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A stability and bifurcation analysis of a kinetic equation indicates that the flocking bifurcation of
the two-dimensional Vicsek model exhibits an interplay between parabolic and hyperbolic behavior.
For box sizes smaller than a certain large value, flocking appears continuously from a uniform
disordered state at a critical value of the noise. Because of mass conservation, the amplitude
equations describing the flocking state consist of a scalar equation for the density disturbance from
the homogeneous particle density (particle number divided by box area) and a vector equation for
a current density. These two equations contain two time scales. At the shorter scale, they are a
hyperbolic system in which time and space scale in the same way. At the longer, diffusive, time
scale, the equations are parabolic. The bifurcating solution depends on the angle and is uniform in
space as in the normal form of the usual pitchfork bifurcation. We show that linearization about
the latter solution is described by a Klein-Gordon equation in the hyperbolic time scale. Then there
are persistent oscillations with many incommensurate frequencies about the bifurcating solution,
they produce a shift in the critical noise and resonate with a periodic forcing of the alignment rule.
These predictions are confirmed by direct numerical simulations of the Vicsek model.

I. INTRODUCTION

Flocking phenomena occurs in bacteria [1–3], sperma-
tozoa [4], insects [5, 6], birds [7–10], animals [11], active
gels [12, 13], or interacting robots [14]. Theoretical un-
derstanding of flocking benefits from analysis of simple
models such as that proposed by Vicsek et al [15]. In the
Vicsek model (VM), the velocities of N particles mov-
ing with equal speed in a box with periodic boundary
conditions are updated so that the velocity of each par-
ticle adopts the direction of the average velocity of its
close neighbors with some alignment noise (conformist
or majority rule) [15, 16]. This system exhibits a phase
transition from disordered to coherent behavior of the
particles: when the alignment noise is sufficiently small
or the particle density high enough, particles move co-
herently as a swarm. Finite size effects are very impor-
tant. Below a critical size of the box, flocking in the VM
with forward update occurs as a continuous bifurcation
from a disordered state with uniform particle density to
an ordered state characterized by nonzero average speed
of the particles [15]. For box size larger than critical,
the bifurcation is discontinuous and a variety of patterns
are possible [17, 18]. Independently of the box size, the
bifurcation is always continuous for VM with backward
update [19].

As the VM is straightforward to simulate numerically,
many variations thereof have contributed to our under-
standing of flocking [6, 16, 20, 21]. To delve deeper into
flock formation, many authors have derived continuum
equations from the VM and its variants, often creat-
ing new models in the process (cf. the review papers
Refs. [6, 16, 20, 21]). Several authors have proposed ki-

netic theory equations based on the VM and then de-
rived continuum equations from them. In a remarkable
formulation, T. Ihle has derived several discrete-time ki-
netic equations that keep many features of the VM [22–
24]. He then derived coupled continuum equations for
the particle density and the momentum (or particle cur-
rent) density by means of a Chapman-Enskog procedure
valid near the transition to flocking [24]. These contin-
uum equations contain terms that appear in the Toner-
Tu macroscopic theory [7], and their coefficients have ex-
plicit expressions. However, Ihle’s derivation introduces
scaling a posteriori and it is not a systematic derivation
based in bifurcation theory.

In this paper, we analyze flocking in the two-
dimensional (2D) VM by using systematically bifurcation
theory for its Enskog kinetic equation [22]. A linear sta-
bility analysis of the time-independent uniform distribu-
tion shows that it becomes unstable at zero wavenumber
when a real eigenvalue increases past 1. The correspond-
ing eigenfunction is the complex first harmonic in the ori-
entation of the particle velocity. The conservation of the
number of particles implies that there is always a mode
with eigenvalue 1 corresponding to particle density (more
precisely, the difference between particle density and the
homogeneous density, number of particles divided by box
area, which we call density disturbance). Thus the am-
plitude equations produced by bifurcation theory corre-
spond to coupled equations for the complex amplitude of
the first harmonic and for the density disturbance. These
complex-valued amplitude equations are equivalent to a
system of real equations for the density disturbance and
a current density. To leading order, these equations are
hyperbolic: time and space scale with the same exponent
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(ballistic regime), and they become parabolic (diffusive)
when first order corrections are added (time scales as the
square of space). The scaling in the ballistic regime is
akin to that observed in experiments of insect swarms
[10].

Remarkably, the dissipation in the longer time scale
drives the equations to a spatially uniform state that
yields the standard diagram of a supercritical pitchfork
bifurcation. However, near the bifurcation point, there
are small-amplitude oscillations with precise frequencies
given by solving a Klein-Gordon equation. Farther from
the bifurcation point, the distinction between hyperbolic
and parabolic scalings becomes blurred, dissipation dom-
inates and these oscillatory modes disappear. One ef-
fect of the oscillatory modes is to shift the bifurcation
point (critical noise) to smaller noise values by an amount
proportional to the average of the density disturbance
squared. A shift in the critical noise to smaller values
is seen in direct numerical simulations of the VM. To
confirm the existence of the oscillatory modes, we have
added a harmonic forcing to the Vicsek alignment rule
and directly simulated the resulting Vicsek model. As the
frequency of the forcing resonates with the fundamental
mode, the amplitude of the latter in the discrete Fourier
transform of the polarization increases. Then the corre-
sponding peak in the discrete Fourier transform becomes
the largest one after the main peak of zero frequency
whose height equals the static ensemble average of the
polarization. If the forcing frequency is close to that of a
higher mode, nearby modes with equal or lower frequen-
cies are excited due to the nonlinearity of the amplitude
equations. Thus, direct simulations of the VM confirm
these predictions based on the bifurcation theory for the
kinetic equation.

The rest of the paper is as follows. The VM and its
nondimensionalization are presented in Section II. In Sec-
tion III, we review the derivation of the kinetic equation
for the VM in the limits of small and large particle den-
sity. The corresponding collision terms are binary and
Enskog-like, respectively. The kinetic equation is dis-
crete in time, nonlocal in space and strongly nonlinear.
The number of particles is a conserved quantity for this
equation. In Section IV, we pose and study the linear sta-
bility of the disordered solution having time-independent
uniform particle density. Disorder is unstable if at least
one eigenvalue has modulus larger than one. As a conse-
quence of conservation of the number of particles, one is
always an eigenvalue corresponding to a constant eigen-
function. We have not solved the eigenvalue problem in
the general case of nonzero wave number. However, per-
turbation theory for wave vectors of small modulus sug-
gests that the eigenvalues decrease as the modulus of the
wave vector increases, thereby supporting our choice of
eigenvalues with zero wave number. If an eigenvalue cor-
responding to nonzero wave number exits first the unit
circle, then the corresponding mode depends on space.
This could be the case for the band patterns found in the
literature. We have constructed the bifurcating solutions

issuing from the disordered one by means of a Chapman-
Enskog method described in Section V (cf. Refs. [25–27]).
The analysis of the amplitude equations is presented in
Sections VI (spatially uniform solutions) and VII (spatio-
temporal solutions). A discussion of our results is pre-
sented in Section VIII and the Appendices are devoted
to different technical matters.

II. 2D VICSEK MODEL

We consider an angular noise Vicsek model with for-
ward updating rule. Our choice differs from Vicsek’s [15]
in the updating rule and it is the same as in Ref. [24]. See
Ref. [19] for a discussion on how different definitions of
the VM affect the character of the order-disorder phase
transition.

More specifically, in dimensional units, N particles
with positions xj and velocities vj = v0(cos θj , sin θj),
j = 1, . . . , N , are inside a square box of size L and we
use periodic boundary conditions. Initially, the particle
positions are random. The particles undergo discrete dy-
namics so that their positions are forwardly updated,

xj(t+ τ) = xj(t) + τvj(t+ τ). (1)

Here t = 0, τ, 2τ, . . .. The angle of a particle i is updated
according to the Vicsek angular noise rule

θi(t+ τ) = Arg

 ∑
|xj−xi|<R0

eiθj(t)

+ ξi(t), (2)

where we sum over all particles that, at time t, are inside
a circle of radius R0 centered at xi (the circle of influ-
ence or interaction circle). The sum includes the particle
i. At each time, ξi(t) is a random number chosen with
probability density g(ξ). Typically, g(ξ) is uniform inside
an interval (−η/2, η/2):

g(ξ) =

{
1
η , |ξ| <

η
2 ,

0, otherwise,
(3)

where 0 ≤ η ≤ 2π.
We nondimensionalize the model according to Table I.

x, R0, L v t θ, ξ

v0τ v0 τ –

TABLE I: Units for nondimensionalizing the equations of the
model.

