
115-129

115 

Rudarsko-geološko-naftni zbornik
(The Mining-Geology-Petroleum Engineering Bulletin)
UDC: 622
DOI: 10.17794/rgn.2020.4.10

Original scientific paper

Corresponding author: Francesco Tinti
francesco.tinti@unibo.it

The application of a stockpile stochastic  
model into long-term open pit mine  
production scheduling to improve  
the feed grade for the processing plant

Javad Gholamnejad1; Ali Azimi1; Reza Lotfian1, Sara Kasmaeeyazdi2, Francesco Tinti2

1 Department of Mining and Metallurgical Engineering, Yazd University, University Blvd, Safayieh, Yazd, Iran
2 Department of Civil, Chemical, Environmental and Material Engineering, University of Bologna, via Terracini 28, Bologna, Italy

Abstract
This paper presents a chance-constrained integer programming approach based on the linear method to solve the long-
term open pit mine production scheduling problem. Specifically, a single stockpile has been addressed for storing excess 
low-grade material based on the availability of processing capacity and for possible future processing. The proposed 
scheduling model maximizes the project NPV while respecting a series of physical and economic constraints. Differ-
ently from common practice, where deterministic models are used to calculate the average grade for material in the 
stockpiles, in this work a stochastic approach was performed, starting from the time of planning before the stockpile 
realization. By performing a probability analysis on two case studies (on iron and gold deposits), it was proven that the 
stockpile attributes can be treated as normally distributed random variables. Afterwards, the stochastic programming 
model was formulated in an open pit gold mine in order to determine the optimum amount of ore dispatched from dif-
ferent bench levels in the open pit and at the same time a low-grade stockpile to the mill. The chance-constrained pro-
gramming was finally applied to obtain the equivalent deterministic solution of the primary model. The obtained results 
have shown a better feed grade for the processing plant with a higher NPV and probability of grade blending constraint 
satisfaction, with respect to using the traditional stockpile deterministic model..

Keywords:
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1. Introduction

The Open Pit Long-Term Production Scheduling 
(OPLTPS) procedure is a large scale optimization prob-
lem that aims to find the sequence of block extraction 
from the pit during the mine life, by reaching the maxi-
mum possible Net Present Value (NPV) whilst satisfying 
a variety of physical and economical constraints. The 
economic feasibility and also the optimality of medium- 
and short-term production scheduling of a mine is highly 
dependent on careful OPLTPS. Mathematical program-
ming has been exploited to solve OPLTPS problems 
since the 1960s. A complete review on the applications 
of operation research and mathematical programming 
on the mine scheduling problem can be found in Osan-
loo et al. (2008) and Newman et al. (2010). Most of the 
models only considered mining and processing without 
taking into account the intermediate stage of stockpiling 
between mining and processing, usually used for the 
storage of low grade or excessive mined materials for 
possible future processing. In reality, materials of differ-
ent grades are partially mixed within the stockpile and 

the final grade of material leaving the pile becomes a 
complex function of the material inside it (Kasmaee et 
al., 2018).

To date, stockpiles have been included in some short- 
and medium-term production scheduling models, with 
several professionals working on it. Among all, the pre-
sent research lays its foundations on the following studies:

Smith (1999) considered the stockpile option in the 
grade blending constraints, while developing a com-
bined mixed integer goal and separable programming 
techniques for short-term production scheduling of a 
phosphate open pit mine. The average grade of stockpile 
(in terms of P2O5) in each period was treated as a varia-
ble. Then, the separable term representing the product of 
the average grade of P2O5 in the stockpile and the quan-
tity of ore reclaimed from the stockpile in a given time 
period was approximated by a piecewise linear function. 
After block aggregation and variable elimination, the 
model was solved using CPLEX’s branch and bound al-
gorithm.

Asad (2010) proposed a Linear Programming (LP) 
model for the short-term production scheduling of ce-
ment quarries and stockpile operations with the objec-
tive of cost minimization. Each quarry has a number of 
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working benches at each scheduling period, and each 
bench has a stockpile holding the excess raw materials 
mined during a given period. The model updates each 
stockpile inventory on a weekly basis. The percentage of 
chemical content of each stockpile (CaO, SiO2, Al2O3, 
etc.) was supposed to be fixed and known.

Yarmuch and Ortiz (2011) proposed a linear model 
for optimizing the material flow between the open pit, 
one high grade and one low grade stockpile and an ore 
crusher, thus solving the short-term production schedul-
ing problem for a copper mine. The proposed model was 
then solved period by period and the stockpile’s grades 
were calculated at the end of each period.

Eivazy and Askari-Nasab (2012) formulated a mul-
ti-destination MIP model for the short-term production 
scheduling of an open pit mine which minimizes the to-
tal cost of mining operations, taking into account stock-
piles for excess raw materials according to the rock type 
and grade range of ore, different routes for material 
haulage to final destinations and horizontal directional 
extraction of blocks along with the operational con-
straints. They assumed that stockpiles are homogenous, 
and the ore sent from each of them has a certain grade, 
equivalent to the average. To make this assumption clos-
er to reality, they added two constraints to the model: the 
average grade of ore sent from the open pit to stockpiles 
in each time period must be in an acceptable range cor-
responding to each stockpile; after reclaiming ore from a 
stockpile, the average grade of remaining materials 
within it must remain in its acceptable grade range.

In the mentioned models, it is assumed that the mate-
rials in the stockpile are completely mixed, so that the 
grade of output ore is equal to the average of material 
within the stockpile. However, that is not always the 
case, especially in long-term stockpiles. Homogeniza-
tion does not occur completely in these types of stock-
piles and materials are dumped without any special or-
der. As a matter of fact, an estimation of the properties of 
the reclaimed material from the stockpiles is difficult.

