral differences might be triggered by unexpected inputs,
which is exactly what fuzzing is made for. Nevertheless, for a differential program analysis
the current fuzzing approaches need to be significantly extended. The fuzzer should not
only generate inputs for crashes or increased code coverage, but should specifically search
for difference revealing inputs.

Example. An input that triggers a crash will be only interesting in differential program
analysis if there is a difference recognizable, e.g., between two program versions: The old
version does not crash, but the new version does crash for this input. In order to illustrate
this problem the Listings 3 and 4 show two versions of a function with a fictive error.
Listings 3 shows the function abs_v1, which fails for all values of x > 3 (cf. line 5 and
6). Listing 4 shows an updated version of this function, now called abs_v2, in which the
condition in line 5 changed so that the function fails for all values of x > 2. If a fuzzer
identifies the input x=4, for which the function fails, then it would be in general interesting,
but not for a differential analysis because both version would behave the same. The goal
of a differential analysis would be to identify x=3, for which the old version does not fail,
but the new version fails.

43
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Listing 3: Crash Example v1.

1 int abs_v1(int x) {

2 if (x < 0) {

3 return -x;

4 } else {

5 if (x > 3)

6 assert(false); // error

7 return x;

8 }

9 } �

Listing 4: Crash Example v2.

1 int abs_v2(int x) {

2 if (x < 0) {

3 return -x;

4 } else {

5 if (x > 2) // changed condition

6 assert(false); // error

7 return x;

8 }

9 } �
In addition to coverage-based fuzzing, there are also efforts on directing fuzzing to spe-

cific program areas, e.g., with AFLGo [16]. However, such approaches cannot be explicitly
targeted to differential behavior. Nevertheless, such guiding capabilities are crucial because
hitting the areas of changed code is a key ability to find regression bugs.

The following meaning of differential fuzzing is used for this thesis, also to separate the
following approach from the existing fuzzing techniques.

terminology – differential fuzzing

Differential fuzzing (DF) means a guided fuzzing process, which aims at generating
inputs that reveal behavioral differences.

The following approach focuses on coverage-guided, mutational fuzzing because the re-
lated work (see Section 2.1) has shown that such a search-based fuzzing approach is highly
effective. Furthermore, it does not make strong assumptions about the existing testing ar-
tifacts, e.g., test suites or input grammars. Mutation-based fuzzing is built on a genetic
algorithm, which belongs to the class of global search algorithms, known to be flexible, i.e.,
being able to overcome local maxima, and to scale up well to larger problems [47]. How-
ever, please note that the idea of differential fuzzing is not limited to this kind of fuzzing
technique. In general, a mutation-based fuzzer can be guided by three parameters:

• the seed inputs,

• the applied mutation operators, and

• the selection mechanism.

Guidance by seed inputs. Guiding a fuzzer by its seed inputs requires existing inputs
that already touch interesting areas of the program under test. Although in general an
existing test suite can provide good seed inputs, it is a rather strong assumption that there
are enough existing test inputs to sufficiently guide fuzzing. Additionally, a fuzzer will
likely leave the areas touched by the seed inputs quite fast, based on the random mutation
operators used in the fuzzing process. Therefore, a differential fuzzer should be able to
make progress even without good seed inputs and at the same time it should have the
possibility to incorporate new seed inputs during its fuzzing process.

Guidance by mutation operators. Guiding a fuzzer with its mutation operators is already
implemented to some extend in the state-of-the-art greybox fuzzers. For example AFL im-
plements mutation operators, which insert "known interesting integers" like 0, 1, or maxi-
mum values of data types like Integer.MAX_VALUE [39]. Interesting values means values
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that might lead to a crash or an exception in the program execution, e.g., the value Inte-
ger.MAX_VALUE might lead to an integer overflow during a calculation. Such mutation
operators make sense when searching purely for crashes in programs, but might not be as
efficient for a differential analysis. In differential analyses we need to guide the fuzzer first
in interesting areas of the program, where actually a difference is occurring. Afterwards,
it is of course interesting to trigger a crash. In best case the crashing behavior represents
a difference, e.g., a crash in the new version while the old version terminates normally.
Another way to use the mutation operators for fuzzer guidance is to select which parts
of the input should be mutated with which operators. For example FairFuzz by Lemieux
and Sen [28] first identifies rarely covered program branches, and then computes mutation
masks to determine which input regions can be mutated with which mutation operators
to still cover the rare branches. In particular, for each byte position in the input, they check
whether the operators flip byte, add random byte and delete byte still produce inputs that cover
the identified branch. Their experiments show that the computed mutation masks help to
achieve a better program coverage. In a differential fuzzer it is also necessary to guide the
fuzzing process to specific areas, e.g., where a change happened, but this is not enough
because just reaching a changed area does not guarantee that a difference is found. There
might be a long path left from the introduction of a change up to its observable difference.

Guidance by selection. Finally, the third option to guide the fuzzing process is the se-
lection mechanism. In evolutionary algorithms, as they are used in fuzzing [17, 28, 38,
48], the mutant selection is the core guidance procedure. The selection procedure deter-
mines whether a mutant is kept in the mutation corpus, and hence, is reused for future
mutations, or whether a mutant is eliminated. Therefore, a smart selection of mutants sig-
nificantly helps to guide the fuzzer into interesting program behaviors. Typically, a fuzzer
like AFL would keep inputs that produce program crashes, program hangs, or which cover
new program branches because the goal is to find exactly these program behaviors. Inputs
that produce crashes and hangs are moved into separate output folders and are not longer
used for further mutations. They disturb the ongoing fuzzing process, which actually tries
to maximize the program coverage. Only the inputs that increase the coverage are kept
in the mutation corpus (cf. steps 5 and 6 in Figure 2). A differential fuzzer has slightly
different needs: Inputs that lead to crashes and hangs should be still sorted out and not
kept for further mutations. However, they should only be reported if they reveal behavioral
differences. On the other hand, not only inputs that increase the branch coverage should
be kept in the mutation corpus, but also inputs that, e.g., get closer to a change, show
some output difference, or show some difference in its program exploration. Therefore, a
differential fuzzer needs to be guided by a various set of differential metrics, like output
difference, decision difference, cost difference, and the patch distance. Additionally, a differential
fuzzer should also keep inputs that increase the program coverage, to further guide it into
unexplored areas.

4.2 approach

Figure 8 shows the overview of the proposed differential fuzzing technique. The overall
workflow is similar to standard greybox fuzzing (cf. Figure 2 in Chapter 2.1). Similar as
coverage-based, mutational fuzzing it starts with some initial seed inputs (see step 1 in
Figure 8). It uses a queue (see step 2 in Figure 8) to store the current fuzzing corpus. In
order to generate new mutants, it first trims the inputs (see step 3) and afterwards applies
several mutation operators on the inputs (see step 4). The main difference to standard
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Figure 8: Conceptual overview of differential fuzzing.

greybox fuzzing is in the mutation selection mechanism (see step 5), which is specifically
designed to select mutants that show new interesting behavioral properties. As shown in
step 5 in Figure 8, it takes an input and parses it to extract the various parameters of
the application, which are then used to evaluate the input on multiple program executions.
Finally, the various observations are compared and the differences are determined. Overall,
differential fuzzing keeps inputs that show new interesting behaviors for future mutant
generation (see step 6).

4.2.1 Mutant Selection Mechanism

This section explains the introduced differential metrics and how they are used to select
the mutants in the differential fuzzing process.

Output Difference. A program input, which triggers a difference in the output of a pro-
gram, effectively forwards a change or a difference up to the end of the program execution,
and hence, shows a clear observation for a behavioral difference. Therefore, a differential
fuzzer needs to be able to compare the outcomes of the program under test depending on
the result type. A crash represents a special output of a program, which needs also to be
considered. In regression testing it is of particular interest, when the new version shows a
crash while the old version does not show a crash for the same input. The output difference
represents a binary value: there is a difference or there is not a difference. Inputs that show
a difference are kept for further mutations. For some types of differential analysis (e.g.,
regression analysis) output differences already show the desired result of the overall anal-
ysis. However, they should be kept anyway for further mutations because some variations
of these inputs may lead to other, different output differences. Additionally, the differential
fuzzer needs to remember already observed output differences to eliminate duplicates.

Decision Difference. One can track the decision history of an input during program execu-
tion by collecting the branching decisions along the execution path. Two decision histories
differ as soon as there is one decision pair, for which the choices do not match. Therefore,
a decision difference is identified in a program location, where executions diverge, i.e., take
different branches. This can be the case at for example IF conditions, SWITCH statements, or
looping conditions. Such a difference does not necessarily mean a semantic divergence. For
example in context of a program refactoring, the changed program might follow different
branches, but at the end the same calculation can be executed. But still, a decision differ-
ence is an indication for a semantic difference, and hence, should be used as a differential
metric. This information is stored as binary value and an encoded version of the difference
is remembered to eliminate duplicates.
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Listing 5: Input selection algorithm.

1 def boolean keep_if_interesting(Input i):

2

3 Result r = execute(i);

4

5 boolean hnb = r.has_new_bits();

6 boolean new_highscore = r.more_costly_than_highscore();

7 boolean output_diff = r.new_output_diff_found();

8 boolean decision_diff = r.new_decision_diff_found();

9 boolean patch_distance_improved = r.closer_to_patch();

10

11 if (hnb || new_highscore || output_diff || decision_diff || patch_distance_improved):

12 add_to_queue(i)

13 return true;

14

15 return false; �
Cost Difference. In general, the cost difference means the difference in the resource con-
sumption during program execution. The resource consumption can be also referred to as
execution cost and can be measured by various types of metrics, e.g., execution time, mem-
ory consumption, power consumption, or any user-defined cost function. In the context of
side-channel analysis, the cost difference is the key metric to identify side-channel vulner-
abilities and the goal is to maximize the cost difference for a specific input configuration.
In general, like the decision difference, the cost difference does not necessarily represent a
semantic divergence, but similarly it is an indication.

Patch Distance. When having changes (also called patches) in a program (e.g., in
regression analysis), these changes need to be touched by an input to trigger a difference
because they actually introduce the difference, even if a divergence can be only observed
later in the program execution. Therefore, the differential fuzzer should be able to guide
its exploration to such changes, and hence, try to minimize the patch distance during
fuzzing. This metric has no indication at all for a semantic divergence, but reaching a
patch distance of zero is eventually necessary to hit a semantic divergence, and hence, this
metric is an important guidance factor especially in the beginning of the fuzzing process.

In the general setting, the fuzzer would then keep an input for further mutations if one
of these differential metrics is evaluated positively. Listing 5 shows the basic algorithm
for the selection mechanism on an abstract level. It takes an input as parameter, which
is evaluated in line 3, i.e., executed with the actual program. During program execution
several metrics are collected by instrumentation and output observation. The assessment
for the coverage and differential metrics in lines 5-9 are conducted statefully, i.e., the fuzzer
stores the so far observed properties, so that no duplicates are stored in the fuzzing queue.
Only inputs that show an interesting, new behavior will be kept (cf. line 11 to 13). Whereat
it is enough to improve one of the differential metrics to be considered as interesting.

4.2.2 Input Evaluation

As described in the previous sections, the differential fuzzing is guided by the mutant se-
lection mechanism. In order to select an input, the fuzzer needs to evaluate it by executing
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it (cf. line 3 in Listing 5). A so called driver is used by the fuzzer to handle the input execu-
tion, which can be generally summarized in three main activities (cf. also the dashed area
in step 5 in Figure 8):

1. Parsing: In general it is necessary to prepare the input for some specific input format
of the application under test. Therefore, the first step in the driver is to parse the
input and extract or convert the contained values to match the requirements of the
application.

2. Execution: After parsing, the driver runs the application with the prepared input
starting at a specific entry point.

3. Information Collection: In order to characterize the input, the driver collects various
properties of the input including the differential metrics and, e.g., the coverage in-
formation. Some of these values can be collected during program execution by some
program instrumentation, but some of them need to be calculated after program exe-
cution based on the outcome, e.g., the output difference.

The concrete driver functionality is specific for every application, but the basic structure
is always the same and can be reused.

4.3 example

In order to illustrate the differential fuzzing approach and its requirements, please take a
look at the program foo in Listings 6 and 7. These are two variants of the same program
taken from one of the preliminary papers [5]: Listing 6 represents the old version and
Listing 7 represents the new version of the same program. The old version (cf. Listing 6) of
program foo takes an integer value as parameter. It first checks whether x is greater than 0
and updates y accordingly (cf. line 4 to 8). Afterwards the value of y determines the result
of the program: for a value greater than 1 it returns 0 (cf. line 10 to 11), for a value equal
to 1 or smaller equal to −2 it throws an assertion error (cf. line 13 to 15), and otherwise it
returns 1 (cf. line 17).

In the new version (cf. Listing 7) the statement in line 5 has been changed from -x to x*x

and there is an additional statement in line 10. This example is an artificial program, but
represents the fix of an assertion error for input x=-1 in the old version, but introduces a
new assertion error for input x=0 in the new version. Such type of buggy fixes is also called
regression bug.

In order to apply fuzzing, it is required to implement a fuzzing driver (see Listing 8).
This driver parses the input and calls the two program versions, while monitoring the
execution. For the differential analysis the goal is to find a different behavior between the
two program versions with the same input. Therefore, the driver reads only one value from
the file, in this case an integer value, and executes both versions with the same parameter.
The lines 4 to 15 in Listing 8 reads one integer value in a byte-wise manner. The lines
17 to 27 execute and monitor the old version, and the lines 29 to 40 execute and monitor
the new version. The lines 42 to 47 summarize the results and calculate the values for the
differential metrics (cf. Section 4.4).

The results of the differential analysis are as follows (the results are averaged over 30
runs and report the 95% confidence interval): After 30 sec the differential fuzzer found on
average 3.43 output differences (+/- 0.20 CI) and on average 4.10 decision differences (+/-
0.27 CI). On average it took the differential fuzzer 2.40 sec to find its first output difference
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Listing 6: Differential fuzzing subject: old version [5].

1 int foo_v1(int x) { /* OLD VERSION */

2 int y;

3

4 if (x < 0) {

5 y = -x;

6 } else {

7 y = 2 * x;

8 }

9

10 if (y > 1) {

11 return 0;

12 } else {

13 if (y == 1 || y <= -2) {

14 throw new AssertionError("assert(false)");

15 }

16 }

17 return 1;

18 } �

Listing 7: Differential fuzzing subject: new version [5].

1 int foo_v2(int x) { /* NEW VERSION */

2 int y;

3

4 if (x < 0) {

5 y = x * x; // CHANGE: expression -x to x*x

6 } else {

7 y = 2 * x;

8 }

9

10 y = y + 1; // CHANGE: additional statement

11

12 if (y > 1) {

13 return 0;

14 } else {

15 if (y == 1 || y <= -2) {

16 throw new AssertionError("assert(false)");

17 }

18 }

19 return 1;

20 } �
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Listing 8: Driver for differential fuzzing example.

1 public static void main(String[] args) {

2

3 /* Read one input from the input file for both program versions. */

4 int input;

5 try (FileInputStream fis = new FileInputStream(args[0])) {

6 byte[] bytes = new byte[Integer.BYTES];

7 if ((fis.read(bytes)) == -1) {

8 throw new RuntimeException("Not enough data!");

9 }

10 input = ByteBuffer.wrap(bytes).getInt();

11 } catch (IOException e) {

12 System.err.println("Error reading input");

13 e.printStackTrace();

14 throw new RuntimeException("Error reading input");

15 }

16

17 /* Execute old version. */

18 Mem.clear();

19 DecisionHistory.clear();

20 Object res1 = null;

21 try {

22 res1 = Foo.foo_v1(input);

23 } catch (Throwable e) {

24 res1 = e;

25 }

26 boolean[] dec1 = DecisionHistory.getDecisions();

27 long cost1 = Mem.instrCost;

28

29 /* Execute new version. */

30 Mem.clear();

31 DecisionHistory.clear();

32 CFGSummary.clear(); /* Only record the distances for the new version. */

33 Object res2 = null;

34 try {

35 res2 = Foo.foo_v2(input);

36 } catch (Throwable e) {

37 res2 = e;

38 }

39 boolean[] dec2 = DecisionHistory.getDecisions();

40 long cost2 = Mem.instrCost;

41

42 /* Report differences. */

43 DecisionHistoryDifference d = DecisionHistoryDifference

44 .createDecisionHistoryDifference(dec1, dec2);

45 Kelinci.setNewDecisionDifference(d);

46 Kelinci.setNewOutputDifference(new OutputSummary(res1, res2));

47 Kelinci.addCost(Math.abs(cost1 - cost2));

48 } �



4.4 technical details 51

(+/- 0.34 CI), the fastest run needed 1 sec. Table 3 shows the generated inputs that reveal
differences (the inputs are taken from one of the 30 experiments). All experiments have
been started with the same seed input, which included the value 100, for which both
program versions behave similarly and return the value 0.

Table 3: Results for differential fuzzing example (t = 30 sec).

ID Input x Output foo_v1 Output foo_v2

1 −956, 301, 312 0 java.lang.AssertionError

2 −1, 107, 038, 973 0 java.lang.AssertionError

3 0 1 java.lang.AssertionError

4 2, 147, 483, 647 java.lang.AssertionError 1

The input with id=1 has the value x=-956301312. Due to an integer overflow in the new
version, the result of the statement in line 5 (cf. Listing 7) is y=0, and so, the expression in
line 15 will be evaluated to true, which triggers the assertion error in the new version.

The input with id=2 has the value x=-1107038973. Similar as before, due to an inte-
ger overflow the multiplication in line 5 in the new version results in a negative value
y=-578777591, which also triggers the assertion error in the new version.

The input with id=3 has the value x=0, which represents the newly introduced assertion
error as mentioned earlier without having any integer overflow.

The input with id=4 has the value x=2147483647 (i.e., exactly the maximum integer
value). Due to the integer overflow the calculation in line 7 in the old version (cf. List-
ing 6) results in y=-2, which triggers the assertion in the old version, but not in the new
version because of the additional increment in line 10.

In summary, the differential fuzzer was able to identify the intended behavioral change
that fixes the assertion error with the input id=4. Note that x=-1 and x=2147483647 lead
both to the assertion error in the old version. More importantly, it identified the newly
introduced assertion error for x=0 with the input id=3. Additionally, since the fuzzer does
not assume any constraints on integer overflows, like static analysis could for example do,
it can also find inputs that trigger more errors caused by such overflows in calculations (cf.
input with id=1 and id=2).

4.4 technical details

The presented differential fuzzing concept is generally applicable and not limited to spe-
cific programming languages. However, the implemented tools for Badger, DifFuzz and
HyDiff aim at the analysis of Java bytecode for evaluation purposes. All fuzzing compo-
nents are built on top of the fuzzer AFL [38], also by extending the Kelinci [26] framework
for Java bytecode fuzzing. AFL is one of the state-of-the-art fuzzing tools (see Section 2.1)
and is used to perform the actual mutation generation. The input evaluation, i.e., the exe-
cution of the generated mutant, is forwarded to the Kelinci framework, which takes the
input and executes it with an instrumented version of the Java bytecode. After execution
Kelinci sends the collected metric values back to the custom AFL implementation, where
it decides whether to keep the input or not (cf. Listing 5).

As a greybox fuzzer, AFL in its original version only considers the coverage information
for the input selection. Therefore, AFL needs to be extended to incorporate the differential
metric values in its input selection mechanism. It needs to read the information sent from
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the Kelinci framework and it needs to be extended to perform an evaluation like presented
in Listing 5. As already mentioned, this evaluation is stateful, meaning that a mutated input
needs to be assessed based on the already observed coverage and differences. Therefore,
AFL needs to be extended to store the already seen output differences, decision histories,
etc. to enable this stateful comparison. Kelinci allows to apply AFL on Java bytecode and
does initially support only the collecting of the coverage information. For a differential
analysis Kelinci needs to also collect the information about the differential metrics.

4.4.1 Measuring Execution Cost

The analysis of execution costs includes three different cost models, similar as shown in
KelinciWCA, the cost-guided fuzzing procedure in Badger [3]:

• Execution Time: Via some instrumentation of the Java bytecode, e.g., with the ASM
bytecode manipulation framework [40], it is possible to measure the execution cost
as the needed execution time calculated as the number of executed instructions. This
way of measuring the execution time, instead of using the actual wallclock time, is
more robust because it does not depend on other processes running on the same
machine.

• Memory Consumption: The memory consumption can be measured by regularly
polling the total memory consumption of the program execution during the input
evaluation. This will lead to the maximum memory consumption during program
execution. Another way would be to measure the memory allocation with some in-
strumentation, similar as for the execution time, but this would not incorporate, e.g.,
the garbage collection mechanism in Java.

• User-defined Cost: User-defined cost additions need to be supported, so that the de-
veloper can add costs by a program annotation. For example this is for particular
interest for the analysis of smart contracts, in which it is necessary to observe the
value of single variables [3]. Furthermore, the user-defined cost option allows to com-
bine any other cost values to one overall cost. This is used in DifFuzz [1], where the
driver first measures, e.g., the execution time of two individual program executions,
and then calculates the cost difference and sets it as user-defined cost.

Furthermore, the cost metrics can be extended quite flexible by extending the custom
Kelinci implementation.

4.4.2 Measuring Patch Distance

In order to calculate the patch distance, it is necessary to first construct the interprocedu-
ral control-flow graph (ICFG), e.g., with Apache Commons BCEL [42]. As mentioned in
Section 2.2, the ICFG represents a graph that connects the control flow throughout various
function calls. In such a graph it is possible to calculate the shortest distance from any
node to a target node, e.g., by using Dijkstra’s shortest path algorithm [211]. Therefore, the
ICFG can be used to calculate for each instruction the shortest distance to some specified
targets in the program (e.g., the changed areas in the context of regression analysis). The
fuzzer can be guided by this distance so that the exploration gets closer to a patch. The
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Listing 9: Decision difference calculation.

1 def Pair<int,String> calc_decision_difference(boolean[] dec1, boolean[] dec2):

2 String encoding = "";

3 int smallerLength = Math.min(dec1.length, dec2.length);

4 int distance = 0;

5

6 for (int i = 0; i < smallerLength; i++):

7 if (!dec1[i] & !dec2[i]):

8 encoding += "0"; // both false

9 elif (dec1[i] & dec2[i]):

10 encoding += "1"; // both true

11 elif (!dec1[i] & dec2[i]) {

12 encoding += "2"; // false -> true

13 distance++;

14 else:

15 encoding += "3"; // true -> false

16 distance++;

17

18 distance += Math.abs(dec1.length - dec2.length);

19 return <distance, encoding>; �
construction of the ICFG and the distance calculation can be done offline. The distance in-
formation can be stored within the instrumentation of the bytecode, so that the information
is instantly available during program execution.

4.4.3 Measuring Decision Difference

The decision history can be collected during program execution via the instrumentation
as well, namely by collecting which decisions have been made during program execution.
For each program execution the instrumentation produces a boolean array representing the
performed decisions. The decision difference (ddiff) can be calculated after the program
execution at the end of the fuzzing driver by comparing the decision histories of two pro-
gram variants. Listing 9 shows how to calculate the difference and also how to generate an
encoding of the difference, which can be stored on the fuzzer side to avoid duplicates and
to allow various decision differences with the same distance but different decisions. The
algorithm takes two boolean arrays with the decision histories of two program executions.
The loop in line 6 to 16 compares decision by decision up to the shorter decision sequence
and increases the distance value for each mismatch. If the decision histories have different
lengths, then the length difference will be added as additional distance at the end of the
algorithm (cf. line 18). At the same time the algorithm produces an encoding of the differ-
ence for each decision comparison: “0” denotes that both decisions have been false, “1”
denotes that both decisions have been true, “2” denotes that the first decision was false

and the second decision was true, and “3” denotes that the first decision was true and the
second decision was false. The hashcode of the generated String encoding will be stored
on the fuzzer side.
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Listing 10: Output difference calculation.

1 boolean isDifferent(Object o1, Object o2) {

2

3 /* Check for different null values. */

4 if (o1 == null && o2 != null) {

5 return true;

6 } else if (o1 != null && o2 == null) {

7 return true;

8 }

9 /* Direct object comparison. */

10 if (o1 == o2 || o1.equals(o2)) {

11 return false;

12 }

13

14 /* Throwables: compare the String values of the messages. */

15 if (o1 instanceof Throwable && o2 instanceof Throwable) {

16 String o1str = ((Throwable) o1).toString();

17 String o2str = ((Throwable) o2).toString();

18 return !o1str.equals(o2str);

19 }

20

21 /* List: compare sizes and object in lists */

22 if (o1 instanceof List && o2 instanceof List) {

23 List<?> o1L = (List<?>) o1;

24 List<?> o2L = (List<?>) o2;

25

26 if (o1L.size() != o2L.size()) {

27 return true;

28 }

29 if (o1L.isEmpty() && o2L.isEmpty()) {

30 return false;

31 }

32 if (!o1L.get(0).getClass().equals(o2L.get(0).getClass())) {

33 return true;

34 }

35

36 for (int i = 0; i < o1L.size(); i++) {

37 Object o1LO = o1L.get(i);

38 Object o2LO = o2L.get(i);

39

40 if (o1LO == o2LO || o1LO.equals(o2LO)) {

41 continue;

42 }

43 if (o1 == null && o2 != null) {

44 return true;

45 } else if (o1 != null && o2 == null) {

46 return true;

47 }

48

49 /* Check String representations. */

50 if (o1LO.toString().equals(o2LO.toString())) {

51 continue;

52 }

53

54 return false;

55 }

56 return false;

57 }

58

59 /* For all other cases just compare the objects. */

60 return !(o1.equals(o2));

61 } �
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4.4.4 Measuring Output Difference

After executing the program, the output difference (odiff) can be calculated by comparing
the observed outputs. Listing 10 shows the algorithm for such a comparison, which is very
Java specific. In general, it is necessary to check for all sort of output differences. In this
example, the algorithm takes two Java objects and begins with null checks and a direct
object comparison (cf. lines 3 to 12). Then it checks for different Exceptions/Throwables,
i.e., different crashes (cf. lines 15 to 19). Afterwards it checks whether the outputs are lists
and if yes, whether the content is different (cf. lines 22 to 57), which includes: checks for
the length of the list (cf. line 26 to 31), check for the content type of the lists (cf. line 32 to
34), and a loop that compares every item in the list (cf. line 36 to 55). As soon as one of
these specific checks reveals a difference, the algorithms will return the result. If no other
check was able to determine the difference, the algorithm will finally return the result of
the objects equals method (cf. line 60). The resulting boolean value will be send to the
fuzzer. Additionally, the hashcode of each output object will be stored on the fuzzer side
to remember the already seen combinations of output values.

Table 4: Results for the preliminary evaluation of differential fuzzing (DF) by comparing it with
coverage-based fuzzing (CBF). The bold values represent significant differences to the other
technique verified with the Wilcoxon rank-sum test (α = 0.05).