In our nondimensional units, the VM is described by
Eq. (2) (with nondimensional time, space and R0) and

xj(t+ 1) = xj(t) + (cos θj(t+ 1), sin θj(t+ 1)), (4)

which is Eq. (1) with v0 = 1, τ = 1. In these units, the
nondimensional average particle density becomes

ρ0 =
Nv2

0τ
2

L2
, (5)



3

whereas the average number of neighbors of a particle,
M = NπR2

0/L
2, remains an unchanged dimensionless

parameter.
Collective consensus is quantified by the complex order

parameter

Z = W eiΥ =
1

N

N∑
j=1

eiθj , (6)

whose amplitude 0 < W < 1 (polarization) measures
macroscopic coherence of the particles and Υ is their av-
erage phase.

III. KINETIC THEORY

Here, we follow Ihle’s work and derive a kinetic equa-
tion in the limit of many particles (N � 1) by assuming
molecular chaos [22, 24]. Let f(θ,x, t) dx dθ be the num-
ber of particles in an area dx centered at position x that

move into a direction between θ and θ + dθ at time t.
Assuming that all particles are independent and identi-
cally distributed before undergoing a collision described
by Eqs. (2)-(4), the N -particle probability density is

PN (x1, θ1, . . . ,xN , θN , t) =
N∏
i=1

f(xj , θj , t)

N
. (7)

Here f(xj , θj , t) and f(xj , θj , t)/N , j = 1, . . . , N are the
one-particle distribution functions and probability densi-
ties, respectively. Eq. (7) is the assumption of molecular
chaos first introduced by Boltzmann when deriving his
transport equation [28]. The distribution function after
the collision is found by integrating the N -particle prob-
ability density at time t+ 1 over x2, . . . ,xN and dividing
by N . The result is [24]

f(x + v, θ, t+ 1) = C[f ](θ,x, t), v = (cos θ, sin θ), (8)

C[f ]=

∫ π

−π
dξ g(ξ)

N∑
n=1

(
N − 1

n− 1

)∫
δ̂(θ − ξ − Φ1(θ̃1, . . . , θ̃n)) f(x, θ̃1, t)

(
1− MR(x, t)

N

)N−n
×

n∏
i=2

[∫
|xi−x|<R0

f(xi, θ̃i, t)

N
dθ̃idxi

]
dθ̃1, (9)

MR(x, t) =

∫
|x′−x|<R0

ρ(x′, t) dx′, ρ(x, t) =

∫ π

−π
f(x, θ, t) dθ,

∫
ρ(x, t)dx = N, (10)

Φ1(θ̃1, . . . , θ̃n) = Arg

 ∑
|xj−x1|<R0

eiθ̃j

= Arg

 n∑
j=1

eiθ̃j

. (11)

Here Φ1 given by Eq. (11), is the average direction of the
vector sum of all particle velocities (including particle 1)

inside the circle of radius R0. δ̂(x) =
∑∞
l=−∞ δ(x+ 2πl)

is a periodized delta function that incorporates the colli-
sion rule and the integral over ξ averages over the noises.
In Eq. (9), n is the number of particles inside the inter-
action circle about particle 1 (the latter included). The
average number of particles inside a circle of radius R0

about position x is MR(x, t), given by Eq. (10). The
combinatorial factor in Eq. (9) counts the number of
possible selections of neighbors of particle 1 (excluding
the latter) out of the N − 1 other particles. The factor
(1−MR/N)N−n in Eq. (9) gives the probability that the
particles n+1, . . . , N are not inside the interaction circle
of particle 1. The factor

∏n
i=1

∫
|xi−x|<R0

f(xi, θi, t)dxi
is the probability that particles 2, . . . , n be within inter-
action distance of particle 1 times their angular distri-
bution, given that they are within its interaction circle.
In Eq. (9), MR(x, t), given by Eq. (10), is the average

number of particles inside the circle of influence about
x. When we integrate Eq. (9) over θ, we find that the
particle density immediately after collisions equals that
before: ∫

C[f ](θ,x, t) dθ = ρ(x, t). (12)

We may adopt two opposite approximations of the col-
lision operator (9). For very diluted particle ensembles
having small average density, ρ0 = N/L2, terms with
n ≥ 2 in Eq. (9) provide negligible contributions. Then
we get a binary collision operator

CB [f ]=

∫ π

−π
dξ

g(ξ)

1 +MR

[∫ π

−π
δ̂(θ − ξ − θ̃1)f(x, θ̃1, t)dθ̃1

+

∫ π

−π

∫ π

−π
δ̂(θ − ξ − Φ1(θ̃1, θ̃2)) f(x, θ̃1, t)

×

(∫
|x2−x|<R0

f(x2, θ̃2, t)dx2

)
dθ̃2dθ̃1

]
, (13)
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with MR = MR(x, t), which has been normalized so that∫ π
−πCB [f ]dθ = ρ(x, t).

Secondly, for larger densities and n/N � 1 as N →∞,
the combinatorial factor times (1−MR/N)N−n becomes

(N − 1)!

(n− 1)!(N − n)!

(
1− MR

N

)N−n
∼ Nn−1

(n− 1)!
e−MR ,

and (9) produces an Enskog-type collision operator [24]

CE [f ]=

∫ π

−π
dξ g(ξ)e−MR(x,t)

∞∑
n=1

∫
[−π,π]n

δ̂(θ − ξ − Φ1(θ̃1, . . . , θ̃n))

(n− 1)!
f(x, θ̃1, t)

n∏
i=2

[∫
|xi−x|<R0

f(xi, θ̃i, t)dθ̃idxi

]
dθ̃1.(14)

For active particles in a disordered state, the density
ρ(x, t) equals the constant average density, ρ0 = N/L2,
and the uniform distribution function, f0 = ρ0/(2π), is a
fixed point of the collision operators:

C[f0] = f0, CB [f0] = f0, CE [f0] = f0. (15)

Henceforth, we shall use the Enskog collision operator
(14).

IV. LINEAR STABILITY

To analyze the order-disorder transition we linearize
the kinetic equation using f = f0 + εf̃(θ,x, t), ε � 1,
thereby obtaining

f̃(θ,x + v, t+ 1) =
∞∑
n=1

e−M

(n− 1)!

(
M

2π

)n−1∫ π

−π
dξ g(ξ)

∫
θ̃

δ̂(θ − ξ − Φ1)

[
f̃(x, θ̃1, t) +

n− 1

πR2
0

∫
|x′−x|<R0

f̃(x′, θ̃1, t)dx
′

]

×
n∏
l=1

dθ̃l −
M

2π

1

πR2
0

∫
|x′−x|<R0

∫ π

−π
f̃(θ′,x′, t)dx′dθ′. (16)

Here M = ρ0πR
2
0 and Φ1(θ̃1, . . . , θ̃n) has been defined in

Eq. (11). The separation of variables ansatz f̃(x, θ, t) =

F̃ (x, θ)h(t) produces a discrete equation h(t+ 1)/h(t) =
Q, where Q is the separation constant. Thus h(t) = Qt.

The equation for F̃ is an eigenvalue problem that yields
Q. Moreover, F̃ is a periodic function of space and it can
be written as a Fourier series expansion in plane waves,
eiK·x, in which the components of the wave vectors are in-
teger multiples of 2π/L. In the limit as L→∞, the wave
vectors K are real valued and the Fourier series becomes
a Fourier integral. Setting F̃ = eiK·xϕ(θ; K), we are led

to the separation of variables ansatz f̃ = QteiK·xϕ(θ),
where Q and ϕ(θ) are both functions of K. This pro-
cedure of separation of variables is typically used in dis-
cussions of the Fourier-von Neumann stability of finite
difference numerical methods for linear partial differen-
tial equations; see Ref. [29]. From Eq. (16), the integra-
tion of the plane wave on the disk of radius R0 yields the
eigenvalue problem for ϕ(θ):

QeiK·vϕ− C(1)[ϕ] = 0, (17)

C(1)[ϕ]=
2J1(|K|R0)

|K|R0

[ ∞∑
n=1

e−M

(n− 1)!

