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Abstract—As the research community inclines toward adopting
increasingly complex techniques for future networks, and simple
methods are often ignored, being labeled as trivial. In this
paper, we argue that simple methods can sometimes outperform
more sophisticated ones. We demonstrate that by evaluating
two prediction mechanisms to forecast mobile user’s handovers
exploiting user-network association patterns. We perform a series
of experiments on real-world data, evaluating the performance
characteristics of such methods over more sophisticated and
complex prediction techniques. Furthermore, we discuss how
to easily bootstrap these mechanisms into the 5G network
architecture. We suggest the use of these methods associated with
Multi-access Edge Computing (MEC) scenarios, as a mean to
identify favorable edge nodes to host the mobile applications, to
best provide continuous and QoS-aware service for mobile users.

I. INTRODUCTION

Unlike its predecessors, the fifth generation of networks
(5G) is facing an unprecedented mobile traffic explosion, along
with a proliferation of highly sophisticated services. enhanced
Mobile Broad Band (eMBB), Ultra Reliability and Low La-
tency Communication (URLLC) and massive Machine Type
Communication (mMTC) are among the types of traffic the
upcoming 5G systems are expected to support. This instigated
service providers to seek novel paradigms and techniques to
enable not only continuous, but also QoS-aware services for
mobile clients [1]. Fueled by the mounting pressure to meet
Quality of Service demands, radical shifts in 5G networks
architecture have been suggested e.g. network densification,
control and data plane separation, and network virtualization.
It also instigated the proposition of several new paradigms for
5G systems such as MEC, Fog Computing, and Cloudlet-based
paradigm [2].

Taking advantage of the new features of 5G system and its
innovative paradigms, novel techniques have been suggested
as complementary methods to support mobility and enable
latency-intolerant applications alongside the typical handover
procedure. Some of these prominent techniques are applica-
tion mobility or service migration [3], optimized low-delay
handover [4], and dynamic and parallel offloading [5]. To
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enable such techniques, researchers are incorporating complex
and computation intensive methods like machine learning
algorithms.

Understandably, complexity is a dominant theme of 5G
networks. However, from the service provider point of view,
the simpler the better, as operation costs may be reduced, and
the predictability will be higher.

This work explores the potential of employing simple
mechanisms for handover prediction, and compares them to
more advanced ones proposed in the literature. As MEC is
envisioned to play a significant role in providing an ade-
quate platform for low-latency applications, we demonstrate
the benefit of utilizing prediction techniques to identify the
favorable node to host a set of services, which will be migrated
proactively around MEC hosts.

The paper is structured as follows. The state of the art
in the area of handover prediction is reviewed in section II.
The evaluated mechanisms are described in section III. How
the methods can be integrated into 5G cellular network and
utilized in MEC for service migration is in section IV. The
proposed solutions performance is analyzed in V. Section VI
is dedicated to discuss some additional considerations. Finally,
we conclude our study and present the future work in VII.

II. RELATED WORK

Over the last few years, different studies have focused on
enabling seamless mobility in wireless networks by exploiting
handover prediction. Such studies rely on different techniques
such as mobility prediction [6] , handover history [7], radio
link characteristics [8], cross-layer optimization [9], machine
learning [10], and mobile users profiling [11].

In this paper, the tested algorithms are closely related to the
approaches proposed in [7] and [8]. Additionally, the evaluated
mechanisms can be considered as extended works to [11].
The work presented in [7] evaluates the efficiency of utilizing
statistics based on handover history to predict the future Base
Station (BS). The prediction hit rate is found to vary between
20% and 47%.

Markov based mobility prediction was proposed in [11], in
which user mobility patterns are modeled using a continuous-
time Markov process with the network cells represented as
the discrete states. A second order Markov-based prediction
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is used to perform the predictions. Thus, the probability of
the future cell to be likely visited by a user depends on both
the current node and previously visited one. Authors of [8]
try to predict the next cell the user connection will be handed
over to using a machine learning based prediction system.
The metrics taken into consideration are the Channel State
Information (CSI) and the user’s handover history. In some
cases, the prediction algorithm accuracy reached 95 to 100%.
The accuracy is found to be highly related to the geometric
complication of the cell, in terms of the number of paths that
cross through it. In addition to the proportion of CSI values
used, out of all CSI values a user reports in its current cell
[8]. The main problem of this approach is its dependence
on periodic feedback of channel gain from the users. Indeed,
CSI values are reported to the base station (BS) by the user.
However, the typical CSI values do not include channel gain,
and are reported periodically or episodically from the user to
the station, with time and frequency controlled by the eNodeB
[12]. This raises the question of the time interval needed to
report and calculate the channel gain for this approach to be
feasible and how much overhead such reporting imposes on
the network.