In the present study, it is assumed that during the mine 
lifetime, the extracted materials are firstly randomly 
stacked into the stockpile using dump trucks depending 
on their grades, and secondly randomly reclaimed in 
“buckets” with the tonnage of each equal to the amount 

of material shortage at that scheduling period. So, the 
average grade of the material reclaimed from the stock-
pile is a random variable whose grade distribution func-
tion is equal to the distribution function of the materials 
sent to that pile. The research novelty consists of insert-
ing this distribution function into the mathematical mod-
el of the OPLTPS problem, which is related to previous 
works over the use of chance-constrained programming 
approaches in stochastic environments (Gholamnejad 
and Karimi, 2006; Gholamnejad and Osanloo, 2007; 
Gholamnejad et al., 2008). The approach has been test-
ed and validated on a case study of single stockpile of an 
open pit gold mine with infinite capacity.

In the following sections, after a short presentation of 
stockpile role in production scheduling of mines, the 
model showing the probabilistic behaviour of a single 
stockpile is proposed. Afterwards, the deterministic 
form of the OPLTPS model considering the stockpile 
option is stated. Next, the chance-constrained program-
ming approach is applied for incorporating the probabil-
istic behaviour of stockpile grade. Finally, the numerical 
results for the medium-large size gold deposit case study 
are provided and discussed.

2. Materials and methods

This section is divided in two parts:
• The first part is devoted to the presentation of the 

stochastic nature of the stockpiles, demonstrated 
over two case studies: on one gold and one iron 
mine;

• The second part introduces the entire OPLTPS 
model, including the contribution of the stochastic 
stockpile to the whole process.

2.1 Stockpiles in production scheduling of mines

2.1.1 Role of stockpile in mining process

Stockpiling is an intermediate stage between mining 
and processing in most open pit and underground mines. 
Some valuable material may be stored in stockpiles; for 
example, a low-grade stockpile takes material that is 
only marginally unprofitable for a mill feed and stores it 

Table 1: Four roles of stockpiles in mining operations (Jupp et al., 2013)

Purpose Description and Example

Storing
Stockpiles can store ore material that does not meet current blend characteristics. On the other 
hand, these “wastes” can become economic in the future. These stockpiles are usually referred 
to as long-term stockpiles.

Buffering Stockpiles can be used as a buffer for solving short-term fluctuations in production or plant 
processes.

Blending for 
characteristic separation Stockpiles can provide choices of specific blends into the crusher depending on requirements.

Blending for 
homogenization

Stockpiles can be used to improve homogenization of the ore material, for its efficient inclusion 
in the plant feed
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for possible future processing, when technology or 
 market prices change (Morley and Arvidson, 2017). 
Jupp, Howard and Everett (2013) described the main 
purposes of ore stockpiling, which is summarized in 
 Table 1.

It should be noted that it is possible to combine more 
than one approach into a single stockpile.

2.1.2  Investigation on the stochastic behaviour  
of stockpile grade

Due to the lack of stockpile spatial models, the pre-
diction of ore feed quality from stockpiles to the pro-
cessing plant is difficult. The reason lies in the fact that, 
before solving the model, it is not clear which blocks are 
going to be sent to the stockpile and how much ore is 
removed from the stockpile to the mill during a given 
period.

In geostatistics, the term support refers to the size and 
volume of a block, for estimation. In the stockpiles, each 
block contains the quantity of material that can be exca-
vated and removed. According to the selected range of 
ore concentration in the mine, a distribution of grades (in 
blocks of 1×1 cell) can be assigned to the stockpile. By 
increasing the block size, more stockpile blocks are 
merged, and the distribution of the original data is no 
longer represented. When comparing the different sizes 
of the blocks from a stockpile, the means of ore concen-
tration are the same, while the variances decrease with 
the growing volume. Theoretically, if the entire stock-
pile was excavated with only one bucket, its variance 
would have been zero. When dealing with a stockpile, 
understanding the behaviour of grade variance by vary-
ing the block size can be useful to better control the ore 
concentration before the raw material enters the process-
ing plant. The optimum support of the blocks should be 
calculated by knowing their exact position in the stock-
pile. When this information is not available (a common 
case for stockpiles), it is however possible to have a pre-
liminary indication of the values’ dispersion by calculat-
ing the variance for all data, with different block sizes.

In order to clarify this issue, the behaviour of two 
stockpiles, one in a gold mine and another in an iron 
mine, has been simulated using the Monte Carlo Simula-
tion method. There are three assumptions for these simu-
lations:

• Assumption 1: Each stockpile has grade threshold 
limits (lower and upper) for selecting the blocks to 
be included there;

• Assumption 2: The grade of material in each stock-
pile is a random variable with a distribution func-
tion equal to the distribution function of the blocks 
inside the pit outline, whose grades are between the 
two above mentioned lower and upper thresholds;

• Assumption 3: There is no spatial correlation be-
tween the materials in the stockpile.

Case study 1: An open pit gold mine

The first mine is a conventional open pit mine. The 
final pit contains 855,400 tons of ore with an average 
grade of 1.57 g/t Au at 0.60 g/t cut-off grade. There are 
1,807 blocks within the final pit limit of the deposit with 
the dimension of 6m x 6m x 5m. It is assumed that ex-
cess mineralized materials with a grade of less than 0.6% 
will be sent to a low-grade stockpile. The grade distri-
bution function of Au for Au<0.60 g/t can be seen in 
Figure 1.