Subject Coverage-Based Fuzzing (CBF) Differential Fuzzing (DF)

(# changes) t +odiff tmin #odiff #ddiff t +odiff tmin #odiff #ddiff

TCAS-1 (1) - - 0.00 (+−0.00) 0.00 (+−0.00) - - 0.00 (+−0.00) 0.00 (+−0.00)

TCAS-2 (1) - - 0.00 (+−0.00) 0.00 (+−0.00) 441.83 (+−57.70) 120 0.70 (+−0.23) 2.13 (+−0.73)

TCAS-3 (1) 596.87 (+−6.04) 506 0.03 (+−0.06) 8.10 (+−0.32) 588.43 (+−15.18) 392 0.10 (+−0.11) 38.63 (+−1.96)

TCAS-4 (1) 29.90 (+−8.93) 5 1.00 (+−0.00) 4.30 (+−0.16) 28.47 (+−10.42) 2 1.00 (+−0.00) 18.27 (+−1.06)

TCAS-5 (1) 241.93 (+−79.35) 12 1.00 (+−0.24) 8.70 (+−0.32) 184.93 (+−46.66) 24 2.00 (+−0.00) 31.97 (+−1.06)

TCAS-6 (1) 511.90 (+−70.81) 9 0.17 (+−0.13) 0.23 (+−0.15) 233.63 (+−54.48) 4 0.97 (+−0.06) 4.13 (+−0.83)

TCAS-7 (1) - - 0.00 (+−0.00) 0.00 (+−0.00) - - 0.00 (+−0.00) 0.00 (+−0.00)

TCAS-8 (1) - - 0.00 (+−0.00) 0.00 (+−0.00) - - 0.00 (+−0.00) 0.00 (+−0.00)

TCAS-9 (1) - - 0.00 (+−0.00) 0.00 (+−0.00) 221.73 (+−48.83) 10 1.00 (+−0.00) 6.13 (+−0.85)

TCAS-10 (2) 337.50 (+−80.72) 11 0.87 (+−0.24) 1.60 (+−0.39) 173.47 (+−46.27) 1 1.93 (+−0.09) 12.27 (+−1.69)

4.5 preliminary evaluation

The baseline for the preliminary assessment is coverage-based fuzzing (CBF), i.e., fuzzing
which is guided by coverage information and which is the current state-of-the-art approach
for fuzzing (cf. Section 2.1). The goal is to show that the presented differential fuzzing ap-
proach performs significantly better in identifying behavioral differences than the baseline.
The preliminary evaluation focuses on regression testing and uses ten subjects from the
Traffic collision avoidance system (TCAS), which are originally taken from the SIR repos-
itory [208]. TCAS was used before in other regression testing work [102] and is available
in several variants. The different versions are generated by mutation injection. The original
program has 143 LOC and the used variants include 1-2 changes. In contrary to the differ-
ential fuzzing approach, coveraged-based fuzzing can only be applied on one version at
once, therefore the experiments show the result for applying CBF on the new version. All
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experiments have been executed for 10 minutes and repeated 30 times. Table 4 presents
the results for the conducted experiments. Each row represents the differential analysis
between the original TCAS program and a generated variant. The first column declares
the used generated variant and states the number of involved changes (cf. the number in
the brackets). The other columns show the results for coverage-based fuzzing (CBF) and
differential fuzzing (DF). The used metrics (t +odiff, tmin, #odiff, and #ddiff) have been
already described in Section 3.4 and focus on the output difference (odiff) as well as the de-
cision difference (ddiff). The highlighted values denote significant differences to the other
technique verified with the Wilcoxon rank-sum test (with 5% significance level). The time
values are presented in seconds and the values also report the 95% confidence intervals.

The results in Table 4 show that differential fuzzing (DF) performs mostly better or, in
worst-case, similar as coverage-guided fuzzing (CBF). For the subjects 2 and 9 CBF cannot
find any indication for a difference, while DF identifies output and decision differences.
For the subjects 3, 4, 5, 6, and 10 both approaches identify the output differences. However,
DF can find more output and decision differences and identifies the first output difference
faster and more reliable. For the remaining subjects 1, 7, and 8, neither of the approaches
can identify the injected changes. Overall, DF performs significantly better than CBF in
finding behavioral differences. Nevertheless, the subjects 1, 7, and 8 show that also DF has
its limitations and cannot identify all differences.

4.6 summary

This chapter introduced differential fuzzing (DF) as a method to identify behavioral dif-
ferences with a guided mutational fuzzing approach. Standard coverage-guided fuzzing
is extended by modifying the mutant selection mechanism (see Figure 8). The presented
approach uses several differential metrics like output difference, decision difference, cost
difference, and patch distance to assess the behavioral properties of the mutated inputs.
The presented preliminary evaluation shows that differential fuzzing significantly outper-
forms coverage-guided fuzzing, although it still has its limitations. In the hybrid differ-
ential analysis these limitations will be mitigated by combining differential fuzzing with
its counterpart: differential dynamic symbolic execution, which is introduced in the next
chapter.



5D I F F E R E N T I A L D Y N A M I C S Y M B O L I C E X E C U T I O N

This chapter explains what differential dynamic symbolic execution (DDSE) means and why
current symbolic execution techniques do not provide the necessary abilities for a general
differential analysis. The chapter starts with the current advances on symbolic execution
for regression analysis and their limitations. It continues with a detailed description of the
differential dynamic symbolic execution approach followed by a simple example. After-
wards, the chapter continues with the technical details and concludes with a preliminary
evaluation. Preliminary concepts and results for DDSE have been described in the follow-
ing publications:

• Badger [3] proposes a dynamic symbolic execution framework specifically for worst-
case complexity analysis that allows to incorporate concrete inputs during the explo-
ration,

• ShadowJPF [4] and ShadowJPF+ [5] provide implementations for shadow symbolic
execution for Java, which are used as baseline for the implementation, and

• HyDiff [6] proposes a differential symbolic execution approach for the general usage
of differential program analysis, which can be used in a hybrid setup.

5.1 overview

Symbolic execution is well known for traversing the application in a systematic way. Under
some assumption like that constraints can be solved in a reasonable time, or that third-party
libraries calls can be analyzed or appropriate models are available, symbolic execution can
efficiently generate test inputs to touch interesting program behavior. However, out-of-the-
box symbolic execution has the limitation that it focuses on only one software version
at once. A differential analysis, like regression analysis, is hence not possible with the
standard symbolic execution approach.

terminology – differential dynamic symbolic execution

Differential Dynamic Symbolic Execution (DDSE) means a systematic exploration
of the program’s input space, characterized by symbolic values, which is specifically
focused and guided on generating inputs that reveal behavioral differences.

In the last decade, a couple of approaches have been proposed to perform some sort
of differential analysis with symbolic execution in the area of regression analysis [85, 93,
96, 97, 102]. Person et al. [97] proposed directed incremental symbolic execution (DiSE) to
characterize the effect of program changes. DiSE guides the symbolic execution on the new
program version by exploring only paths that can reach a changed location. Therefore, they
use the notion of decision difference: If the same input follows different paths in the old and
the new program respectively, and hence the resulting path conditions differ, then the path
condition from the new program is called affected.

57
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Yang et al. [102] introduced memoized symbolic execution for the efficient replay of
symbolic execution. Similar to DiSE [97], it can be used for regression analysis, so that
only the program parts gets re-executed, which are affected by a change. Both approaches
consider only the guided execution of the new version, and hence, the identification of
differences always needs a post-processing and comparison with the old version. Besides
from the reachability of changes, there is no guidance in the direction of real divergences.

In a previous work, Person et al. [96] propose an approach called Differential Symbolic Exe-
cution. Instead of guiding symbolic execution by the reachability information of changes in
the source code, it is based on equivalence checking of method summaries. With symbolic
execution they generate summaries of the methods in two program versions and compare
these summaries in terms of various notions of equivalence incorporating black-box behav-
ior, or also white-box behavior. While being a general approach for computing program
differences, the computation of method summaries can involve scalability issues.

Böhme et al. [85] propose partition-based regression verification (PRV) as an incremen-
tal way to verify the input space of two different program versions. PRV represents a
specialized approach for patch verification and uses dynamic symbolic execution to cal-
culate input partitions, which get classified as equivalence-revealing or difference-revealing.
PRV represents an alternative to regression test generation techniques, while it also can
get guarantees about the verified partitions when only a partial analysis is possible. Al-
though using a dynamic analysis, PRV separately execute the different program versions,
and hence, might miss chances to prioritize paths early. Similar as DiSE it also applies only
on the new version, and hence, needs the re-execution of paths to check for divergences.

Palikareva et al. [93] propose shadow symbolic execution of a change-annotated program.
They leverage dynamic symbolic execution based on concrete test inputs to identify diver-
gences and bounded symbolic execution to further search for discrepancies starting from
the divergence points. Shadow symbolic execution provides a crucial step into scalable re-
gression analysis, but its results depend on the quality of the concrete inputs, i.e., it might
miss divergences because the concrete inputs do not trigger them.

In summary, the recent advances in symbolic execution for regression analysis provide
the basis for a general differential testing approach, although none of them provide all
necessary aspects. They either perform their analysis only on the new version, rely too
much on concrete inputs for its guidance, or suffer from scalability issues, which makes it
hard for a practical application. Moreover, all of them focus on regression analysis and not
on a general differential analysis.

For a scalable, general, and differential analysis it is necessary to incorporate concrete
inputs, i.e., it needs a dynamic approach, to drive the exploration in interesting program
areas. Furthermore the differential analysis should be able to analyze multiple program
versions at the same time to simplify constraints and prioritize paths early that show the
best chances to reveal divergences. Additionally, the analysis should be guided by syntactic
information about the changes in the program, so that paths can be pruned efficiently.

5.2 approach

Shadow symbolic execution [93] proposes the exploration of change-annotated programs
(cf. Section 2.4.1), which represents an elegant way of combining multiple versions, or
allowing multiple differential behaviors in one execution. As described in [5], shadow sym-
bolic execution [93] uses concrete inputs to drive the differential analysis, which makes
it scalable, but at the same time it strongly depends on these concrete inputs, which let
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Figure 9: Conceptual overview of dynamic, heuristic-driven symbolic execution; based on [3].

shadow symbolic execution might miss important divergences. For example deeper diver-
gences might be missed in the bounded symbolic execution phase because the concrete in-
puts imply constraints on the path conditions, which prevent the satisfiability of diff-paths.
Additionally, the concrete inputs need to cover not only the changed program locations, but
also the actual divergence points. Otherwise the shadow symbolic execution cannot detect
them. The proposed approach in [5] complete shadow symbolic execution explores the usage
of the four-way forking idea (cf. Section 2.4.1) in standard symbolic execution, without
having any concrete inputs to drive the exploration. The experiments in [5] showed that
indeed this analysis does not miss divergences, as long as the program can be explored
exhaustively, but of course comes with its own scalability issues. Therefore, the presented
approach in HyDiff [6], allows the usage of concrete inputs to drive the exploration, but
still uses a complete four-way forking approach to detect all divergences in the search
space. Figure 9 shows the overview of the proposed differential dynamic symbolic exe-
cution approach, consisting of five phases: (1) import of inputs, (2) input assessment, (3)
exploration, (4) input generation, and (5) export of inputs.

All symbolic execution variants presented in Figure 9, i.e., concolic execution, trie-guided
symbolic execution, and bounded symbolic execution, support the execution of a change-
annotated program. All together, denoted with the dashed area in Figure 9, form the so
called differential dynamic symbolic execution.

(1) Input Import. The process starts with importing initial seed inputs (cf. step 1 in Figure
9). Note: The term importing inputs refers to the fact that such an import can not only
be performed in the beginning of the analysis but also periodically throughout the whole
process. This functionality is crucial for the synchronization with another technique in a
hybrid setup.

(2) Input Assessment. The given inputs are executed concolically, i.e., the symbolic execu-
tion follows only the path of the concrete values but collects all symbolic information (i.e.,
the value mapping and the path constraint) along this path (cf. step 2 in Figure 9). The
execution is mapped to a simplified symbolic execution tree called trie, which stores nodes
for all involved conditions with symbolic variables (similar as Yang et al. [102]). After the
concolic execution of the given inputs, each node, which has unexplored branches, repre-
sents a potential entry point for further exploration. The nodes are analyzed and ranked
with the defined heuristics, which is followed by the selection of the most promising node.
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(3) Exploration. The idea behind the expanded exploration step (cf. step 3 in Figure 9) is
to discover new, interesting parts of the state space. In order to reach the actual symbolic
state at the selected node we start with a trie-guided symbolic execution and switch to a
bounded symbolic execution as soon as we hit the selected node. Trie-guided means that
the symbolic execution simply follows the choices stored in the trie without any invocation
of a constraint solver. This step is very efficient and builds the symbolic state. As soon as
hitting the selected node, the execution switches to a bounded symbolic execution mode,
which will perform an exhaustive symbolic execution up to a pre-defined bound. For exam-
ple in the later presented experiments, the bounds have been set to 1, i.e., the exploration
will always look one choice further as the selected node. The selection of the bound value
represents a trade-off between a deeper exploration from a specific node and the broader
exploration from the heuristic perspective. Therefore, choosing a very large bound would
generate a lot of inputs based on one promising node. On the other hand choosing a very
small bound would generate less number of inputs but more focused on the given heuris-
tics because after each input generation the nodes will be re-assessed. The exploration step
results in a sequence of satisfiable path conditions.

(4) Input Generation. After generating the path constraints in the previous step, it is
necessary to generate the actual inputs, which satisfy the path constraints (cf. step 4 in
Figure 9). Therefore, an SMT solver is leveraged to generate a model for each path con-
straint. Afterwards, these models are used to constructs inputs. The input generation is
application-specific since the path constraints and their model have no information about
the actual input formats and requirements. For example, the application under test could
need an image file in JPEG format, then the input generation would have to build a JPEG
image based on the model, which would, e.g., contain the actual pixel values.

Note that the inputs have been generated based on the exploration of a promising node
determined by heuristics. This means that after the generation the inputs need to be as-
sessed for their actual usefulness for the current analysis. Therefore, they are executed
concolically (cf. step 2 in Figure 9), and the trie is extended.

All together, the steps 2, 3, and 4 form an analysis loop (cf. dashed area in Figure 9),
which can be paused for the import of further inputs (e.g., in the hybrid setup), or which
can be stopped by a user-specified bound, or which finishes after the complete exploration.

(5) Input Export. As soon as a generated input is assessed as interesting, i.e., it shows some
new behavior interesting for the current analysis, it is reported for the export (cf. step 5 in
Figure 9). In a hybrid setup the exported inputs are made available for the other technique;
in a single analysis setup, the exported inputs represent the output of the analysis.

5.2.1 Central Data Structure: Trie

As already mentioned, the central data structure in this dynamic symbolic execution is a so-
called trie, which has been adapted from Yang et al. [102]. A trie represents a subset of the
symbolic execution tree, where nodes represent the choices during symbolic execution that
include symbolic variables. Therefore, a trie is a simplified variant of a symbolic execution
tree, where only the components are included, which are interesting for the analysis and
which are necessary to replay specific paths in the tree. A trie has a root node (illustrated
in blue, see Figures 10 and 14), which represents the first decision point in the program.
A leaf node in the trie represents the last choice that happened during the execution of a
specific path. There are different leaf node types:
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• regular leaf nodes (illustrated in gray), i.e., the execution path finishes without any
error,

• error leaf nodes (illustrated in red), i.e., the execution path finishes with an error (e.g.,
an exception was thrown), and

• unsatisfiable leaf nodes (illustrated in yellow), i.e., choices that are not feasible.

In addition, there can be various intermediate nodes, which represent choices and new
decision points at the same time. In Yang et al. [102] this data structure is used to replay
parts of the trie, which have been changed between two program versions. In our approach
it used to store the current state of the analysis (cf. step 2 in Figure 9) and to select a
promising point to continue the exploration (cf. step 3 in Figure 9).

Example. Consider the program foo in Listing 6 from the previous chapter (also shown
on the left side in Figure 10). There are three decision points: (x < 0) in line 4, (y > 1) in
line 10 and (y == 1 || y <= -2) in line 13. The corresponding bytecode representation of
program foo is presented in the middle of Figure 10. The directed graph on the right side
in Figure 10 shows the trie for the concolic bytecode execution of program foo with x=100.

Note that the trie is constructed incrementally during concolic execution. Each choice,
which includes symbolic values, is captured and a corresponding node is created. The ids
represent therefore the node creation order.

The trie nodes with id=0 and id=1 show the decision points traversed during the concrete
execution path, and show the information about the location in the source code (e.g., for
id=0 it is line 4) and the specific bytecode opcode (e.g., for id=0 it is bc=156, which denotes
the IFGE bytecode operation, cf. label 1 in the bytecode representation).

The trie nodes with id=1 and id=2 show the choices made at the decision points at the
previous nodes. The choice=1 in the node with id=1 means that the bytecode operation
IFGE (from line 4, bc=156) evaluated to true, i.e., x > 0 and the input takes the false

branch in the source code. The choice=0 in the node with id=2 means that the bytecode
operation IF_ICMPLE (from line 10, bc=164, cf. label 16 in the bytecode) evaluated to false,
i.e., y > 1. The input takes the true branch in the source code and returns 0.

The complete trie for a standard symbolic execution of the program foo is presented in
Figure 14 and includes three regular leaf nodes (id=2, 7, and 5), one error leaf node (id=9)
and three unsatisfiable leaf nodes (id=10, 11, and 12).

In comparison to a common symbolic execution tree, the trie does only contain the
information that are necessary to (1) select a most promising node for further exploration
(if the trie is not complete yet), and (2) to be able to replay the path to a selected node as
efficient as possible. This excludes all nodes from the symbolic execution tree which are no
decision points or which handle no symbolic information. Especially, all assignments can
be excluded because they do not influence the branching behavior.

Trie-guided symbolic execution. Yang et al. [102] defines a trie-guided symbolic execution,
which is adapted in the presented approach (cf. step 3 in Figure 9). In order to reach
a specific node for further exploration it is necessary to retrieve the necessary symbolic
state. This can be done by replaying the path from the root node to the selected node.
However, it is not necessary to actually re-execute the path because symbolic execution can
be efficiently guided by the information in the trie.

As first step, the choices in the trie, which will lead from the root node to the selected
node, need to be determined. This path finding phase, is performed backwards from the
selected node to the root node by simply highlighting every parent node (cf. Listing 11).
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1 int foo_v1(int x) {

2 int y;

3

4 if (x < 0) {

5 y = -x;

6 } else {

7 y = 2 * x;

8 }

9

10 if (y > 1) {

11 return 0;

12 } else {

13 if (y == 1 || y <= -2) {

14 throw new AssertionError("assert

(false)");

15 }

16 }

17 return 1;

18 } �

0: iload_0
1: ifge 10
4: iload_0
5: ineg
6: istore_1
7: goto 14
10: iconst_2
11: iload_0
12: imul
13: istore_1
14: iload_1
15: iconst_1
16: if_icmple 21
19: iconst_0
20: ireturn
21: iload_1
22: iconst_1
23: if_icmpeq 32
26: iload_1
27: bipush -2
29: if_icmpgt 42
32: new #16
35: dup
36: ldc #18
38: invokespecial #20
41: athrow
42: iconst_1
43: ireturn �

id=0, root
—

line=4, bc=156

id=1, choice=1
—

line=10, bc=164

id=2, choice=0
return 0

Figure 10: Left: program foo taken from Listing 6, Middle: corresponding bytecode, Right: corre-
sponding trie representation for the initial input x=100.

Listing 11: Trie path finding procedure.

1 def void highlightPathToNode(TrieNode selectedNode):

2 selectedNode.highlight();

3 TrieNode currentNode = selectedNode;

4 while (currentNode.hasParent()):

5 currentNode = currentNode.getParent()

6 currentNode.highlight() �
This procedure generates a path consisting of highlighted nodes from the root node to the
selected node. This means that for every decision point (i.e., an intermediate node in the
trie) there is one determined choice (i.e., one highlighted child node).

Afterwards forward symbolic execution can be started from the root node and guided by
the choices of the highlighted nodes. Whenever symbolic execution hits a decision point
that includes symbolic values (i.e., the decision cannot determined concretely), then the
concrete choice can be retrieved by probing the highlighted child of the current node. Note
that the previously explained path finding algorithm ensures that there is at most one
highlighted child per trie node. Therefore, the constraint solving can be turned off: only
one choice is possible at every decision point and it is clear that this choice is feasible
because it was already observed by a prior concolic execution run. Finally, the trie-guided
symbolic execution will be aborted as soon as the selected node is reached.

5.2.2 Differential Exploration Strategy

The most crucial part in DDSE is to determine the exploration strategy of the unexplored
choices in the trie, i.e., how to select the next node, ergo which is the currently most
promising node for further exploration (cf. edge from step 2 to step 3 in Figure 9). The main
advantage over the differential fuzzing part is that symbolic execution is applied on the
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id=0, root
—

line=4, bc=156

id=1, choice=1
—

line=10, bc=164

id=2, choice=0
return 0

id=3, choice=1
—

line=13, bc=159

id=4, choice=0
—

line=13, bc=163

id=5, choice=1
return 0

id=11, choice=1
UNSAT

id=12, choice=0
UNSAT

id=6, choice=0
—

line=10, bc=164

id=7, choice=0
return 0

id=8, choice=1
—

line=13, bc=159

id=10, choice=0
UNSAT

id=9, choice=1
Assertion Error

Figure 11: Complete trie for the program foo from Listing 6.

change-annotated program. The change-annotations can be used for path pruning based on
the reachability information of the changed locations, but more important, each executed
change-annotation introduces a so-called differential expression, or shorter: diff expression.

Differential Expression. These expressions are the key elements to handle two program
executions at once; and furthermore, the differential exploration strategy is driven by these dif-
ferential expressions to find paths where the control-flow diverges across executions, also
called diff paths. A differential expression consists of four parts: the old symbolic value, the
old concrete value, the new symbolic value, and the new concrete value. For example the
statement y=change(-x,x*x) in line 5 in Listing 12 (with the assumption that x holds the
symbolic value α and the concrete value 100) assigns the following differential expression
to the variable y: { oldsym= -α, oldcon= -100, newsym=α *α, newcon= 10000 }.

Decision Difference. The information about whether the path condition at a trie node
contains a diff expression is particular interesting because it is a good indication for a poten-
tial future divergence since having a diff expression is the requirement for finally reaching
a diff path, i.e., to detect a decision difference. Therefore, this information is used to rank the
nodes. Furthermore, it is interesting whether the node is already on a diff path because then
there is already a concrete input, which triggers the decision difference, and it might be
worthwhile to focus first on other trie nodes.

Although the focus of DDSE is on the decision difference because the change-annotations
provide here a special benefit, the following differential metrics are sill collected for each trie
node: cost difference and patch distance.

Cost Difference. As long as a node is not yet on a diff path, the node is assigned the differ-
ence in the execution cost for the changed behavior. For example for regression analysis, it is
the cost difference between the old and the new version. Similar as for fuzzing (cf. Section
4.2.1), an increased cost difference is an indication for a differential behavior.

Patch Distance. As long as a node has not touched a patch yet, the patch distance is com-
puted as the distance to the change-annotations in the program. Afterwards, a node is
marked accordingly. The patch distance is mainly used to drive the exploration to change-
annotations, and hence, a node with smaller distance will be prioritized. Additionally, these
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information are also used to prune all paths that cannot reach any change-annotation in
the program, i.e., where the patch distance is not defined or infinity.

Output Difference. In contrast to differential fuzzing, the DDSE component cannot use
the output difference as a search metric, since the execution of diff paths is limited to the new
version, and hence, the full information about the output is not always available. However,
the intrinsic goal of DDSE is efficiently explore diff paths, i.e., to identify decision differences.

Exploration Heuristics. To summarize the above presented ideas on differential metrics,
the following heuristics are used to rank the nodes for exploration:

1. Prioritize nodes that contain a differential expression, but are not yet on a diff path.

2. Prioritize a node without differential expression before a node which is already on a
diff path. (Note: here we only have nodes that can reach the changes).

3. Prioritize new branch coverage.

4. If two nodes have not yet touched any change, then prioritize the node with smaller
distance.

5. Prioritize nodes that already have higher cost differences.

6. Prioritize higher trie nodes.

The highest priority is to find decision differences, i.e., divergences of the control-flow.
Therefore, DDSE favors such potential nodes (points 1 and 2). It is the most valuable di-
vergence metric, also because the output difference cannot be encoded. It can be simply
detected by checking whether we are currently on a diff path.

The next priority is to support the fuzzing component in a hybrid setup during explo-
ration, for which it is necessary to solve constraints corresponding to conditions that are
difficult for the fuzzer (point 3). As further indications for a difference the information
about the patch distance and the cost difference (point 4 and 5) are used. As last search pa-
rameter higher nodes in the trie are favored, which leads to a broader exploration of the
search space, which also supports the hybrid exploration. These heuristics represent the
default configuration setup for the presented differential analysis They can be easily mod-
ified, which might be necessary for different application scenarios. For example, the above
set of heuristic make sense in the context of regression analysis, but for side-channel anal-
ysis a simpler exploration can be used, since there are no changes in the program itself (cf.
Section 7.4).

5.3 example

In order to illustrate the workflow of differential dynamic symbolic execution, please take
a look at the same example program as for differential fuzzing in the previous chapter:
program foo in the Listings 6 and 7. As before, these are two variants of the same pro-
gram taken from one of the preliminary papers [5]: Listing 6 represents the old version
and Listing 7 represents the new version of the same program. The differential dynamic
symbolic execution expects a change-annotated program, which combines the old and the
new version, as shown in the Listing in Figure 12. The updated assignment in line 5 can
be replaced with the change-annotation change(-x, x*x), where -x is taken from the old
version (cf. Listing 6 line 5) and x*x is taken from the new version (cf. Listing 7 line 5). The
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1 int foo_change(int x) { /* CHANGE-ANNOTATED VERSION */

2 int y;

3

4 if (x < 0) {

5 y = change(-x, x*x);

6 } else {

7 y = 2 * x;

8 }

9

10 y = change(y, y+1);

11

12 if (y > 1) {

13 return 0;

14 } else {

15 if (y == 1 || y <= -2) {

16 throw new AssertionError("assert(false)");

17 }

18 }

19 return 1;

20 } �

0: iload_0
1: ifge 16
4: iload_0
5: ineg
6: iload_0
7: iload_0
8: imul
9: invokestatic #16
12: istore_1
13: goto 20
16: iconst_2
17: iload_0
18: imul
19: istore_1
20: iload_1
21: iload_1
22: iconst_1
23: iadd
24: invokestatic #16
27: istore_1
28: iload_1
29: iconst_1
30: if_icmple 35
33: iconst_0
34: ireturn
35: iload_1
36: iconst_1
37: if_icmpeq 46
40: iload_1
41: bipush -2
43: if_icmpgt 56
46: new #22
49: dup
50: ldc #24
52: invokespecial #26
55: athrow
56: iconst_1
57: ireturn �

Figure 12: Left: change-annotated foo program [5], Right: corresponding bytecode.

additional statement in line 10 can be written as change(y, y+1), where the first parameter
y denotes the old version, in which the value is not changed, and second parameter y+1

denotes the update of y from the new version (cf. Listing 7 line 10). The rest of the program
remains unchanged.

In addition to the change-annotated program, the symbolic execution needs a driver,
which provides the entry point for the symbolic analysis (cf. Listing 12). Similar as for
fuzzing, this driver parses the input and executes the program under test, but there are
some important differences. First of all, this driver is used for different symbolic execution
variants (cf. Figure 9): concolic execution, trie-guided symbolic execution, and bounded
symbolic execution. Concolic execution expects that the input is concolic, i.e., there is a
concrete value as well as a symbolic value. Trie-guided and bounded symbolic execution
expect a symbolic input, i.e., no concrete values. Therefore, the driver has two modes (cf.
line 3 in Listing 12): If there is a concrete input, then the driver will read the input (line 6
to 16) and will add a symbolic value (cf. line 18). If there is no concrete input given, then
the driver will simply add a symbolic value (cf. line 21). Afterwards the driver calls the
change-annotated program with the constructed input. In contrast to fuzzing, the driver for
symbolic execution calls the application only once because the two programs are already
combined by the change-annotations.