Machine learning algorithms were also utilized for handover
prediction as in [13], where a Long Short Time Memory
(LSTM) neural network was employed, and [14] which used
multi-layer perception neural network for direction prediction
assisted handover. The accuracy achieved by these methods
was quite high. However, solutions based on neural networks
have a major drawbacks of reduced scalability and high
computation overhead.

For this study, we examine simple prediction techniques
which can be executed mostly offline, thus, avoiding any
extra delay. And, contrary to the aforementioned works which
exploit the individual behavior of a user, we investigate a
collective strategy where the behavior of multiple users are
considered. We then compare it to the individual user profiling.
The evaluated handover prediction methods are further detailed
in section III.

III. SOLUTIONS FOR HANDOVER PREDICTIONS IN MEC

We consider handover prediction methods that take advan-
tage of two facts. Firstly, roads have a defined and mostly fixed
topology. Thus, we can model the movements of a mobile user
through each road as a sequence of the cells he associates
with during his journey. Secondly, people display significant
regularity in their movements since they tend to revisit a few
highly frequented locations, such as home, a shopping center,
a restaurant, or work. Thus, mobile users within vehicles
will likely follow the same streets frequently in their daily
life. The following subsections further details the prediction
mechanisms considered.

A. Method 1: Probabilistic Handover Prediction Approach

In this method, to predict the future cell mobile user,
each user is capable of storing its previous cell identifier,
and every BS knows the probability of handing over the

Fig. 1: Mobility scenario.

user’s connection to each neighboring BS given the user’s
previous cell. These probabilities are derived from the user’s
handover history, stored locally in each BS, or in a centralized
orchestrating entity at an upper layer of the network.

Assuming the scenario illustrated in Fig 1, the mobile
user currently is associated with BSB, and previously was
associated with BSA. BSB has the probabilities of handing over
the user’s connection to each of the adjacent cells given the
user past association is BSA. The equation that represents these
probabilities is given in (1):

P(X |BSA,BSB) where X ∈
{

BSA,BSC,BSD,BSE ,BSF ,BSG
}
(1)

The prediction method assumes the cell with the highest
probability to be the future cell the user is heading to.

In our experiment, we deducted these probabilities by glob-
ally monitoring the users’-network association patterns over a
period of time. In a real cellular network, these probabilities
can be easily deducted at every base station individually, as
the traditional handover procedure involves communication
between the source cell initiating the connection handover,
and the target cell receiving the connection. Thus, each base
station can deduct the transitions probabilities locally. In
such configuration, the prediction mechanism does not require
any computation, as it only requires a lookup to a dataset
containing these probabilities.

B. Method 2: Enhanced Handover Prediction Algorithm

Method 2 is an enhanced version of method 1. As it stands,
method 1 is only able to perform the prediction when it
has already performed handovers with the user’s past cell
i.e the sequence (previous cell, current cell, future cell) is
present in the dataset used to deduct the probabilities and
P(X |BScurrent ,BSprevious) can be calculated.

As a further enhancement in method 2, we avoid this
limitation by calculating the probability of transitioning to the
next cell given only the user’s current cell P(X |BScurrent) when
the probability P(X |BScurrent ,BSprevious) can not be deducted.
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When neither of these values are known to the BS, radio
characteristics methods can be exploited. As an example, the
predicted next cell can be considered as the neighboring cell
correspondent to the highest recorded received power by the
mobile device. The workflow of this possible enhancement is
illustrated in Fig 2. The grey-colored parts of the workflow
highlight the enhancements of this method compared to work-
flow of method 1 which is tinted black.