(
M

2π

)n−1(
n− 1 +

|K|R0

2J1(|K|R0)

)∫ π

−π
dξ g(ξ)

∫
θ̃

δ̂(θ − ξ − Φ1)ϕ(θ̃1)
n∏
l=1

dθ̃l

−M
2π

∫ π

−π
ϕ(θ̃)dθ̃

]
. (18)

We have C(1)[1] = 1, and therefore the uniform distri- bution f0 = ρ0/(2π) solves Eq. (17) with |K| = 0 and
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Q = 1.
We now seek non-constant solutions of Eq. (17) by in-

serting the Fourier expansion ϕ(θ) =
∑∞
j=−∞ ϕje

ijθ. We
find

∞∑
j=−∞

[
Q(eiK·(cos θ,sin θ))j − C(1)[ϕ]j

]
eijθ = 0, (19)

from which we obtain the eigenvalue problem:

∞∑
l=−∞

{C(1)[eijθ]jδjl −Q(eiK·(cos θ,sin θ)+ijθ)l}ϕl = 0.(20)

Here the subscripts j and l indicate that f(θ)j and f(θ)l
are the coefficients of the respective harmonics in the
Fourier series of the function f(θ), and we have used
C(1)[eilθ]j = 0 for j 6= l [24]. Equivalently, 1/Q are the
eigenvalues of a matrix Mjl:

Mjl =
(eiK·(cos θ,sin θ)+ijθ)l

C(1)[eijθ]j
, (eiK·(cos θ,sin θ)+ijθ)j = (eiK·(cos θ,sin θ))0 = J0(|K|),

C(1)[eijθ]j =

(∫ π

−π
e−ijξg(ξ) dξ

) ∞∑
n=1

Mn−1e−M

(n− 1)!

[
(n− 1)

2J1(|K|R0)

|K|R0
+ 1

]∫
[−π,π]n

eij(θ̃1−Φ1)
n∏
l=1

dθ̃l
2π

. (21)

If K = K(0, 1), the off-diagonal matrix elements are
Jl−j(K)/C(1)[eijθ]j .

A. Space independent eigenfunctions

In this paper, we study solutions that bifurcate from
disorder with zero wave number, which correspond to
bifurcations for box sizes below critical, see Section II.
For |K| = 0, Eq. (20) produces the following eigenvalues
and eigenfunctions:

Qj = C(1)[eijθ]j , ϕj(θ) = eijθ, (ϕj)l = δlj , (22)

with j, l = 1, 2, . . .. The disordered state is stable when
|Qj | ≤ 1 for all j, and unstable if |Qj | > 1 for some j.
ϕ0 = 1 is one eigenfunction corresponding to eigenvalue
Q0 = 1. The eigenvalue with largest modulus for j 6= 0
is Q1, which, for large M , becomes [24]

Q1 ∼
√
πM

2

∫ π

−π
e−iξg(ξ)dξ =

√
πM

η
sin

η

2
. (23)

Other eigenvalues have moduli smaller than 1 in the limit
as M →∞, as shown in Appendix A.

B. Perturbation of eigenvalues for small
off-diagonal elements

We do not know how to find the eigenvalues of the
matrix Mjl, given by Eq. (21), for general nonzero K.
However, the diagonal entries Mjj are proportional to
J0(|K|) = 1 + O(|K|) (as |K| → 0), whereas the off-
diagonal elements ofMjl with j 6= l vanish for zero wave

K

0

1

2

3

4

η
0 1 2 3 4

FIG. 1: Critical wave vector K = |K| versus η for M = 7
and ρ0 = 5 obtained by solving Q1 = 1, where Q1 is given by
Eqs. (21) and (26).

vector. Thus, for small |K|, the off-diagonal elements
of the matrix Ml,j of Eq. (21) are small compared to
the diagonal elements. Assuming that the matrix Mjl

is equal to the matrix of its diagonal elements plus a
small perturbation, we can use regular perturbation the-
ory to calculate its eigenvalues. The situation is anal-
ogous to the usual perturbation theory of eigenvalues
in non-relativistic Quantum Mechanics as explained in
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Ref [30]. The first order correction to the eigenvalues of
Mjl is given by the diagonal elements of the perturba-
tion matrix. However, this perturbation matrix is Mjl

minus its diagonal, and therefore it has zero diagonal el-
ements. Thus, we need to calculate the eigenvalues by
using second-order perturbation theory for a perturba-
tion matrix comprising the off-diagonal elements ofMjl.
We obtain [cf. Eq. (38.10) of Ref [30]]:

1

Qj
=

J0(|K|)
C(1)[eijθ]j

−
∑
l 6=j

Ml,jMj,l

J0(|K|)
C(1)[eijθ]l

− J0(|K|)
C(1)[eijθ]j

, (24)

which holds for 0 ≤ |K| < γ1,0 [γ1,0 ≈ 2.4048 is the first
zero of the Bessel function J0(x)]. We are interested in
the eigenvalue close to 1/Q1, because Q1 has the largest
modulus for |K| = 0. It is approximately given by

1

Q1
≈ J0(|K|)
C(1)[eiθ]1

− M2,1M1,2

J0(|K|)
C(1)[ei2θ]2

− J0(|K|)
C(1)[eiθ]1

, (25)

in which we have ignored higher order terms having |l −
1| > 1. For K = K(0, 1), these terms are proportional to
[Jl−1(K)]2 = O(|K|2(l−1)) (with l > 2). Thus, compared
with the last term in Eq. (25), which is O(|K|2), they
can be ignored in the limit as |K| → 0. This also occurs
for general K. We have (eiK·(cos θ,sin θ))0 = J0(|K|), and
(eiK·(cos θ,sin θ)+iθ)0 = ((cos θ + i sin θ)(eiK·(cos θ,sin θ))0

produces

M2,1 = − 1

C(1)[ei2θ]2
(i

∂

∂Kx
− ∂

∂Ky
)J0(|K|)

= − iKx −Ky

|K|C(1)[ei2θ]2
J1(|K|) =⇒

M1,2M2,1 = − [J1(|K|)]2

C(1)[eiθ]1C(1)[ei2θ]2
.

Thus, Eq. (25) becomes

Q1 ≈
C(1)[eiθ]1

J0(|K|) + [J1(|K|)]2C(1)[eiθ]1
J0(|K|) (C(1)[eiθ]1−C(1)[ei2θ]2)

. (26)

According to Eqs. (21) and (26), Q1 = Q1(η, |K|).
Then the equation Q1 = 1 may have different solution
branches η(|K|) for nonzero wave number, depending on
the parameters M and ρ0. Two such branches are dis-
played in Fig. 1. The lowest branch depicts the solu-
tion branch that prolongs the zero wave number solution
given by Eq. (23). It satisfies 0 ≤ η(|K|) < η(0) with
0 < |K| < 2, thereby justifying that the largest value
of the multiplier Q for this branch is attained at zero
wave number. The possible upper branches can appear
for |K| > γ1,0 ≈ 2.4048, roughly coinciding with intervals
where [J1(|K|)]2 < [J0(|K|)]2. The largest value of η for
the upper branch in Fig. 1 is smaller than η(0). Thus,

within the approximations we have made, the largest
value of Q occurs at zero wave number.

V. BIFURCATION THEORY

As justified in Section IV, the largest multiplier isQ1 =
1 corresponding to K = 0. The solution of the linearized
equation

Lf (1)≡f (1)(θ, t+ 1,X, T )−C(1)[f (1)](θ, t,X, T )=0,(27)

is

f (1)(θ, t,X, T, ε)=
r(X, T ; ε)

2π
+A(X, T ; ε)eiθ+cc, (28)

X = εx, T = εt. (29)

Here cc means the complex conjugate of the preceding
term. We do not need to include more terms in (28)
because the other modes decay rapidly in the fast time
scale t. The first term in Eq. (28) is a space dependent
disturbance of the uniform density, whereas the complex
amplitude of the second term corresponds to a vector
current density, as we will show below in Eqs. (42)-(44).

We anticipate crossover scalings and therefore we shall
use the Chapman-Enskog method [25–27, 31]. The
Chapman-Enskog ansatz is [25–27],

f(θ,x, t; ε) = f0 + εf (1) +
∞∑
j=2

εjf (j)(θ, t; r,A,A), (30)

∂r

∂T
= R(0)(r,A,A) + εR(1)(r,A,A) +O(ε2), (31)

∂A

∂T
= A(0)(r,A,A) + εA(1)(r,A,A) +O(ε2), (32)

where A is the complex conjugate of A. We select a scal-
ing η = ηc + ε2η2, which is appropriate for the case of
the pitchfork bifurcation that occurs for space indepen-
dent solutions. We will explain later what happens for a
different choice of scaling. Inserting Eqs. (30)-(32) into
Eqs. (8) and (14), we obtain the following hierarchy of
equations

Lf (2) = C(2)[f (1), f (1)]− v·∇Xf (1) − R
(0)

2π

−A(0)ei(θ+Ωt+Ω) + cc, (33)

Lf (3) = C(3)[f (1), f (1), f (1)] + 2C(2)[f (1), f (2)]

−v·∇Xf (2) − R
(1)

2π
−A(1)ei(θ+Ωt+Ω) + cc

−1

2

(
∂

∂T
+ v·∇X

)2

f (1) + η2
∂

∂η
C(1)[f (1)], (34)

etc. In these equations, we have
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C(2)[ϕ,ϕ] =
πR2

0

2

[ ∞∑
n=2

ne−M

(n− 2)!