Starting with the initial input x=100, Figure 13 shows the first couple of different stages
during differential dynamic symbolic execution. Note that for the example differential dy-
namic symbolic execution is used and not standard symbolic execution, i.e., there will be
in general four choices for every conditional statement instead of two.

Stage 1 in Figure 13. The initial input is imported and executed with concolic execution.
Meanwhile the trie structure get initialized and extended for every choice made during
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Listing 12: Driver for differential dynamic symbolic execution example.

1 public static void main(String[] args) {

2 /* Concolic execution or symbolic execution? */

3 if (args.length == 1) {

4 /* Read one input from the input file for both program versions. */

5 int input;

6 try (FileInputStream fis = new FileInputStream(args[0])) {

7 byte[] bytes = new byte[Integer.BYTES];

8 if ((fis.read(bytes)) == -1) {

9 throw new RuntimeException("Not enough data!");

10 }

11 input = ByteBuffer.wrap(bytes).getInt();

12 } catch (IOException e) {

13 System.err.println("Error reading input");

14 e.printStackTrace();

15 throw new RuntimeException("Error reading input");

16 }

17 /* Insert concolic variables. */

18 input = Debug.addSymbolicInt(input, "sym_0");

19 } else {

20 /* Insert pure symbolic variables. */

21 input = Debug.makeSymbolicInteger("sym_0");

22 }

23 Object res = Foo.foo(input);

24 } �
concolic execution. The resulting trie after this step includes three nodes: the root node
(id=0), the intermediate node (id=1) for the choice happened in line 4, and the leaf node
(id=2) for the choice happened in line 12. There is no diff path yet, but there are differential
expression present. Based on the heuristics, the most promising node is the intermediate
node with id=1 (therefore, presented in green color).

Stage 2 in Figure 13. As next step DDSE performs a trie-guided symbolic execution from
the root node up to the selected node with id=1. In the current example this is only one
step (= one guided choice). Afterwards DDSE starts bounded symbolic execution with
bound 1, i.e., it makes one additional step ahead. The trie is extended with the node (id=3),
which represents choice=1 (i.e., false branch in line 12). The bounded symbolic execution
results in the path condition: (x > 0 ∧ 2*x 6 1 ∧ 2*x+1 6 1), for which Z3 generates
the model x=0.

Stage 3 Figure 13. After generating an input for x=0, it is replayed with concolic execution
to assess the input and extend the trie. During concolic execution the trie node with id=3
is updated and the error leaf node with id=4 is created. In the changed/new version the
input x=0 takes the true branch in line 15, which results in an assertion error, while the old
version would take the false branch and return 1. Therefore, node id=4 holds choice=3,
which denotes the diffTRUE path, i.e., the new version takes the true branch and the old
version takes the false branch.

After this first iteration of all steps in DDSE (cf. Figure 9), the node with id=1 is still
the most promising node for further exploration, as it still has two unexplored choices:
choice=2 and choice=3, for which DDSE checks whether a decision difference is feasible in
line 12 (as shown in Figure 14, these choices are actually not satisfiable).
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id=1, choice=1
—

line=12, bc=164

id=2, choice=0
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—
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—
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?

2

id=0, root
—
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id=2, choice=0
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return 0

id=3, choice=1
—

line=15, bc=159

id=4, choice=3
diffTRUE

Assertion Error
3

Figure 13: The first three of stages of the trie for the differential dynamic symbolic execution of the
changed-annotated program from Listing in Figure 12.

Complete trie in Figure 14. After a complete exploration with DDSE the trie will have
four leaf nodes as presented in Figure 14. The leaf node with id=2 is the leaf node from the
initial input. The error leaf node with id=3 represents the already discussed assertion error
for the new version with x=0. The leaf node with id=8 represents a sameTRUE path, where
both versions take the true branch in line 4. Finally, the leaf node with id=10 represents a
diffTRUE path, where the new version takes the true branch in line 4, while the old version
takes the false branch, representing the fix of the assertion error for x=-1.

5.4 technical details

As for the differential fuzzing approach in the previous chapter, the here presented dif-
ferential dynamic symbolic execution technique is universal applicable and not limited to
specific programming languages. However, the implemented tools for Badger, ShadowJPF,
ShadowJPF+, and HyDiff aim at the analysis of Java bytecode for evaluation purposes.

All symbolic execution components are built on top of Symbolic PathFinder (SPF), a sym-
bolic execution tool for Java bytecode [67]. The path constraints are solved with the SMT
solver Z3 [64]. In order to implement the shadow symbolic execution notions in ShadowJPF

[4], ShadowJPF+ [5], and HyDiff [6], i.e., to handle change-annotations and apply four-way
forking, it is necessary modify the interpretation of each bytecode operation. All bytecode
operations need to able to detect and handle differential expressions, i.e., expression that
hold values for both (the old and the new) versions. All bytecode branching operations,
e.g., like IFEQ (check for equivalence), need to be able to detect the presence of differential
expressions in the branching condition and apply four-way forking in such cases, instead
of the standard two-way forking.

5.4.1 Differential Expression

The differential expressions enable the execution of multiple program versions at once. Listing
13 shows the Java class for a differential expression. It holds information about both, the
old and the new version, and therefore combines both values in one expression. Returning
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—
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—

line=12, bc=164

id=2, choice=0
sameTRUE
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—

line=15, bc=159
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UNSAT

id=4, choice=3
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id=7, choice=0
—

line=12, bc=164
id=8, choice=0

sameTRUE
return 0

id=9, choice=1
UNSAT id=10, choice=2

diffTRUE
return 0
(bug fix)

id=11, choice=3
UNSAT

Figure 14: Final trie for differential dynamic symbolic execution of the change-annotated program
from Listing in Figure 12.

to the example for the previous section, in SPF the statement y=change(-x,x*x) in line 5
in Listing 12 would usually cause that an IntegerExpression object will be mapped to the
variable y. However, having a differential expression introduced by the change() method
means that y is mapped to an DiffExpression object, which itself stores, in this case, four
different IntegerExpression objects: two four the concrete values and two for the symbolic
values for the old and new version respectively.

Listing 13: Java class for differential expressions.

1 public class DiffExpression {

2

3 /* Symbolic Expressions */

4 Expression oldSymbolicExpr;

5 Expression newSymbolicExpr;

6

7 /* Concrete Expressions. */

8 Expression oldConcreteExpr;

9 Expression newConcreteExpr;

10

11 /* getter and setter */

12 ...

13

14 } �
5.4.2 Measuring Execution Cost

In the differential dynamic symbolic execution, the execution cost is measured inside the
symbolic execution framework, which interpret every bytecode operation. By implement-
ing listeners it is fairly simple to, e.g., count every statement when visited. Therefore, it
is not necessary to instrument the bytecode as it is necessary for differential fuzzing (cf.
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Section 4.4.1). Luckow et al. [145] demonstrate how to use SPF to calculate various types
of execution cost metrics, e.g., the number executed instructions, the heap allocation and
the maximum stack size, or the number of bytes written to an output stream. Basically, it
is necessary to implement listeners, which collect the specific information during bytecode
execution. In addition to these metrics, the presented approach also allows the handling of
user-defined cost, which can be added as annotation to the program.

The leaf nodes in the trie will be associated with the final execution cost, which can be
only determined at the end of an execution path. Each node holds two cost values, one
for each observed behavior. In order to estimate the potential costs for intermediate nodes,
their associated cost values represents the average cost values of their children nodes.

5.4.3 Measuring Patch Distance

Based on the interprocedural control flow graph (ICFG) the distances to the change-
annotations and also the reachability information are pre-calculated and stored in mem-
ory. The ICFG is, similar as for differential fuzzing, created with Apache Commons BCEL
[42]. The shortest distances are calculated by a backwards analysis starting from the tar-
get node, which are the represent the change-annotations in the program under test. For
every statement in the program it is possible to retrieve the shortest distance to the change-
annotations, and hence, it is possible to retrieve the distance for every trie node.

5.5 preliminary evaluation

The baseline for this preliminary assessment is coverage-based symbolic execution (CBSE),
i.e., standard (traditional) symbolic execution that performs a deterministic exploration
of the search space (cf. Section 2.2). The goal is to show that the presented differential
dynamic symbolic execution (DDSE) performs significantly better in identifying behav-
ioral differences than the baseline. Similar as for the preliminary assessment of differential
fuzzing (cf. Section 4.5), this assessment focuses on regression testing and uses ten sub-
jects from the Traffic collision avoidance system (TCAS), which are originally taken from
the SIR repository [208]. In order to enable DDSE it is necessary to manually prepare
the change-annotated programs by merging the several available variants. The original
program has 143 LOC and the used variants include 1-2 changes, i.e., there will be 1-2
change-annotations per variant. In contrary to the differential dynamic symbolic execu-
tion approach, coverage-based symbolic execution can only be applied on one version at
once, therefore the experiments show the result for applying CBSE on the new version. All
experiments have been executed for 10 minutes and repeated 30 times. Table 5 presents
the results for the conducted experiments. Each row represents the differential analysis
between the original TCAS program and a generated variant. The first column declares
the used generated variant and states the number of involved changes (cf. the number in
the brackets). The other columns show the results for coverage-based symbolic execution
(CBSE) and differential dynamic symbolic execution (DDSE). The used metrics (t +odiff,
tmin, #odiff, and #ddiff) have been already described in Section 3.4 and focus on the
output difference (odiff) as well as the decision difference (ddiff). The highlighted values
represent significant differences to the other technique verified with the Wilcoxon rank-
sum test (with 5% significance level). The time values are presented in seconds and the
values also report the 95% confidence interval.
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Table 5: Results for the preliminary evaluation of differential dynamic symbolic execution (DDSE)
by comparing it with coverage-based (traditional) symbolic execution (CBSE). The bold
values represent significant differences to the other technique verified with the Wilcoxon
rank-sum test (α = 0.05).

Subject Coverage-Based Symb. Exec. (CBSE) Differential Dynamic Symb. Exec. (DDSE)

(# changes) t +odiff tmin #odiff #ddiff t +odiff tmin #odiff #ddiff

TCAS-1 (1) 13.50 (+−0.18) 13 1.00 (+−0.00) 3.00 (+−0.00) 22.47 (+−0.39) 21 1.00 (+−0.00) 3.00 (+−0.00)

TCAS-2 (1) - - 0.00 (+−0.00) 3.00 (+−0.00) 182.37 (+−1.96) 177 1.00 (+−0.00) 9.00 (+−0.00)

TCAS-3 (1) - - 0.00 (+−0.00) 26.00 (+−0.00) 239.07 (+−2.57) 232 2.00 (+−0.00) 19.00 (+−0.00)

TCAS-4 (1) - - 0.00 (+−0.00) 9.00 (+−0.00) - - 0.00 (+−0.00) 3.00 (+−0.00)

TCAS-5 (1) 14.53 (+−0.18) 14 2.00 (+−0.00) 19.00 (+−0.00) 185.40 (+−1.95) 180 2.00 (+−0.00) 24.00 (+−0.00)

TCAS-6 (1) 4.93 (+−0.16) 4 1.00 (+−0.00) 6.00 (+−0.00) 5.30 (+−0.23) 4 1.00 (+−0.00) 6.00 (+−0.00)

TCAS-7 (1) - - 0.00 (+−0.00) 0.00 (+−0.00) 56.97 (+−0.76) 54 2.00 (+−0.00) 6.00 (+−0.00)

TCAS-8 (1) 12.13 (+−0.55) 11 2.00 (+−0.00) 6.00 (+−0.00) 51.70 (+−0.16) 51 2.00 (+−0.00) 6.00 (+−0.00)

TCAS-9 (1) 30.10 (+−0.28) 29 1.00 (+−0.00) 15.00 (+−0.00) 184.20 (+−0.57) 181 1.00 (+−0.00) 15.00 (+−0.00)

TCAS-10 (2) 4.27 (+−0.18) 3 2.00 (+−0.00) 12.00 (+−0.00) 5.23 (+−0.15) 5 2.00 (+−0.00) 12.00 (+−0.00)

The results show that coverage-based symbolic execution (CBSE) identifies only 6 of 10
subjects as output differential, where as differential dynamic symbolic execution (DDSE)
identifies 9 of 10 subjects. Interestingly, in most of the cases, when both approaches find
an output difference, CBSE usually finds the first output difference faster. The search space
for DDSE is larger because it analyzes the change-annotated programs and uses four-way
forking, whereas CBSE only analyzes a single version (the new one) and uses usual two-
way forking. Overall, DDSE performs significantly better than CBSE in finding behavioral
differences because the focus is on finding actual observable divergences, while the time
differences are still in a manageable range. Nevertheless, the preliminary assessment shows
that DDSE has its limitations in terms of exploration speed.

5.6 summary

This chapter introduced differential dynamic symbolic execution (DDSE) as a method to iden-
tify behavioral differences with a systematic, concolic exploration driven by differential
heuristics. Existing solution ideas such as shadow symbolic execution [93] or differential
symbolic execution [96] have their limitations, which have been discussed in this chap-
ter. The proposed approach is driven by differential expressions introduced by change-
annotations inside the program and is further guided by differential metrics like the cost
difference and the patch distance. The presented preliminary evaluation shows that DDSE
significantly outperforms coverage-guided symbolic execution in terms of effectiveness, al-
though it still has its limitations. In a hybrid differential analysis setup, DDSE might be re-
ceptive for guidance based on concrete inputs from the fuzzing component, like discussed
in the next chapter.
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This chapter introduces the hybrid differential analysis as a combination of differential fuzzing
(see Chapter 4) and differential dynamic symbolic execution (see Chapter 5). The general con-
cept of hybrid differential analysis has been already discussed in Chapter 3.2. This chapter
thus implements this concept and explains each component and their synchronization in
detail. Furthermore, it illustrates the strengths of the hybrid setup with an example. Pre-
liminary concepts and results have been described in the following publications:

• Badger [3] proposes the combination of fuzzing and symbolic execution specifically
for worst-case complexity analysis in a parallel setup, and

• HyDiff [6] extends the framework in Badger to enable a general differential program
analysis.

6.1 overview

Chapter 4 introduced differential fuzzing and Chapter 5 introduced differential dynamic sym-
bolic execution. As shown in their preliminary evaluations, both are effective techniques for
a differential analysis. However, both also have their limitations.

Differential fuzzing is a very lightweight input generation technique, and hence, can
generate a lot if inputs in a short period of time. Although it is guided by the differential
metrics in the input selection mechanism and by the coverage information, it still suffers
from the general problem in fuzzing: it is unlikely to hit low-probability branches with
random mutations. The used random mutations are the key to an input generation that
goes beyond what a developer might think is necessary to test, and at the same time they
limit the search because branches, which have only a low-probability of being hit with
random mutations, will not be tested at all.

Differential dynamic symbolic execution is a white-box input generation technique, and
hence, represents a very powerful technique to generate targeted inputs for specific paths
in the application. However, its analysis is very expensive and there are usually too many
states for an exhaustive exploration. The state explosion, i.e., the exponential growth of
unexplored branches, makes it necessary to focus on specific parts of the application.

Existing hybrid techniques. The general issue in fuzzing with hitting low-probability
branches has been identified before [77, 78, 81]. Hybrid concolic testing by Majumdar and
Sen [77] proposed the combination of random testing and concolic execution in a sequen-
tial setup. Starting the exploration with random testing, concolic execution takes over as
soon as random testing gets stuck, i.e., it does not make any progress in terms of coverage.
The concolic execution component tries to generate inputs that cover new branches. After-
wards random testing is started again and the process repeats. The techniques Driller by
Stephens et al. [81] and Munch by Ognawala et al. [78] propose a similar sequential setup,
in which fuzzing and concolic execution are executed in sequence, although they differ on
how they guide the symbolic execution.

The state explosion in symbolic execution is usually addressed by a bounded symbolic
execution, i.e., the exploration of a path will be aborted after a pre-defined bound on the

71



72 hybrid differential analysis

Input
program 
versions

seed input 
files

change-annotated 
program

Fuzzing Symbolic Execution

import

H
yD

iff
ICFGinstrumentation

assessment trie extension / 
assessment

constraint solving / 
input generation

exploration

mutate 
inputs

import

fuzzer output 
queue

Output

symbc output 
queue

input +odiff +ddiff +crash +cdiff +patch-dist +cov
id:0001 X X X
id:0002 X X
id:0003 X X

… … … … … … …

set of divergence revealing test inputs

Figure 15: Overview of HyDiff’s workflow [6].

number of visited states. Concolic testing [57, 69] was proposed to incorporate concrete
inputs in order to focus the exploration and to simplify the constraint solving. Directed
symbolic execution [63] further helps to guide the exploration to designated targets.

Inspired by the existing related work, this proposed technique combines differential
fuzzing and differential dynamic symbolic execution in a parallel, hybrid, and differential
analysis technique, as explained in the following sections.

6.2 approach

The publications, which provide the basis for this thesis, represent the following hybrid
analysis techniques: Badger [3] provides a framework combining fuzzing and concolic ex-
ecution for a worst-case complexity analysis, and HyDiff [6] extends Badger to a general
hybrid differential analysis framework. HyDiff’s overview is presented in Figure 15. The
setup allows to incorporate concrete inputs from the DF component in the concolic explo-
ration of the DDSE component, as well as the further exchange interesting inputs between
both components.

6.2.1 Inputs

Consider the upper compartment of Figure 15, as input HyDiff takes one or two pro-
gram version(s) (used for fuzzing) and the change-annotated program (used for symbolic
execution). Additionally, the approach expects one or more seed input files to drive the
exploration, which are shared by both components.
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6.2.2 Collaborations between Components

The middle part of Figure 15 shows the two components and their workflow. In contrast
to the existing related work on hybrid analysis [77, 78, 81] the proposed approach executes
fuzzing and symbolic execution in parallel and not in a sequential order. The intuition is
that both techniques are highly effective on their own, but benefit from some guidance into
certain areas of the search space. Therefore, they are executed in parallel, so that both can
perform their own analysis. After a specified time bound both components synchronize
with each other to incorporate interesting inputs, i.e., inputs that improve the differential
metrics, from the other component. Conceptually this is performed by importing the inputs
from the other’s output queue (cf. the arrows from the output queues to the assessment
nodes in both sides in the middle of Figure 15). Technically this is implemented as a synchro-
nization on the file level. Both approaches generate input files and move them in specific
output folders. After a specified time bound, both check the output folder of the other
component for new and interesting input files. This check is done by replaying the new
inputs with their own analysis.

For fuzzing this means to execute the new inputs generated by the symbolic execution
component with the instrumented application. Whenever this check reveals that an input
improves any of the employed differential metrics, fuzzing would copy the input in its
fuzzing corpus to use it in the upcoming mutations (cf. left middle part of Figure 15). For
symbolic execution the synchronization means to replay the dynamic symbolic execution
with the new inputs generated by the fuzzing component (cf. right middle part of Figure
15). Whenever the inputs show some new behavior, the trie data structure is extended and
the additional nodes are used to determine the trie node for the upcoming exploration.

As shown in Figure 15, both components use the information from the inter-procedural
control flow graph (ICFG) to drive/prune their exploration. DF leverages the ICFG to
calculate the distance values, which are used to determine whether inputs get closer to the
changed location(s), and hence, to guide the DF towards the modification(s) (cf. Section
4.2.1). DDSE uses it to prune paths that cannot reach any changed area (cf. Section 5.2.2).

6.2.3 Outputs

The lower part of Figure 15 shows the expected output of the hybrid analysis, which is a
list of generated inputs and their characteristics in terms of differential behavior. They are
classified according the differential metrics presented in the Chapters 4 and 5. For example,
in regression analysis it is of special interest when inputs reveal output differences or in
particular crashes in the new version.

6.3 example

In order to illustrate the hybrid differential analysis and to demonstrate the performance
of both components in comparison to the hybrid technique, please consider the following
simple example for regression testing taken from one of the preliminary papers [6]. Listing
14 shows a change-annotated program, combining two versions of the program calculate.
This program is an artificial example, which shows the strengths and drawbacks of fuzzing
and symbolic execution. It processes two integer inputs, x and y, and calculates a division
based on these two values. The large switch statement with cases from 0 to 250 (cf. lines 3
to 21) is a challenge for symbolic execution because there are a lot of branches to explore.



74 hybrid differential analysis

Listing 14: Sample program with annotated changes to illustrate hybrid approach [6].

1 int calculate(int x, int y) {

2 int div;

3 switch (x) {

4 case 0:

5 div = y + 1;

6 break;

7 case 1:

8 div = y + 2;

9 break;

10 ...

11 case 250:

12 div = y + 251;

13 break;

14 default:

15 if (x == 123456) {

16 // CHANGE: expression y + 123455 to y + 123456

17 div = change(y + 123455 , y + 123456);

18 } else {

19 div = x + 31;

20 }

21 }

22 int result = x / div;

23

24 // CHANGE: added conditional statement

25 if (change(false, result > 0))

26 result = result + 1;

27 return result;

28 } �
In this example it is especially problematic because none of them can be pruned because
all of them can reach the changed condition in line 25, and the interesting part is at the
end of the switch statement, which will be reached late in the exploration (when having
a deterministic exploration order). In the default case of the switch statement (cf. line 15),
there is a check for the value 123456 representing a magic value, which guards the first
change in line 17. There the developer changed the right-hand side expression from y +

123455 to y + 123456, which fixed a division-by-zero error for y=-123455, but introduced
another crash for y=-123456. In contrary to symbolic execution, fuzzing is expected to
traverse the program quite fast, but it will have problems with handling the magic number.
In line 23, the developer added a conditional statement result = result + 1 if result >

0. This influences the output for all positive results. However, it does not directly fix or
introduce any crash.

6.3.1 Setup

The differential fuzzing (DF) component works as described in Chapter 4. Similar to the
example in Section 4.3, the fuzzing component needs a driver, in which each mutated input
is executed on both successive versions of the calculate-program (cf. Listing 15).

The differential dynamic symbolic execution (DDSE) component works as described in
Chapter 5. Also the symbolic execution component needs a driver (cf. Section 5.3). Listing
16 shows the symbolic execution driver for this example, which is slightly more complex
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Listing 15: Fuzzing driver for the hybrid approach sample [6].

1 public static void main(String[] args) {

2

3 /* Read input file. */

4 int x;

5 int y;

6 try (FileInputStream fis = new FileInputStream(args[0])) {

7 byte[] bytes = new byte[Integer.BYTES];

8 if ((fis.read(bytes)) == -1) {

9 throw new RuntimeException("Not enough data!");

10 }

11 x = ByteBuffer.wrap(bytes).getInt();

12

13 bytes = new byte[Integer.BYTES];

14 if ((fis.read(bytes)) == -1) {

15 throw new RuntimeException("Not enough data!");

16 }

17 y = ByteBuffer.wrap(bytes).getInt();

18 } catch (IOException e) {

19 System.err.println("Error reading input");

20 e.printStackTrace();

21 throw new RuntimeException("Error reading input");

22 }

23

24 /* Execute old version. */

25 Mem.clear();

26 DecisionHistory.clear();

27 Object res1 = null;

28 try {

29 res1 = calculate_old(x, y);

30 } catch (Throwable e) {

31 res1 = e;

32 }

33 boolean[] dec1 = DecisionHistory.getDecisions();

34 long cost1 = Mem.instrCost;

35

36 /* Execute new version. */

37 Mem.clear();

38 DecisionHistory.clear();

39 CFGSummary.clear();

40 Object res2 = null;

41 try {

42 res2 = calculate_new(x, y);

43 } catch (Throwable e) {

44 res2 = e;

45 }

46 boolean[] dec2 = DecisionHistory.getDecisions();

47 long cost2 = Mem.instrCost;

48

49 /* Report differences. */

50 DecisionHistoryDifference d = DecisionHistoryDifference

51 .createDecisionHistoryDifference(dec1, dec2);

52 Kelinci.setNewDecisionDifference(d);

53 Kelinci.setNewOutputDifference(new OutputSummary(res1, res2));

54 Kelinci.addCost(Math.abs(cost1 - cost2));

55 } �
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Listing 16: Symbolic execution driver for the hybrid approach sample [6].

1 public static void main(String[] args) {

2 int x;

3 int y;

4

5 /* Concolic execution or symbolic execution? */

6 if (args.length == 1) {

7 try (FileInputStream fis = new FileInputStream(args[0])) {

8 /* Read input and add symbolic value. */

9 byte[] bytes = new byte[Integer.BYTES];

10 if ((fis.read(bytes)) == -1) {

11 throw new RuntimeException("Not enough data!");

12 }

13 x = Debug.addSymbolicInt(ByteBuffer.wrap(bytes).getInt(), "sym_0");

14

15 bytes = new byte[Integer.BYTES];

16 if ((fis.read(bytes)) == -1) {

17 throw new RuntimeException("Not enough data!");

18 }

19 y = Debug.addSymbolicInt(ByteBuffer.wrap(bytes).getInt(), "sym_1");

20

21 } catch (IOException e) {

22 System.err.println("Error reading input");

23 e.printStackTrace();

24 throw new RuntimeException("Error reading input");

25 }

26

27 } else {

28 /* Insert pure symbolic variables. */

29 x = Debug.makeSymbolicInteger("sym_0");

30 y = Debug.makeSymbolicInteger("sym_1");

31 }

32

33 /* Execute change-annotated version. */

34 calculate(x, y);

35 } �
than the fuzzing driver: it handles a concolic mode for the input assessment phase (cf. step
2 in Figure 9) and a symbolic mode for the exploration phase (cf. step 3 in Figure 9). During
the exploration phase, the inputs are marked as symbolic (lines 13 and 19) and the change-
annotated program is executed symbolically. During the trie assessment phase, the given
concrete input is marked as symbolic (lines 29 and 30) and the change-annotated program
is executed concollicaly, i.e., follows the concrete input (cf. line 34).

6.3.2 Results

To further illustrate the challenges of each individual component, the following paragraph
first discusses the results for running both components in isolation, and afterwards to-
gether in the hybrid setup. The differential fuzzing component finds its first output differ-
ence after 5.07 (+−0.99) sec (where the +

− value denotes the 95% confidence interval). In total it
finds 1.37 (+−0.17) output differences and 1.00 (+−0.00) decision differences. The new crash is
not found within the time bound of 10 minutes. Therefore, fuzzing is very fast in findings
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an output difference (less than 5 seconds), but the narrow constraint at the end is difficult
to reach for fuzzing: (x=123456 & y=-123456).

In contrast, the differential dynamic symbolic execution component finds its first output
difference after 135.27 (+−0.66) seconds. In total, it finds 35.10 (+−1.10) output differences and
2.00 (+−0.00) decision differences. So it reveals much more output differences than fuzzing
within the given time bound. In fact, the DDSE component can traverse all paths in 5

minutes. In contrast to fuzzing it also finds the new crash, after 135.80 (+−0.64) seconds.
Nonetheless, symbolic execution needs relatively long to find its first output difference.

In the hybrid setup, the differential fuzzing and symbolic execution components are
started with the same seed input. Both run their analysis in parallel and exchange inputs
that are deemed interesting according to the divergence metrics after a pre-specified time
bound. The experimental results are as follows: first output difference after 4.73 (+−0.78)
seconds, in total 35.13 (+−1.04) output differences and 2.00 (+−0.00) decision differences. The
hybrid technique finds the new crash already after 14.43 (+−0.30) sec.