Fig. 2: Enhanced handover prediction algorithm workflow.

C. Forecasting Strategy

We consider that the handover prediction methods can use
two strategies.
1) Forecasting based on the existence of Global Knowledge:
the probabilities of the user transitions to the next cell, given its
last and present cells, are deducted from the movement history
of all users in the dataset. These histories are stored in the BS,
independently of the generating user. The basic assumption, in
this case, is that people often tend to have similar behavior.
Thus, individuals tend to follow common streets/paths. This
knowledge should be available at a somewhat wide scale,
that includes the movements of users. It doesn’t mean that
there should be a globally coherent database, which may be
impractical, but only local or partially valid information.
2) Forecasting based on Individual Profiling: where the prob-
abilities are user dependent i.e different for each user and
dependent on his own handover history. This will present
higher complexity for implementation, as each user will have
a different profile. Although techniques to compress data,
or to have a hierarchical classification and storage, which
will improve scalability, the worst case corresponds to a user
specific movement dataset.

D. Time of day based clustering

To capture the impact of repetitive user behavior on the pro-
posed methods, we define a time window concept and consider

four different levels of granularity. In our case the windows
relate to the behavior of typical commuting professionals. For
other scenarios, the actual window granularity and number
should be determined. These are:

1) 24 hours: where the probabilities are deducted from the
complete handover history, independent of the time of
the day (no time clustering).

2) 12 hours: where the probabilities are dependent on the
time of the handover history. We consider two time
domains with different probabilities (00am to 12pm) and
(12pm to 24pm). Prediction execution timing determines
the time domain to be used and its corresponding prob-
abilities. For example, when the individual movement
occurs during the first time domain, the probabilities
of the corresponding domain is taken into consideration
when handover prediction is needed.

3) 6 hours: in which the day is divided into four time
intervals (00am to 6am), (06am to 12pm), (12pm t0
18pm) and (18pm to 24pm). Each interval has different
probabilities deducted from previous handover histories
occurring on the same time interval.

4) 2 hours: in which the probabilities considered are de-
ducted from previous handover histories at the same
hour of the individual movement and the hour before.

IV. INTEGRATING THE PREDICTION MECHANISMS IN 5G
MEC ENVIRONMENTS

The vision of services driving the development and deploy-
ment of 5G systems has forced companies to think of radi-
cal changes to the traditional point-to-point core architecture
which was adopted in previous cellular network generations.
This motivated the design of a service-based architecture for
cloud-based 5G systems. This was standardized by 3GPP
working group as illustrated in Fig 3.

Authentication Server Function (AUSF) provides informa-
tion for authenticating the user. Session management and IP
addresses allocation is the responsibility of Session Manage-
ment Function (SMF). The Access and Mobility Function
(AMF) functional entity in this architecture provides authen-
tication, authorization and mobility management. Meanwhile,
Application Function (AF) provides information on the packet
flow to the Policy Control Function (PCF) which controls the
policies in order to support Quality of Service (QoS) [15].
The User Plane Function (UPF) has multiple functionalities,
such as, being an uplink flow classifier, an interconnect point
between the mobile infrastructure and the Data Network (DN),
and Protocol Data Unit (PDU) session anchor point for pro-
viding mobility within and between radio access technologies
[16].

These new functionalities of 5G networks serve as enablers
for MEC, in which software-based applications and cloud
computing services are provided at the network edge. Hosting
applications at the edge optimizes the performance for
ultra-low latency and high bandwidth services. However, a
direct consequence of such deployment is the exposure of
those applications to User Equipment (UE) mobility. Users
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Fig. 3: 5G Service-based Architecture [21].

movements may render the location of the currently used edge
application host non-optimal in the long run. For the MEC
system to maintain the application quality requirements in a
mobile environment, utilizing 5G complementary procedures
for MEC environment is suggested, e.g application mobility
[17], dynamic and parallel offloading [18] [19].