(
M

2π

)n−2∫ π

−π
dξg(ξ)

∫
δ̂(θ − ξ − Φ1)ϕ(θ̃1)ϕ(θ̃2)

n∏
l=1

dθ̃l

−2

(∫ π

−π
ϕ(θ1)dθ1

) ∞∑
n=1

ne−M

(n− 1)!

(
M

2π

)n−1∫ π

−π
dξg(ξ)

∫
δ̂(θ − ξ − Φ1)ϕ(θ̃1)

n∏
l=1

dθ̃l +
M

2π

(∫ π

−π
ϕ(θ1)dθ1

)2
]
,(35)

C(3)[ϕ,ϕ, ϕ] =
π2R4

0

6

[ ∞∑
n=3

ne−M

(n− 3)!

(
M

2π

)n−3∫ π

−π
dξg(ξ)

∫
δ̂(θ − ξ − Φ1)ϕ(θ̃1)ϕ(θ̃2)ϕ(θ̃3)

n∏
l=1

dθ̃l

−3

(∫ π

−π
ϕ(θ3)dθ3

) ∞∑
n=2

ne−M

(n− 2)!

(
M

2π

)n−2∫ π

−π
dξg(ξ)

∫
δ̂(θ − ξ − Φ1)ϕ(θ̃1)ϕ(θ̃2)

n∏
l=1

dθ̃l

+3

(∫ π

−π
ϕ(θ2)dθ2

)2 ∞∑
n=1

ne−M

(n− 1)!

(
M

2π

)n−1∫ π

−π
dξg(ξ)

∫
δ̂(θ − ξ − Φ1)ϕ(θ̃1)

n∏
l=1

dθ̃l −
M

2π

(∫ π

−π
ϕ(θ1)dθ1

)3
]
,(36)

and so on. Note that CE [f0+ερ̃] = f0+ερ̃ and C(1)[ρ̃] = ρ̃
for constant ρ̃ imply C(2)[1, 1] = C(3)[1, 1, 1] = 0, which
can be checked from Eqs. (35)-(36). The solvability con-
ditions for non-homogeneous equations of the hierarchy
is that their right hand sides be orthogonal to the so-
lutions of the homogeneous equation Lϕ = 0, namely 1
and eiθ, using the scalar product

〈f(θ), g(θ)〉 =

∫ π

−π
f(θ)g(θ) dθ. (37)

We now proceed to derive the amplitude equations.
We insert Eq. (28) into Eq. (33) and impose that its
right hand side be orthogonal to 1 and to eiθ, thereby
obtaining

R(0) = −2πRe

[(
∂

∂X
+ i

∂

∂Y

)
A

]
,

A(0) =
1

π
C(2)[1, eiθ]1rA−

1

4π

(
∂

∂X
− i ∂

∂Y

)
r. (38)

Then Eq. (33) has the solution

f (2)(θ, t,X, T )=

[
A2C(2)[eiθ, eiθ]2
1− C(1)[ei2θ]2

−
(
∂
∂X − i

∂
∂Y

)
A

2(1− C(1)[ei2θ]2)

]
ei2θ +cc. (39)

We now insert Eqs. (28) and (39) into Eq. (34), and im-
pose the solvability conditions to the resulting equation.
We obtain

R(1) = −Re

[
C(2)[1, eiθ]1

(
∂

∂X
+ i

∂

∂Y

)
rA

]
,

A(1) = [Γ(r)− µ|A|2]A+ δ∆XA

+γ1

(
∂

∂X
+ i

∂

∂Y

)
A2 + γ2A

(
∂

∂X
− i ∂

∂Y

)
A

+γ3A

(
∂

∂X
− i ∂

∂Y

)
A+

γ3

8π2

(
∂

∂X
− i ∂

∂Y

)
r2.(40)

Here

Γ(r)=η2Qη+
(
C(3)[1, 1, eiθ]1−2(C(2)[1, eiθ]1)2

) r2

4π2
,

Qη=
∂

∂η

(
lnC(1)[eiθ]1

) ∣∣
ηc
, δ =

1 + C(1)[ei2θ]2
8(1− C(1)[ei2θ]2)

,

γ1 =
1

4
C(2)[1, eiθ]1 −

C(2)[eiθ, eiθ]2
2(1− C(1)[ei2θ]2)

,

γ2 = −C
(2)[e−iθ, ei2θ]1

1− C(1)[ei2θ]2
, γ3 = C(2)[1, eiθ]1,

µ=
2C(2)[eiθ, eiθ]2C

(2)[ei2θ, e−iθ]1
C(1)[ei2θ]2 − 1

−C(3)[eiθ, eiθ, e−iθ]1.(41)

The coefficients listed in Eq. (41) are calculated in Ap-
pendix B. In terms of the mean current density w defined
as

A =
wx − iwy

2π
, w = (wx, wy), (42)

Eqs.(31), (32), (38) and (40) can be written as

∂r

∂T
+∇X ·

[(
1 +

εγ3r

2π

)
w
]

= 0, (43)

∂w

∂T
= −1

2
∇X

[(
1− εγ3

4π
r
)
r +

ε(2γ1 − γ2 − γ3)

2π
|w|2

]
+ ε

2γ1 + γ2 − γ3

2π
(w · ∇X)w

+ ε
2γ1 − γ2 + γ3

2π
w(∇X ·w) + εδ∇2

Xw

+

[
γ3r

π
+ ε

(
Γ(r)−µ|w|

2

4π2

)]
w. (44)

For ε = 0, Eq. (43) is the continuity equation for a den-
sity variable r and a current density w, which explains
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the name of the latter variable. The overall density of
particles equals the average density N/L2, which implies
the following constraint for r(X, T ):∫

r(X, T ) dX = 0. (45)

Remark 1. All the parameters in Eqs. (43)-(44) are real
numbers. For r = 0 and γ3 = 0, these equations are
exactly equivalent to the amplitude equation (132) of
Ref. [24].

Remark 2. For r 6= 0, Eqs. (43)-(44) are not equivalent to
those in [24]. The differences are due to two inconsisten-
cies in Ihle’s approach [24]. Firstly, Ihle did not expand
the eigenvalue Q1 = C(1)[eiθ]1 in powers of ε. Instead,
he introduced (Q1 − 1)w as a linear term in the ampli-
tude equation for w [cf. Eq. (44)]. This is equivalent to
setting γ3 = 0 and Γ(r) = Q1 − 1 in Eq. (44). Thus,
Ihle’s equations do not contain the quadratic term pro-
portional to rw appearing in Eq. (44). Secondly, we have
used a consistent perturbation scheme in the parameter
ε whereas the Chapman-Enskog procedure of Ref. [24]
mixes different orders in ε. For instance, the tensors Ω1

and Ω3 defined in Eqs. (117)-(119) and (121) of Ref. [24]
are O(ε2) whereas Ωj = O(ε3) for j = 2, 4, 5. How-
ever, all these tensors enter in the equation for the cur-
rent density, Eq. (130) of Ref. [24], with equal footing.
On the other hand, for uniform time-independent den-
sity, all terms in Ihle’s Eq. (132) are of order ε3 provided
∂/∂t = O(ε2), ∇ = O(ε), λ− 1 = O(ε2) and w = O(ε).

Remark 3. The equations of motion for the average ve-
locity in bird flocking proposed by Toner and Tu do not
contain the quadratic term rw in Eq. (44) [7, 8].

Remark 4. What happens if the noise scales differently
with ε? We have chosen a parabolic scaling, η = ηc +
ε2η2. The only case that affects differently the outcome
in Eqs. (43)-(44) is η = ηc + εη1. Then A(0) has to
include an additional term η1Qη in Eq. (38). This means

we have to write r∗ = r + πη1Qη/C
(2)[1, eiθ]1 instead of

r in Eqs. (43)-(44). In Eq. (44), we also have to replace
the term Qηηη

2
1/2 (where Qηη = ∂2Q1/∂η

2|η=ηc) instead
of Qηη2 in Γ(r) given by Eq. (41). The resulting Γ(r∗) is
negative (at least for the numerical values M = 7, ρ0 = 5
used in our simulations). We will not obtain a consistent
stationary space independent solution of Eqs. (43)-(44)
unless r∗ = O(ε), which will take us back to the parabolic
scaling of the noise.