Figure 16 shows the temporal development of the results for the three techniques. Al-
though DDSE and HyDiff come to similar conclusions after 10 minutes, HyDiff is sig-
nificantly faster in finding the first output differences (as well as the crash). DF is fast in
generating first results, but cannot achieve the same numbers as DDSE and HyDiff within
the 10 minutes time bound.
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Figure 16: Results for DF, PDF, DDSE, and HyDiff on hybrid approach sample (lines and bands
show averages and 95% confidence intervals across 30 repetitions).
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summary – hydiff example

The hybrid approach detects the regression bug more than nine times faster than
DDSE component in isolation. The DF component (in isolation) times out after ten
minutes without detecting the regression bug. The hybrid setup can leverage the
strengths of both techniques, so that it can get into many more paths by using sym-
bolic execution and is very fast in finding its first output difference by using fuzzing.

6.4 summary

This chapter described the details of the hybrid differential analysis and presented an
example that illustrates challenges for both single components. Furthermore, the example
showed significantly better results with the hybrid setup. The following chapter shows the
extensive validation of this hybrid approach in several application scenarios.
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This chapter presents the validation of the hybrid differential software testing approach. It
starts with the discussion of the details about the experimental infrastructure and further
continues with explaining four different application scenarios of hybrid differential testing:
A1 regression analysis (cf. Section 7.2), A2 worst-case complexity analysis (cf. Section 7.3),
A3 side-channel analysis (cf. Section 7.4), and A4 robustness analysis of neural networks (cf.
Section 7.5). For each application the chapter presents examples, details about the drivers,
the used evaluation metrics, the data sets, and the evaluation results. The results are dis-
cussed for each application with regard to the research questions (cf. Section 3.3). The
chapter closes with a discussion of the obtained results and of the threats to validity.

7.1 experimental infrastructure

Over all experiments HyDiff is compared to the differential fuzzing (DF) and the differen-
tial dynamic symbolic execution (DDSE) component. By comparing HyDiff with its com-
ponents, it is possible to show how HyDiff combines the strengths of both components.

Since HyDiff runs fuzzing and symbolic execution in parallel, it is technically not fair
to compare HyDiff directly with single runs of DF and DDSE. Therefore, the presented
results also contain results for a parallel DF variant (PDF). The DF component can be
parallelized quite simple: AFL already includes the functionality to execute multiple fuzzing
instances in parallel, so that DF can be started with two fuzzing instances, which are started
with the same seed inputs. For the DDSE component it is more difficult: just running the
component in two parallel executed instances make no sense because the DDSE performs
a deterministic exploration, so that both instances would produce the very same output.
Parallelizing symbolic execution is an own research area [53, 70], in which it is important to
generate a nicely balanced partitioning of the explored sub-trees between the instances (see
Section 2.2.3). In order to still provide a technically fairer comparison between HyDiff and
DDSE, the presented results also contain a DDSE variant, which gets twice the time budget
of HyDiff (DDSEx2T), since HyDiff uses twice the processing time because it executes two
instances in parallel.

All experiments have been conducted on a virtual machine with Ubuntu 18.04.1 LTS fea-
turing 2x Intel(R) Xeon(R) CPU X5365 @ 3.00GHz with 8GB of memory, OpenJDK 1.8.0_191
and GCC 7.3.0. To incorporate the randomness in fuzzing, each experiment has been re-
peated 30 times. The reported numbers represent the averaged results together with the
95% confidence interval and the maximum/minimum value. Although symbolic execution
is a deterministic process, the results showed some small variations between experiments,
mostly in the time until the first observed difference. Such variations can be caused by the
constraint solver and other activities on the machine. Therefore, also the experiments for
symbolic execution has been repeated 30 times. The experiments for regression analysis use
a timeout of 10minutes (=600 seconds), the experiments for worst-case complexity analysis
are performed for 1 hour (3, 600 seconds), the experiments for side-channel analysis use
a timeout of 30 minutes (=1, 800 seconds), and the experiments with the neural network
are executed for 1 hour (=3, 600 seconds) because of the long running program executions.

79
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These time bounds have been chosen based on the experiments in the related work and
pre-experimental executions to see when the techniques reach a plateau. The repeated ex-
periments for each subject are started with the same (randomly generated) seed input file.
The only constraint on the seed input was that it does not crash the application because
this is a requirement by the underlying fuzzing engine AFL. The highlighted values in the
presented tables represent significant differences to the closest other subject verified with
the Wilcoxon rank-sum test (with 5% significance level).

7.2 regression analysis (a1)

Regression analysis aims to identify errors in software changes (also cf. Section 2.4.1), also
called regression errors. Such errors represent an observable, semantic different behavior be-
tween the old and the new version. The most meaningful semantic different behaviors are
differences in the actual output of an application like the result of a calculation or another
output message. But also a difference in the runtime or the memory consumption can be
something worthwhile to detect. Not all observable, semantic different behavior though
is a regression error. It could be an expected change, or a change that is unexpected but
not erroneous. Crashes that occur only in the new version tend to represent a regression
error, but even these crashes might be intended, e.g., a new exception thrown for a missing
command line parameter, which was not present in the old version. Therefore, in order
to classify the inputs in expected and unexpected behavior, it is necessary to have a post-
processing of the generated inputs (e.g., similar to [93] see Section 2.4.1), which should also
include some user feedback. The presented techniques focus on finding all differences with
regard to the leveraged differential metrics without performing such post-processing. The
goal of the following evaluation is to assess the techniques for their ability to reveal behav-
ioral divergences between two program versions independent whether these divergences
are expected or unexpected. The evaluation on regression analysis extends the evaluation
shown in one of the preliminary publications [6].

7.2.1 Example & Drivers

The previous chapters, which focused on explaining the general approach (Chapters 4, 5

and 6), already presented examples and the corresponding drivers for regression analysis.
Therefore, this section will skip the examples and just briefly summarize the driver part.
As already presented in Listings 8 and 15 the fuzzing drivers for regression analysis collect
the input values and call the old and the new version separately. The driver collects the
runtime information for both executions and reports the values to the fuzzer. Similarly, as
presented in the Listings 12 and 16, the symbolic execution drivers for regression analysis
collect the inputs, add symbolic values and call the change-annotated program, which
already includes the information of both versions.

7.2.2 Evaluation Metrics

The most important metric for regression testing is the output difference because it represents
an observable semantic difference between the two versions, which is exactly the goal of
the analysis. Furthermore, a special variant of the output difference is the crash metric,
which determines whether the analysis identified an input that triggers a crash in the new
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version, but not in the old version. In order to assess the experiments and answer the
research questions, the results report the following metrics:

• t +odiff: the average time to first output difference (lower is better)

• tmin: the minimum time (over all runs) needed to find the first output difference
(lower is better)

• #odiff: the average number of identified output differences incl. crashes (higher is
better)

• #ddiff: the average number of identified decision differences (higher is better)

The crash metric is not included in the presentation of the results because for almost all
subjects there was no such input identified. Section 7.2.5 discusses this in more detail. The
number of identified output and decision differences (#odiff, #ddiff) help to assess the
effectiveness of the compared techniques. The time to the first output difference (t +odiff)
shows how focused the exploration technique is to reveal output differences, which is the
primary goal of the analysis.

7.2.3 Data Sets

The preliminary evaluation section in the previous chapters already showed the results for
the subjects from the Traffic collision avoidance system (TCAS). These subjects have been
taken from the SIR repository [208]. The original TCAS program has 143 LOC and the
regression analysis subjects have been generated by mutations injections, in this case 1-2
changes per version. As already mentioned, the first ten versions of TCAS are used as a pre-
liminary assessment of the approach, but in order to show a complete picture the following
evaluation discussion also includes these subjects. Furthermore, the evaluation includes re-
gression bugs from the Defects4J benchmark [199], which contains a large set of Java bugs,
but not necessarily regression bugs, and hence required some manual investigation. The
evaluation contains four subjects from the projects Math (85 KLOC) and Time (28 KLOC):
Math-10, Math-46, Math-60 and Time-1. Each of them contain between 1 and 14 changes per
version. A change represents a difference between the old and the new version, which can
be annotated with the presented change-annotation (cf. Section 2.4.1). Additionally, the set
of regression subjects also contain five versions from the Apache CLI [202] (4, 966 LOC),
which was also used before in other regression testing work [85] and contains between 8
and 21 changes per version.

7.2.4 Evaluation Results

Table 6 shows the results for the regression analysis. The used metrics (t +odiff, tmin,
#odiff, and #ddiff) have been described in Section 7.2.2 and focus on the output difference
(odiff) as well as the decision difference (ddiff). The highlighted values represent signifi-
cant differences to the other technique verified with the Wilcoxon rank-sum test (with 5%
significance level). The time values are presented in seconds and the values also report the
95% confidence intervals.

HyDiff vs. DF. The results in Table 6 show that DF miss-classifies 3 subjects, whereas
HyDiff classifies all subjects correctly. In particular, HyDiff outperforms DF:
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• for the time to the first output difference (t +odiff) in 11 of 19 subjects (for another 6
subjects both achieve similar numbers),

• for the number of output differences (#odiff) in 10 of 19 subjects (for another 8
subjects both achieve similar numbers), and

• for the number of decision differences (#ddiff) in 17 of 19 subjects (for the remaining
2 subjects both achieve similar numbers).

Moreover, the results show that parallel differential fuzzing (PDF) performs better than
DF. It is usually faster in revealing the first output difference and it can significantly im-
prove the number of output and decision differences for some subjects. However, PDF still
miss-classifies 3 subjects, which means the parallelization of DF can boost the performance,
but cannot solve the actual problems of DF. The results for comparing HyDiff with PDF
are as follows, HyDiff outperforms PDF:

• for the time to the first output difference (t +odiff) in 11 of 19 subjects (for another 4
subjects both achieve similar numbers),

• for the number of output differences (#odiff) in 6 of 19 subjects (for another 8 subjects
both achieve similar numbers), and

• for the number of decision differences (#ddiff) in 8 of 19 subjects (for the remaining
5 subjects both achieve similar numbers).

HyDiff vs. DDSE. The results in Table 6 show that there is no significant difference when
giving DDSE twice the time budget (cf. columns for DDSE and DDSEx2T). In fact only for
the subject Math-46 there is a small improvement for the number of decision differences
(#ddiff). Therefore, the following result discussion will ignore the DDSEx2T experiments
and focus on DDSE. DDSE miss-classifies 4 subjects, i.e., it misses to identify at least one
output difference for these subjects, whereas HyDiff classifies all subjects correctly. In
particular, HyDiff outperforms DDSE:

• for the time to the first output difference (t +odiff) in 8 of 19 subjects,

• for the number of output differences (#odiff) in 9 of 19 subjects (for the remaining 10
subjects both achieve similar numbers), and

• for the number of decision differences (#ddiff) in all 19 of 19 subjects.

Temporal development of the results. To further illustrate the different performances of
the approaches Figure 17, 18, and 19 show the temporal development of the presented
results for TCAS-7, CLI3-4 and CLI5-6. Instead of showing the Figures for all subjects, these
subjects have been selected because they provide a good overview. The graphs on the left
side of the Figures show the results for the number of output differences (#odiff) and the
graphs on the right side show the results for the number of decision differences (#ddiff).

For TCAS-7 (cf. Figure 17) DF and PDF perform poorly: they cannot reliably identify any
output or decision differences in the given time bound of 10 minutes. HyDiff can rely on
its symbolic execution component to quickly generate some meaningful results. For #odiff
HyDiff and DDSE both remain in a plateau after approximately 2.1 minutes. For #ddiff
DDSE remains in a plateau after approximately 2.4 minutes, but HyDiff can leverage its
fuzzing component to still make progress and continuously improve the score.
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For CLI3-4 (cf. Figure 18) DDSE performs poorly with identifying only one output dif-
ference and 12 decision differences, whereas DF, PDF, and HyDiff perform much better.
More surprisingly is the result for #odiff, for which HyDiff significantly outperforms DF
and PDF. All three techniques start with a similarly behavior, but HyDiff can break away,
while PDF shows no significant benefit compared to DF. The results for #ddiff show that
HyDiff performs similarly as PDF. For both metrics DDSE performs poorly as standalone
technique, but still, as component of HyDiff it can contribute.

For CLI5-6 (cf. Figure 19) DDSE again performs poorly without identifying any output
difference and only 4 decision differences. PDF performs significantly better than DF and
HyDiff, however HyDiff significantly outperforms DF in both #odiff and #ddiff. As al-
ready mentioned, the standalone DDSE cannot find any output difference, but still it can
support HyDiff and help to make it identify more output differences than standalone DF.
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Figure 1: tcas v7 : DF, PDF, DDSE, and HyDiff (lines and bands show averages and 95% confidence intervals
across 30 repetitions).
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Figure 1: tcas v7 : DF, PDF, DDSE, and HyDiff (lines and bands show averages and 95% confidence intervals
across 30 repetitions).
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Figure 17: Results for DF, PDF, DDSE, and HyDiff on TCAS-7 (lines and bands show averages and
95% confidence intervals across 30 repetitions).
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Figure 1: commons-cli v3-4 noformat : DF, PDF, DDSE, and HyDiff (lines and bands show averages and 95%
confidence intervals across 30 repetitions).
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Figure 1: commons-cli v3-4 noformat : DF, PDF, DDSE, and HyDiff (lines and bands show averages and 95%
confidence intervals across 30 repetitions).
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Figure 18: Results for DF, PDF, DDSE, and HyDiff on CLI3-4 (lines and bands show averages and
95% confidence intervals across 30 repetitions).
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Figure 1: commons-cli v5-6 noformat : DF, PDF, DDSE, and HyDiff (lines and bands show averages and 95%
confidence intervals across 30 repetitions).
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Figure 1: commons-cli v5-6 noformat : DF, PDF, DDSE, and HyDiff (lines and bands show averages and 95%
confidence intervals across 30 repetitions).
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Figure 19: Results for DF, PDF, DDSE, and HyDiff on CLI5-6 (lines and bands show averages and
95% confidence intervals across 30 repetitions).

7.2.5 Discussion

RQ1-A1 Differential fuzzing (DF). Differential fuzzing appears to be a well fitted tech-
nique for the identification of output and decision differences, as it can usually identify
more differences than differential dynamic symbolic execution. The parallelization of DF
(PDF) shows some great performance benefits. Although it cannot solve the classification
problems of DF, it can boost its performance significantly: PDF usually improves the num-
ber of output and decision differences, and also for some cases it can reduce the time to
find the first output difference. The increased number of differences is expected because
two fuzzing instances will in general also generate twice as many inputs. However, DF and
PDF both miss the output differences in TCAS-1 and TCAS-8, which can be found by DDSE
and HyDiff (cf. Table 6). The changes in these subjects are very narrow, like a condition
change from > to >= or a small increase in a constant number. This supports the intuition
that it is hard to identifying such narrow differences with random mutations.

RQ2-A1 Differential dynamic symbolic execution (DDSE). DDSE is usually faster in find-
ing the first output difference (t +odiff) than the other techniques. However, it cannot find
as many output differences and decision differences. It also misses to identify the output
difference for TCAS-4, CLI2-3, CLI4-5, and CLI5-6 (cf. Table 6). The temporal development
in Figure 17, 18, and 19 shows that DDSE rarely can continuously improve over time. It
mostly makes progress in jumps and stays in plateaus over long time periods. Especially
for the CLI subjects DDSE does not perform well. The code base is much larger than for
TCAS and the subjects contain many more changes (cf. Section 7.2.3). This increases the
search space and makes it more complex and hard for the systematic exploration to iden-
tify differences in the output.

RQ3+4-A1 HyDiff vs. DF and DDSE. The results in Table 6 show that HyDiff outper-
forms DF in all three categories: t +odiff, #odiff and #ddiff, which shows the strength
of the hybrid combination. Also for the stronger parallel variant PDF, HyDiff still outper-
forms it with regard to t +odiff. Additionally, HyDiff outperforms DDSE in both categories
#odiff and #ddiff. Although DDSE is usually faster in identifying its first output difference
(t +odiff), the absolute time differences are just in the range of seconds. Since HyDiff can
classify all subjects correctly in terms of the output difference, it represents a good combi-
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nation of both approaches, which in isolation cannot identify all subjects correctly. Further-
more, the results in Table 6 as well as in the Figures 17, 18, and 19 show that HyDiff also
outperforms both approaches, i.e., the hybrid approach amplifies the exploration.

RQ5-A1 HyDiff for differential testing. A detailed analysis of the identified output dif-
ferences showed that for most of the subjects the presented techniques cannot identify any
crash in the new version. This is expected because the subjects have not been specifically
selected to include such crashes. For Math-60 HyDiff, DF, and PDF identify two crashes in
the new version. All three techniques detect the first crash after approximately 5 seconds,
and hence, there is no clear benefit in one of these approaches. For CLI5-6 only PDF iden-
tifies a crash in one of the 30 experiment runs, which gives no statistical evidence about
PDF’s ability to identify this crash reliably. Nevertheless, HyDiff was not able to identify
the crash for CLI5-6. Apart from crashes, HyDiff identifies all expected output differences
in the subjects.

summary – regression analysis (a1)

The conducted experiments indicate that the symbolic execution component of Hy-
Diff can greatly benefit from the combination with fuzzing and vice versa. The per-
formance of differential fuzzing can be improved by running it in a parallel setup,
but still it cannot classify all subjects correctly. In contrast, HyDiff does classify all
subjects correctly, i.e., it identifies for all subjects output differences, for which they
actually exist. Furthermore, the overall evaluation shows that HyDiff still outper-
forms DDSE, DF, and PDF for the presented subjects.

7.3 worst-case complexity analysis (a2)

This section describes the application scenario Worst-Case Complexity Analysis (WCA),
which represents the search for an input, which triggers a worst-case execution behav-
ior. The basics and related work on worst-case complexity analysis can be found in Section
2.4.2. This section starts with the explanation of how HyDiff can be applied for the worst-
case complexity analysis, and further shows an example and presents the necessary drivers.
Afterwards the section shows the evaluation of HyDiff on this application scenario and dis-
cusses the results. The evaluation on worst-case complexity analysis extends the evaluation
shown in one of the preliminary publications [3].

7.3.1 Approach

The main objective of the worst-case complexity analysis is not to identify the theoretical
complexity of an algorithm, but to identify inputs that trigger a worst-case execution behav-
ior. Such a characterization of an algorithm’s complexity can help for example to identify
worst-case complexity vulnerabilities [146]. Due to the simpler nature of the worst-case
complexity analysis (compared to the other application scenarios), this approach is quite
straightforward: the basic goal is to maximize the observed execution cost.

HyDiff’s fuzzing component reduces in this setup to a cost-guided fuzzer without dif-
ferential metrics and focuses only on maximizing the execution cost. The fuzzing driver
therefore reads the input, executes the application and reports the observed cost. The mu-
tant selection mechanism only focuses on maximizing the cost value and on increasing the
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Listing 17: Sample program for WCA: Insertion Sort.

1 public static void sort(int[] a) {

2 final int N = a.length;

3 for (int i = 1; i < N; i++) {

4 int j = i - 1;

5 int x = a[i];

6 while ((j >= 0) && (a[j] > x)) {

7 a[j + 1] = a[j];

8 j--;

9 }

10 a[j + 1] = x;

11 }

12 } �
coverage, and hence, selects inputs that increase the so far observed cost highscore or that
improve the program coverage.

HyDiff’s symbolic execution component distinguishes between the concolic and sym-
bolic mode and adds symbolic values accordingly. In contrast to the other application
scenarios, the driver adds no change-annotations and there are also no changes in the
program. The heuristic for the symbolic exploration (i.e., the ranking strategy for the trie
nodes) can be stated as follows:

1. Prioritize new branch coverage.

2. Prioritize higher cost.

3. Prioritize higher/lower nodes in the trie.

The first point in this exploration heuristic is to prioritize the branch coverage, which aims
at supporting the fuzzing component. The second goal is to find inputs that increase the
execution cost, as the primary goal of the overall analysis. Finally the heuristic prefers
nodes that are located higher in the trie (i.e., closer to the root node) because this likely
leads to a broader exploration of the search space (point 3). Please note that the last point
can also be changed to focus on lower nodes in the trie to push the exploration deeper in
the execution path, which might make sense for the worst-case complexity analysis. For
the presented evaluation subjects this last point has been varied based on the outcome of
the preliminary experiments, in which both variants have been applied.

7.3.2 Example & Drivers

Listings 17 shows an implementation of the sorting algorithm Insertion Sort taken from JDK
1.5, for which the worst-case execution behavior (in terms of the runtime) is known: N2,
where N denotes the length of the input array. The worst-case would be triggered by a
reverse-ordered array.

Listing 18 shows the driver for HyDiff’s fuzzing component. For this example the length
of the array was fixed to N = 64 (cf. line 2 in Listing 18). After reading the input (cf. line
5 to 12), the driver executes the sorting algorithm and measures the execution cost. The
cost metric in this case is defined as the number of executed Java bytecode instructions,
which is measured by using the instrumented bytecode. At the end the driver reports the
obtained cost value (cf. line 16).
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Listing 18: Fuzzing driver for Insertion Sort.

1 public static void main(String[] args) {

2 int N = 64;

3 int a[] = new int[N];

4

5 try (FileInputStream fis = new FileInputStream(args[0])) {

6 int b;

7 int i = 0;

8 while (((b = fis.read()) != -1) && (i < N)) {

9 a[i] = b;

10 i++;

11 }

12 } catch (IOException e) {..}

13

14 Mem.clear();

15 sort(a);

16 Kelinci.addCost(Mem.instrCost);

17 } �
Listing 19 shows the driver for HyDiff’s symbolic execution component. Similar to the

fuzzing driver, the symbolic execution driver works with a fixed array size of N = 64 (cf.
line 2 in Listing 19). The concolic mode is shown in line 7 to 20, and the symbolic mode is
shown in 22 to 24. In the concolic mode the driver first reads the input (cf. line 7 to 14) and
then adds symbolic values (cf. line 17 to 19). In the symbolic mode the driver simply adds
symbolic values for all array elements (cf. line 22 to 24). Afterwards the driver executes the
algorithm (cf. line 27).

Table 7 shows the results for applying DF, PDF, DDSE, and HyDiff on the presented
Insertion Sort subject. The experiments have been executed for 1 hour and repeated for
30 times. The columns in this table show the average maximum cost obtained within the
given time bound (c), the maximum cost value over all runs (cmax), and the time in seconds
until the first cost improvement with regard to the cost value of the initial input (t : c > 0),
which had a cost value of 509 bytecode instructions. The numbers in Table 7 show that
HyDiff can generate inputs with significantly higher costs. However, within the one hour
time bound, none of the techniques has been able to identify the worst-case input. The
maximum cost value generated by HyDiff was 9, 923 and the actual worst-case cost value
would be 10, 526 for a totally reverse ordered array with N = 64. Nonetheless, the input
by HyDiff with 9, 923 gets very close to this worst-case (cf. Listing 20). Therefore, HyDiff

achieves on average a slowdown of ca. 19.04x, i.e., that the identified cost value as 19.04x
more expensive than the cost value of the initial input. Parallel differential fuzzing (PDF)
takes the second position with a slowdown of 18.38x followed by single differential fuzzing
(DF) with a slowdown of 17.78x. Far behind is differential dynamic symbolic execution
(DDSE) with a slowdown of 2.27x, which cannot achieve high cost values. However, with
regard to the time to the first cost improvement, DDSE is the best followed by HyDiff.
Please note that these differences are quite small and also the fuzzing techniques show
very similar behavior.

More interesting is the comparison of the techniques over the analysis time like shown
in Figure 20. During the first 2 minutes DF, PDF, and HyDiff perform very similar, but
afterwards HyDiff can break away and can generate an average cost value of 9000 executed
bytecode instructions within 8.2 minutes, for which PDF needs 27.5 and DF 54.6 minutes.
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Listing 19: Symbolic execution driver for Insertion Sort.

1 public static void main(String[] args) {

2 int N = 64;

3 int a[] = new int[N];

4

5 if (args.length == 1) {

6

7 try (FileInputStream fis = new FileInputStream(args[0])) {

8 int b;

9 int i = 0;

10 while (((b = fis.read()) != -1) && (i < N)) {

11 a[i] = b;

12 i++;

13 }

14 } catch (IOException e) {...}

15

16 // Insert symbolic variables.

17 for (int i = 0; i < N; i++) {

18 a[i] = Debug.addSymbolicInt(a[i], "sym_" + i);

19 }

20

21 } else {

22 for (int i = 0; i < N; i++) {

23 a[i] = Debug.makeSymbolicInteger("sym_" + i);

24 }

25 }

26

27 sort(a);

28 } �

Listing 20: HyDiff’s worst-performing input for Insertion Sort N=64 (t=60min).

a=[22, 23, 22, 21, 20, 20, 19, 19, 18, 17, 17, 17, 17, 13, 16, 16, 16, 15, 13, 14, 16, 16,

15, 13, 14, 15, 12, 12, 12, 11, 9, 10, 11, 11, 9, 9, 10, 7, 7, 7, 8, 7, 8, 5, 6, 6, 6,

6, 4, 6, 5, 5, 5, 5, 4, 3, 2, 2, 2, 2, 2, 2, 1, 0] �

Table 7: Results for the Insertion Sort with N=64 (t=3600sec=60min, 30 runs). The execution cost c is
measured as the number of executed Java bytecode instructions.

Technique c cmax t : c > 0

DF 9, 048.40 (+−85.51) 9, 567 5.70 (+−0.16)

PDF 9, 355.03 (+−41.53) 9, 571 5.10 (+−0.11)

DDSE 1, 157.00 (+−0.00) 1, 157 2.13 (+−0.15)

HyDiff 9, 693.77 (+−42.44) 9, 923 2.93 (+−0.16)
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Figure 1: 01-insertionsort : output difference for DF, PDF, DDSE, and HyDiff (lines and bands show averages
and 95% confidence intervals across 30 repetitions).

1

Figure 20: Results for DF, PDF, DDSE, and HyDiff on the Insertion Sort Example with N = 64 (lines
and bands show averages and 95% confidence intervals across 30 repetitions).

7.3.3 Evaluation Metrics

The nature of the worst-case complexity analysis (WCA) does not know metrics like output
difference, decision difference, or cost difference because the analysis does not reason about
multiple paths at once and thus there are no direct differences to detect. The main metric for
the WCA is the measured cost for the execution, which is maximized. In order to assess the
experiments and answer the research questions, the results report the following metrics:

• c: the average maximum cost obtained within the given time bound (higher is better)

• cmax: the maximum cost obtained over all runs (higher is better)

• t : c > 0: the average time to find the first input, which improves the cost value with
regard to the initial input as baseline (lower is better)

7.3.4 Data Sets

The evaluation subjects have been chosen to match the evaluation of the approach Slow-
Fuzz [146], which is the most related work for this area.

The first two evaluation subjects are two textbook examples: Insertion Sort (cf. example
in Section 7.3.2) and Quicksort. Both implementations are taken from the JDK 1.5 and are
executed with N = 64, i.e., the input is an array of 64 integers. The initial cost values have
been 509 for Insertion Sort and 2, 829 for QuickSort.