Based on assumption 2, the frequency behaviour 
shown in Figure 1 governs the grade of gold blocks 
within the stockpile, too. The constructed stockpile in 
this mine contains 3,476 blocks with the dimensions of 
3m × 3m × 3m in three benches with a 3 m height. Then, 
15 equiprobable images of stockpile are generated using 
the Monte Carlo Simulation (MCS) method. Monte Car-
lo simulation consists of creating alternative samples 
(realizations) from the input parameters, evaluating the 
model response for each of these realizations, and con-
structing the corresponding distribution of model pre-
dictions (Goovaerts, 1997). In each simulation, a set of 
3,476 gold grade were generated using MCS and used as 
input to the stockpile block model. The histogram of Au 
for the first simulation can be seen in Figure 2. Also, the 

Figure 1: Histogram of gold grade blocks for Au < 0.60 (g/t) 
in the orebody

Figure 2: Histogram of gold grade blocks in the stockpile  
for the first simulation (of 15)
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statistical characteristics of the Au grade in fifteen simu-
lations are summarized in Table 2.

The tonnage of ore sent from the mine to the stockpile 
and from the stockpile to the mill is not yet determined. 
In order to estimate the grade distribution function of 
feed from stockpile to mill, the block sizes are increased 
by merging adjoining blocks, averaging their values and 
then calculating the statistical parameters of the result-
ing block models. In this way, the excavated tonnage 
from the stockpile is supposed to be equal to the tonnage 
of the merged blocks.

The sizes of the seven block models are determined as:
1. 3m × 3m × 3m
2. 6m × 3m × 3m
3. 6m × 6m × 3m
4. 9m × 6m × 9m
5. 9m × 9m × 9m
6. 12m × 9m × 9m
7. 12m × 12m× 9m.
The statistical parameters of gold grade in merged 

block models for the first stockpile image can be seen in 
Table 3. In particular, two variances are presented:

• the experimental variance, calculated from all data, 
which decreases by increasing the block size;

• the theoretical variance, calculated considering 
only the block size 3m × 3m × 3m and dividing it by 
the volume rate at each block size step.

As an example, for the block model n°3 (6m × 6m × 
3m), the numerical calculations of experimental and 
theoretical variances are:

• experimental variance: 0.0076 (obtained by the 
Monte Carlo Simulation, with defined position of 
the blocks);

• theoretical variance: ratio between the experimental 
variance of model n°1 (3m × 3m × 3m), calculated 
over the original data, and the volume rate of model 
n°3. Numerically, the theoretical variance value is 
obtained by: 0.0284/4= 0.0071.

From Table 3, the following points can be deduced:
Skewness and kurtosis of the merged block models 

show that as the block sizes, or reclaimed ore tonnage, 
increase, the grade distribution function of the stockpile 
approaches the normal distribution function. In other 
words, when block size increases, the distribution be-
comes more and more normal. In order to view the shape 
of their distributions, the histograms of these averages 
are created, which can be seen in Figure 3. The profile 
of the bars is looking more bell-shaped; therefore, we 
can say that the average grade of material reclaimed 

Table 2. Statistical characteristics of 15 simulations of Au grade in a 3m × 3m × 3m stockpile

Simulation Mean Variance Skewness Kurtosis Min Max
1 0.308632 0.028498 -0.12527 1.824330 0.004 0.594
2 0.310799 0.028403 -0.19236 1.821698 0.004 0.594
3 0.312075 0.029256 -0.16410 1.808189 0.004 0.594
4 0.312125 0.027876 -0.16013 1.827763 0.004 0.594
5 0.308269 0.028875 -0.13760 1.834163 0.004 0.594
6 0.308495 0.028440 -0.13231 1.809922 0.004 0.594
7 0.305863 0.028126 -0.13376 1.811596 0.004 0.594
8 0.305414 0.027807 -0.09661 1.798413 0.004 0.594
9 0.309183 0.027664 -0.16313 1.851235 0.004 0.594
10 0.304793 0.027923 -0.11151 1.807980 0.004 0.594
11 0.310599 0.028596 -0.14976 1.812064 0.004 0.594
12 0.302026 0.028601 -0.10723 1.779780 0.004 0.594
13 0.309784 0.029151 -0.12937 1.788000 0.004 0.594
14 0.310232 0.028379 -0.13093 1.804235 0.004 0.594
15 0.309675 0.028382 -0.13377 1.817639 0.004 0.594

Table 3. Statistical parameters of Au in merged block models for the first stockpile image

Block size 
(m3)

Volume rate 
(n. of blocks) Mean Experimental 

Variance Skewness Kurtosis Min Max Theoretical 
variance

3 × 3 × 3 1 0.3097 0.0284 -0.1338 1.8176 0.0040 0.5940 0.0284
6 × 3 × 3 2 0.3098 0.0147 -0.0540 2.4966 0.0070 0.5930 0.0142
6 × 6 × 3 4 0.3092 0.0076 +0.1074 2.7989 0.0673 0.5683 0.0071
9 × 6 × 9 18 0.3097 0.0017 -0.1945 4.1405 0.1279 0.4214 0.0016
9 × 9 × 9 27 0.3098 0.0010 +0.2437 3.4921 0.2286 0.4015 0.0011
12 × 9 × 9 36 0.3092 0.0008 +0.3679 3.7042 0.2286 0.3905 0.0008
12 × 12 × 9 48 0.3091 0.0006 +0.1996 2.2165 0.2638 0.3634 0.0006
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Figure 3: Histogram of merged block grades in the gold stockpile for different block sizes (first image)

Figure 4: Experimental and theoretical variances of gold 
grade versus the number of blocks

from the stockpile in each period has a normal distribu-
tion function based on qualitative estimation (not by hy-
pothesis testing).

As the block size increases, the spread of the distribu-
tion decreases. Figure 4 shows the experimental and 
theoretical variances of gold grade versus block number.

Experimental and theoretical variances are similar, 
which is validated by a very small result of root mean 
square error (RMSE) among them, equal to 0.00026754.

As was expected, as the number of blocks, or the re-
claimed ore tonnage, increases, the spread of the distri-
bution functions approaches zero.