VI. SPACE-INDEPENDENT AMPLITUDE
EQUATION

For space independent A and r = 0, Eq. (32) is the
typical pitchfork amplitude equation

∂A

∂(ε2t)
= (η2Qη − µ|A|2)A. (46)

Note that time scales as the square of space (diffusive
scaling). As µ > 0 and Qη < 0, the stationary solution

A =

√
η2Qη
µ

eiΥ, Υ ∈ R, (47)

is stable and it exists for η < ηc. In this region, the
uniform distribution f0 is unstable because Q1 > 1. Thus
the transition from incoherence to order is a supercritical
pitchfork bifurcation, as depicted in Fig. 2.

a=0.3

(b)

0.2

0.4

0.6

0.8

1

1.2

η
0 1 2 3 4 5

a=0

(a)

W

0.2

0.4

0.6

0.8

1

1.2

η
0 1 2 3 4 5

FIG. 2: (a) Polarization W versus η for M = 7, N = 1000,
and ρ0 = 10 (blue squares) or ρ0 = 5 (red asterisks). Dashed
and solid lines correspond to (49) and (50), respectively.
(b) Same graph with the critical noise shifted according to

Eq. (69) with a = (ε/ρ0)
√
〈r̃2〉/6 = 0.3.

Fig. 2 represents the polarization given by the modulus
of the complex parameter (6). According to Eq. (28), the
order parameter is

Z =
1

N

N∑
j=1

eiθj =
1

ρ0L2

∫
eiθf(θ,x, t) dθdx

∼ 2πε

ρ0ε2L2

∫
A(X, T ) dX. (48)

For the uniform solution given by Eq. (47), the order
parameter is

Z0 ∼
2π

ρ0

√
(η − ηc)Qη

µ
e−iΥ. (49)

Near ηc, we have Q1 ∼ 1 + Qη(η − ηc). Then we can
replace Qη(η−ηc) by Q1−1 in Eq. (49), thereby getting a
formula that holds for larger values of |η−ηc| (cf. Fig. 2):

Z0 ∼
2π

ρ0

√
Q1 − 1

µ
e−iΥ. (50)

We observe that the values obtained by direct simulations
of the VM tend to the predicted solution as we increase
the density ρ0 from 5 to 10 in Fig. 2(a). The change in
convexity of the curve near ηc is due to finite size effects.
Moreover, Fig. 2(b) shows that the critical noise found
in the simulations of the VM is shifted to ηc − a2 with
a = 0.3 for ρ0 = 10.
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VII. SPACE-DEPENDENT AMPLITUDE
EQUATIONS

For nonzero r and space dependent A, we need to con-
sider the space-dependent Eqs. (43)-(44). The leading
order equations for ε = 0 are

∂r

∂T
+∇X ·w = 0, (51)

∂w

∂T
= −1

2
∇Xr +

γ3

π
rw, (52)

In these equations, space and time scale in the same way
as X = εx and T = εt (hyperbolic or convective scaling).
The order parameter (48) can now be used to define a
vector order parameter, Z =(ReZ,ImZ):

Z ∼ ε

ρ0L2

∫
w(X, T ) dx dy, (53)

because A(X, T ) = [wx(X, T )+ iwy(X, T )]/(2π), accord-
ing to Eq. (42). Ignoring the nonlinear term in Eq. (52)
(small initial data), we eliminate the current density

and obtain the linear wave equation with velocity 1/
√

2.
Then ∇X ·w obeys the same wave equation and ∇X×w
is independent of time. The overall constraint (45) holds
for all time provided it does so initially. Space indepen-
dent solutions of this system produce a current density
that increases with time if r > 0 and decreases if r < 0.
It seems that shock waves may form after a finite time.

A. 1D equations for hyperbolic scaling

In 1D, Eqs. (51)-(52) can be written in the form of
conservation laws as

∂ζ±
∂T
± 1√

2

∂ζ±
∂X

= ±γ3
ζ2
+ − ζ2

−
4π

, (54)

ζ± = r ±
√

2w. (55)

Eqs. (54)-(55) with u = −ζ+ and v = −ζ− are the Car-
leman model [32], but with negative values of u and v.
For sufficiently small values of ρ0 and appropriate bound-
ary conditions (not periodic ones), it is known that the
solutions of this model present chaotic regimes in these
circumstances [33, 34].

B. Linearized 2D equations for convective scaling

Figs. 2 show that, for the long times employed in direct
simulations of the VM, there is agreement between the

simulations and the uniform solution (47) of Eqs. (43)-
(44),

r0 = 0, w0 = 2π

√
η2Qη
µ

eΥ, eΥ = (cos Υ,− sin Υ). (56)

However, very close to ηc, the separation between the
hyperbolic and parabolic time scales has appreciable ef-
fects. To uncover them, we linearize Eqs. (51)-(52) about
Eq. (56), thereby obtaining

∂r̃

∂T
+∇X ·w̃ = 0, (57)

∂w̃

∂T
= −1

2
∇X r̃ +

γ3

π
w0r̃. (58)

By differentiating Eq. (57) and eliminating w̃ by means
of Eq. (58), we find the wave equation:

∂2r̃

∂T 2
=

1

2
∇2
X r̃ −

γ3

π
w0 · ∇X r̃. (59)

For periodic boundary conditions, we can solve this equa-
tion by writing r̃(X, T ) as a Fourier series on the square
box of size L. Then we can find w̃(X, T ) from Eq. (58).
However, the gradient term produces a combination of
factors exponentially increasing with time and factors
exponentially decreasing with time. It is then hard to
predict the long time behavior of the solutions. We can
obtain an equivalent formulation by using the change of
variable

r̃ = eγ3w0·X/πR, (60)

to eliminate the gradient term in Eq. (59), thereby pro-
ducing the Klein-Gordon equation:

∂2R

∂T 2
=

1

2
∇2
XR−

γ2
3 |w0|2

2π2
R. (61)

For periodic boundary conditions, R(X, T ) =∑
n,mRn,m(T )eikn,m·X, and the coefficients Rn,m(T )

solve the equation of a linear oscillator with frequency

ωn,m =

√
1

2
|kn,m|2 +

γ2
3 |w0|2
2π2

, kn,m =
2π

εL
(n,m). (62)

Note that the frequency ωn,m mixes frequencies corre-

sponding to the acoustic velocity 1/
√

2 [cf. |w0| = 0
in Eq. (62)] with the fundamental mode of frequency

γ3|w0|/(
√

2π) corresponding to n = m = 0.
We now solve the equation for Rn,m(T ) and then re-

construct r̃(X, T ) and w̃(X, T ) from Eqs (51)-(52) and
(60). The results are
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r̃(X, T ) =
∞∑

n=−∞

∞∑
m=−∞

[
Rn,m(0) cos(ωn,mT ) +

Ṙn,m(0)

ωn,m
sin(ωn,mT )

]
e(ikn,m+

γ3w0
π )·X, (63)

w̃(X, T ) =
1

2

∞∑
n=−∞

∞∑
m=−∞

(
ikn,m −

γ3w0

π

)e(ikn,m+
γ3w0
π )·X

ωn,m

[
Rn,m(0) sin(ωn,mT )− Ṙn,m(0)

ωn,m
cos(ωn,mT )

]

+
∞∑

n=−∞

∞∑
m=−∞

Cm,n e
ikn,m·X, (64)

Rn,m(0)=
1

ε2L2

∫ εL

0

∫ εL

0

e−(ikn,m+
γ3w0
π )·X r̃(X, 0) dX=

∞∑
l=−∞

∞∑
j=−∞

r̃l,j(0) (e
εγ3w0xL

π − 1)(e
εγ3w0yL

π − 1)[
εγ3w0xL

π + i2π(l − n)
][
εγ3w0yL

π + i2π(j −m)
],(65)

Ṙn,m(0) = − 1

ε2L2

∫ εL

0

∫ εL

0

e−(ikn,m+
γ3w0
π )·X

(
ikn,m +

γ3w0

π

)
· w̃(X, 0) dX dY, (66)

Cn,m = w̃n,m(0) +
1

2

∞∑
l=−∞

∞∑
j=−∞

(
ikl,j −

γ3w0

π

) e
εγ3w0xL

π − 1
εγ3w0xL

π + i2π(l − n)

e
εγ3w0yL

π − 1
εγ3w0yL

π + i2π(j −m)

Ṙl,j(0)

ω2
l,j

. (67)

For w(X, T ) = w0 + w̃(X, T ), the order parameter (53)
becomes

Z ∼ ε

ρ0
w0 +

ε

ρ0ε2L2

∫ εL

0

∫ εL

0

w̃(X, T ) dX dY

=
ε

ρ0
w0 +

ε

ρ0
w̃0,0(T ). (68)

C. Shift in the critical noise

The oscillating density disturbance r̃(X, T ) will pro-
duce a nonzero value of the average of r2 = r̃2. Aver-
aging Eq. (44) over space and time, and assuming that
the average of a product is the product of averages, we
have 〈rw〉 ≈ 〈r〉 〈w〉 = 0 and 〈r2w〉 ≈ 〈r2〉 〈w〉. Then the
time-independent and space-averaged part of the term r2

in Γ(r) gives a contribution to |w0| = 2π
√

Γ(r)/µ, which
yields the first term in Eq. (68):

εw0

ρ0
∼ 2π

ρ0

√√√√Qη(η − ηc)− ε2〈r̃2(X,T )〉
6ρ20

µ
eΥ

∼ 2π

ρ0

√√√√Q1 − 1− ε2〈r̃2(X,T )〉
6ρ20

µ
eΥ. (69)

Here r̃ is given by Eq. (63) and, inserted into the av-
erage over time and space in Eq. (69), contributes to
shift the bifurcation point to a smaller noise value η∗c .
Fig. 2 shows that simulation data are consistent with
ε
√
〈r̃2(X, T )〉/6 = aρ0, with a ≈ 0.3. Then η∗c ≈ 3.95.