The next 12 subjects consider regular expression matching, which can be vulnerable to
so called ReDoS (Regular expression DoS) attacks [146]. These subjects are taken from
the java.util.regex JDK 1.8 package. In the experiments the first 11 subjects (Regex 1,
2, 3, 4, 5, 6, 7a, 7b, 8, 9, 10) are set up with fixed regular expressions so that the goal is
to identify a text with which the regular expression matching performs poor. The initial
input represents some lorem ipsum text and is limited to 100 characters. Table 8 shows the
selected regular expressions, which have been taken based on ten popular examples [207].
In the last regex experiment (Regex Lorem), the text is fixed to the lorem ipsum filler text and
the regular expression is varied. The regular expression [\s\S]∗ is used as initial input and
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Table 8: List of regular expression used in the WCA evaluation.

Subject Regular Expression Initial Cost

Regex 1-username ˆ[a−z0−9_−] {3, 15}$ 1, 349

Regex 2-password ((?= .∗\d)(?= .∗[a− z])(?= .∗[A−Z])(?= .∗[@#$%]).{6, 20}) 8, 443

Regex 3-hexcolor ˆ#([A−Fa−f0−9]{6} | [A−Fa−f0−9]{3})$ 2, 235

Regex 4-email ˆ[_A−Za−z0−9−]+(\\. [_A−Za−z0−9−]+)∗@ [A−Za−z0−9]+ 6, 282

(\\. [A−Za−z0−9]+)∗(\\. [A−Za−z]{2, })$

Regex 5-imageext ([ˆ\s]+(\.(?i)(jpg |png |gif |bmp))$) 3, 231

Regex 6-ipaddress (̂[01]?\\d\\d?|2 [0−4] \\d|25 [0−5])\\. 9, 823

([01]?\\d\\d?|2 [0−4] \\d|25 [0−5])\\.

([01]?\\d\\d?|2 [0−4] \\d|25 [0−5])\\.

([01]?\\d\\d?|2 [0−4] \\d|25 [0−5])$

Regex 7a-time12hour (1 [012] | [1−9]) : [0−5] [0−9] (\\s)?(?i)(am|pm) 3, 463

Regex 7b-time24hour ([01]? [0−9] |2 [0−3]) : [0−5] [0−9] 2, 357

Regex 8-date (0? [1−9] | [12] [0−9] |3 [01])/(0? [1−9] |1 [012])/((19|20)\\d\\d) 4, 861

Regex 9-html <( ′′[ˆ ′′]∗ ′′| ′ [ˆ ′]∗ ′| [ˆ ′ ′′>])∗> 2, 624

Regex 10-htmllink (?i)<a([ˆ >]+)>(.+?)</a > 2, 018

is limited to 10 characters during the analysis. The cost value for the initial input is already
quite large with 68, 101.

The next evaluation subject HashTable is an implementation of a hash table taken from the
STAC program [204] and modified to match the hash function by SlowFuzz [146], which
was taken from a vulnerable PHP implementation [205]. The size of the hash table is fixed
64, each key in the hash table has a length of 8 characters. The hash table is filled by reading
the first 64 · 8 characters from an input file. The worst-case of a hash table implementation
can be triggered by generating hash collisions. Therefore, besides the costs, we also report
the number of hash collisions in Section 7.3.5. The initial cost is 2, 282 with 8 collisions.

The evaluation subject Compress is taken from Apache Commons Compress. The expe-
riments for this subject use BZIP2 to compress files up to 250 bytes. The initial cost value
is 1, 505, 039. The last subject Image Processor is another application taken from the STAC
program [204], which includes a vulnerability related to particular pixel values in the input
image causing a significantly increased runtime for the program. For the sake of simplicity,
the image size is limited 2x2 pixels. The initial cost value is 8, 706.

For all presented subjects the Java bytecode has been instrumented to count the number
of executed bytecode jump instructions, i.e., a different instrumentation compared to the
side-channel analysis (cf. Section 7.4.4). Counting the number of jump instructions means
less additional bytecode instruction generated by the instrumentation, but still provides a
good estimate about the time for the program execution. In the worst-case complexity anal-
ysis, the program execution will, in general, eventually degrade to a very heavy execution
because the input is expected to trigger a very long or very resource-consuming execution.
Therefore, it is important that the impact of the instrumentation on the actual program
execution is as low as possible. Please note that HyDiff allows the usage of any kind of
cost definition, for example, a developer could also add some user-defined cost annotations
in the code with Kelinci.addCost(...), where the parameter can be any constant integer
number or any integer variable. If the variable contains a symbolic value, the symbolic
execution component will instruct the constraint solver to maximize the cost expression.
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7.3.5 Evaluation Results

Table 9 shows the results for the worst-case complexity analysis. The used metrics (c, cmax,
and t : c > 0) have been described in Section 7.3.3 and focus on the execution cost. The
highlighted values represent significant differences to the other technique verified with
the Wilcoxon rank-sum test (with 5% significance level). The time values are presented in
seconds and the values also report the 95% confidence intervals.

HyDiff vs. DF. The results in Table 9 show that DF usually is outperformed by HyDiff

or they perform similar in both categories. Only for the subject Regex 2-password DF is
significantly faster in improving the cost value, although the absolute difference is again
only some seconds. In particular, HyDiff outperforms DF:

• for the time to the first cost improvement in 10 of 17 subjects (for another 6 subjects
both achieve similar numbers), and

• for the average cost value in 13 of 17 subjects (for the remaining 4 subjects both
achieve similar numbers).

Similar to the previous application scenario, the experiments show that the parallel dif-
ferential fuzzing (PDF) performs better than DF: PDF usually can identify a larger cost
value and is also faster in improving the initial cost value. This means that PDF cannot
only improve the c values, but is also faster than DF in identifying the first c > 0. The
results in Table 9 show that HyDiff still outperforms PDF in the majority of the cases, but
PDF significantly improves over DF and also can outperform HyDiff in some subjects. In
particular, HyDiff outperforms PDF:

• for the time to the first cost improvement in 10 of 17 subjects (for another 2 subjects
both achieve similar numbers), and

• for the average cost value in 9 of 17 subjects (for another 5 subjects both achieve
similar numbers).

HyDiff vs. DDSE. Similar as for the regression analysis, there was no significant difference
between the DDSE and DDSEx2T experiments for the subjects in the worst-case complex-
ity analysis. There have been some very minor improvement for the average cost value for
the subjects Regex 1-username, Regex 3-hexcolor, and Image Processor, and two larger improve-
ments for Regex 4-email and HashTable, but which had no impact on the relative comparison
to HyDiff. Therefore, the following result discussion will ignore the DDSEx2T experiments
and focus on DDSE.

The results in Table 9 show that DDSE usually cannot reveal cost values as high as
HyDiff, but is in more subjects significantly faster in improving the initial score (although
the absolute differences in time are just seconds). In particular, HyDiff outperforms DDSE:

• for the time to the first cost improvement in 5 of 17 subjects (for one other subject
both achieve similar numbers), and

• for the average cost value in 10 of 17 subjects (for another 5 subjects both achieve
similar numbers).
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Temporal development of the results. In order to compare the efficiency of the techniques,
the Figures 21, 22, 23, and 24 show the temporal development for the subjects Quicksort,
Regex 3-hexcolor, Regex 4-email, and Image Processor. The temporal development of Insertion
Sort has been already shown in Figure 20 in Section 7.3.2.

For Quicksort (cf. Figure 21) DF, PDF, and HyDiff perform very similar as they contin-
uously improve the cost value. DDSE stays in a plateau for a long time and makes only
minor improvements compared to the initial input. Therefore, HyDiff is mostly driven by
its fuzzing component.

For Regex 3-hexcolor (cf. Figure 22), HyDiff shows a similar development as DDSE be-
cause DDSE performs much better than fuzzing. Both jump relatively fast to a high cost
value and later improve only slightly. DF and PDF can improve their values over time, but
cannot reach the cost value of HyDiff.

For Regex 4-email (cf. Figure 23), HyDiff finishes with a similar cost value as PDF after
30 minutes, but performs significantly better in the meantime. Standalone DDSE also can
continuously improve the score, but at the end performs worse than DF. PDF shows its
benefits over DF as it is faster in generating higher scores.

For Image Processor (cf. Figure 24), HyDiff totally outperforms the other techniques. It
is very fast in generating a high cost value and also finishes with a significantly higher
cost value than the other three techniques. DDSE does not perform as good as the other
techniques, which shows that HyDiff can use both components to achieve a better value.
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Figure 1: 02-quicksort : output difference for DF, PDF, DDSE, and HyDiff (lines and bands show averages
and 95% confidence intervals across 30 repetitions).

1

Figure 21: Results for DF, PDF, DDSE, and HyDiff on the Quicksort subject with N = 64 (lines and
bands show averages and 95% confidence intervals across 30 repetitions).

For a better illustration of the results Table 10 shows the slowdown rates for each sub-
ject. The goal of this analysis is to generate an input that performs very low in terms of
execution cost, therefore the slowdown is an important assessment metric. The slowdown
rates are calculated by the quotient of the initial cost and the average observed cost value.
The bold values in this table show the largest slowdown for the specific subject, although it
does not need to be a significant difference. The results show that HyDiff generates in the
majority of the cases the best slowdown. The number of collisions for the HashTable subject
are calculated based on the maximum observed cost difference.
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Figure 1: 03 regex 3hexcolor : output difference for DF, PDF, DDSE, and HyDiff (lines and bands show
averages and 95% confidence intervals across 30 repetitions).
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Figure 22: Results for DF, PDF, DDSE, and HyDiff on the Regex 3-hexcolor subject (lines and bands
show averages and 95% confidence intervals across 30 repetitions).
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Figure 1: 03 regex 4email : output difference for DF, PDF, DDSE, and HyDiff (lines and bands show averages
and 95% confidence intervals across 30 repetitions).
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Figure 23: Results for DF, PDF, DDSE, and HyDiff on the Regex 4-email subject (lines and bands
show averages and 95% confidence intervals across 30 repetitions).

7.3.6 Discussion

RQ1-A2 Differential fuzzing (DF). The results in Table 9 show that differential fuzzing is
an effective technique for the generation of low performing inputs as for all subjects it can
generate a slowdown. Additionally, the temporal development characterized in Figures
21, 22, 23, and 24 shows that DF does improve over time. Nevertheless, the results also
show the other techniques can significantly outperform the slowdowns by DF as well as
the time to generate its first slowdown. The main disadvantage is that DF needs relatively
long to achieve comparable slowdown rates. Parallel differential fuzzing (PDF) shows its
advantage over a single differential fuzzing instance (DF), so that PDF can constantly show
better results than DF. Although there are 3 subjects, where PDF results in a better cost
value than HyDiff, for most of the cases differential fuzzing is outperformed by the other
techniques. Due to the fact that the mutations in DF are applied randomly it takes time to
identify a low performing input.
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Figure 1: 06-imageprocessor : output difference for DF, PDF, DDSE, and HyDiff (lines and bands show
averages and 95% confidence intervals across 30 repetitions).
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Figure 24: Results for DF, PDF, DDSE, and HyDiff on the Image Processor for a 2x2 JPEG image
(lines and bands show averages and 95% confidence intervals across 30 repetitions).

RQ2-A2 Differential dynamic symbolic execution (DDSE). For the majority of the sub-
jects DDSE is significantly faster than DF and HyDiff in generating its first improvement
for the cost value, although the difference is in the range of seconds. On the other hand
HyDiff can outperform the cost value of DDSE in most of the cases. Only in 3 of 17 cases
DDSE achieves a better cost value. The Figures 21, 22, 23, and 24 show that DDSE often
makes jumps to larger slowdowns and does not improve continuously over time. Its ad-
vantage is often in a high jump straight in the beginning because its exploration strategy
selects branches with already large cost values so that it can dig even deeper into the pro-
gram execution. Nevertheless, it often remains in plateaus, while the other techniques can
make progress over time. The systematic exploration obviously also explores branches that
do not directly produce larger slowdowns.

RQ3+4-A2 HyDiff vs. DF and DDSE. The results in Table 9 show that HyDiff is in the
large majority of the cases better than DF and the experiments never show that DF is
better than HyDiff. HyDiff often can leverage the power of symbolic execution to quickly
get to a high value, from where it can improve the cost value over time. Therefore, HyDiff

outperforms DF in both categories: generating a higher cost value and being faster in doing
so. Even when PDF can improve the performance of DF, it still cannot reach the same
results as HyDiff. As DDSE often remains in plateaus, HyDiff can leverage its fuzzing
component to continuously improve the cost value. As the numbers in Table 9 as well as
the Figures 21, 22, 23, and 24 show, HyDiff combines both techniques very well and even
produces better results. HyDiff is significantly faster in producing high slowdowns and
even after 1 hour analysis time HyDiff often remains in larger slowdowns.

RQ5-A2 HyDiff for differential testing. The obtained results show (also see Table 10)
HyDiff and its components are effective in generating high slowdowns for the considered
subjects. The slowdowns represent very large runtimes of the inputs in these applications
(cf. the cmax column in Table 9), which represent relevant algorithmic complexity vulnera-
bilities.
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Table 10: List of generated slowdowns in the WCA evaluation (based on the average cost value at
the end of the analysis). The highlighted values show the largest numbers (which does
not mean a statistical significance).

Subject Initial Cost Slowdown

DF PDF DDSE DDSEx2T HyDiff

Insertion Sort 509 17.78 18.38 2.27 2.33 19.04

Quicksort 2, 829 1.24 1.27 1.05 1.05 1.22

Regex 1-username 1, 349 1.63 1.66 1.76 1.76 1.73

Regex 2-password 8, 443 2.71 2.74 1.60 1.60 2.71

Regex 3-hexcolor 2, 235 1.16 1.20 1.23 1.24 1.26

Regex 4-email 6, 282 1.90 2.47 1.71 1.93 2.47

Regex 5-imageext 3, 231 2.86 3.04 2.69 2.69 3.04

Regex 6-ipaddress 9, 823 1.00 1.00 1.07 1.07 1.07

Regex 7a-time12hour 3, 463 1.02 1.03 1.09 1.09 1.09

Regex 7b-time24hour 2, 357 1.02 1.03 1.05 1.05 1.05

Regex 8-date 4, 861 1.02 1.02 1.06 1.06 1.06

Regex 9-html 2, 624 1.89 1.89 1.97 1.97 1.97

Regex 10-htmllink 2, 018 2.84 3.91 4.17 4.17 3.94

Regex Lorem 68, 101 1.50 2, 993.20 1.00 1.00 2, 804.05

HashTable 2, 282 2.29 2.63 1.53 1.63 2.54

HashTable collisions 8 24 30 0 21 35

Compress 1, 505, 039 1.13 1.15 1.00 1.00 1.12

Image Processor 8, 706 15.96 19.26 9.22 9.22 24.92

summary – worst-case complexity analysis (a2)

HyDiff successfully combines the strengths of DDSE and DF. Symbolic execution
helps HyDiff to quickly make progress and fuzzing supports by continuously im-
proving the score. Therefore, in the majority of the cases HyDiff is as good as its
components or even outperforms them. In particular HyDiff’s strength is to quickly
generate a high cost value, for which the other techniques take quite long. Great
examples are InsertionSort and ImageProcessor.

7.4 side-channel analysis (a3)

This section describes the application scenario side-channel analysis, which aims at find-
ing leakages of secret information by observing the non-functional system behavior, like
execution time, memory consumption, or response message sizes. The basics on informa-
tion theory and side-channel analysis are explained in the background Section 2.4.3. This
section starts with the explanation on how to use HyDiff and its components for the side-
channel analysis. For further illustration the section presents a simple example for a side-
channel vulnerability and how to implement the HyDiff’s drivers for this example. Finally,
it presents the conducted evaluation of HyDiff on the side-channel subjects and discusses
the results. The evaluation on side-channel analysis extends the evaluation discussed in
two of the preliminary publications [1] and [6].
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7.4.1 Approach

The key idea for the implementation of side-channel analysis with HyDiff is to use the idea
of self-composition [106] and consider two execution paths, which both are initialized with
the same public input but different secret inputs. The goal is to maximize the cost difference
(δ) between these two execution paths. The higher the cost difference can be identified, the
more severe is a side-channel vulnerability. This idea is described by the following formula:

maximize:
pub,sec1,sec2

δ = |c(PJpub, sec1K) − c(PJpub, sec2K)|

In this formula pub denotes the public value, sec1 and sec2 denote the two secret values.
PJpub, sec1K denotes the execution of program P with the public value pub and the secret
value sec1. c(PJ..K) denotes the cost measurement of the execution of program P. δ denotes
the cost difference of both program executions.

For HyDiff’s fuzzing component this means to fuzz three values: the public value and
two secret values. Note that this approach naturally extends to tuples of values. The driver
for differential fuzzing needs to take these three values and perform two program execu-
tions: both with the same public input, but with different secret inputs. The most important
metric to detect the side-channel vulnerability is the cost difference between these two ex-
ecutions, but the driver will also collect the information about decision differences and
output differences. They are still important metrics to drive the fuzzing process, although
they cannot directly measure the severity of a side-channel vulnerability.

For HyDiff’s symbolic execution component the variation in the secret input can be
realized by the usage of change-annotations:

secret = change(secret1, secret2)

The driver for differential dynamic symbolic execution does also read three inputs (one
public and two secret values), but does combine the two secret values in one change-
annotated expression. This means that for symbolic execution there is only one program
execution necessary. Since this change-annotation happens directly in the driver, the pro-
gram itself does not contain any change-annotation, and hence, the patch distance metric
is not relevant for side-channel analysis. Also the control-flow information can not help
to prune any trie node because the differential expression is introduced straight in the be-
ginning. This also means that the heuristic for the symbolic exploration (i.e., the ranking
strategy for the trie nodes) can be simplified as follows:

1. Prioritize new branch coverage.

2. Prioritize higher cost difference.

3. Prioritize higher nodes in the trie.

The primary goal of the symbolic execution in the hybrid setup is to support the fuzzing
component by solving complex branching conditions, which are infeasible for fuzzing.
Therefore, the first point in this exploration heuristic is to prioritize the branch coverage.
The second goal is to find inputs that increase the cost difference, since they signal side-
channel vulnerabilities (point 2). Finally the heuristic prefers nodes that are located higher
in the trie (i.e., closer to the root node) because this likely leads to a broader exploration
of the search space (point 3). Please note that technically such an exploration strategy can
be easily modified so that different analysis types can be incorporated. Some preliminary
assessment of this heuristic showed no improvement with a changed prioritization order.
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7.4.2 Example & Drivers

To illustrate the analysis approach, please consider the unsafe password comparison algo-
rithm from Section 2.4.3, which is shown again in Listing 21.

Listing 21: Side-channel analysis example password check-
ing algorithm (see also Listing 2).

1 boolean pwcheck_unsafe(byte[] pub, byte[] sec) {

2 if (pub.length != sec.length) {

3 return false;

4 }

5 for (int i = 0; i < pub.length; i++) {

6 if (pub[i] != sec[i]) {

7 return false;

8 }

9 }

10 return true;

11 } �
The Listings 22, 23, and 24 show the drivers for this example. The driver for differential
fuzzing (cf. Listings 22) parses the input and creates three arrays with the same length: two
arrays for the secret input and one array for the public input (cf. Listing 22 lines 4 to 29).
Afterwards the driver calls the application first with the public input and the first secret
input (cf. lines 32 to 41), and afterwards with the same public input but with the second
secret input (lines 44 to 53). At the end the driver reports the observed differences to the
fuzzer (cf. lines 56 to 60). The main difference to the drivers in the regression analysis is
the way on how to call the applications: for the regression analysis the driver executes the
old and the new version with the same input, for side-channel analysis the driver executes
the same program but varies the secret input.

The driver for the differential dynamic symbolic execution (cf. Listing 23) distinguishes
two executions modes (similar as for regression analysis): one for the concolic execution
phase, which reads a concrete input and adds symbolic variables (lines 8 to 35), and one
for the symbolic execution phase, which simply generates symbolic variables (lines 37 to
47). Afterwards the driver calls a helper function (cf. Listing 24) to handle arbitrary input
sizes up to a defined maximum size and to introduce the changes. This special handling
is necessary because the observed side-channels represent non-functional characteristics of
the program, which in general can be affected by the input size. Therefore, the analysis
should incorporate multiple input sizes. The fuzzing driver simply reads the input up to a
maximum input size. In symbolic execution the handling of arbitrary input sizes is more
sophisticated because, e.g., it is difficult to handle arrays with a symbolic length. In order to
solve this problem the driver helper introduces a decision straight in beginning, i.e., before
the actual application execution. This decision determines the current size of the input.
This initial decision allows the remaining symbolic execution to perform the analysis in
this sub-tree with a fixed size array.

Technically, the decision introduction works as follows: the process always starts with a
concrete input, which is concollicaly executed. The driver recognizes this input size, which
is concrete, and the driver helper inserts a decision straight in beginning by checking the
input size n (cf. Listing 24 line 3 to 16). In the trie this dummy decision will be represented
as a trie node in the very beginning. During the trie extension, which happens during the
concolic execution, the current input size is assigned to the trie nodes. Therefore, each trie
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Listing 22: Driver for differential fuzzing on password checking example.

1 public static void main(String[] args) {

2

3 // Read all inputs up to 16x3 bytes (simplified illustrated).

4 List<Byte> values = ... ;

5

6 if (values.size() < 3) {

7 throw new RuntimeException("Not enough input data...");

8 }

9 int m = values.size() / 3;

10

11 byte[] secret1_pw, secret2_pw, public_guess;

12

13 // Read public.

14 public_guess = new byte[m];

15 for (int i = 0; i < m; i++) {

16 public_guess[i] = values.get(i);

17 }

18

19 // Read secret1.

20 secret1_pw = new byte[m];

21 for (int i = 0; i < m; i++) {

22 secret1_pw[i] = values.get(i + m);

23 }

24

25 // Read secret2.

26 secret2_pw = new byte[m];

27 for (int i = 0; i < m; i++) {

28 secret2_pw[i] = values.get(i + 2 * m);

29 }

30

31 /* Execute with secret1. */

32 Mem.clear();

33 DecisionHistory.clear();

34 Object res1 = null;

35 try {

36 res1 = PWCheck.pwcheck_unsafe(public_guess, secret1_pw);

37 } catch (Throwable e) {

38 res1 = e;

39 }

40 boolean[] dec1 = DecisionHistory.getDecisions();

41 long cost1 = Mem.instrCost;

42

43 /* Execute with secret2. */

44 Mem.clear();

45 DecisionHistory.clear();

46 Object res2 = null;

47 try {

48 res2 = PWCheck.pwcheck_unsafe(public_guess, secret2_pw);

49 } catch (Throwable e) {

50 res2 = e;

51 }

52 boolean[] dec2 = DecisionHistory.getDecisions();

53 long cost2 = Mem.instrCost;

54

55 /* Report differences. */

56 DecisionHistoryDifference d = DecisionHistoryDifference

57 .createDecisionHistoryDifference(dec1, dec2);

58 Kelinci.setNewDecisionDifference(d);

59 Kelinci.setNewOutputDifference(new OutputSummary(res1, res2));

60 Kelinci.addCost(Math.abs(cost1 - cost2));

61 } �
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Listing 23: Driver for differential dynamic symbolic execution on password checking example.

1 public static void main(String[] args) {

2

3 byte[] secret1_pw, secret2_pw, public_guess;

4 int n;

5

6 if (args.length == 1) {

7

8 /* Read all data up to 16x3 bytes (simplified illustrated). */

9 List<Byte> values = ... ;

10

11 if (values.size() < 3) {

12 throw new RuntimeException("Not enough input data...");

13 }

14

15 int n_concrete = values.size() / 3;

16 n = Debug.addSymbolicInt(values.size() / 3, "sym_n");

17

18 // Read public and insert symbolic variables.

19 public_guess = new byte[n_concrete];

20 for (i = 0; i < n_concrete; i++) {

21 public_guess[i] = Debug.addSymbolicByte(values.get(i), "sym_0_" + i);

22 }

23

24 // Read secret1 and insert symbolic variables.

25 secret1_pw = new byte[n_concrete];

26 for (i = 0; i < n_concrete; i++) {

27 secret1_pw[i] = Debug.addSymbolicByte(values.get(i + n_concrete), "sym_1_" + i);

28 }

29

30 // Read secret2 and insert symbolic variables.

31 secret2_pw = new byte[n_concrete];

32 for (i = 0; i < n_concrete; i++) {

33 secret2_pw[i] = Debug.addSymbolicByte(values.get(i + 2 * n_concrete), "sym_2_" +

i);

34 }

35

36 } else {

37 int currentN = Debug.getLastObservedInputSizes()[0];

38 public_guess = new byte[currentN];

39 secret1_pw = new byte[currentN];

40 secret2_pw = new byte[currentN];

41

42 n = Debug.makeSymbolicInteger("sym_n");

43 for (int i = 0; i < currentN; i++) {

44 public_guess[i] = Debug.makeSymbolicByte("sym_0_" + i);

45 secret1_pw[i] = Debug.makeSymbolicByte("sym_1_" + i);

46 secret2_pw[i] = Debug.makeSymbolicByte("sym_2_" + i);

47 }

48 }

49

50 driver_helper(n, public_guess, secret1_pw, secret2_pw);

51 } �
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Listing 24: Driver helper function for differential dynamic symbolic execution on password check-
ing example.

1 public static void driver_helper(int n, byte[] guess, byte[] secret_1, byte[] secret_2) {

2 int[] sizes = new int[1];

3 switch (n) {

4 case 0:

5 sizes[0] = 0;

6 break;

7 case 1:

8 sizes[0] = 1;

9 break;

10 ...

11 case 16:

12 sizes[0] = 16;

13 break;

14 default:

15 throw new RuntimeException("unintended input size");

16 }

17

18 byte[] secret = new byte[secret_1.length];

19 for (int i = 0; i < secret.length; i++) {

20 secret[i] = (byte) change(secret_1[i], secret_2[i]);

21 }

22

23 Object res = PWCheck.pwcheck_unsafe(guess, secret);

24 } �
Table 11: Results for the password checking example (t=300sec=5min, 30 runs).

Technique δ δmax t : δ > 0

Differential Fuzzing (DF) 34.30 (+−3.11) 47 4.20 (+−1.53)

Parallel Differential Fuzzing (PDF) 40.93 (+−1.84) 47 2.33 (+−0.63)

Differential Dynamic Symbolic Execution (DDSE) 47.00 (+−0.00) 47 13.27 (+−0.24)

HyDiff 47.00 (+−0.00) 47 4.43 (+−1.00)

node knows the expected input size. In the symbolic execution phase, the input size, which
is assigned to the identified trie node (cf. Figure 9 step 3), is used to initialize the symbolic
variables (cf. Listing 23 line 37). Please note that such special handling of multiple input
sizes would be also necessary when incorporating multiple input sizes in other analysis
types like regression analysis. But the evaluation subjects used for regression analysis (cf.
Section 7.2.3) consider simple input types, for which the input size is not relevant.

Before calling the application the driver helper introduces the previously mentioned
change-annotations to combine the two secret inputs (cf. Listing 24 line 18 to 21).

Table 11 shows the experiment results for applying DF, PDF, DDSE, and HyDiff on the
password checking example. The experiments have been executed with a time bound of 5
minutes and have been repeated 30 times. The number of executed bytecode instructions
are used as cost metric, which is an alternative to measure the real runtime of the algorithm.
Other processes running on the machine are expected to influence the actual real time
measurement, and hence, counting the executed bytecode instruction is a more robust
metric.
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Figure 1: passwordCheck unsafe: output difference for DF, PDF, DDSE, and HyDiff (lines and bands show
averages and 95% confidence intervals across 30 repetitions).