Case study 2: An open pit iron ore mine

The second case study is an iron mine (open pit). The 
final pit contains 251,475 blocks whose dimensions are 
5m x 5m x 5m. It assumed that excess materials with a 
grade of more than 15.0% and less than 0.6% will be 
sent to the low-grade stockpile. The grade distribution 
histogram of Fe in the original block model for 15.0% < 
Fe < 30.0% can be seen in Figure 5.



Gholamnejad J.; Azimi A.; Lotfian R.; Kasmaeeyazdi S.; Tinti F. 120

Rudarsko-geološko-naftni zbornik i autori (The Mining-Geology-Petroleum Engineering Bulletin and the authors) ©, 2020,  
pp. 115-129, DOI: 10.17794/rgn.2020.4.10

The low-grade stockpile in this mine contains 10,000 
blocks with the dimensions 5m × 5m × 5m in three 
benches with a 5m height. The sizes of the seven block 
models are determined as:

1. 5m × 5m × 5m
2. 10m × 5m × 5m
3. 10m × 10m × 5m
4. 10m × 10m × 10m
5. 15m × 15m × 10m
6. 20m × 20m × 10m
7. 30m × 30m × 10m.
The grade distribution function of Fe for the first sim-

ulation can be seen in Figure 6. The statistical character-
istics of the Fe grade for five Monte Carlo simulations 
are summarized in Table 4.

The statistical parameters of Fe grade in merged block 
models along with the theoretical variance and Root 
Mean Square Error (RMSE) for the first stockpile image 
can be seen in Table 5.

RMSE among experimental and theoretical variance 
is 0.071248. The histograms of the averages can be seen 
in Figure 7. The profile of the bars is looking more bell 
shaped than the grade distribution function of Figure 6.

Figure 8 also shows the experimental and theoretical 
variances of Fe grade versus block number.

Modelling of variance behaviour

A power model approximates the variance behaviour 
in both cases of iron and gold stockpiles quite well. In-
creasing the volume rate (by merging the blocks) causes 
a decrease in the variance. By setting a threshold of var-
iance, it is possible to define an acceptable volume of 
material, for further stockpile extraction.

As mentioned before, the ore tons sent to the mill 
were modelled by merging adjoining blocks, but it is 
possible to send the material from different parts of 
stockpile. In the next step, it is assumed that blocks can 

Figure 5: Histogram of iron grade blocks for 15%<Fe<30%  
in the orebody

Table 4: Statistical characteristics of 5 simulations of Fe grade in a 5m × 5m × 5m stockpile

Simulation Mean Variance Skewness Kurtosis Min Max
1 23.7676 16.6584 -0.4362 2.0483 15 29
2 23.6802 16.8697 -0.4151 2.0204 15 29
3 23.6325 16.9506 -0.3844 1.9878 15 29
4 23.7214 16.6434 -0.4163 2.0351 15 29
5 23.6814 16.6319 -0.4037 2.0043 15 29

Figure 6: Histogram of iron grade blocks in the stockpile  
for the first simulation

Table 5: Statistical parameters of Fe in merged block models for the first stockpile image

Block size (m3) Volume rate 
(n. of blocks) Mean Experimental 

Variance Skewness Kurtosis Min Max Theoretical 
variance

5 × 5 × 5 1 23.7676 16.6584 -0.4362 2.0483 15.00 29.00 16.6584
10 × 5 × 5 2 23.7676 8.3563 -0.3146 2.5081 15.50 29.00 8.3292
10 × 10 × 5 4 23.7676 4.1528 -0.2470 2.8491 16.75 28.75 4.1646
10 × 10 × 10 8 23.7676 2.1778 -0.2201 2.9281 18.88 27.63 2.0823
15 × 15 × 10 18 23.7453 1.0524 -0.3363 3.6754 19.00 26.11 0.9255
20 × 20 × 10 32 23.7735 0.5339 0.1931 3.2075 22.06 26.38 0.5206
30 × 30 × 10 72 23.7772 0.3275 0.2736 3.0179 22.63 25.79 0.2314
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Figure 7: Histogram of merged block grades in the iron stockpile for different block size (first image)

be taken out from different parts of stockpile, as a result, 
all possible combinations of blocks extracting from the 
stockpile should be considered. The number of possible 
combinations of blocks in a stockpile case study increas-
es exponentially with the volume, and this affects the 
calculation speed of experimental variance and the prac-
tical possibility to get it. For this reason, for the present 
case studies of gold and iron ore stockpiles, a collection 
of 50 data points was chosen. The data were selected by 
an iterative automatic procedure, which allowed finding, 
with a relatively low number of iterations, a possible 
combination of 50 data points respecting the same val-
ues of the main parameters of distribution function of the 
whole data set: mean, variance, minimum and maxi-

Figure 8: Experimental and theoretical variances of Fe grade 
versus number of blocks.
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mum. For the 50 data points of gold and iron ore stock-
piles, the experimental variance has therefore been cal-
culated for the following volume rates.

For gold:
1. 3m × 3m × 3m
2. 3m × 3m × 6m
3. 3m × 3m × 9m
4. 3m × 3m × 12m
5. 3m × 3m × 15m
For iron:
1. 5m × 5m × 5m
2. 5m × 5m × 10m
3. 5m × 5m × 15m
4. 5m × 5m × 20m
5. 5m × 5m × 25m
The results are presented in Table 6 (gold stockpile) 

and Table 7 (iron stockpile).
A non-linear regression was applied on the experi-

mental variance values. The result was a power behav-
iour, approximating a hyperbole with coefficients very 

proxy to the ones obtained by the analysis on MCS im-
ages (see Figure 9 for Au and Figure 10 for Fe).