One first correction consists of using a more accurate
formula instead of Eq. (23) for finite values of M . Using
the same procedure as explained in Ref. [24] but keep-
ing more terms in the expansions, the critical condition

Q1 = 1 for the noise becomes

√
πM

η

(
1− 1

8M
− 7

128M2
− 5

128M3

)
sin

η

2
= 1. (70)

See Appendix D. For M = 7, we obtain ηc = 4.09
(a = 0.26) instead of the theoretical value ηc = 4.13, as
in Fig. 2(a). Taking into account that the second term
in Eq. (68) is obtained from linearization about the first
term (and is therefore assumed to be small compared
with it), the polarization becomes |Z| ∼ (ε/ρ0) |w0 +
w̃0,0| ∼ (ε/ρ0)(|w0|+ w0 · w̃0,0/|w0|), i.e.,

|Z| ∼ 2π

ρ0

√√√√Q1 − 1− ε2〈r̃2(X,T )〉
6ρ20

µ
+

ε

ρ0
eΥ ·w̃0,0(T ). (71)

In Appendix D, we estimate a value for the shift after
some uncontrolled approximations that take advantage
of the linearized equations (57)-(59). The result a ≈ 0.01
is a small improvement that agrees better with the nu-
merically estimated shift of the bifurcation value. Bet-
ter agreement should be achieved by numerically solving
the full nonlinear equations (43)-(44) and finding a more
precise value of the time and space average 〈r2〉 in the
formula for |w0|. The shift in critical noise was noticed
earlier in Ref. [35] but no explanation thereof was given
there.

D. Oscillatory correction to the polarization:
resonances in the Vicsek model

Eq. (71) contains a bounded oscillatory function of T
[cf. Eq. (64)]. Thus the polarization is a function of the



11

10−4

10−3

10−2

10−1

100

Frequency
−3 −2 −1 0 1 2 3

A
m
p
li
tu
d
e

0.2

0.4

0.6

0.8

1

Frequency
−3 −2 −1 0 1 2 3

(a) (b)

0.8

0.85

0.9

0.95

1

−1 −0.5 0 0.5 1

(d)

0

0.05

0.1

0.15

Frequency
−3 −2 −1 0 1 2 3

(c)

A
m
p
li
tu
d
e

0.05

0.1

0.15

Frequency
−3 −2 −1 0 1 2 3

0.1

0.05

0 0.025 0.05

FIG. 3: Discrete Fourier transform of the polarization W (t)
obtained from single simulations of the VM (without ensem-
ble averaging) for: (a), (b) and (c) Vicsek alignment rule of
Eq. (2); (d) alignment rule of Eq. (74), which includes har-
monic forcing of frequency ω = ΩZ ≈ 0.05 with h = 5. Pa-
rameter values are M = 7, N = 1000, ρ0 = 5, and (a)-(b)
η = 0.8, (c)-(d) η = 3.7. Panel (b) is the same as Panel (a) in
logarithmic scale. The inset of Panel (a) shows that, for this
single simulation, the amplitude of the zero-frequency mode
coincides with the ensemble averaged value of W in Fig. 2.
In Panel (d), filled circles indicate the zero (black dot) and
resonant (red dot) frequencies, both peaks are highlighted in
the Inset.

time t whose lowest angular frequency is ΩZ :

ΩZ ∼ 2γ3

√√√√Q1 − 1− ε2〈r̃2(X,T )〉
6ρ20

2µ
∼ W

2
√

2
. (72)

Here W is given by Eq. (69). The other frequencies given
by Eq. (62) are now

ε ωn,m ∼
√

Ω2
Z +

2π2

L2
(n2 +m2) . (73)

How can we confirm the existence of these oscillation
frequencies? One possibility is to modify the alignment
rule from Eq. (2) to

θi(t+ τ)=Arg

 ∑
|xj−xi|<R0

eiθj(t)

+ξi(t)+h cos(ωt), (74)

move the forcing frequency until it resonates with one
of the frequencies of Eq. (73), and simulate the result-
ing forced VM. However, we need to explore a region

of η sufficiently close to ηc. Otherwise, the parameter
ε =

√
(η − ηc)/η2 is so large that there is no separation

between the hyperbolic and parabolic scalings. In this
later case, say for η = 0.8, the discrete Fourier transform
of the polarization W (t), shown in Fig. 3(a), has a sin-
gle peak at zero frequency and a small, seemingly flat,
background [the amplitudes of the transform at nonzero
frequency are all smaller than 0.001, cf. Fig. 3(b)]. For
the transform depicted in Figs. 3(a) and 3(b), the peak
height at zero frequency coincides with the value dis-
played in Fig. 2, which has been obtained as an ensemble
average over many realizations of the stochastic process
given by the VM. As η increases towards ηc, one simu-
lation of the VM shows that W (t) still has a large peak
at zero frequency, but there is a small mound about it
[cf. Fig. 3(c)]. If we repeat the simulations of the VM
with the modified rule Eq. (74), Fig. 3(d) shows that the
mound is higher and that there is a small resonant peak
at ω = ΩZ . This effect is very small because, for η close
to ηc, the polarization and, consequently, the frequency
given by Eq. (72), are very small, and the alignment noise
is large.
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FIG. 4: Same as Fig. 3 but with the forcing frequency of
Eq. (73) with n = m = 2 and h = 5.

We can also excite higher frequencies by setting the
forcing frequency to be one of those in Eq. (73). For
instance, if we set ω in Eq. (74) equal to the frequency
given by Eq. (73) with n = m = 2, the nonlinearity of
the amplitude equations excites several nearby frequen-
cies. Thus, the peaks appearing in Fig. 4 are close to
frequencies of the modes (i) (n,m) = (1, 0), (0, 1), (ii)
(1, 1), (iii) (2, 0), (0, 2), (iv) (2, 2), and (v) (3, 0), (0, 3),
given by Eq. (73).

VIII. FINAL REMARKS

We have studied flocking in the standard Vicsek model
by analyzing the bifurcation of the uniform distribution
function to solutions of the associated kinetic equation
that have nonzero polarization. Our linear stability anal-
ysis of the uniform distribution is limited to small wave
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numbers. Within this constraint, linear instability first
occurs at a real eigenvalue with zero wave number. The
picture of flocking that emerges from the bifurcation
analysis is intricate.

We have shown that the amplitude equations for the
bifurcating modes near the critical value ηc of the noise
η are equivalent to coupled equations for a disturbance
of the number density and a current density. The equa-
tion for the density disturbance is a continuity equation
whereas the equation for the current density contains two
different scalings: (i) a hyperbolic scaling in which both
time and space scale as |η − ηc|−1/2; and (ii) a parabolic
scaling in which time scales as |η − ηc|−1, therefore, as
space squared.

Space-independent solutions of the amplitude equa-
tions obey the usual equation for a supercritical pitchfork
bifurcation on the longer parabolic time scale. Stable sta-
tionary solutions of this equation produce a polarization
proportional to |η − ηc|1/2 as η → ηc, which is depicted
in Fig. 2. Compared to direct simulations of the VM,
ensemble averages of the polarization are similar to the
bifurcation predictions, except for a shift of the critical
noise to smaller values and a round off very close to ηc.

Space-dependent patterns near the flocking bifurca-
tion satisfy the full amplitude equations. On the longer
parabolic time scale, the solutions of the latter should
be close to the space-independent stationary solutions.
Then we can study the linearization of the amplitude
equations about such solutions. The leading order ap-
proximation of the linearized equations on the hyper-
bolic scaling is equivalent to a Klein-Gordon equation
whose solutions for periodic boundary conditions con-
tain infinitely many frequencies of oscillation. Thus, the
emerging picture of the flocking bifurcation in the VM
is that of an almost uniform polarization with small su-
perimposed Klein-Gordon oscillations that occur on the
faster hyperbolic scaling. These oscillations produce a
nonzero average of the square of the density disturbance
resulting in a shift in the critical noise, which may explain
the observed one in direct simulations of the VM.