1

Figure 25: Results for DF, PDF, DDSE, and HyDiff on the Password Checking Example (lines and
bands show averages and 95% confidence intervals across 30 repetitions).

Listing 25: Input for maximum cost difference after 5 min.

1 pub=[16, 0, 108, 108, 111, 32, 67, 97, 72, 101, 108, 108, 111, 32, 67, 97]

2 sec_1=[114, 110, 101, 103, 105, 101, 32, 77, 101, 108, 114, 110, 101, 103, 105, 101]

3 sec_2=[16, 0, 108, 108, 111, 32, 67, 97, 72, 101, 108, 108, 111, 32, 67, 97] �

For this experiment, the maximum input size was set to 16 bytes, which allows a maximum
cost difference of 47 bytecode instructions. Listing 25 shows an input, which triggers the
maximum cost difference.

All of the four experiment setups (DF, PDF, DDSE, and HyDiff) have been able to reach
the maximum value at least once (cf. δmax column in Table 11). The values in the table also
show that DF and PDF cannot reliably generate this maximum value within the time bound
of 5 minutes. However, the fuzzing techniques show a better performance in identifying
the first input for an improved δ value (cf. column t : δ > 0). Figure 25 shows the temporal
development. DF, PDF, and HyDiff perform quite similar in the beginning, whereas DDSE
takes longer to generate an interesting input. After approximately 13 seconds, DDSE jumps
almost directly to the actual maximum cost difference. HyDiff follows quickly, whereas DF
and PDF take longer to get to this maximum value.

7.4.3 Evaluation Metrics

The evaluation metrics are related to the metrics used in the worst-case complexity analysis,
which handles the maximization of execution cost. However, the most important metric for
the side-channel analysis is the cost difference because it reveals a side-channel vulnerability
with respect to the leveraged cost metric. The metrics output difference and decision difference
might be helpful during the search process, i.e., these metrics should be used to drive the
differential exploration in fuzzing (cf. Section 7.4.1), but they cannot assess the ability to
reveal side-channel vulnerabilities. Especially the metric output difference is not interesting
to report because it represents information in the main-channel of the application and not
in any side-channel. In order to assess the experiments and answer the research questions,
the results report the following metrics:
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• δ: the average maximum cost difference obtained within the given time bound (higher
is better)

• δmax: the maximum cost difference obtained over all runs (higher is better)

• t : δ > 0: the average time to find the first input, which improves the δ value with
regard to the initial input as baseline (lower is better)

7.4.4 Data Sets

The evaluation for the side-channel analysis is two-fold: (1) it first compares the proposed
differential fuzzing strategy with state-of-the-art static analysis tools Blazer [104] and
Themis [110], and (2) applies HyDiff on a selected benchmark to show the strengths of the
hybrid combination.

The benchmarks for the direct comparison with Blazer and Themis are taken from their
publications and contain programs with known time and space side-channel vulnerabilities.
These subjects provide an unsafe and a safe variant. The safe variant usually means that there
is no information leakage. Blazer’s subjects are small applications with up to a hundred
lines of code. Themis’ subjects are larger Java programs with up to 20K LOC and are
taken from complex-real world applications, such as Tomcat, Spring-Security, and Eclipse
Jetty HTTP web server. Please note that although these applications are quite large, the
analysis is usually focused on suspicious components, so that not the complete application
is covered by the analysis. All benchmarks except DynaTable, Advanced_table, OpenMRS, and
OACC come with a repaired version. The subjects for Tomcat and pac4j require interactions
with a database. Therefore, these experiments needed the prior setup of a database, for
which the H2 database engine [206] was used to create an SQL database accessible via the
JDBC API.

For the side-channel analysis differential fuzzing already performs quite well, therefore,
only a subset of subjects is selected to evaluate the hybrid combination: Blazer_login (25
LOC) and Themis_Jetty (17 LOC), and a sophisticated authentication procedure STAC_ibasys
(707 LOC) taken from the STAC program [204], which handles complex image manipula-
tions. These subjects provide an unsafe and a safe variant. The subject Themis_Jetty Safe is
known to still leak information (but the difference in cost is small). Additionally the sub-
jects include an implementation of modular exponentiation, RSA_modpow (30 LOC), from
[121]. This implementation is known to have a timing side-channel due to an optimized
step in the exponentiation procedure. Paul Kocher [116] has shown how a similar vulner-
ability can be exploited to break RSA encryption/decryption. The subjects include three
variants of RSA_modpow with different values for modulo: 1717, 834443, and 1964903306.

For all presented subjects the Java bytecode has been instrumented to count the number
of executed bytecode instructions, so that this number can be used as cost value. Therefore,
the cost difference means the difference in the number of executed bytecode instructions.
Please note that counting all bytecode instructions might result in a lower performance
with regard to the execution of the bytecode, but provides the highest precision, which is
desirable when searching for side-channel vulnerabilities. Usually, the bytecode is also in-
strumented to track the decision history, but for three subjects this was not feasible because
the Java heap space would have been exceeded during the bytecode execution. Therefore,
for LoopAndbranch, Sanity, and unixlogin the instrumentation does not keep track of the
decisions made during program execution.
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Table 12: The results of applying differential fuzzing to the Blazer subjects. Discrepancies are high-
lighted in red and italics.

Benchmark Version Differential Fuzzing (DF) Time (s)

δ δmax t : δ > 0 Blazer Themis

MicroBench

Array Safe 1.00 (+−0.00) 1 4.83 (+−1.18) 1.60 0.28

Array Unsafe 195.00 (+−0.00) 195 3.53 (+−0.71) 0.16 0.23

LoopAndbranch Safe 2.05× 109 (+−6.63× 108) 4.29× 109 18.33 (+−6.64) 0.23 0.33

LoopAndbranch Unsafe 4.20× 109 (+−8.17× 107) 4.29× 109 15.67 (+−15.19) 0.65 0.16

Sanity Safe 0.00 (+−0.00) 0 - 0.63 0.41

Sanity Unsafe 4.29× 109 (+−1.08× 106) 4.29× 109 18.57 (+−6.25) 0.30 0.17

Straightline Safe 0.00 (+−0.00) 0 - 0.21 0.49

Straightline Unsafe 8.00 (+−0.00) 8 5.57 (+−1.50) 22.20 5.30

unixlogin Safe 2.00 (+−0.00) 2 438.50 (+−101.64) 0.86 -

unixlogin Unsafe 2.69× 109 (+−2.28× 108) 3.20× 109 313.03 (+−78.50) 0.77 -

STAC

modPow1 Safe 0.00 (+−0.00) 0 - 1.47 0.61

modPow1 Unsafe 2, 301.90 (+−130.90) 3, 630 2.70 (+−0.51) 218.54 14.16

modPow2 Safe 0.00 (+−0.00) 0 - 1.62 0.75

modPow2 Unsafe 59.73 (+−18.01) 135 78.70 (+−18.01) 7, 813.68 141.36

passwordEq Safe 0.00 (+−0.00) 0 - 2.70 1.10

passwordEq Unsafe 122.87 (+−4.27) 127 7.17 (+−2.39) 1.30 0.39

Literature

k96 Safe 0.00 (+−0.00) 0 - 0.70 0.61

k96 Unsafe 38, 799.63 (+−7, 455.08) 112, 557 13.47 (+−4.13) 1.29 0.54

gpt14 Safe 504.50 (+−106.86) 1, 048 1.83 (+−0.19) 1.43 0.46

gpt14 Unsafe 84, 833.23 (+−11, 605.25) 147, 465 22.80 (+−8.86) 219.30 1.25

login Safe 0.00 (+−0.00) 0 - 1.77 0.54

login Unsafe 132.87 (+−14.87) 238 5.07 (+−1.18) 1.79 0.70

7.4.5 Evaluation Results

Differential Fuzzing (DF) on Blazer benchmark. Table 12 shows the results for the Blazer

subjects. Themis also evaluated their approach with Blazer so that Table 12 shows also the
results of Themis. For differential fuzzing (DF) the table reports the metrics δ, δmax, and
t : δ > 0 as described in Section 7.4.3. The metrics focus on the cost difference (δ) as well as
time to identify the first cost difference. The time values are presented in seconds and the
values also report the 95% confidence intervals.

Blazer and Themis report both the time in seconds until their static analysis came to
a conclusion. Both always agree with the categories mentioned in the Version column. For
the majority of the subjects differential fuzzing (DF) also agrees with the categories. As
the δ values in Table 12 show: for safe the average δ is 0 or very small and for unsafe the
average δ is quite large. In particular, DF identified all vulnerabilities in the unsafe versions.
Nevertheless, the evaluation results also indicate some discrepancies (see Table 12 in red
and italics). For the safe variants of the subjects Array and unixlogin DF identified values
slightly greater than zero. These discrepancies may be attributed to differences between
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Table 13: The results of applying differential fuzzing to the Themis subjects. Discrepancies are high-
lighted in red and italics.

Benchmark Version Differential Fuzzing (DF) Themis

δ δmax t : δ > 0 ε = 64 ε = o Time (s)

Spring-Security Safe 1.00 (+−0.00) 1 4.77 (+−1.07) 3 3 1.70

Spring-Security Unsafe 149.00 (+−0.00) 149 4.17 (+−0.90) 3 3 1.09

JDK7-MsgDigest Safe 1.00 (+−0.00) 1 10.77 (+−2.12) 3 3 1.27

JDK6-MsgDigest Unsafe 140.03 (+−20.39) 263 3.20 (+−0.81) 3 3 1.33

Picketbox Safe 1.00 (+−0.00) 1 16.90 (+−3.89) 3 7 1.79

Picketbox Unsafe 363.70 (+−562.18) 8, 822 5.13 (+−1.83) 3 3 1.55

Tomcat Safe 25.07 (+−0.36) 26 19.90 (+−9.29) 3 7 9.93

Tomcat Unsafe 49.00 (+−0.36) 50 23.53 (+−9.73) 3 3 8.64

Jetty Safe 11.77 (+−0.60) 15 3.77 (+−0.72) 3 3 2.50

Jetty Unsafe 70.87 (+−6.12) 105 6.83 (+−1.62) 3 3 2.07

orientdb Safe 1.00 (+−0.00) 1 16.60 (+−5.14) 3 7 37.99

orientdb Unsafe 458.93 (+−685.64) 10, 776 4.77 (+−1.06) 3 3 38.09

pac4j Safe 10.00 (+−0.00) 10 1.10 (+−0.11) 3 7 3.97

pac4j Unsafe 11.00 (+−0.00) 11 1.13 (+−0.12) 3 3 1.85

pac4j Unsafe* 39.00 (+−0.00) 39 1.10 (+−0.11) - - -

boot-auth Safe 5.00 (+−0.00) 5 1.00 (+−0.00) 3 7 9.12

boot-auth Unsafe 101.00 (+−0.00) 101 1.00 (+−0.00) 3 3 8.31

tourPlanner Safe 0.00 (+−0.00) 0 - 3 3 22.22

tourPlanner Unsafe 238.00 (+−21.78) 353 57.07 (+−6.47) 3 3 22.01

DynaTable Unsafe 75.40 (+−3.83) 94 3.90 (+−0.97) 3 3 1.165

Advanced_table Unsafe 23.03 (+−8.08) 73 783.80 (+−318.00) 3 3 2.01

OpenMRS Unsafe 206.00 (+−0.00) 206 14.03 (+−3.60) 3 3 9.71

OACC Unsafe 49.90 (+−0.19) 50 3.07 (+−0.77) 3 3 1.83

the intermediate representations of the different analysis types, and can thus be consid-
ered negligible. However, for the safe variants of the subjects LoopAndbranch and gpt14 DF
identified large δ values, which indicates that the repaired versions are in fact not safe.

The large δ value for LoopAndbranch is caused by an integer overflow inside the calcu-
lation. Blazer and Themis cannot identify this δ because they do not handle overflow in
their analysis. In contrast, DF does execute the actual Java bytecode that allows overflows.

Although the δ value for the safe version of the subject gpt14 shows some great improve-
ment over the unsafe version, it is still quite high. It is triggered by a vulnerability where
the secret information depends on an extra if statement, which has been confirmed by the
Themis developers.

Differential Fuzzing (DF) on Themis benchmark. In addition to the subjects by Blazer

[104], Table 13 shows the results for the subjects by Themis [110], for which Themis re-
ported their results with regard to an ε = 64 and ε = 0. This can be read like follows: for
a safe version with ε = 0 Themis reports that there is absolutely no vulnerability and for a
safe version with ε = 64 Themis reports that there might be a vulnerability, which is hardly
exploitable. Similarly as for the Blazer subjects, differential fuzzing (DF) successfully iden-
tified vulnerabilities in the unsafe versions of the Themis subjects and for the majority of
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the repaired versions, DF identified only small differences, as expected. But also here, the
evaluation results of DF show some discrepancies (see Table 13 in red and italics).

The vulnerability in the unsafe version of pac4j is due to the password encoding, which
is performed during user authentication. In the static analysis by Themis the encoding
procedure is assumed to be expensive, which is represented in a separate model. However,
the actual code provided by Themis does not include an expensive implementation, and
hence, DF only identified a maximum δ value of 11 bytecode instructions. Since DF does
not use any models, it could not find a noteworthy cost difference between the provided
safe and unsafe versions (cf. Table 13 subject pac4j Safe and pac4j Unsafe). In order to further
analyze the problem, DF was applied on a more expensive password encoding method,
denoted with a star (*) in Table 13, which iterates over the password, to get a stronger
indication that there is an actual timing side-channel vulnerability. The discrepancies for
the unsafe version of Tomcat and OACC appear to be similar to pac4j, as some manually
built models have been used for the static analysis.

The discrepancy in the safe version of the Jetty subject indicates the safe version is still
vulnerable. A closer look at the bytecode reveals that there is indeed one bytecode instruc-
tion that depends on the secret input. Amplified inside a loop, this difference can lead to
a large cost difference, which in this case depends on the input size. Therefore, the version
can be considered safe for small input sizes but not for large input sizes. Themis did not
find this vulnerability because it analyzes an intermediate bytecode representation called
Jimple [214], which indeed does not contain the extra instruction.

In addition to the Blazer and Themis subjects, Table 14 shows the results for the hybrid
side-channel analysis. The highlighted values represent significant differences to the other
technique verified with the Wilcoxon rank-sum test (with 5% significance level).

HyDiff vs. DF. DF usually identifies some improved δ values relatively fast, but often
cannot reach similar maximum δ values as HyDiff. In particular, HyDiff outperforms DF:

• for the time to the first δ > 0 in only 1 of 8 subjects (for the remaining 7 subjects both
achieve similar numbers), and

• for the average δ value in 4 of 8 subjects (for the remaining 4 subjects both achieve
similar numbers).

The experiments reported in Table 14 show that the parallel differential fuzzing (PDF)
performs better than DF: PDF cannot only improve the δ values, but is also faster than DF
in identifying the first δ > 0. The results for comparing HyDiff with PDF are as follows,
HyDiff outperforms PDF:

• for the time to the first δ > 0 in none of the 8 subjects (for another 5 subjects both
achieve similar numbers), and

• for the average δ value in 3 of 8 subjects (for another 4 subjects both achieve similar
numbers).

Please note that the performance benefit of PDF is in absolute numbers in 2 of the 3 cases
below one second.

HyDiff vs. DDSE. Similar as for the regression analysis, there is no significant difference
between the DDSE and DDSEx2T experiments for the subjects in the side-channel analysis.
There is some small improvement for the average δ for the subjects Themis_Jetty Safe, RSA
1717, and RSA 834443. Therefore, the following result discussion will ignore the DDSEx2T
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experiments and focus on DDSE. DDSE usually needs more time to identify the first δ > 0,
but is very powerful in generating high δ values. In particular, HyDiff outperforms DDSE:

• for the time to the first δ > 0 in 7 of 8 subjects (for the remaining subject both achieve
similar numbers), and

• for the average δ value in 3 of 8 subjects (for the remaining 5 subjects both achieve
similar numbers).

Temporal development of the results. Since the overall results in Table 14 are quite similar
after the time bound of 30 minutes (1, 800 seconds), especially for the RSA subjects, the
Figures 26 and 27 show exemplary the temporal development for the subjects Themis_Jetty
unsafe and RSA 1964903306.

Figure 26 shows the development for Themis_Jetty unsafe in the complete time bound in
the graph on the left side and the development in the first 120 seconds in the graph on
the right side. This subject represents the typical case, in which DDSE takes some time to
identify a good input, but afterwards jumps quite fast to a very high δ value. As long as
DDSE performs very low, HyDiff orientates itself towards its fuzzing component. As soon
as DDSE makes the jump after 60 seconds, HyDiff joins this development and overtakes
DF and PDF. Over time, PDF and DF can improve, but will not get to the same high δ value.
Interestingly, even when the standalone DDSE cannot make progress anymore, HyDiff still
can leverage its components to continuously improve the δ value.

The considered techniques (DF, PDF, DDSE, and HyDiff) produce very similar results
for the RSA subjects after the 30 minutes time bound (cf. Table 14 and the left part of Figure
27). But in particular the beginning of the analysis looks quite different (cf. the right part in
Figure 27). DDSE and HyDiff can achieve a δ value of 252 after approximately 10 seconds,
for which PDF needs around 60 seconds, and DF needs around 138 seconds.
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Figure 26: Results for DF, PDF, DDSE, and HyDiff on Themis_Jetty unsafe for t=1, 800 sec and t=120
sec (lines and bands show averages and 95% confidence intervals across 30 repetitions).

7.4.6 Discussion

RQ1-A3 Differential fuzzing (DF). The comparison of differential fuzzing (DF) with state-
of-the-art static analysis tools in side-channel vulnerability detection shows that the dy-
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Figure 27: Results for DF, PDF, DDSE, and HyDiff on RSA 1964903306 for t=1, 800 sec and t=60 sec
(lines and bands show averages and 95% confidence intervals across 30 repetitions).

namic analysis by DF can find the same vulnerabilities as the static analysis tools. Fur-
thermore, since DF does apply on the actual bytecode and does not use any models, it is
employed in a more realistic environment and identified unknown vulnerabilities. How-
ever, considering the analysis time, DF often took longer to report its findings (cf. Table
12 and 13). However, the absolute differences in the analysis time usually is in the range
of seconds. Similarly, DF performs very well on the presented subjects in the comparison
to HyDiff and DDSE. It is very fast in identifying the first improvement (t : δ > 0) and
identifies all vulnerabilities. The parallelization of DF (PDF) can improve the results of DF,
but the performance benefit is not so strong compared to the results in the regression anal-
ysis (cf. Section 7.2.5). PDF can improve especially for the time to the first δ improvement
(t : δ > 0). In fact HyDiff cannot identify a first δ improvement faster than PDF in any
of the subjects, although the absolute values are still very close. However, the temporal
development shows that PDF performs only slightly better than DF in identifying large δ

values, for which HyDiff clearly performs better. Therefore, a disadvantage of DF is the
relatively long analysis time needed to identify very large δ values.

RQ2-A3 Differential dynamic symbolic execution (DDSE). While DDSE is very fast in
identifying its best δ value, the results in Table 14 indicate that it needs longer than the other
techniques to identify any δ > 0. The temporal development in Figures 26 and 27 show that
DDSE takes some time and then directly jumps to a very high δ value. In contrast to DF
and HyDiff, DDSE does not improve its result continuously over time.

RQ3+4-A3 HyDiff vs. DF and DDSE. The results in Table 14 show that HyDiff, as the
combination of DF and DDSE, always matches the best final δ value compared to DF
and DDSE. In only two subjects HyDiff can achieve a significantly higher value than its
components in isolation. Similarly, the temporal developments in Figures 26 and 27 show
that HyDiff always performs on the better curve from DF and DDSE. Therefore, HyDiff

represents a well-balanced combination of DF and DDSE, while it cannot significantly
amplify the exploration.

RQ5-A3 HyDiff for differential testing. For all subjects (cf. Tables 12, 13, and 14) HyDiff

and its components can efficiently detect side-channel vulnerabilities. Furthermore, the
comparison between differential fuzzing and Blazer/Themis (cf. Tables 12 and 13) shows
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that HyDiff can keep up with state-of-the-art static analysis tools for the detection of side-
channel vulnerabilities.

summary – side-channel analysis (a3)

Although HyDiff shows some peaks in the evaluation, it is usually not much bet-
ter than the naive combination of the results from both components. Nevertheless,
HyDiff represents a well balanced combination of both: differential fuzzing and dif-
ferential dynamic symbolic execution, which can be well observed in the graphics
about the temporal development. As it combines both techniques, it can identify a
cost difference very fast and is able to assess the severity of side-channel vulnerabil-
ities very well because it can quickly identify large δ values. The comparison with
Blazer and Themis has shown that differential fuzzing, and hence also HyDiff, can
keep up with state-of-the-art static analysis tools and even outperform them in the
detection in side-channel vulnerabilities.

7.5 robustness analysis of neural networks (a4)

This section describes the application of HyDiff on the robustness analysis of neural networks.
The basics and related work on neural networks and their analysis can be found in Section
2.4.4. The following paragraphs explain how HyDiff and its components can be applied
on neural networks. Afterwards they discuss an extract of the analyzed neural network
and show how to implement HyDiff’s drivers. Finally, this section presents the conducted
evaluation of HyDiff and discusses the results. Please note that the analysis of neural
networks is very expensive: there are many paths involved and the neurons are usually
highly connected. Therefore, this kind of analysis represents a stress testing scenario for
HyDiff in the domain of high complexity. The evaluation on robustness analysis of neural
networks extends the evaluation shown in one of the preliminary publications [6].

7.5.1 Approach

The goal of the proposed analysis is to check the robustness of neural networks, i.e.,
whether a small change in the input can already lead to a change in the output of the
network. Specifically, in this application scenario HyDiff is used to find adversarial inputs
for an image classification network. Since HyDiff performs the analysis of Java bytecode,
the first step is to re-write a given neural network model into a Java program [191]. In the
below presented experiments, the neural network model has been built with KERAS [192],
a high-level neural networks API. In order to generate a Java program, one can iterate over
the layers of the resulting KERAS model and, depending on the layer type (e.g., convolu-
tion or activation layer), can generate loops which perform the necessary calculations, i.e.,
linear combinations of the input at the neurons, the learned weights and biases. As the
test set of the learning process showed, the resulting Java translation preserves the predic-
tion ability of the original learned neural network. The translation from the original neural
network to the Java program is based on the toolset by Youcheng Sun [191].

Similarly to the side-channel analysis (cf. Section 7.4), the idea for the differential analysis
is to allow changes in the input and observe differences in the network’s behavior. More
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precisely, the proposed analysis changes up to x% of the pixels in the input image, and
checks whether there can be any difference in the output of the network.

HyDiff’s fuzzing component needs to fuzz (1) values for the complete image, and then
it needs to fuzz (2) values and positions of the pixels to change to reach the x% boundary.
Therefore, the driver will build two images that differ only in up to x% of the pixels.
Afterwards the driver executes the transformed neural network model once with each image
and measure the differential metrics similar as for the regression analysis. The metric output
difference is of particular interest.

HyDiff’s symbolic execution component needs to introduces the changes, similar as for
the side-channel analysis, directly in the input and not in the program. Therefore, the
driver reads a complete image and the values and pixels to change, but does introduce
change-annotations in the input. Then the driver executes the transformed neural network
model with the change-annotated input. Since the goal of the neural network analysis is to
identify differences in the classification, i.e., output differences similar to regression, and
not cost differences like the side-channel analysis, the symbolic exploration uses the same
heuristics as for regression analysis.

The analysis approach for neural networks represents a combination of the ideas from
the regression analysis and the side-channel analysis: (1) changes happen in the input
and not in the program (cf. side-channel analysis), and (2) the goal is to detect an output
difference (cf. regression analysis).

Some preliminary experiments have shown that with HyDiff in its default setup (i.e., dif-
ferential fuzzing and differential dynamic symbolic execution start at the same time), both
components do not synchronize with each other because they are busy with their own anal-
ysis due to the expensive program execution. Therefore, the execution setup for the neural
network analysis is different: the experiments start with differential symbolic execution for
10 minutes. After this time bound the differential fuzzing component is started with the
already generated inputs by the differential symbolic execution component as additional
seed inputs and both component run in parallel for the remaining time. The 10 minutes
delay provides sufficient time to the DDSE component to generate a first interesting input.

7.5.2 Example & Drivers

Listing 26 shows an extract of the Java program, which represents the transformed neural
network model for the experiments for this case study. The program takes a double array
as input, which represents a normalized 28x28 greyscale image. The image is expected to
include a handwritten digit and the network has been trained to recognize such digits.

Each compartment of this program denotes a layer of the neural network. For example
layer 0 is implemented in the lines 3 to 12. Firstly, the resulting array after the convolution
is declared in line 3. Afterwards the value for each neuron gets initialized with the stored
biases (cf. line 7). Afterwards the linear combination is performed in the lines 8 to 11,
in which the multiplication of the weights and the input values is shown in line 11. The
resulting array represents the input for the next layer.

The final layer shows the final classification of the hand-written digits into the numbers
0 to 9. The total size of the program is 81 LOC.

Drivers. Listings 27 and 28 show the drivers for the experiment with x=1% changed pix-
els. The fuzzing driver (cf. Listing 27) starts with reading the input image (cf. lines 7 to 20),
which includes the normalization of the pixel values from the bytes in the range [-128,127]
to double values in the range [0, 1] in line 18. Afterwards the driver introduces changes by
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Listing 26: Extract of the transformed neural network model as Java program.

1 int runDNN(double[][][] input) { // input image is of shape 28x28x1

2 // layer 0: convolution

3 double[][][] layer0 = new double[26][26][2];

4 for (int i = 0; i < 26; i++)

5 for (int j = 0; j < 26; j++)

6 for (int k = 0; k < 2; k++) {

7 layer0[i][j][k] = biases0[k];

8 for (int I = 0; I < 3; I++)

9 for (int J = 0; J < 3; J++)

10 for (int K = 0; K < 1; K++)

11 layer0[i][j][k] += weights0[I][J][K][k] * input[i + I][j + J][K];

12 }

13

14 // layer 1: activation

15 double[][][] layer1 = new double[26][26][2];

16 for (int i = 0; i < 26; i++)

17 for (int j = 0; j < 26; j++)

18 for (int k = 0; k < 2; k++)

19 if (layer0[i][j][k] > 0)

20 layer1[i][j][k] = layer0[i][j][k];

21 else

22 layer1[i][j][k] = 0;

23

24 // layer 2: convolution

25 double[][][] layer2 = new double[24][24][4];

26 for (int i = 0; i < 24; i++)

27 for (int j = 0; j < 24; j++)

28 for (int k = 0; k < 4; k++) {

29 layer2[i][j][k] = internal.biases2[k];

30 for (int I = 0; I < 3; I++)

31 for (int J = 0; J < 3; J++)

32 for (int K = 0; K < 2; K++)

33 layer2[i][j][k] += weights2[I][J][K][k] * layer1[i + I][j + J][K];

34 }

35

36 // layer 3: activation

37 double[][][] layer3 = new double[24][24][4];

38 for (int i = 0; i < 24; i++)

39 for (int j = 0; j < 24; j++)

40 for (int k = 0; k < 4; k++)

41 if (layer2[i][j][k] > 0)

42 layer3[i][j][k] = layer2[i][j][k];

43 else

44 layer3[i][j][k] = 0;

45

46 ... // layer 4 - 8

47

48 // layer 9: activation

49 int ret = 0;

50 double res = -100000;

51 for (int i = 0; i < 10; i++) {

52 if (layer8[i] > res) {

53 res = layer8[i];

54 ret = i;

55 }

56 }

57 return ret;

58 } �
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Listing 27: Fuzzing driver for the neural network experiment with 1% pixel change.