Table 8 reports the coefficients of the power model 
(slope and power) for both stockpiles of gold and iron. 
Two cases - regular theoretical position of the blocks 
(see Figures 4 and 8) and undefined position of the 
blocks (see Figures 9 and 10) - are presented and com-
pared.

Comparing the coefficients reported in Table 8 con-
firms that considering the stochastic nature of the stock-
pile, with an undefined position of the blocks, provides a 
variance behaviour similar to the one obtained by using 
defined positions of the blocks. This achievement proves 
that it is possible to insert the stockpile stochastic formu-
lation inside the chance-constrained programming model.

2.2.  Chance-constrained programming model 
considering a stockpile

The long-term production scheduling problem is con-
sidered by using a single stockpile. In this section, the 
deterministic variant of this problem is firstly formulated 

Table 7. Result of the variance calculation for different block sizes for the iron stockpile

Block size (m3) volume rate Number of data Experimental mean Experimental variance
5 x 5 x 5 1 50 24.3200 16.0976
5 x 5 x 10 2 1,225 24.3200 7.8845
5 x 5 x 15 3 19,600 24.3200 5.1469
5 x 5 x 20 4 230,300 24.3200 3.7780
5 x 5 x 25 5 2,118,760 24.3200 2.9567

Table 6. Result of the variance calculation for different block sizes for the gold stockpile

Block size (m3) volume rate Number of data Experimental mean Experimental variance
3 x 3 x 3 1 50 0.3229 0.0285
3 x 3 x 6 2 1,225 0.3229 0.0139
3 x 3 x 9 3 19,600 0.3229 0.0091
3 x 3 x 12 4 230,300 0.3229 0.0067
3 x 3 x 15 5 2,118,760 0.3229 0.0052

Figure 10: Quasi-hyperbolic behaviour of experimental 
variances for the Fe stockpile

Figure 9: Quasi-hyperbolic behaviour of experimental 
variances for the Au stockpile
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as an Integer Linear Program (ILP). Afterwards, a sto-
chastic variant of this problem is considered, where the 
average grade of ore sent from stockpile to processing 
plant is subjected to uncertainty. Finally, the chance-
constrained programming formulation studied in the 
present paper is introduced.

2.2.1 Deterministic formulation

The objective is to schedule production for an open 
pit mine with a single stockpile over a planning horizon 
involving T periods. All problem parameters are as-
sumed to be deterministically known at the time when 
the production plan is built. Three destinations are con-
sidered for a block:

• the processing plant, destination of the high-grade 
ore for subsequent processing;

• the stockpile, destination of the low-grade material;
• a waste dump, destination of the blocks containing 

no valuable material.
The following notations are introduced:
i: block index (I = 1, 2,…,I) and I is the total number 

of blocks to be scheduled;
j: block index (j = 1, 2,...J) for blocks that can be con-

sidered for stockpiling, and J is the total number of 
blocks that are going to be sent to the stockpile;

t: scheduling time period (t = 1, 2,…,T) and T is the 
maximum number of scheduling periods;

k: the counter for block .  is the set of block 
indices defined for block i. It consists of the indices of all 
blocks that need to be removed before extracting block i, 
due to the maximum pit slope angle;

pi
t: the NPV resulting from mining of block i during 

period t. It is expressed in Equation 1:

  (1)

Where:
TOi: the total tonnes of ore material in block I;
TWi: the total tons of waste material in block I;
gi: the grade of block i.
R: total metal recovery.
pr: unit selling price of recovered metal.
cm: unit smelting and selling cost of recovered metal.
pc: unit processing cost of ore.
ce: unit cost of mining rock.
r: economic discount rate in each period.

If block i is extracted in period t but sent to the stock-
pile, the generated NPV in period t ( ) can be calcu-
lated with Equation 2:

  (2)

Where:
ce’: unit cost of mining and sending the materials to 

the stockpile.
ps

t: the NPV resulting from re-handling and process-
ing one ton of stockpiled material in period t with  respect 
to the grade models; it is formulated in Equation 3:

  (3)

Where:
gs: the grade of material leaving the stockpile;
cre: unit cost of re-handling and sending the materials 

from stockpile to the processing plant;
RCt

max: maximum mining capacity in period t;
RCt

min: minimum amount of ore and waste that should 
be mined in period t;

gt
max: the maximum acceptable average grade of ore 

sent to the processing plant in period t;
gt

min: the minimum acceptable average grade of ore 
sent to the processing plant in period t;

TOt
min: minimum amount of ore that should be re-

moved in period t;
TOt

max: maximum processing capacity in period t;
I0: the amount of stockpiled materials at the beginning 

of period 1;
TCS: the total capacity of stockpile;
xi

t: a binary integer variable which takes the value of 
1 if block i is mined during period t and 0 otherwise;

yi
t ∈ [0,1]: a continuous variable, representing the por-

tion of block i sent to the stockpile in period t;
zt: the amount of material reclaimed from the stock-

pile and sent to the processing plant during the period t;
It: the amount of material in the stockpile at the end of 

period t.
Objective function: The mine schedule can be opti-

mized with respect to a number of factors. The criterion 
of optimality can be either maximizing the Net Present 
Value (NPV), minimizing mining costs, minimizing the 
variance of the grade (Chanda and Ricciardone, 2002), 
minimizing the deviation from production targets (Dim-
itrakopoulos and Ramazan, 2004), etc.; however, the 

Table 8: Coefficients of the power model for the two case studies

Case study
Slope Power
Defined positions  
of the blocks

Undefined positions  
of the blocks

Defined positions  
of the block

Undefined positions  
of the block

Gold stockpile 0.0284 0.0287 -1.0000 -1.0510
Iron stockpile 16.6580 16.0000 -1.0000 -1.0510
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most commonly used criterion in long term scheduling 
optimization is to maximize NPV. In this paper, the ex-
pected NPV is maximized by the objective function pre-
sented in Equation 4:

  (4)

Where Z is the variable representing NPV
The objective function presented in Equation 4 in-

cludes three different parts:
• the first part evaluates the NPV to be generated if all 

the extracted ore blocks are sent to the processing 
plant;

• the second part gives the NPV of sending ore to the 
stockpile;

• the third part adds the generated NPV due to the 
processing of zt tons of ore material taken from the 
stockpile.