To confirm this picture of flocking, we have modified
the Vicsek alignment rule by adding a harmonic forc-
ing term to the average alignment direction and to the
noise. We have then simulated the resulting model look-
ing for resonances between the forcing frequency and one
of the Klein-Gordon frequencies. The discrete Fourier
transform of the resulting time-dependent polarization
shows a large peak at zero frequency (with amplitude
equal to that of the stable stationary solution) and much
smaller peaks at other frequencies. For large |η−ηc|, the
parabolic and hyperbolic scalings are no longer separated
and dissipation effects move the polarization to its sta-
tionary value. Close to the critical noise, both scalings
are separated and the resonant peak emerges from the
background in the discrete Fourier transform obtained
from a single direct simulation of the VM. This effect

is masked by the large size of the noise near its critical
value but it is clearly observable in single simulations of
the VM, as shown in Fig. 3(d).

One caveat should be indicated here. If the box size is
sufficiently large, the flocking transition is discontinuous
and band-like patterns have been observed in numerical
simulations of the VM [17]. Our bifurcation theory for a
mode with zero wave number is not applicable to these
large box sizes. However, a future extension of our lin-
ear stability analysis of the uniform distribution to larger
wave numbers may describe the resulting flocking transi-
tion, at least near the critical box size at which flocking
becomes a discontinuous bifurcation.
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Appendix A: Eigenvalues for |K| = 0 in the limit as
n→∞

The eigenvalues Qj for zero wave number are given
by Eqs. (21)-(22). To find them, we need to calculate
integrals of the form

J (n, j) =

∫
[−π,π]n

eij(θ1−Φ1)
n∏
l=1

dθl
2π

, (A1)

in the limit as n→∞. We have

eij(θ1−Φ1) =

(
1 + Lei(θ1−β)√

(1 + Lei(θ1−β))(1 + Lei(β−θ1))

)j

=

(
1 + Lei(θ1−β)

1 + Lei(β−θ1)

)j/2
,(A2)

where

Leiβ =

∑n
l=2 e

iθl

|
∑n
l=2 e

iθl |
. (A3)

In the limit as n→∞, the central limit theorem implies
that we can replace n − 1 integrals (with n − 1 ∼ n) in
J (n, j) by [24]
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J (n, j) =
1

2π

∫ ∞
0

∫ π

−π

∫ π

−π

Le−L
2/n

πn

(
1 + Lei(θ1−β)

1 + Lei(β−θ1)

)j/2
dLdθ1dβ =

∫ ∞
0

∫ π

−π

Le−L
2/n

πn

(
1 + Leiθ

1 + Le−iθ

)j/2
dLdθ. (A4)

We find different approximations for odd and even j. For
odd j, we split the L-integral in sub-integrals over (0,Λ)
and (Λ,∞), with Λ � 1 fixed in the limit as n → ∞.
We can approximate 1/n = 0 in the first sub-integral
and expand the fraction in powers of 1/L in the second
sub-integral. The result is

J (n, j) =
1

n

∫ Λ

0

∫ π

−π

L

π

(
1 + Leiθ

1 + Le−iθ

)j/2
dLdθ

+

∫ ∞
Λ

∫ π

−π

Leijθ−L
2/n

πn

{
1− ij

L
sin θ +

j

2L2
[ei2θ − 1

−(j − 2) sin2 θ] +
j

2L3

[
eiθ − ei3θ − j − 2

2
(eiθ − e−iθ)

×
(
ei2θ − 1 +

j − 4

12
(eiθ − e−iθ)2

)]}
dLdθ. (A5)

For j = 3, the first integral is −3 lnπ/(2πn) and the
second integral is

√
πn−3/2/8. For j = 1, the second

integral yields n−1
∫∞

Λ
e−L

2/ndL = (1/2)
√
π/n. Thus,

for odd j,

J (n, j) =
1

2

√
π

n
δj1 −

3 lnπ

2πn
δj3 +O(n−1), (A6)

as n→∞. For even j, the integrals over θ can be trans-
formed into integrals over the unit circle on the complex
plane and calculated by the residue theorem.∫ π

−π

(
1 + Leiθ

1 + Le−iθ

)j/2
dθ

π
=

∫
|z|=1

z
j
2−1

(
L+

1− L2

z + L

)j/2
dz

iπ
.

For j = 2, the residue theorem yields

∫ π

−π

1 + Leiθ

1 + Le−iθ
dθ

π
= 2(1− L2) Θ(1− L2),

because the pole z = −L is outside the unit circle if
|L| > 1. Here Θ(x) is the Heaviside unit step function.
Then, as n→∞, we get

J (n, 2) =
2

n

∫ 1

0

(1− L2)Le−L
2/ndL =

1

2n
+O(

1

n2
).(A7)

Similarly, for j = 4, the residue theorem yields

∫ π

−π

(
1 + Leiθ

1 + Le−iθ

)2
dθ

π
= 2(1− L2)(1− 3L2) Θ(1− L2).

Then, as n→∞, we get

J (n, 4) =
2

n

∫ 1

0

(1− L2)(1− 3L2)Le−L
2/ndL

=
1

12n2
+O(

1

n3
). (A8)

According to Eq. (21),

C(1)[eijθ]j =

(∫ π

−π
e−ijξg(ξ) dξ

)
e−M

∞∑
n=1

Mn−1

(n− 1)!

[
(n− 1)

2J1(|K|R0)

|K|R0
+ 1

]
J (n, j). (A9)

For large M , we expand (n− 1)J (n, j) and J (n, j) about M in this expression, thereby getting

C(1)[eijθ]j ∼
(∫ π

−π
e−ijξg(ξ) dξ

)[
(M − 1)

2J1(|K|R0)

|K|R0
+ 1

]
J (M, j). (A10)

Then the functions J (n, j) produce Eqs. (23) and

Q2 = C(2)[ei2θ]2 ∼
1

2

∫ π

−π
e−i2ξg(ξ)dξ,

Q3 = C(2)[ei3θ]3 ∼ −
3 lnπ

2π

∫ π

−π
e−i3ξg(ξ)dξ,

Q4 = C(2)[ei4θ]4 ∼
1

12M

∫ π

−π
e−i4ξg(ξ)dξ. (A11)

Other eigenvalues tend to zero as M → ∞. As
|
∫ π
−π e

−ijξg(ξ)dξ| ≤
∫ π
−π g(ξ)dξ = 1, the multipliers Qj

with j > 1 have moduli smaller than 1 in the limit as
M � 1.
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Appendix B: Coefficients in the amplitude equations

We calculate the coefficients in the amplitude equa-
tions by identifying them with others computed in
[24]. Using Ihle’s notation, we obtain C(1)[ei2θ]2 =
Q2 = p, C(2)[eiθ, eiθ]2 = 2πq, C(2)[e−iθ, ei2θ]1 = πS,
C(3)[eiθ, eiθ, e−iθ]1 = 4π2Γ, [24]. In the limit as asM � 1,
these identifications allow us to obtain the coefficients in
Eqs. (41) and (43)-(44):

Qη ∼ −
√
πM

2ηc

(
2√
πM

− cos
ηc
2

)
, (B1)

δ ∼ 2γ0 − 1

8
, γ0 =

1

1− 1√
πM

cos ηc2
, (B2)

µ ∼ π4R4
0/M

1− 1√
πM

cos ηc2
, γ2 ∼

γ0π
2R2

0

4M
. (B3)

To calculate the other coefficients appearing in the am-
plitude equations, we note that, as M � 1,

C(2)[1, eiθ]1 =
πM

ρ0

∂C(1)[eiθ]1
∂M

∼ πC(1)[eiθ]1
2ρ0

=
π

2ρ0
, (B4)

C(3)[1, 1, eiθ]1 =
2π4R4

0

3

∂2C(1)[eiθ]1
∂M2

∼ −π
2C(1)[eiθ]1

6ρ2
0

= − π2

6ρ2
0

. (B5)

We have calculated these coefficients at the critical noise
ηc, where C(1)[eiθ]1 = 1. Eqs. (B4) and (B5) yield the
remaining coefficients:

Γ(r) ∼ η2Qη −
r2

6ρ2
0

, γ3 ∼
π2R2

0

2M
(B6)

γ1 ∼ π2R2
0

(
1 +

1

8M
− γ0

)
. (B7)

Appendix C: Fourier coefficients Rn,m(0)

Here we give examples of initial conditions used to cal-
culate the solutions of Eqs. (57)-(58). A simple initial
condition is to set w̃(X, 0) = 0. Then Eqs. (66) and (67)
yield

Ṙn,m(0) = 0, Cn,m = 0, (C1)

whereas Eq. (64) gives

εw̃0,0(T )=(e
εγ3w0xL

π − 1)(e
εγ3w0yL

π − 1)
∞∑

n=−∞

∞∑
m=−∞

(
i 2π
L (n,m)− εγ3w0

π

)
Rn,m(0)sin(ωn,mT )

ωn,m

(
εγ3w0xL

π + i2πn
)(

εγ3w0yL
π + i2πm

). (C2)

We now have to calculate Rn,m(0). One possibility is
to have a function r̃(X, 0) with finitely many harmonics.