1 public static void main(String[] args) {

2 final int IMG_HEIGHT = 28;

3 final int IMG_WIDTH = 28;

4 final int NUMBER_OF_PIXEL_CHANGE = 7; // 1%

5

6 // Reading input from fuzzed file.

7 double[][][] input1 = new double[28][28][1];

8 double[][][] input2 = new double[28][28][1];

9 try (FileInputStream fis = new FileInputStream(args[0])) {

10 byte[] bytes = new byte[1];

11 for (int i = 0; i < 28; i++)

12 for (int j = 0; j < 28; j++)

13 for (int k = 0; k < 1; k++) {

14 if (fis.read(bytes) == -1)

15 throw new RuntimeException("Not enough data to read input!");

16

17 /* Normalize value from [-128,127] to be in range [0, 1] */

18 input1[i][j][k] = (bytes[0] + 128) / 255.0;

19 input2[i][j][k] = input1[i][j][k];

20 }

21

22 // Introduce change for second input: in total 784 pixels, 1% means 7 pixel values.

23 for (int i = 0; i < NUMBER_OF_PIXEL_CHANGE; i++) {

24 bytes = new byte[3];

25 if (fis.read(bytes) == -1)

26 throw new RuntimeException("Not enough data to read input!");

27

28 int i_pos = Math.floorMod(bytes[0], 28);

29 int j_pos = Math.floorMod(bytes[1], 28);

30 input2[i_pos][j_pos][0] = (bytes[2] + 128) / 255.0;

31 }

32 } catch (IOException e) {...}

33

34 Mem.clear();

35 DecisionHistory.clear();

36 Object res1 = null;

37 try {

38 res1 = runDNN(input1);

39 } catch (Throwable e) {

40 res1 = e;

41 }

42 boolean[] dec1 = DecisionHistory.getDecisions();

43 long cost1 = Mem.instrCost;

44

45 Mem.clear();

46 DecisionHistory.clear();

47 Object res2 = null;

48 try {

49 res2 = runDNN(input2);

50 } catch (Throwable e) {

51 res2 = e;

52 }

53 boolean[] dec2 = DecisionHistory.getDecisions();

54 long cost2 = Mem.instrCost;

55

56 DecisionHistoryDifference d = DecisionHistoryDifference

57 .createDecisionHistoryDifference(dec1, dec2);

58 Kelinci.setNewDecisionDifference(d);

59 Kelinci.setNewOutputDifference(new OutputSummary(res1, res2));

60 Kelinci.addCost(Math.abs(cost1 - cost2));

61 } �
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modifying the pixel value at specific locations (cf. lines 28 to 30). Note that only input2 is
changed, and that input1 remains unchanged. Therefore, input1 denotes the original im-
age and input2 the changed image. After reading the images and introducing the changes,
the driver executes the neural network program with input1 (cf. lines 34 to 43) and with
input2 (cf. lines 45 to 54). Finally, the driver reports the observed differences.

The symbolic execution driver (cf. Listing 28) again distinguishes two modes: a concolic
mode (lines 10 to 36) and a pure symbolic execution mode (lines 37 to 47). The driver
follows the same general idea as the fuzzing driver: first read the image pixels and then
modify the pixels at specific locations. Furthermore, the symbolic execution driver adds
symbolic values for each pixel (cf. lines 21 and 22) and for the changes (cf. lines 29 to 34).
For the symbolic execution mode it simply generates these symbolic values (cf. lines 41
and 43 to 45). Before executing the neural network in line 57, the driver adds the change-
annotations to the input to combine two images into one (cf. lines 50 to 54).

Example. The implemented analysis in the fuzzing and symbolic execution driver tries
to identify two images that differ only up to a given threshold and that are differently
classified by the neural network. In order to illustrate the effect of this approach, please
consider Figure 28 and Figure 29. Figure 28 shows two inputs that have been generated by
differential fuzzing after 1, 375 seconds. The image on the left side is classified as the digit
6 and the image on the right side is classified as the digit 5. Figure 29 shows two inputs
that have been generated by differential dynamic symbolic execution after 295 seconds.
The image on the left side is classified as the digit 5 and the image on the right side is
classified as the digit 1. For both pairs the images differ only in 7 pixel values, i.e., 1%
of the pixels in the image. The generated images are not necessarily representative as
adversarial inputs as they do not fulfill the assumption of the neural network, namely that
it expects handwritten digits. Due to the driver implementation, the search process can
change the complete image, and so, these images look randomly generated. Note that this
case study is used as stress testing for HyDiff and its components. Therefore, it is fair
enough to identify images that differ slightly and lead to different classifications in order
to assess the robustness of the neural network.

However, it is also possible to update the drivers to perform a more realistic scenario. If
the original input is kept and the process searches only the pixel locations and values, then
the result can be used as adversarial inputs. This analysis would be much harder because
there are not so many ways to change an existing image. Figure 30 shows an exemplary
result of performing such an analysis with differential fuzzing. The left side shows the
original image that is classified as 6. The right side shows an image with 50% changed
pixel that is classified as 8. In the experiment, differential fuzzing needed more than 60
hours to generate the adversarial input.

7.5.3 Evaluation Metrics

The evaluation metrics for the neural network analysis are the same as for the regression
analysis. The most important metric is the output difference because it shows a difference in
the resulting classification of the image. The crash metric is not of interest in this analysis
since the goal is not to produce a crash, which should actually also not be possible. Errors
in the network should lead to a miss-classification; real crashes in the program would
represent an error in the transformation from neural network model to the Java program
or an error in the data processing in the driver.
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Listing 28: Symbolic execution driver for the neural network experiment with 1% pixel change.

1 public static void main(String[] args) {

2 int IMG_HEIGHT = 28;

3 int IMG_WIDTH = 28;

4 int NUMBER_OF_PIXEL_CHANGE = 7; // 1%

5 int[] i_pos_changes = new int[NUMBER_OF_PIXEL_CHANGE];

6 int[] j_pos_changes = new int[NUMBER_OF_PIXEL_CHANGE];

7 double[] value_changes = new double[NUMBER_OF_PIXEL_CHANGE];

8 double[][][] input = new double[IMG_HEIGHT][IMG_WIDTH][1];

9

10 if (args.length == 1) {

11 try (FileInputStream fis = new FileInputStream(fileName)) {

12 byte[] bytes = new byte[1];

13 for (int i = 0; i < IMG_HEIGHT; i++)

14 for (int j = 0; j < IMG_WIDTH; j++)

15 for (int k = 0; k < 1; k++) {

16 if (fis.read(bytes) == -1)

17 throw new RuntimeException("Not enough data to read input!");

18

19 /* Normalize value from [-128,127] to be in range [0, 1] */

20 double value = (bytes[0] + 128) / 255.0;

21 input[i][j][k] = Debug.addSymbolicDouble(value,

22 "sym_" + i + "_" + j + "_" + k);

23 }

24 for (int i = 0; i < NUMBER_OF_PIXEL_CHANGE; i++) {

25 bytes = new byte[3];

26 if (fis.read(bytes) == -1)

27 throw new RuntimeException("Not enough data to read input!");

28

29 i_pos_changes[i] = Debug.addConstrainedSymbolicInt(

30 Math.floorMod(bytes[0], 28), "sym_ipos_" + i, 0, 27);

31 j_pos_changes[i] = Debug.addConstrainedSymbolicInt(

32 Math.floorMod(bytes[1], 28), "sym_jpos_" + i, 0, 27);

33 value_changes[i] = Debug.addSymbolicDouble(

34 (bytes[2] + 128) / 255.0, "sym_change_" + i);

35 }

36 } catch (IOException e) {...}

37 } else {

38 for (int i = 0; i < IMG_HEIGHT; i++)

39 for (int j = 0; j < IMG_WIDTH; j++)

40 for (int k = 0; k < 1; k++)

41 input[i][j][k] = Debug.makeSymbolicDouble("sym_" + i + "_" + j + "_" + k);

42 for (int i = 0; i < NUMBER_OF_PIXEL_CHANGE; i++) {

43 i_pos_changes[i] = Debug.makeConstrainedSymbolicInteger("sym_ipos_" + i, 0, 27);

44 j_pos_changes[i] = Debug.makeConstrainedSymbolicInteger("sym_jpos_" + i, 0, 27);

45 value_changes[i] = Debug.makeSymbolicDouble("sym_change_" + i);

46 }

47 }

48

49 // Insert changes.

50 for (int i = 0; i < NUMBER_OF_PIXEL_CHANGE; i++) {

51 int i_pos = i_pos_changes[i];

52 int j_pos = j_pos_changes[i];

53 double value = value_changes[i];

54 input[i_pos][j_pos][0] = change(input[i_pos][j_pos][0], value);

55 }

56

57 runDNN(a);

58 } �
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classified as 6 classified as 5

Figure 28: Inputs identified by DF after 1, 375 seconds by fuzzing two images that differ in up to
1% of the pixels. The learned model classifies the left image as a 6, while it classifies the
right image as a 5. The images differ only in 7 pixels.

classified as 5 classified as 1

Figure 29: Inputs identified by DDSE after 295 seconds by synthesizing two images that differ in up
to 1% of the pixels. The learned model classifies the left image as a 5, while it classifies
the right image as a 1. The images differ only in 1 pixel.

classified as 6 classified as 8

Figure 30: Adversarial changes identified by DF after 60.89 hours by fuzzing up to 50% pixel
changes for a fixed image. The learned model classifies the left (original) image as a
6, while it classifies the right image as an 8. The images differ in 314 pixels.

The results report the following metrics:

• t +odiff: the average time to first output difference (lower is better)

• tmin: the minimum time (over all runs) needed to find the first output difference
(lower is better)

• #odiff: the average number of identified output differences (higher is better)

• #ddiff: the average number of identified decision differences (higher is better)
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7.5.4 Data Sets

The neural network model used in this evaluation has been trained for handwritten digit
recognition using the MNIST dataset [193]. The data set comes with a training set of 60, 000
examples and a test set of 10, 000 examples. The trained model has an accuracy of 97.95%
on the test set. It consists of 11 layers including convolutional/max-pooling/flatten/dense
layers with Rectified Linear Unit (ReLU) activations, contains 10, 000 neurons, and uses
the max function in the final classification layer. The Listing 26 shows an extract of the
transformed Java program.

7.5.5 Evaluation Results

Table 15 shows the results for the robustness analysis of neural networks. The used metrics
(t +odiff, tmin, #odiff, and #ddiff) have been described in Section 7.5.3 and focus on the
output difference (odiff) as well as the decision difference (ddiff). The highlighted values
represent significant differences to the closest other technique verified with the Wilcoxon
rank-sum test (with 5% significance level). The time values are presented in seconds and
the values also report the 95% confidence intervals.

HyDiff vs. DF. As the results in Table 15 show differential fuzzing takes very long to
identify its first interesting input: depending on the number of pixels changed between 24
and 45 minutes. Due to the contribution by DDSE, HyDiff can be much faster. However,
for the number of decision differences, DF outperforms HyDiff for the majority of the
subjects. In particular, HyDiff outperforms DF:

• for the time to the first output difference (t +odiff) in 7 of 7 subjects,

• for the number of output differences (#odiff) in 6 of 7 subjects (for the remaining
subject both achieve similar numbers), and

• for the number of decision differences (#ddiff) in 2 of 7 subjects.

Although the parallel differential fuzzing (PDF) cannot improve the time to the first
output difference compared to DF, it can significantly improve the number of decision
differences. As HyDiff already performs poorly in this category (#ddiff) compared to DF,
PDF outperforms HyDiff there in all subjects. Table 15 shows that PDF can find on average
between 4 to 6more inputs that reveal a decision difference compared to HyDiff. Note that
HyDiff already finds 6 to 7 inputs for such a difference. Although PDF performs very well
for this metric, it cannot solve the problem of DF in this context, which is the time to the
first output difference. PDF is never faster than 28 minutes on average, whereas HyDiff

can find output differences already after approximately 5 minutes. In particular, HyDiff

outperforms PDF:

• for the time to the first output difference (t +odiff) in 7 of 7 subjects,

• for the number of output differences (#odiff) in 1 of 7 subjects (for the remaining 6
subjects both achieve similar numbers), and

• for the number of decision differences (#ddiff) in none of 7 the subjects.
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HyDiff vs. DDSE. Similar to the other applications, the results for the DDSE and DD-
SEx2T experiments show that for the analyzed subjects it makes no difference when giving
DDSE twice the time budget. Therefore, the following discussion ignores the DDSEx2T
experiments and focus on DDSE. Although DDSE performs relatively well for the time to
the first output difference, it can only reveal one difference in the beginning of the analysis.
With increasing number of changed pixels, also the time to first output difference increases.
In particular, HyDiff outperforms DDSE:

• for the time to the first output difference (t +odiff) in 4 of 7 subjects (for the remaining
3 subjects both achieved similar numbers),

• for the number of output differences (#odiff) in 7 of 7 subjects, and

• for the number of decision differences (#ddiff) in all 7 of 7 subjects.

Temporal development of the results. In order to illustrate the input generation, Figure
31 shows the temporal development for the neural network subject with 1% changes. The
Figures for the remaining subjects look very similar, although the curves for the techniques
get closer together as the numbers in Table 15 indicate. The left part in Figure 31 shows
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Figure 31: Results for DF, PDF, DDSE, and HyDiff on the neural network subject with 1% changes
(lines and bands show averages and 95% confidence intervals across 30 repetitions).

the input generation in terms of output differences, the right part of Figure 31 shows the
input generation in terms of decision differences. DDSE identifies its first output difference
after approximately 5 minutes, which is the same as for HyDiff because the setup config-
uration of HyDiff only allows DDSE in the first 10 minutes. Afterwards HyDiff’s fuzzing
component is started and initialized with the initial input and the inputs that has been
generated so far by HyDiff’s symbolic execution component. After this first input, DDSE
cannot improve anymore: no further output differences and no further decision differences
are identified. However, HyDiff can leverage its fuzzing component and still improves its
result.

Both graphs in Figure 31 show a delay in the fuzzing behavior between HyDiff and DF.
For the output difference (cf. the graph on the left side of Figure 31) DF begins to make
progress after approximately 18 minutes, HyDiff’s fuzzing component makes progress
after approximately 37.5 minutes, i.e., 27.5 minutes after it is started. There is a difference



7.5 robustness analysis of neural networks (a4) 121

0 10 20 30 40
0

5

10

15

time (hours)

#
od

if
f

0 10 20 30 40
0

200

400

600

800

time (hours)

#
d
d
if
f

DF

95% CI

PDF

95% CI

DDSE

95% CI

HyDiff

95% CI

Figure 1: mnist2 1 48h: DF, PDF, DDSE, and HyDiff (lines and bands show averages and 95% confidence
intervals across 30 repetitions).

1

0 10 20 30 40
0

5

10

15

time (hours)

#
od

if
f

0 10 20 30 40
0

200

400

600

800

time (hours)

#
d
d
if
f

DF

95% CI

PDF

95% CI

DDSE

95% CI

HyDiff

95% CI

Figure 1: mnist2 1 48h: DF, PDF, DDSE, and HyDiff (lines and bands show averages and 95% confidence
intervals across 30 repetitions).

1

Figure 32: Results for DF, PDF, DDSE, and HyDiff on the neural network subject with 1% changes
after 48 hours (lines and bands show averages and 95% confidence intervals across 3

repetitions).
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Figure 33: Results for DF, PDF, DDSE, and HyDiff on the neural network subject with 1% changes
within the first hour of the 48 hours experiment (lines and bands show averages and 95%
confidence intervals across 3 repetitions).

of 9.5 minutes between DF and HyDiff. This represents the additional time, fuzzing needs
to replay and assess the extra initial input by DDSE, and hence, it shows how expensive
the execution of the neural network is. A similar behavior can be seen for the decision
difference in the graph on the right side of Figure 31. Similarly to DF, parallel DF (PDF)
needs long to actually identify a difference, but afterwards it quickly outperforms DF.

In order to further investigate the performance of HyDiff under this stress test, an addi-
tional experiment has been conducted to explore the results after a 1% change analysis of
48 hours. The expensive experiment has been repeated 3 times and the results are shown
in Figure 32. The results for the first hour are shown in Figure 33. First of all, the results
for the 3 experiments within the first hour of the analysis (cf. Figure 33) look very similar
to the results observed with the 30 repetitions in the earlier experiments (cf. Figure 31): the
confidence intervals are higher, but the trend looks the same. Therefore, although the 48

hours experiment has only 3 repetitions, the trends look reasonable.



122 validation

The left part of Figure 32 shows the results for the number of identified output differ-
ences. HyDiff starts good and outperforms DF and PDF within the first hour. Within the
first 5 hours, HyDiff and PDF performs quite similar, but afterwards PDF improves much
better over time. Also the numbers of DF passes HyDiff after roughly 17 hours. Note that
the absolute difference is not very large, but still single DF or PDF appear to be more effec-
tive for longer time periods. HyDiff’s symbolic execution component does not contribute,
since it can only identify one output difference in the beginning. Nevertheless, it still gen-
erates inputs that need to be synchronized with fuzzing. Therefore, the effectiveness of
HyDiff in contrast to single fuzzing will degrade if the inputs of symbolic execution are
not useful and the synchronization effort is too large. This can happen when DDSE gener-
ates too many useless inputs or when the input execution is very expensive.

The right part of Figure 32 shows the results for the number of decision differences. The
trend, which have been observable already within the first hour, continues for the complete
48 hours, as PDF performs better than DF and better than HyDiff. This development has
the same reasons as for the output difference.

7.5.6 Discussion

RQ1-A4 Differential fuzzing (DF). The results in Table 15 show that differential fuzzing
takes very long to make some initial progress. This time decreases with increasing number
pixels to change, which make sense: the more fuzzing is allowed to change in the image,
the more likely it should be to find a difference in the classification. The parallel setup of
differential fuzzing significantly improves its output.

RQ2-A4 Differential dynamic symbolic execution (DDSE). The complexity of the neural
network is challenging for symbolic execution. The subject with 1% change introduces 7 x
3 = 21 additional symbolic variables: 7 for each change, and 3 for the x and y position of the
pixel and the updated pixel value. In total this means the handling of 784 (one symbolic
variable per image pixel) + 21 = 405 symbolic variables. This large number of symbolic vari-
ables represents quite an effort for symbolic execution. In particular the constraint solving
gets expensive because of the complex constraints due to the highly connected neurons in
the network and the high number of symbolic variables. All these factors contribute to the
low performance of DDSE. Throughout the different subjects, the results show that with
increasing number of changed pixels (1% to 100%), DDSE takes longer to reveal the first
output difference. For 1% it is approximately 5 minutes, and for 100% (i.e., 784 x 3 = 2, 352
additional symbolic variables) it is more than 9 minutes. Therefore, for DDSE it becomes
more and more difficult to reason about the neural network when the analysis includes
more symbolic variables.

RQ3+4-A4 HyDiff vs. DF and DDSE. The results in Table 15 as well as the temporal
development in Figure 31 show that HyDiff is significantly faster than DF with its initial
progress and also identifies more output differences. The temporal development for the
decision difference for DF and HyDiff (cf. Figure 31) show that they perform very similar
but with a delay of approximately 13 minutes. HyDiff can only outperform PDF in terms
of the time to the first output difference; for the total number of output differences both
achieve similar numbers, and for the decision difference PDF outperforms HyDiff. Please
note that the focus of HyDiff is to quickly generate an output difference. In this context
HyDiff outperforms PDF with the help of symbolic execution. HyDiff benefits from DDSE
due to the fast input generation in the beginning, but cannot leverage its capabilities for the
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remaining analysis time. Therefore, HyDiff clearly outperforms standalone DDSE. HyDiff

is also able to amplify the exploration (cf. left graph in Figure 31), however, the 48 hour
experiment (cf. Figure 32) shows that this is only valid for analysis times within 1 hour.

RQ5-A4 HyDiff for differential testing. The evaluation for the neural network subjects
has shown that all three techniques (DF, DDSE, and their hybrid combination HyDiff)
can be used to find adversarial inputs for neural networks. Although this scenario shows
the limitation of all approaches, output differences have been generated. The fact that 1%
change in the pixel values of an image can be used to produce a different classification
is an indication that the model learned on the MNIST dataset might not be very robust.
Similar results have been obtained in previous works [157, 187].

summary – neural network analysis (a4)

The results for this experimental setup show the different benefits of the two dif-
ferent approaches (fuzzing and symbolic execution) and why it is important to
combine them! HyDiff leverages its differential symbolic execution component to
quickly generate a first output difference, and further leverages differential fuzzing
to identify even more output differences. HyDiff does not only combine the results
of both components, but the components can benefit from each others’ inputs to
further improve the outcome.

7.6 discussion

This section summarizes the evaluation results with regard to the research questions from
Section 3.3 and further summarizes the contributions made by this thesis.

7.6.1 General Answers to Research Questions

RQ1: Differential fuzzing (DF) and its limitations. Differential fuzzing (DF) has been
quite effective in the presented applications. For regression analysis DF has been able to
identify the majority of the output differences. However, it missed some of them. Even the
more powerful parallel DF (PDF) was not able to improve this significantly, and therefore
it indicates that there are several constraints that fuzzing cannot overcome in the given
time bound. In the worst-case complexity analysis DF showed its ability to continuously
improve the high-score. Eventually it identifies high cost values, but it takes time. For
the detection of side-channel vulnerabilities DF performed great and even outperformed
the state-of-the-art static analysis techniques Blazer [104] and Themis [110]. DF does not
depend on models or abstractions as it applies on the actual Java bytecode of the applica-
tion under test. With regard to the analysis time, DF was slower than the static analysis
techniques. For the robustness analysis of neural networks DF is effective, as it finds an ad-
versarial input for a small pixel change ratio, but it is very slow also because the network
execution is very expensive. Fuzzing gets faster with a higher pixel change ratio, but it is
still not efficient. This case study shows that DF reaches its limitations when the program
execution is taking too long.

In conclusion, DF is effective and continuously improves its results over time. The paral-
lel variant of DF shows even better results and also outperforms HyDiff for some subjects.
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RQ2: Differential dynamic symbolic execution (DDSE) and its limitations. Similarly as
DF, differential dynamic symbolic execution (DDSE) performed quite well for all applica-
tions. For regression analysis DDSE identifies output differences for subjects, for which DF
cannot find them. However, DDSE also misses other output differences, which have been
identified by DF. DDSE with twice the time budget (i.e., DDSEx2T) also did not help to
identify these output differences. Therefore, both techniques have their own advantages.
In the worst-case complexity analysis DDSE remains in plateaus and cannot improve a lot
over time. However, DDSE is very fast in detecting a first slowdown and performed signifi-
cantly better for the regular expression subjects than the other techniques. For the detection
of side-channel vulnerabilities DDSE is usually not faster than fuzzing to identify the first
δ > 0, but it is significantly faster in identifying its maximum value (see the graphs in
Figure 26 and 27). DDSE appears to not make fast progress, but then eventually produces
a better value than fuzzing. For the robustness analysis of neural networks DDSE is rel-
atively fast in generating first output differences, which indicates that the exploration is
well directed. However, DDSE cannot reveal more than one difference due to the expensive
constraint solving.

In conclusion, DDSE is a very effective and efficient technique. It can leverage the power
of constraint solving to complement the results of DF. DDSE is not always slower than
fuzzing and represents itself an effective technique. In contrast to fuzzing, DDSE does not
improve the results continuously over time, but develops in jumps. Giving DDSE twice
the time budget does not improve the result in the considered experiments. This indicates
that DDSE already identifies interesting results in the beginning of the exploration and
then only slowly improves over time due to the path explosion. A parallel variant of DDSE
might significantly improve the behavior (cf. Section 8.2).

RQ3+4: HyDiff vs. DF and DDSE. For regression analysis HyDiff can identify all output
differences and often generates higher values for the number of decision differences in a
shorter period of time. In the worst-case complexity analysis HyDiff clearly outperforms
the single components and can further increase the slowdown of the applications under
test. It shows great performance in quickly identifying slow-performing inputs. For the
detection of side-channel vulnerabilities HyDiff does not show a clear benefit over the
combination of both components, meaning that there is no significant amplification of the
exploration. Nevertheless, HyDiff represents a well balanced combination and sometimes
performs better. For the robustness analysis of neural networks DF and DDSE reach their
limits, and hence, also HyDiff shows its bottlenecks. In the standard setup there is no
synchronization happening between the two components because they are busy with their
own analysis. However, the concept of HyDiff allows delays between the starting points
of the components, which significantly helps HyDiff to make progress. Therefore, HyDiff

represents a good combination of DF and DDSE.
In conclusion, HyDiff does not only combine the results but also can amplify the ex-

ploration of the components (e.g., see the results on Math-60, CLI3-4, CLI5-6, Themis_Jetty,
Insertion Sort and Image Processor). The results of the conducted experiments also indicate
that parallel differential fuzzing (PDF) might be an alternative when the application of
symbolic execution is not reasonable due to issues with constraint solving (e.g., complex
string constraints) or unsupported programming languages.

RQ5: HyDiff for differential testing. For regression analysis HyDiff identified all output
differences. HyDiff also identified crashes as regression bugs, although the data set was
not chosen to contain this kind of bugs specifically. In the worst-case complexity analysis
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HyDiff triggers algorithmic complexity (AC) vulnerabilities. Especially the ability of Hy-
Diff to also incorporate user-defined cost specifications makes it generally applicable. For
the detection of side-channel (SC) vulnerabilities HyDiff identified all SC vulnerabilities in
the data set. Furthermore, HyDiff can find the same SC vulnerabilities as DF and therefore
it also outperforms the state-of-the-art static analysis tools. For the robustness analysis of
neural networks HyDiff has been shown to be effective for the generation of adversarial in-
puts. However, the application was used to stress test the technique and the results should
be not be overrated.

In conclusion, HyDiff can be used for differential testing. It effectively and efficiently
combines fuzzing and symbolic execution to generate inputs that reveal differential behav-
iors including vulnerabilities in software.

7.6.2 Contribution Results

The investigation of the research questions RQ1-5 showed that the contributions C1-4 pro-
vide efficient and effective techniques to contribute to the research interest of differential
software testing. Differential Fuzzing (C1) is effective for all considered differential test-
ing applications and shows good performance over time as it can improve the outcomes
continuously. Although Differential Dynamic Symbolic Execution (C2) is driven by costly
program analysis and input reasoning it can effectively be used for differential testing as
well and it can leverage constraint solving to quickly make progress. The parallel employ-
ment of fuzzing and symbolic execution in HyDiff (C3 and C4) successfully combines the
strengths of both techniques and amplifies the exploration of behavioral differences.

The evaluation showed that HyDiff and its components can reveal differences that are
relevant for numerous testing purposes. In regression analysis (A1) the presented tech-
niques identified output differences between two program versions that potentially repre-
sent regression bugs. In worst-case complexity analysis (A2) serious algorithmic complex-
ity vulnerabilities have been identified, which can be exploited, e.g., for denial of service
attacks. In side-channel analysis (A3) the techniques showed to be effective to reveal poten-
tial side-channel vulnerabilities. Both, A2 and A3, are highly relevant analysis techniques
in the context of software security. Finally, HyDiff has been stress-tested on the robustness
analysis of neural networks. Despite its limitations, it still has been able to identify output
differences to show the existence of adversarial inputs.