Grade blending constraints: The average grade of ore 
sent from the mine and the stockpile to the processing 
plant should be less than an upper bound (gt

max) and more 
than a lower bound (gt

min) for each scheduling period, t. 
The grade blending constraints are presented in Inequal-
ity 5 (upper bound) and Inequality 6 (lower bound).

  (5)

  (6)

The above equations can be rewritten as follows (In-
equality 7 and Inequality 8):

 

  (7)

 

  (8)

Processing capacity constraints: The total tons of ore 
processed in each period should be less than an upper 
bound (TOtmax) and more than a lower bound (TOt

min) 
for each time period, t. The processing capacity con-
straints are presented in Inequality 9 (upper bound) and 
Inequality 10 (lower bound).

  (9)

  (10)

Stockpiling constraints: These constraints balance the 
material flow at each stockpile. The amount of ore left in 
the stockpile at the end of period t is equal to the amount 
of ore sent to the stockpile during period t, minus the 
amount of ore taken from the stockpile during t plus the 
amount of ore left in the stockpile at the end of the previ-
ous period. The stockpiling constraint for period 1 is 
presented in Equation 11, while for other periods is 
shown in Equation 12.

  (11)

  (12)

Due to the limited capacity of the stockpile, the 
amount of ore left in the stockpile at the end of each pe-
riod should be limited (Inequality 13):

  (13)

The amount of ore sent from the stockpile to the pro-
cessing plant in each time period should be less than or 
equal to the inventory at the end of the previous period 
(Inequality 14):
  (14)

Mining capacity constraints: Due to the limited min-
ing capacity, the total tons of rock (waste and ore) to be 
mined should be less than an upper bound (RCt

max). In 
order to balance waste production throughout the sched-
uling horizon, a lower bound (RCt

min) also may be need-
ed. The mining capacity constraints are presented in In-
equality 15 (upper bound) and Inequality 16 (lower 
bound):

  (15)

  (16)

Slope constraints: These constraints ensure that all 
blocks that directly restrict the mining of a given block b 
must be completely mined out before the mining of the 
block i start (Inequality 17):
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  (17)

Reserve constraints: Reserve constraints ensure that 
any block in the model can be mined only once (Ine-
quality 18):

  (18)

Linkage constraints: Each block must first be extract-
ed and then processed (Inequality 19):

  (19)

Decision variables bounds: They refer to the varia-
bles xi

t (Equation 20), yi
t (Inequality 21), It and zt (Ine-

quality 22)

  (20)

  (21)

  (22)

2.2.2 Stochastic formulation

Stochastic programming is a well-established method 
in operations research for modelling optimization prob-
lems that involve statistically calculated uncertainty. In 
this framework, the probability distributions governing 
the uncertain data are known or can be estimated. The 
goal is to find some policy feasible for all (or almost all) 
the possible parameter realizations and to optimize the 
expectation of some function of the decisions and the 
random variables (Shapiro and Philpott, 2007). Among 
the different possibilities to handle this problem, two ap-
proaches are most commonly used: the two-stage sto-
chastic programming method and the chance-constrained 
stochastic programming method. In the two-stage sto-
chastic programming approach, in the first stage the de-
cision maker is allowed to take decisions, whose out-
comes will be affected by the occurrence of a random 
event afterwards. Negative effects potentially experi-
enced as a result of the first-stage decisions will finally 
be compensated by a recourse decision in the second 
stage. In this context, any violation of constraints caused 
by unexpected random effects can be balanced later on 
in the second stage. The costs of compensative deci-
sions, when known, are considered as a penalization for 
the violation of constraints. By using this approach, the 
stochastic constraints must be satisfied with a probabili-
ty equal to one (Kall and Wallace, 1994).

Using this first approach may face some issues, since 
it is common that for some applications, compensations 
do not exist, while for others they cannot be modelled as 
costs. In this context, the main target is to safeguard the 
solution obtained against very bad outcomes, depending 

mostly on unavoidable extreme events, causing viola-
tions of constraints. In these cases, the second approach, 
the chance-constrained stochastic programming, origi-
nally formulated by Charnes et al. (1958) and Charnes 
and Cooper (1959) and then developed and applied by 
Charnes and Cooper (1963), must therefore be applied. 
The following section presents the approach, including 
the new specificity of stockpile stochastic constraints, 
useful to handle the uncertainty of block grade in the 
binary integer model.

Objective function: As is clear due to the stochastic 
nature of gs in the third part of the objective function (see 
Equation 4), Z is also a random variable with the ex-
pected value (see Equation 23) and standard deviation 
(see Equation 24):

 

  (23)

  (24)

Equation 25 presents the expected value of ps
t:

  (25)

On the other hand, E[gs] and σ(gs) are the expected 
value and standard deviation of grade of material leav-
ing the stockpile.

Charnes and Cooper (1963) suggested three kinds 
of objective functions in chance-constrained program-
ming, where the objective is an expectational functional 
(the E-model), or the variance of some result (the V-
model), or the probability of some occurrence (such as 
satisfying the constraints) (the P-model). In this study 
the objective function is set up for the maximization of 
expected value of NPV, thus the objective function is 
expressed by Equation 26:

 

  (26)

Stochastic constraints: As expressed before, among 
the model constraints, only the grade blending con-
straints (Inequalities 5 and 6) contain random parame-
ters. The generic way to express the stochastic con-
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straints is presented in Inequality 27 (lower bound) and 
Inequality 28 (upper bound):

  (27)

  (28)

bt is a vector containing a set of values that are probabil-
ity measures of the extent to which constraints violations 
are permitted (confidence level).