For example, harmonics (±1, 0) and (0,±1). We obtain

Rn,m(0) = 2(e
εγ3w0xL

π − 1)(e
εγ3w0yL

π − 1)


(εγ3w0xL− i2π2n)Rer̃1,0(0) + 2π2Imr̃1,0(0)[(
εγ3w0xL

π − i2πn
)2

+ 4π2

]
(εw0yL− i2π2m)

+
(εγ3w0yL− i2π2m)Rer̃0,1(0) + 2π2Imr̃0,1(0)[(
εγ3w0yL

π − i2πm
)2

+ 4π2

]
(εγ3w0xL− i2π2n)

. (C3)

Another simple possibility is the initial condition r̃n,m(0) = (−1)n+m(1− δn0δm0). Then Eq. (65) yields

Rn,m(0) = (−1)n+me
εγ3w0xL

2π e
εγ3w0yL

2π

+
e
εγ3w0xL

π − 1

2nπ + i εγ3w0xL
π

e
εγ3w0yL

π − 1

2mπ + i
εγ3w0yL

π

. (C4)
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Appendix D: Calculation of the shift in the critical
noise

According to Eq. (42) of Ref. [24], we have to approx-
imate better the sum

S(M) = e−M
∞∑
n=0

Mn

n!
h(n), (D1)

where h(n) has a maximum at n = M . Expanding this
function about its maximum and keeping four terms in
the expansion, we obtain

S(M) ∼ h(M) +
M

2
h′′(M) +

M

6
h′′′(M)

+
(1 + 3M)M

24
h(4)(M), (D2)

in which we have summed the corresponding series. To
write Eq. (23), we took into account only the first term
of Eq. (D2) with h(n) =

√
n. For this function, we get

S(M) ∼
√
M

(
1− 1

8M
+

1

16M2
− 5(1 + 3M)

128M3

)
, (D3)

which produces Eq. (70). For M = 7, keeping more term
in the expansion of h(n) does not change appreciably the
numerical value of ηc. Other corrections could come from
calculating the term of order n−3/2 in Eq. (A6) because
h(n) is proportional to nJ (n, 1).

We now calculate 〈r2(X, T )〉. We can use the Parseval
equality and Eq. (63) to get

〈r̃2(X, T )〉= lim
T→∞

1

T

∫ T
0

∑
n,m

|r̃n,m(T )|2dT

=
1

2

∑
n,m

[
|Rn,m(0)|2 +

|Ṙn,m(0)|2

ω2
n,m

]
g(w0), (D4)

g(w0) = δw0,0 + δw0x,0(1− δw0y,0)
1 + e

γ3
π w0yεL

2γ3π w0yεL

+δw0y,0(1− δw0x,0)
1 + e

γ3
π w0xεL

2γ3π w0xεL
+

1

4
(1− δw0x,0)

×(1− δw0y,0)
(1 + e

γ3
π w0yεL)(1 + e

γ3
π w0xεL)(

γ3
π εL

)2
w0xw0y

. (D5)

To get these expressions, we have used that: (i) the av-
erages of cos2(ωn,mT ) and of sin2(ωn,mT ) are both 1/2,
that the average of cos(ωn,mT ) cos(ωl,jT ) is zero unless
n = l, m = j, etc.; (ii) the integrals

1

ε2L2

∫ εL

0

∫ εL

0

e(
γ2
π w0−ikn−l,m−j)·XdX

=
(e

γ2
π w0xεL − 1) (e

γ2
π w0yεL − 1)

[γ3π w0xεL− i2π(n− l)][γ3π w0yεL− i2π(m− j)]
,(D6)

(iii) the sums

∞∑
n=−∞

1
γ2
3

π2w2
0xε

2L2 + 4π2(n− l)2
=
πcothγ3w0xεL

2π

2γ3w0xεL
. (D7)

In Eq. (D4), we can use again the Parseval equality
and then the Schwarz inequality to obtain∑
n,m

|Rn,m(0)|2 =
1

ε2L2

∫ εL

0

∫ εL

0

r̃2(X, 0)e−2
γ3
π w0·XdX

≤

√
〈r̃(X, 0)4〉 1

ε2L2

∫ εL

0

∫ εL

0

e−4
γ3
π w0·XdX. (D8)

We can calculate r4 = ε4〈r̃4〉 by means of the grand
canonical ensemble as [28]:

〈(N − 〈N〉)4〉 =

(
z
∂

∂z

)4

lnQ(v, β) + 3〈(N − 〈N〉)2〉2

=
1

β4

∂4

∂µ4
lnQ(v, β) + 3〈(N − 〈N〉)2〉2, (D9)

where z = eβµ is the fugacity, and v = 1/ρ0 = V/N
(V = L2), β and µ are the specific area, the recipro-
cal of temperature in enegy units and the chemical po-
tential, respectively. In the grand canonical ensemble,
lnQ(v, β) = βV P , where P (v) is the pressure,

Q(v, β) =
∞∑
N=0

zNQN (v, β), (D10)

and QN (v, β) is the partition function of the canonical
ensemble. The average number of particles in a volume
V is the density of particles and 〈(N − 〈N〉)2〉 is the
fluctuation of the density. In terms of the grand partition
function, they are

〈N〉 =

∑∞
N=0Nz

NQN (v, β)∑∞
N=0 z

NQN (v, β)
=

(
z
∂

∂z

)
lnQ(v, β),(D11)

〈(N − 〈N〉)2〉 =

(
z
∂

∂z

)2

lnQ(v, β).(D12)

Following Ref. [28], we now define pressure and chemical
potential in terms of the free energy per particle a(v) (we
ignore the temperature dependence):

A(N,V, T ) = N a(v), P = −∂a(v)

∂v
,

µ = a(v) + Pv. (D13)

Using Eq. (D13), Eq. (D11) becomes

〈N〉 =

(
z
∂

∂z

)
lnQ(v, β) =

1

β

∂

∂µ
lnQ(v, β)

= V
∂P

∂µ
= V

∂P
∂v
∂µ
∂v

= V
∂P
∂v

∂a(v)
∂v + P + v ∂P∂v

=
V

v
, (D14)

which is indeed the average number of particles. Then
1/v = 〈N〉/V = ρ0. Similarly, Eq. (D12) yields

〈(N − 〈N〉)2〉 =
V

β

∂

∂µ

1

v
= − V

v2β

1
∂µ
∂v

=
〈N〉

−βv2 ∂P
∂v

. (D15)
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This is Eq. (7.43) of Ref. [28]. The particles can be
thought of as belonging to an ideal gas at the initial time,
therefore P = ρ0/β and −v2∂P/∂v = ∂P/∂ρ0 = 1/β.
Eq. (D15) becomes 〈(N − 〈N〉)2〉 = 〈N〉, and therefore

〈r2〉 =
ρ0

V
=
ρ2

0

N
=⇒

√
〈r2〉 =

ρ0√
N
, (D16)

where now N is the total number of particles in the box.
Using Eq. (D15) and the ideal gas assumption in

Eq. (D15), Eq. (D9) becomes

〈(N − 〈N〉)4〉 = 〈N〉+ 3〈N〉2 =⇒

〈r4〉 =
3ρ4

0

N2

(
1 +

1

3N

)
. (D17)

Then, near the bifurcation point where w0εL � 1,
Eq. (D8) produces

ε2
∑
n,m

|Rn,m(0)|2 ≤ ρ2
0

√
3

N

√
1 +

1

3N
. (D18)

Let us assume that Eq. (D18) is an equality and that

Ṙn,m(0) = 0, which is the case if the initial current den-
sity is zero. Then Eq. (D4) gives

〈r2(X, T )〉 ≈
√

3

2N
ρ2

0

√
1 +

1

3N
, (D19)

and the shift in Eq. (69) is

a2 =
〈r2(X, T )〉

6ρ2
0

≈
√

3

12N

√
1 +

1

3N
. (D20)

This produces a = 0.01 which is about a factor 30 smaller
than the shift in the critical noise measured from direct
numerical simulations of the VM.
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