Overall, the proposed hybrid differential software testing technique and its components
are valuable contributions in the area of software testing.

7.7 limitations & threats to validity

This section discusses the limitations and the threats to internal, external, and construct
validity of the conducted research.

7.7.1 Limitations of the Proposed Approaches

In addition to the benefits of the proposed hybrid differential testing approach, it is also rel-
evant to discuss the potential practical limitations. The fuzzing and the symbolic execution
components need drivers to parse the input and call the application under test at a specific
entry point. Although other studies have shown how to automate this step [57, 92], HyDiff
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requires this as input. Furthermore, HyDiff needs the information about syntactic changes
(only for regression analysis) to define the fuzzing targets and the change-annotations for
symbolic execution. Also these tasks could be automated in future work [91, 95].

Especially for regression analysis the output of HyDiff needs some post-processing to
identify intended and unintended behavioral changes (cf. [93]).

In contrast to the worst-case complexity analysis, for which HyDiff generates an input
that shows and triggers a vulnerability, HyDiff cannot automatically retrieve inputs that
exploit side-channel vulnerabilities. For this application HyDiff solely shows a potential
vulnerability, which still needs to be proven to be exploitable in a practical environment.
Therefore, it needs some attack synthesis techniques for side-channels [122, 123].

7.7.2 Threats to Validity

In addition to the discussed practical limitations in the previous paragraph, it is also impor-
tant to discuss the potential limitations of the conducted evaluation. Therefore, this section
discusses the threats to internal, external, and construct validity.

Internal Validity. The main threat to internal validity is that systematic errors in the eval-
uation lead to invalid conclusions. Due to the fact that the evaluation of HyDiff handles
randomized algorithms it is crucial to mitigate the risk of reporting randomly occurring
phenomena. Fuzzing is mainly based on random mutations, and hence, it requires a sound
statistical inspection. Therefore, the presented evaluation follows the guidelines by Arcuri
and Briand [14] and Klees et al. [27]. All experiments have been repeated 30 times and
the reported average values are augmented with the maximum/minimum values and the
95%-confidence intervals. The seed inputs used for fuzzing and symbolic execution have
been randomly generated and have been the same for all repetitions of an experiment. The
only requirement for the seed inputs is that they do not trigger any crash or timeout inside
the application due to the requirements of the underlying fuzzing framework. A poten-
tial threat regarding the seed inputs is that fuzzing might perform different with other
inputs. Therefore, the inputs have been generated randomly and are not chosen based
on existing test suites. Additionally, the parameters like the time bounds of the multiple
analysis types and the leveraged exploration heuristics might not have been selected ade-
quately. Therefore, all parameters have been chosen based on preliminary assessments on
their effectiveness. Furthermore, the collection of the data and the statistical evaluation is
automated to avoid any careless error by humans.

External Validity. The main threat to external validity is that the evaluation may not gen-
eralize to other software projects or other types of differential analysis. The selected appli-
cation scenarios, namely regression analysis, worst-case complexity analysis, side-channel
analysis, and robustness analysis of neural networks, represent a wide range of differential
analysis types, and therefore show the general applicability of the proposed testing frame-
work. The subjects for the specific benchmarks are chosen based on the state-of-the-art
benchmarks in the specific fields, including micro-benchmarks and real-world applications
to show the practicality of HyDiff.

Construct Validity. The main threat to construct validity is that the used evaluation met-
rics may not represent adequate views to answer the research questions. Informally one
can ask: Do the evaluation metrics measures the right thing? In the case of differential anal-
ysis we overall goal is to search differences. Therefore, the evaluation metrics need to focus
on the various notions of difference, which depends on the specific application scenarios
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(cf. Section 3.4). Regression analysis (A1) and the robustness analysis of neural networks
(A4) search for differences in the output, whereas worst-case complexity analysis (A2) and
side-channel analysis (A3) search for differences in the execution cost.

Research question RQ1 and RQ2 ask how good the single techniques are in order to
reveal differences. Therefore, the evaluation metrics measure how many differences can be
found by the investigated techniques. The metrics follow that intuition that revealing more
differences than another techniques is better. Depending on the application this can be
measured best by counting the output differences (A1 and A4), by collecting the maximum
execution cost (A2), and by calculating the execution cost difference (A3). The number of
decision differences further helps to detect diverging execution behavior (relevant for A1 and
A4). The same metrics are relevant for RQ3 and RQ4, which ask how good the hybrid
approach performs compared to its single components in isolation. RQ5 asks whether
HyDiff can be used for differential software testing. Also this question can be answered
with the used metrics because all of them depend on the actual differences.

7.8 summary

This chapter discussed the validation of HyDiff and its components. The evaluation on
four types of differential analysis techniques showed that HyDiff can reveal behavioral
differences in real-world applications. Furthermore, it showed that HyDiff can outper-
form its components. Therefore, the hybrid combination is not only a combination of two
techniques, but also amplifies the differential exploration. The chapter also showed the
limitations of differential fuzzing and differential dynamic symbolic execution, which can
affect the effectiveness of HyDiff. The following chapter represents the last chapter in this
thesis and summarizes the contributions, their impact, and the future work.





8C O N C L U S I O N

This chapter concludes the results and contributions of this PhD work and discusses the
future work.

8.1 summary & impact

This thesis contributes the concept of hybrid differential software testing (HyDiff) as a com-
bination of differential fuzzing (DF) and differential dynamic symbolic execution (DDSE).
HyDiff’s fuzzing component employs a search-based differential exploration implemented
by a genetic algorithm. Its benefit is the inexpensive generation of inputs as well as the
generation of unexpected inputs due to the random mutation strategies. HyDiff’s sym-
bolic execution component performs a systematic exploration guided by several differen-
tial heuristics. Because it can incorporate concrete inputs at run-time, it also can be driven
by the inputs of the fuzzing component. It further can overcome specific constraints due
to its constraint solving capabilities. This supports fuzzing, which might not reach deep
program behaviors due to its random nature. Overall, HyDiff strengthens the presented
differential fuzzing technique by combining it with the heuristic-based, systematic explo-
ration in symbolic execution. As combination this supports a wide spectrum of differential
testing applications and contributes a generally usable testing technique.

In order to evaluate these contributions, HyDiff, DF, and DDSE have been applied
on several application scenarios: regression analysis, worst-case complexity analysis, side-
channel analysis, and robustness analysis of neural networks. The results of the evaluation
show that HyDiff can reveal behavioral differences in software and that HyDiff outper-
forms its components in isolation. This multifaceted evaluation shows that HyDiff can be
applied in numerous testing disciplines, and so, contributes to the overall research interest
of software testing. Additionally, the application of fuzzing for side-channel vulnerability
detection, as proposed in one of the preliminary papers [1], already had a direct impact on
the development of more fuzzing tools, namely SideFuzz [124].

In 2018 Willem Visser stated in his ACM interview: “I believe the combination of fuzzing
and symbolic execution is where the next big breakthroughs are going to come from.” [13].
Therefore, HyDiff aligns well with the current research expectations of powerful hybrid
testing techniques. HyDiff complements the existing work on hybrid testing and provides
a baseline for future research. In summary, the contributions made by this thesis (especially
the technical abilities to reveal behavioral differences) represent an important step in the
direction of better (i.e., more secure and more reliable) software, and hence, support the
overall goal of software engineering.

8.2 future work

The conducted research also has revealed interesting future research directions. First of
all, the powerful employment of parallel differential fuzzing asks for a parallel variant of
differential dynamic symbolic execution (DDSE). The experiments show that DDSE with
double time budget does not significantly improve the results. A parallel DDSE approach
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could select n promising trie nodes for further exploration, which could result in n parallel
instances of bounded symbolic execution. The approach of DDSE could therefore be split
up in parallel exploration and input generation instances.

Furthermore, it could be examined in more detail why parallel fuzzing performs so
much better than a single fuzzing instance and corresponding fuzzing guidelines could
then be elaborated in a future study.

Another interesting study could be a comparison of different strategies for the combi-
nation of two (or more) components in a hybrid setup. HyDiff proposes the employment
of a parallel setup, whereas for example Driller [81] follows a sequential combination.
The proposed concept of hybrid differential software testing (HyDiff) can be also used to
simply generate inputs to increase the program coverage. Therefore, these strategies could
be assessed in a future empirical evaluation.

As discussed in Section 7.7.1, the proposed approach is not yet fully automated. There-
fore, an interesting future work would be to automate the change-annotations as well as
the driver synthesis to offer a fully automated differential testing approach. Since the dif-
ferent kinds of differential testing need different types of inputs, this automation probably
will be specific for certain analysis types.

Additionally, the research around HyDiff aims at the generation of test inputs. The next
step is to further automate the actual debugging and repair of the identified errors and
vulnerabilities. Therefore, an interesting future work could be automated repair in the
areas of software evolution and security vulnerabilities and their combination with the
techniques proposed in this thesis.
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[67] Corina S. Păsăreanu, Willem Visser, David Bushnell, Jaco Geldenhuys, Peter
Mehlitz, and Neha Rungta. “Symbolic PathFinder: integrating symbolic execution
with model checking for Java bytecode analysis.” In: Automated Software Engineering
20.3 (2013), pp. 391–425. doi: 10.1007/s10515-013-0122-2.

[68] Prateek Saxena, Pongsin Poosankam, Stephen McCamant, and Dawn Song. “Loop-
Extended Symbolic Execution on Binary Programs.” In: Proceedings of the Eighteenth
International Symposium on Software Testing and Analysis. ISSTA ’09. Chicago, IL, USA:
Association for Computing Machinery, 2009, pp. 225–236. isbn: 9781605583389. doi:
10.1145/1572272.1572299.

[69] Koushik Sen, Darko Marinov, and Gul Agha. “CUTE: A Concolic Unit Testing En-
gine for C.” In: SIGSOFT Softw. Eng. Notes 30.5 (Sept. 2005), pp. 263–272. issn: 0163-
5948. doi: 10.1145/1095430.1081750.

[70] Matt Staats and Corina Păsăreanu. “Parallel Symbolic Execution for Structural Test
Generation.” In: Proceedings of the 19th International Symposium on Software Testing
and Analysis. ISSTA ’10. Trento, Italy: Association for Computing Machinery, 2010,
pp. 183–194. isbn: 9781605588230. doi: 10.1145/1831708.1831732.
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[142] Xuan-Bach D. Le, Corina S. Păsăreanu, Rohan Padhye, David Lo, Willem Visser, and
Koushik Sen. “Saffron: Adaptive Grammar-Based Fuzzing for Worst-Case Analy-
sis.” In: SIGSOFT Softw. Eng. Notes 44.4 (Dec. 2019), p. 14. issn: 0163-5948. doi:
10.1145/3364452.3364455.

[143] Caroline Lemieux, Rohan Padhye, Koushik Sen, and Dawn Song. “PerfFuzz: Au-
tomatically Generating Pathological Inputs.” In: Proceedings of the 27th ACM SIG-
SOFT International Symposium on Software Testing and Analysis. ISSTA 2018. Amster-
dam, Netherlands: ACM, 2018, pp. 254–265. isbn: 978-1-4503-5699-2. doi: 10.1145/
3213846.3213874.

[144] Yau-Tsun Steven Li, Sharad Malik, and Benjamin Ehrenberg. Performance Analysis of
Real-Time Embeded Software. Norwell, MA, USA: Kluwer Academic Publishers, 1998.
isbn: 0792383826.

[145] Kasper Luckow, Rody Kersten, and Corina S. Păsăreanu. “Symbolic Complexity
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ternational Publishing, 2017, pp. 97–117. isbn: 978-3-319-63387-9.

[170] Jinhan Kim, Robert Feldt, and Shin Yoo. “Guiding Deep Learning System Testing
Using Surprise Adequacy.” In: 2019 IEEE/ACM 41st International Conference on Soft-
ware Engineering (ICSE). May 2019, pp. 1039–1049. doi: 10.1109/ICSE.2019.00108.

[171] Alexey Kurakin, Ian Goodfellow, and Samy Bengio. “Adversarial machine learning
at scale.” In: arXiv preprint arXiv:1611.01236 (2016).

[172] Richard Lippmann. “An introduction to computing with neural nets.” In: IEEE
ASSP Magazine 4.2 (Apr. 1987), pp. 4–22. issn: 1558-1284. doi: 10.1109/MASSP.1987.
1165576.

[173] Siqi Liu, Sidong Liu, Weidong Cai, Sonia Pujol, Ron Kikinis, and Dagan Feng.
“Early diagnosis of Alzheimer’s disease with deep learning.” In: 2014 IEEE 11th
International Symposium on Biomedical Imaging (ISBI). Apr. 2014, pp. 1015–1018. doi:
10.1109/ISBI.2014.6868045.

https://doi.org/10.1109/ICSE-Companion.2019.00115
https://doi.org/10.1109/ICSE-Companion.2019.00115
https://doi.org/10.1145/3236024.3264835
https://doi.org/10.1109/ICASSP.2016.7471631
https://doi.org/10.1109/ETD.1995.403491
https://doi.org/https://doi.org/10.1016/bs.host.2016.07.005
https://doi.org/10.1109/ICSE.2019.00108
https://doi.org/10.1109/MASSP.1987.1165576
https://doi.org/10.1109/MASSP.1987.1165576
https://doi.org/10.1109/ISBI.2014.6868045


146

[174] Lei Ma, Felix Juefei-Xu, Fuyuan Zhang, Jiyuan Sun, Minhui Xue, Bo Li, Chunyang
Chen, Ting Su, Li Li, Yang Liu, and et al. “DeepGauge: Multi-Granularity Testing
Criteria for Deep Learning Systems.” In: Proceedings of the 33rd ACM/IEEE Interna-
tional Conference on Automated Software Engineering. ASE 2018. Montpellier, France:
Association for Computing Machinery, 2018, pp. 120–131. isbn: 9781450359375. doi:
10.1145/3238147.3238202.

[175] Lei Ma, Fuyuan Zhang, Jiyuan Sun, Minhui Xue, Bo Li, Felix Juefei-Xu, Chao Xie,
Li Li, Yang Liu, Jianjun Zhao, and Yadong Wang. “DeepMutation: Mutation Testing
of Deep Learning Systems.” In: 2018 IEEE 29th International Symposium on Software
Reliability Engineering (ISSRE). Oct. 2018, pp. 100–111. doi: 10.1109/ISSRE.2018.
00021.

[176] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, and Pascal Frossard. “DeepFool:
A Simple and Accurate Method to Fool Deep Neural Networks.” In: The IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR). June 2016.

[177] Jorge Nocedal and Stephen Wright. Numerical optimization. Springer Science & Busi-
ness Media, 2006.

[178] Augustus Odena and Ian Goodfellow. “Tensorfuzz: Debugging neural networks
with coverage-guided fuzzing.” In: arXiv preprint arXiv:1807.10875 (2018).

[179] Nicolas Papernot, Patrick McDaniel, Somesh Jha, Matt Fredrikson, Z. Berkay Ce-
lik, and Ananthram Swami. “The Limitations of Deep Learning in Adversarial Set-
tings.” In: 2016 IEEE European Symposium on Security and Privacy (EuroS P). Mar.
2016, pp. 372–387. doi: 10.1109/EuroSP.2016.36.

[180] Nicolas Papernot, Patrick McDaniel, Xi Wu, Somesh Jha, and Ananthram Swami.
“Distillation as a Defense to Adversarial Perturbations Against Deep Neural Net-
works.” In: 2016 IEEE Symposium on Security and Privacy (SP). May 2016, pp. 582–
597. doi: 10.1109/SP.2016.41.

[181] Kexin Pei, Yinzhi Cao, Junfeng Yang, and Suman Jana. “DeepXplore: Automated
Whitebox Testing of Deep Learning Systems.” In: Proceedings of the 26th Sympo-
sium on Operating Systems Principles. SOSP 2017. Shanghai, China: Association for
Computing Machinery, 2017, pp. 1–18. isbn: 9781450350853. doi: 10.1145/3132747.
3132785.

[182] Alun Preece. “Asking Why in AI: Explainability of intelligent systems - perspectives
and challenges.” In: Intelligent Systems in Accounting, Finance and Management 25.2
(2018), pp. 63–72. doi: 10.1002/isaf.1422.

[183] David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George
van den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam,
Marc Lanctot, Sander Dieleman, Dominik Grewe, John Nham, Nal Kalchbrenner,
Ilya Sutskever, Timothy Lillicrap, Madeleine Leach, Koray Kavukcuoglu, Thore
Graepel, and Demis Hassabis. “Mastering the game of Go with deep neural net-
works and tree search.” In: Nature 529.7587 (2016), pp. 484–489. doi: 10 . 1038 /

nature16961.

[184] Youcheng Sun, Min Wu, Wenjie Ruan, Xiaowei Huang, Marta Kwiatkowska, and
Daniel Kroening. “Concolic Testing for Deep Neural Networks.” In: Proceedings of
the 33rd ACM/IEEE International Conference on Automated Software Engineering. ASE
2018. Montpellier, France: Association for Computing Machinery, 2018, pp. 109–119.
isbn: 9781450359375. doi: 10.1145/3238147.3238172.

https://doi.org/10.1145/3238147.3238202
https://doi.org/10.1109/ISSRE.2018.00021
https://doi.org/10.1109/ISSRE.2018.00021
https://doi.org/10.1109/EuroSP.2016.36
https://doi.org/10.1109/SP.2016.41
https://doi.org/10.1145/3132747.3132785
https://doi.org/10.1145/3132747.3132785
https://doi.org/10.1002/isaf.1422
https://doi.org/10.1038/nature16961
https://doi.org/10.1038/nature16961
https://doi.org/10.1145/3238147.3238172


Neural Network References 147

[185] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan,
Ian Goodfellow, and Rob Fergus. “Intriguing properties of neural networks.” In:
arXiv preprint arXiv:1312.6199 (2013).

[186] Yuchi Tian, Kexin Pei, Suman Jana, and Baishakhi Ray. “DeepTest: Automated Test-
ing of Deep-Neural-Network-Driven Autonomous Cars.” In: Proceedings of the 40th
International Conference on Software Engineering. ICSE 2018. Gothenburg, Sweden: As-
sociation for Computing Machinery, 2018, pp. 303–314. isbn: 9781450356381. doi:
10.1145/3180155.3180220.

[187] Florian Tramer and Dan Boneh. “Adversarial Training and Robustness for Multi-
ple Perturbations.” In: Advances in Neural Information Processing Systems 32. Ed. by
H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. Fox, and R. Garnett.
Curran Associates, Inc., 2019, pp. 5858–5868.

[188] Avraam Tsantekidis, Nikolaos Passalis, Anastasios Tefas, Juho Kanniainen, Moncef
Gabbouj, and Alexandros Iosifidis. “Forecasting Stock Prices from the Limit Order
Book Using Convolutional Neural Networks.” In: 2017 IEEE 19th Conference on Busi-
ness Informatics (CBI). Vol. 01. July 2017, pp. 7–12. doi: 10.1109/CBI.2017.23.

[189] Jingyi Wang, Guoliang Dong, Jun Sun, Xinyu Wang, and Peixin Zhang. “Adversar-
ial Sample Detection for Deep Neural Network through Model Mutation Testing.”
In: 2019 IEEE/ACM 41st International Conference on Software Engineering (ICSE). May
2019, pp. 1245–1256. doi: 10.1109/ICSE.2019.00126.

[190] Website. A Google self-driving car caused a crash for the first timet. https : / / www .

theverge.com/2016/2/29/11134344/google-self-driving-car-crash-report.
2016.

[191] Website. Deep Learning Test Toolset. https://github.com/theyoucheng/DLTT. 2020.

[192] Website. Keras: The Python Deep Learning library. https://keras.io. 2019.

[193] Website. MNIST database. http://yann.lecun.com/exdb/mnist/. 2013.

[194] Website. Understanding the fatal Tesla accident on Autopilot and the NHTSA probe.
https : / / electrek . co / 2016 / 07 / 01 / understanding - fatal - tesla - accident -

autopilot-nhtsa-probe/. 2016.

[195] Ian H. Witten, Eibe Frank, Mark A. Hall, and Christopher J. Pal. “Chapter 10 - Deep
learning.” In: Data Mining (Fourth Edition). Ed. by Ian H. Witten, Eibe Frank, Mark
A. Hall, and Christopher J. Pal. Fourth Edition. Morgan Kaufmann, 2017, pp. 417–
466. isbn: 978-0-12-804291-5. doi: https://doi.org/10.1016/B978-0-12-804291-
5.00010-6.

[196] Xiaofei Xie, Lei Ma, Felix Juefei-Xu, Minhui Xue, Hongxu Chen, Yang Liu, Jian-
jun Zhao, Bo Li, Jianxiong Yin, and Simon See. “DeepHunter: A Coverage-Guided
Fuzz Testing Framework for Deep Neural Networks.” In: Proceedings of the 28th
ACM SIGSOFT International Symposium on Software Testing and Analysis. ISSTA 2019.
Beijing, China: Association for Computing Machinery, 2019, pp. 146–157. isbn:
9781450362245. doi: 10.1145/3293882.3330579.

[197] Xiaofei Xie, Lei Ma, Haijun Wang, Yuekang Li, Yang Liu, and Xiaohong Li. “Dif-
fchaser: Detecting disagreements for deep neural networks.” In: Proceedings of the
28th International Joint Conference on Artificial Intelligence. AAAI Press. 2019, pp. 5772–
5778.

https://doi.org/10.1145/3180155.3180220
https://doi.org/10.1109/CBI.2017.23
https://doi.org/10.1109/ICSE.2019.00126
https://www.theverge.com/2016/2/29/11134344/google-self-driving-car-crash-report
https://www.theverge.com/2016/2/29/11134344/google-self-driving-car-crash-report
https://github.com/theyoucheng/DLTT
https://keras.io
http://yann.lecun.com/exdb/mnist/
https://electrek.co/2016/07/01/understanding-fatal-tesla-accident-autopilot-nhtsa-probe/
https://electrek.co/2016/07/01/understanding-fatal-tesla-accident-autopilot-nhtsa-probe/
https://doi.org/https://doi.org/10.1016/B978-0-12-804291-5.00010-6
https://doi.org/https://doi.org/10.1016/B978-0-12-804291-5.00010-6
https://doi.org/10.1145/3293882.3330579


148

benchmarks / data sets references

[198] Marcel Böhme and Abhik Roychoudhury. “CoREBench: Studying Complexity of
Regression Errors.” In: Proceedings of the 23rd ACM/SIGSOFT International Symposium
on Software Testing and Analysis. ISSTA. San Jose, California, USA, 2014, pp. 105–115.

[199] René Just, Darioush Jalali, and Michael D. Ernst. “Defects4J: A Database of Existing
Faults to Enable Controlled Testing Studies for Java Programs.” In: Proceedings of the
2014 International Symposium on Software Testing and Analysis. ISSTA 2014. San Jose,
CA, USA: ACM, 2014, pp. 437–440. isbn: 978-1-4503-2645-2. doi: 10.1145/2610384.
2628055.

[200] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny
images. Tech. rep. 2009.

[201] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. “Gradient-based learning applied to
document recognition.” In: Proceedings of the IEEE 86.11 (Nov. 1998), pp. 2278–2324.
issn: 1558-2256. doi: 10.1109/5.726791.

[202] Website. Commons CLI. https://commons.apache.org/proper/commons-cli/. 2019.

[203] Website. Cyber Grand Challenge (CGC). https://www.darpa.mil/program/cyber-
grand-challenge. 2015.

[204] Website. DARPA’s Space/Time Analysis for Cybersecurity (STAC) program. https://www.
darpa.mil/program/space-time-analysis-for-cybersecurity. 2015.

[205] Website. Debian Bug report log 800564 – php5: trivial hash complexity DoS attack. https:
//bugs.debian.org/cgi-bin/bugreport.cgi?bug=800564. 2015.

[206] Website. H2 Database Engine. http://www.h2database.com/html/main.html.

[207] Website. Regular Expressions. http://www.mkyong.com/regular-expressions/10-
java-regular-expression-examples-you-should-know/. 2012.

[208] Website. Software-artifact Infrastructure Repository. http://sir.unl.edu. 2019.

other references

[209] Ole-Johan Dahl, Edsger W. Dijkstra, and C. A. R. Hoare, eds. Structured Programming.
GBR: Academic Press Ltd., 1972. isbn: 0122005503.

[210] Frank DeRemer and Hans H. Kron. “Programming-in-the-Large Versus
Programming-in-the-Small.” In: IEEE Transactions on Software Engineering 2.02 (Apr.
1976), pp. 80–86. issn: 1939-3520. doi: 10.1109/TSE.1976.233534.

[211] Edsger W. Dijkstra. “A note on two problems in connexion with graphs.” In: Nu-
merische Mathematik 1.1 (1959), pp. 269–271.

[212] “ISO/IEC/IEEE International Standard - Systems and software engineering–
Vocabulary.” In: ISO/IEC/IEEE 24765:2017(E) (Aug. 2017), pp. 1–541. doi: 10.1109/
IEEESTD.2017.8016712.

[213] Ian Sommerville. Software Engineering. 9th. Pearson Education, Inc., 2011. isbn:
137035152.

[214] Raja Vallee-Rai and Laurie J. Hendren. Jimple: Simplifying Java Bytecode for Analyses
and Transformations. Tech. rep. 1998.

https://doi.org/10.1145/2610384.2628055
https://doi.org/10.1145/2610384.2628055
https://doi.org/10.1109/5.726791
https://commons.apache.org/proper/commons-cli/
https://www.darpa.mil/program/cyber-grand-challenge
https://www.darpa.mil/program/cyber-grand-challenge
https://www.darpa.mil/program/space-time-analysis-for-cybersecurity
https://www.darpa.mil/program/space-time-analysis-for-cybersecurity
https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=800564
https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=800564
http://www.h2database.com/html/main.html
http://www.mkyong.com/regular-expressions/10-java-regular-expression-examples-you-should-know/
http://www.mkyong.com/regular-expressions/10-java-regular-expression-examples-you-should-know/
http://sir.unl.edu
https://doi.org/10.1109/TSE.1976.233534
https://doi.org/10.1109/IEEESTD.2017.8016712
https://doi.org/10.1109/IEEESTD.2017.8016712


Other References 149

[215] Hans van Vliet. Software Engineering: Principles and Practice. 3rd. Wiley Publishing,
2008. isbn: 0470031468.

All links were last followed on June 18, 2020.





O V E RV I E W O F P U B L I C AT I O N S

This section lists the publications that have been created along this PhD work and
that served as basis for this thesis. Each publication is followed by a brief contribution
statement.

JPF’2017 (Workshop)
Shadow Symbolic Execution with Java PathFinder [4]
Yannic Noller, Hoang Lam Nguyen, Minxing Tang, and Timo Kehrer
Discusses the implementation of shadow symbolic execution in the framework of Java PathFinder.

Contribution Statement: Large parts of the implementation have been done by Hoang Lam Nguyen. My
contributions are mostly on the conceptual level and the evaluation.

ISSTA’2018
Badger: Complexity Analysis with Fuzzing and Symbolic Execution [3]
Yannic Noller, Rody Kersten, and Corina S. Păsăreanu
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