In the following Equation 29, the average grade of 
material to be sent to the processing plant during period 
t is defined as a new variable ut:

  (29)

ut is a random variable whose distribution can be ap-
proximated by a normal distribution function with the 
following mean (Equation 30) and standard deviation 
(Equation 31):

  (30)

  (31)

Thus, Inequality 27 can be re-written in Inequa- 
lity 32:

  (32)

By subtracting E(ut) from both sides of the inequality 
in the bracket, and dividing it by s(ut), Inequality 32 can 
be re-written as Inequality 33:

  (33)

Note that  has a standard normal dis-

tribution function; as a result, a value of ybt can then be 
determined from the area under standard normal curve 
such that (Equation 34):

  (34)

Thus, combining Inequalities 33 and Equation 34, 
Inequality 35 results in:

  (35)

The two terms can be interpreted as follows:
 as a risk term;

 as an average term.

Further simplifying the expression, the stochastic 
constraint of Inequality 27 can be transformed in Ine-
quality 36:

  (36)

Similarly, the deterministic equivalent of Inequality 
28 is in the form of Inequality 37:

  (37)

Such that (Equation 38):

  (38)

It is worth noticing that ψβt > 0 ↔ βt < 0.5 and that ybt 
is a coefficient that can be pre-computed. Making bt larg-
er causes ybt to become larger, and this makes the sto-
chastic constraints harder to satisfy. With βt ≥ 0.5, then 
1 – βt  ≤ 0.5, which means ψβt ≤ 0. As a result, the feasible 
region of chance-constrained problems depends on the 
user’s desired confidence level. If a high confidence lev-
el is required, the feasible region is small. If the confi-
dence level is lowered, the feasible region becomes 
larger. Table 9 shows some values of bt and their corre-
sponding values of ybt.

Table 9: Typical values of bt and the corresponding  
values of ybt

bt 50% 60% 70% 80% 90% 95% 96%
ybt 0 0.25 0.53 0.85 1.29 1.65 1.75

As it was seen, the deterministic equivalent form of 
the chance constrained programming model for produc-
tion scheduling with a single stockpile is linear.

3. Results

To assess the efficiency and practicality of the pro-
posed method, a study was carried out on a small size 
open pit gold mine that can be mined within 10 years.
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3.1  Application of the model to an open  
pit gold mine

To estimate the quality parameters of the Au, a 3D 
block model of the gold deposit was prepared and a re-
source estimation was made using block kriging (e.g., 
Chiles and Delfiner, 2012). The orebody and surround-
ing waste materials were discretized into equal sized 
blocks with a dimension of 6m × 6m × 5m. Then, the 
minable reserve was determined using the Lerchs-
Grossmann algorithm (Lerchs and Grossman, 1964). 
The total number of blocks within final pit is 2,690, in-
cluding waste and ore blocks. The mine has a stockpile 
capacity of 200,000 tones, and the processing plant has a 
yearly requirement of 100,000-200,000 tons of ore. In 
order to classify ore and waste, the mill cut-off grade 
was set at 0.35 g/t Au. The managers decided to store ore 
blocks whose Au grade is more than 0.35 g/t and less 

than 1.20 g/t in a low-grade stockpile for future blend-
ing. The remnant model’s details are given in Table 10.

Statistical parameters of the materials with 0.35 ≤ 
Au ≤ 1.20 within the original block model are presented 
in Table 11. In the case study, it is assumed that the gold 
grade distribution function in the stockpile is the same 
distribution function of the blocks in the block model 
that may be sent to the stockpile. This simplification has 
been possible by the analysis on the stockpile stochastic 
behaviour presented in Section 2.1.

Production scheduling for the presented case study is 
done applying GAMS® software. A computer with 8 
CPUs and 20 GB of ram has been used with Windows 7 
Professional. The processor is an Intel(R) Core(TM) i7 
CPU 930 @ 2.80 GHz processor speed, 4Core(s), 8 Log-
ical Processor(s). Two models were run, the first model 
with no stockpile option (NSM), and the second one 
with stockpile option (MSM) assuming the maximum 
possible standard deviation (0.2529 g/t). The results of 
the production scheduling are summarized in Table 12, 
while Figure 11 shows the quantity of metal content sent 
to the mill over the production scheduling period for the 
two models, NSM and MSM. Finally, Figure 12 shows 
the amount of stockpile content at the end of each sched-
uling period using MSM model.

By applying Equations 1-3, together with the pro-
gramming model constraints, the total NPVs generated 
from NSM and MSM are $22 million and $23 million, 
respectively.

Table 10: Parameters for small scale open pit gold mine

Description Value Description Value

Total ore blocks 1,676 Cut-off grade 
(g/t) 0.35

Total waste blocks 1,014 I0 (tons) 0
Block dimensions 
(m) 6 × 6 × 5 Annual discount 

rate 10%

Total ore ton 793,418 RCt
max (tons) 300,000

Total waste ton 480,028 RCt
min (tons) 140,000

Mine life (years) 10 gt
min (g/t) 1.4

Duration of each 
period (years) 2 TOt

min (tons) 100,000

Pit slope angle 450 TOt
max (tons) 200,000

TCS (ton) 200,000 bt 90%

Table 11: Statistical parameters of material  
with 0.35≤Au≤1.20

Parameter Value
Number of blocks 810
Tonnage 383,454
Average grade (g/t) 0.8689
Standard deviation (g/t) 0.2529

Table 12. Results of the production scheduling using NSM and MSM.