The service instance utilized by the user can be relocated
to a new location to maintain certain quality. Before moving
the application, it is necessary to identify the target host
which can provide optimal service for the mobile user. In a
typical reactive application migration, the application moves
in harmony with the user and relocates to one of the nearby
hosts following the user movement. In a proactive strategy,
the application migration is executed in advance preceding to
the user’s mobility [20]. This calls for a mechanism to predict
user’s mobility and direction, and to evaluate the nearby hosts
suitability to host the service. For this purpose, we exploit
the handover prediction mechanisms proposed to foresee the
user’s direction. This helps identifying the edge nodes best
fitted to host the mobile service.

The proposed mechanisms can be bootstrapped with MEC
easily due to the Location Service (LS) already defined in
MEC standardization [22]. LS supports sending both geoloca-
tion (i.e. geographical coordinates), and logical location, such
as a Cell ID, for a single UE and for a certain category of
UEs periodically or based on specific events, such as location
change. The information on the user-network association can
be sent to the service consumers which can be mobile edge
application or mobile edge platform that communicates with
the Location Service over the LS API. Moreover, the LS
supports anonymous location reporting (without the related UE
ID information) enabling statistics collection, which is helpful
for the global knowledge strategy. By exploiting this service,
the network can easily build the transition probability data
structures, needed for the proposed prediction mechanisms to
be executed in the edge node, without requiring the user to
report its handover history.

As the enhanced approach relies on radio characteristic as
well as probabilities, the user shall be able to measure the
received power of the neighboring cells. This capability is also
already standardized in 5G networks [23]. Furthermore, the
user reporting of these measurements to the network is also
considered.

After utilizing the proposed mechanisms to forecast the
user’s future cell, a user aware service migration is initiated
by the network orchestrator placed at the core or the edge
of the network. The traffic routing and steering to the new
application host is then managed by the PCF and the SMF
[15]. SMF manages the session and allocates the necessary IP
addresses to the user. Meanwhile, AF provides the PCF with
information on the packet flow. The PCF, then, controls the
mobility and session management policies for SMF in order
to support QoS.

V. ANALYSIS OF THE SOLUTIONS PROPOSED

We analyse our solutions taking in consideration a real
world mobility dataset, that is further enhanced to support
cellular handover information. We utilize the dataset described
in [24], which was collected by volunteers, using a specially
crafted android application on smartphones, placed on the
dashboards of their cars. Each monitoring device would store
information about location, speed, and timestamp whenever
the car is moving, at around 20Hz (device dependent). The
dataset contains all trajectories followed by all users over a
period of three months in the city of Aveiro, Portugal, with a
total of 1971 trajectories.

We enhanced this dataset with the approximate location
of all base stations in Portugal, as available in [25], which
provides information about the location of each base station,
range and frequencies in use. Using the Free-space path
loss formula [26], the frequency of each BS, and the range
extracted from the location information captured in the dataset,
we derived the maximum pathloss as follows:

Lumax = 20 log10(ran)+32.44+20 log10( f ) (2)

Where ran refers to the range, f to the frequency and are
measured in kilometers and megahertz, respectively.
Consequently, we calculated each base station Equivalent
Equivalent Isotropically Radiated Power (EIRP) using the typ-
ical Long-Term Evolution (LTE) parameter values of macro-
cells given in [27], and illustrated in the following table:

Parameter Symbol Value
UE equipment sensitivity S -107.5 dBm
UE Height hue 1 m
eNodeB Antenna Height hb 30 m

TABLE I: LTE Setup Parameters

Where the BS EIRP can be calculated as follows:

EIRB = Lumax +S (3)

We used the coordinates of each user and BS provided by
the datasets to calculate the distance between the two, at each
timestamp, by using Haversines, which determines the great-
circle distance between two points on a sphere given their
coordinates.

The distance between the user and eNodeB is then used to
calculate the path loss Lu, taking in consideration the COST-
231 data model for urban areas, which is widely used to predict
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the path loss in the mobile wireless system as described below
[28]:

Lu = 69.55+26.16 log10( f )−13.82 log10(hb)−Ch

+[44.9−6.55 log10(hb)]log10(D)
(4)

For urban environment Ch is determined as [28]:

Ch = 0.8+(1.1 log10( f )−0.7)∗hue−1.56 log10( f ) (5)

The UE received power Pr can then be calculated as follows:

Pr = EIRB−Lu (6)

After calculating the UE received power from each BS, we
associate it to the station with the best signal (highest received
power) in each instant, mimicking the procedure followed
in cellular networks. The sequence of user-network associa-
tions representing handover procedures are considered spatio-
temporal points, which describe the individual movement.

In the learning phase of the proposed algorithms, 80% of
the generated dataset is used as a training set, where the
trajectories in this set are used to extract the probabilities
described in (1). The remaining 20% of the dataset is used
to evaluate the accuracy of the prediction methods.

A. Strategy Comparison

To forecast the handovers based on global knowledge, we
used the movement traces of all users in the dataset. Mean-
while, to forecast handovers based on individual profiling,
the models were applied to two different individuals. User
A with a dataset of 126 traces and their corresponding user-
network associations, and User B with a dataset of 179 traces
and corresponding associations. The results of forecasting
based on global knowledge and individual profiling, using the
proposed methods are illustrated in Fig 4. Fig 5 demonstrates
the relationship between the total number of predictions the
models were able to perform and the time window considered.

Fig. 4: Methods 1 and 2 Achieved Accuracy.

The results illustrated in Fig 4 show that both methods
scored significantly better accuracy utilizing individual profil-
ing strategy, than compared to the global knowledge strategy.
However, employing the global knowledge strategy can be
a better approach for large scale scenarios, especially if it

Fig. 5: Number of Predictions vs Time Window

is possible to cluster people based on certain criteria. For
example, university students living in the same area tend to
have similar trajectories when going to university and coming
back.
Furthermore, as suggested in [29], using a collective strategy
can dramatically minimize the quantity of information to be
transmitted from each individual, while guaranteeing specific
privacy protection for users.

Additionally, the results illustrated in Fig 4 indicate that
using a time window decreases the accuracy for both meth-
ods. This is basically due to the decreased number of the
predictions performed when complying to a more limited time
window. Owing to the fact that narrowing the time window
resulted in decreasing the corresponding dataset used to deduct
the probabilities, ergo the decreased number of predictions the
algorithms were able to perform as shown in Fig 5.

B. Comparative Analysis of the Solutions Proposed

We evaluated the proposed handover prediction methods
performance against two machine learning algorithms namely,
K-nearest neighbors [30] and Decision Tree classification
algorithms [31]. Fig 6 illustrates the evaluation outcomes. For
this test, the information used as features from the dataset are
only the user’s past and current cells IDs. The future cells is
considered to be the target. The value of K for the nearest
neighbors algorithm is equal to 1 since it scored the best
accuracy.

In order to achieve a fair comparison, the times where
the proposed mechanisms failed to execute predictions are
considered as wrong predictions.

Using the same handover history datasets of all users and
of a single user, the proposed approaches surpassed both K-
nearest neighbors and decision tree classification algorithms in
terms of accuracy. The enhanced approach scored 70% when
using the global knowledge strategy, and up to 79% and 89%
when using the individual profiling strategy. Thus, surpassing
both the probabilistic and the machine learning algorithms.

Although the probabilistic approach scored less accuracy
compared to the enhanced approach, still yielded better results
than machine learning algorithms. Both K-nearest neighbors
and decision tree algorithms performed better incorporating
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more features such as the hour of the day and user’s speed.
However, this lead to doubling the dataset in size. Moreover,
acquiring such data raises problems related to the user privacy
and may requires the user’s approval or even participation.

Fig. 6: Proposed algorithms vs Machine learning approaches

C. Employing the Proposed Solutions for MEC Migration

For evaluation, we formulated a mathematical model to
estimate the effect of implementing the proposed handover
prediction mechanisms as complementary methods for user-
aware service migration in MEC. The prediction mechanisms
are utilized to determine the best fitted edge node to move
the application to preceding to the user mobility. We per-
formed our evaluation considering data from individual user
movements. We divided the dataset into a test and training
sub-datasets, with a ratio of 1:4. We considered a service
encapsulated in a virtual machine with 2GB of storage, being
transmitted over a 1Gb/s network link. Each of the pre-
migration and the post-migration phases is considered to be
of 1s, and all edge nodes are capable of hosting the migrated
service. We employed a ”always migrate” strategy, where the
service is moves in harmony with the UE, disregarding other
migration decision-making factors such as load balancing and
power consumption. Based on the user’s current and previous
Cell IDs, we predicted its future cell using one of the proposed
mechanisms. Once the future cell is identified, we performed
a proactive service migration to the identified cell. We used
a reactive service migration to compensate for the cases of
incorrect predictions, in which the user will be connected to
a different base station than the one predicted.