Period
Extracted ore ton Extracted waste 

ton
Ore ton to 
stockpile

Ore ton from 
stockpile to mill

Ave. grade of 
ore sent to 
stockpile

Ave. grade of 
ore sent to mill

NSM MSM NSM MSM NSM MSM NSM MSM NSM MSM NSM MSM
1 199,775 258,476 4,734 29,351 0 58,476 0 0 - 0.59 1.80 1.87
2 194,567 175,158 35,032 68,170 0 34,372 0 58,476 - 0.50 1.40 1.40
3 177,052 154,802 81,898 59,175 0 10,131 0 33,686 - 0.51 1.40 1.40
4 121,664 99,887 159,062 157,642 0 10,704 0 10,817 - 0.43 1.42 1.40
5 100,361 105,095 199,301 165,690 0 5,681 0 3,632 - 0.53 1.40 1.40
Total 793,418 793,418 480,028 480,028 0 119,364 0 106,611 - - - -

Figure 11: Metal input to the processing plant using NAM 
and MSM in each period
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4. Discussion

All production constraints are respected throughout 
the production scheduling period in both of the present-
ed models, NSM and MSM, equal to 793,418 tons after 
five periods. However, as Table 12 shows, in the first 
period, the ore production was increased to 258,476 tons 
for MSM with respect to the 199,775 tons of NSM, in 
order to provide high grade ore for the processing plant. 
This was possible by considering the stockpile option 
during the optimization process.

The effect for MSM was obtaining a higher economic 
value, mainly due to the higher average grade of ore sent 
to the mill in the first period. Even including the cost for 
re-handling the stockpile, MSM still generated a 4.5% 
higher NPV than NSM. In fact, the objective function 
used in MSM allows the early mill head grade to be 
raised even further, while letting the low-grade material 
to be sent to the stockpile for future use during the life 
cycle of the mine. This is evidenced from Figure 11, 
showing the quantity of metal content sent to the mill 
over the production scheduling period.

Table 12 also shows an increasing trend in waste re-
moval in both NSM and MSM, obtained by the objective 
function, which tries to maximize the NPV by differing 
the waste removal. However, again, for the first phases 
the wastes in the MSM are higher than NSM because of 
the tendency of the MSM to extract more ore during the 
first years of a mine’s life. This approach results in waste 
tailings filled more gradually across time in MSM than 
in NSM.

Finally, by analysing Figure 12, the stockpile capac-
ity constraint (200,000 tons) included in MSM was re-
spected for each scheduling period, evidencing new pos-
sibilities for further material storage.

5. Conclusion

A new stochastic chance-constraint model was devel-
oped for long-term production scheduling of open pit 
mines considering a single stockpile option.

The work has demonstrated that homogenization does 
not occur completely in long-term stockpiles. In fact, the 
average grade of material leaving the stockpile can be 
supposed to be a random variable with a normal distribu-
tion function, whose mean and maximum standard de-
viation are the mean and standard deviation of the stored 
materials, respectively. Therefore, the probabilistic form 
of the open pit long-term production scheduling (OPLT-
PS) model contains a stochastic objective function and a 
series of deterministic and stochastic constraints. The 
stochastic objective function and constraints could not to 
be handled directly in the optimization process; conse-
quently, a deterministic form of the model was obtained. 
This process leads to converting stochastic linear equa-
tions to the deterministic linear equivalents.

The proposed method, by the aid of GAMS® soft-
ware, was applied to an open pit gold mine as the case 
study. For the specific project, the overall NPV was cal-
culated to increase by about 4.5% with respect to not 
using the stochastic stockpile. The results have shown 
better profitability in the long-range because the objec-
tive function has forced the model to send high-grade 
materials to the mill in the early phases of production 
planning, while forward low-grade ore to the stockpile 
for future processing. The proposed model has the po-
tential to allow open pit planners to define the confidence 
level for respecting the stochastic constraints, thus meet-
ing the production targets with a high level of confidence 
(around 90%).
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SAžETAk

Primjena stohastičkoga modela na odlagalištu jalovine kao potpora dugoročnoj 
proizvodnji u otvorenome kopu s ciljem povećanja postotka rude u obradbi

Rad prikazuje uporabu vjerojatnosnoga cjelobrojnog programiranja, temeljenoga na linearnome algoritmu, za dugoroč-
no rješavanje proizvodnje u rudniku otvorenoga kopa. Obrađeno je jedno odlagalište jalovine sa „siromašnom” koncen-
tracijom rude u cilju aktiviranja toga materijala u budućoj preradbi korisne sirovine. Takav projekt maksimizira trenu-
tačnu vrijednost rudarenja uzimajući u obzir niz fizičkih i ekonomskih varijabli. Posebnost u odnosu na determinističke 
modele koji se danas uglavnom koriste za izračun granične prosječne vrijednosti koncentracije rude prije odlaganja kao 
jalovine izražena je stohastikom. Ona je uključila vjerojatnosnu analizu dvaju slučajeva, tj. za ležište željeza i zlata. U 
obama je dokazano kako se varijable određene na odlagalištu mogu opisati normalnom razdiobom. Stohastički model 
programiran je za rudnik zlata te je uzeta u obzir optimalna vrijednost rude razvrstane na različitim rudničkim razinama, 
a prije slanja na obradbu (mljevenje). Optimizirani model zatim je primijenjen za dobivanje usporednoga deterministič-
kog modela. Rezultati su upozorili na to da je konačno rješenje pokazalo znatno bolji odabir granične koncentracije rude 
koja se mogla poslati na daljnju obradbu. Time je uvećana i ukupna vrijednost rudnika/ležišta.

Ključne riječi:
dugoročna proizvodnja na otvorenome rudničkom kopu, upravljanje odlagalištem, linearno programiranje, upravljanje 
rudnikom, stohastički model
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