Utilizing the probabilistic approach, the future cell was cor-
rectly identified 1448 times (77%), and was wrongly identified
for 429 (23%). The average service downtime experienced by
the user for each migration reached 1.62 seconds. USing the
enhanced prediction approach, the future cell was correctly
identified for 1488 times (82%), and was wrongly identified
for 389 (28%). The service downtime experienced by the user
for each migration reached 1.54 seconds. On the other hand,
when relying on a reactive service migrations alone, the user
experienced an average of 4 seconds of service downtime
per individual migration. These results further emphasize
the benefits of integrating the proposed handover prediction

mechanisms within 5G systems architecture, when using the
MEC paradigm.

VI. FURTHER CONSIDERATIONS

As the aim of this work is to present an efficient forecasting
mechanisms, which can be implemented in real networks. We
try to answer some key questions concerning the mechanisms
implementation such as a) what is the appropriate size of the
dataset needed to accurately build the transitions probabilities,
b) what is the effect of considering more than one former
cell from the user movement trace.To answer these questions,
we dedicate this section to examine the outcomes of varying
the training dataset size and the number of anterior cells
considered from the trajectory.

A. Accuracy vs training set size

Fig 7 illustrates the relationship between the proposed
methods accuracy and the training set proportion considered
to compute the probabilities.

For a proper assessment, we considered all the instants in
which the mechanisms were unable to perform a prediction to
be wrong predictions and we calculated the accuracy accord-
ingly. The results show that, at first, the prediction accuracy
increases in accordance to the increase of the training set
proportionally up until a certain threshold, from there onward
the accuracy tends to have steadier value. In this case, the
training set proportion required to obtain sufficient accuracy
is approximately 60% of the traces dataset, and is equivalent
to monitoring this particular individual movements for 669
minutes over several days. To avoid repetition, the dataset
considered in this test is of a single individual. We obtained
similar results for global knowledge strategy and for other
individuals as well. However, we found the threshold to be
user-dependent.

Fig. 7: Accuracy vs Training Set Proportion.

B. Accuracy vs number of former Cells

Earlier on, we considered the user’s current and past cell ids
to predict the future cell. Tables II and III clarify the effect of
taking more than one antecedent cell on the proposed methods
performance. The results show that taking more than one
former cell increases accuracy. Understandably, the number of
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achievable predictions decreases for the probabilistic approach
as deducting probabilities from the dataset becomes harder as
less number of matching cells sequences exists. However, the
enhanced approach performed better as its coping mechanism
compensate to the prediction failures by relying on radio
characteristics as well.

Case User A User B
Accuracy Nº predictions Accuracy Nº predictions

One past cell 89.29% 299 83.08% 1744
Two past cells 90.57% 297 85.72% 1695

TABLE II: Probabilistic Approach: Accuracy Vs the Number of
antecedent cells

Case User A User B
Accuracy Nº predictions Accuracy Nº predictions

One past cell 89.33% 300 82.49% 1805
Two past cells 90% 300 83.37% 1804

TABLE III: Enhanced Approach: Accuracy Vs the Number of
antecedent cells

VII. CONCLUSIONS AND FUTURE WORK

We proposed two handover prediction mechanisms, which
can be easily adopted in future networks architecture. The
results showed that both methods yielded a quite high predic-
tion accuracy compared to k-nearest neighbors and decision
tree classification algorithms. We further demonstrated how
the algorithms can be integrated into 5G service-oriented
architecture and the potential benefits of utilizing them for
a proactive service migration in MEC paradigm.

We intend to explore the handover prediction mechanisms
presented in this paper in a complete framework, which
aims at preserving the QoS for latency-intolerant applications
employed in MEC paradigm. This framework is intended to
provide mobile users with uninterrupted services by perform-
ing dynamic offloading accompanied with proactive service
migration and timely optimized handover.
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