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Abstract: In this paper, we introduce Beta-t-QVAR (quasi-vector autoregression) for the joint mod-

elling of score-driven location and scale. Asymptotic theory of the maximum likelihood (ML) estimator

is presented, and sufficient conditions of consistency and asymptotic normality of ML are proven. For

the joint score-driven modelling of risk premium and volatility, Dow Jones Industrial Average (DJIA)

data are used in an empirical illustration. Prediction accuracy of Beta-t-QVAR is superior to the

prediction accuracies of Beta-t-EGARCH (exponential generalized AR conditional heteroscedasticity),

A-PARCH (asymmetric power ARCH), and GARCH (generalized ARCH). The empirical results mo-

tivate the use of Beta-t-QVAR for the valuation of DJIA options.

Keywords: Volatility; Risk premium; Dynamic conditional score; Generalized autoregressive score

JEL Classification: C22, C58

Corresponding author. E-mail address: alvaroe@eco.uc3m.es (Alvaro Escribano).

1



1. Introduction

In this paper, Beta-t-QVAR (quasi-vector autoregression) for the joint modelling of risk premium

and volatility is introduced, to improve the volatility prediction accuracies of Beta-t-EGARCH (expo-

nential generalized AR conditional heteroscedasticity) (Harvey and Chakravarty 2008; Harvey 2013),

A-PARCH (asymmetric power ARCH) (Ding et al. 1993), and GARCH (generalized ARCH) (Engle

1982; Bollerslev 1986). The Beta-t-QVAR model is a score-driven model (Creal et al. 2008, 2011,

2013; Harvey and Chakravarty 2008; Harvey 2013) for the Student’s t-distribution, in which dynamic

interaction effects between risk premium and volatility are measured by a bivariate score-driven fil-

ter. Score-driven models are observation-driven models (Cox 1981), which are updated by the partial

derivative of the log conditional density of the dependent variable with respect to dynamic parameters

(hereinafter, score function). The following contributions to the literature are provided in this paper:

Firstly, Beta-t-QVAR, in which score-driven location and score-driven scale are jointly modelled, is

new in the literature, to the best of our knowledge. In Beta-t-QVAR for risk premium and volatility,

score-driven filters simultaneously update risk premium and volatility. The model measures dynamic

overreaction effects, dynamic risk premium effects, dynamic leverage effects, and dynamic volatility

effects, which are represented by impulse response functions (IRFs). Beta-t-QVAR extends the Beta-

t-EGARCH (Harvey and Chakravarty 2008) and the one-component Beta-t-EGARCH-M (Harvey and

Lange 2018) models.

Secondly, the conditions of the asymptotic properties of the maximum likelihood (ML) estimates

of Beta-t-QVAR are new in the literature, to the best of our knowledge. It is shown that all score

functions are martingale difference sequences (MDSs), the bivariate score-driven filter converges to a

unique strictly stationary and ergodic sequence, and all score functions and their derivatives have finite

second moments and covariances. The ML conditions imply that the gradient and the Hessian of the

ML have time-invariant expected values, and they converge to unique strictly stationary and ergodic

sequences. Monte Carlo simulation-based estimation results are reported, to support the use of ML.

The results of Creal et al. (2013), Harvey (2013), and Blasques et al. (2017, 2018) are extended in

the present paper, because in those works ML conditions are presented for either score-driven location

models or for score-driven scale models.

Thirdly, in an empirical illustration, weekly and daily data from the Dow Jones Industrial Average

(DJIA) for the period of January 1985 to February 2020 are used. Out-of-sample forecasts of volatility
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are computed, by using the rolling-window approach, for the period of January 2010 to February 2020.

We find that Beta-t-QVAR improves the performances of Beta-t-EGARCH, A-PARCH, and GARCH,

which are found to be effective predictors of volatility in the literature (Hansen and Lunde 2005;

Blazsek and Villatoro 2015). The empirical illustration suggests that Beta-t-QVAR may be used for

DJIA options valuation at the Chicago Board Options Exchange (CBOE).

The remainder of this paper is organized as follows: Section 2 reviews the literature. Section 3

presents Beta-t-QVAR. Section 4 describes the dataset. Section 5 presents the statistical inference

methods. Section 6 presents the impulse response functions. Section 7 presents the results on DJIA

volatility forecasts. Section 8 concludes. Technical details are presented in Supplementary Material.

2. Review of the literature

2.1. Classical dynamic volatility models

The subject matter of this paper is in relation to several classical dynamic volatility models from

the body of literature. In the work of Engle (1982), the ARCH(q) model of dynamic volatility is

introduced, which is extended in the works of Bollerslev (1986, 1987) to the Gaussian-GARCH(p,q)

and t-GARCH(p,q) models, respectively. In the work of Engle et al. (1987), the ARCH-in-mean

(ARCH-M) model is introduced, which extends ARCH by including the conditional standard deviation

of returns in the risk premium component.

In the work of Nelson (1991), the EGARCH(p,q) model is introduced, in which the dynamics of

the log conditional variance of returns are formulated, and leverage effects (Black 1976) are included

in the log conditional variance equation. In the work of Ding et al. (1993), the A-PARCH(p,q) model

for the power δ ≥ 0 of the conditional standard derivation is introduced, which generalizes the ARCH

and GARCH models, approximates the long memory property of stock market returns, and includes

leverage effects in the filter driving conditional volatility. In the work of Glosten et al. (1993), the

GARCH model is extended, by including leverage effects in the conditional variance equation.

In the present work, Student’s t-distribution is assumed for the probability distribution of returns

(Bollerslev 1987), EGARCH volatility formulation is used (Nelson 1991), a filter driving conditional

volatility is included in the risk premium (EGARCH-M) (Engle et al. 1987), and leverage effects are

included in the volatility filter (Nelson 1991; Ding et al. 1993; Glosten et al. 1993).

2.2. Score-driven volatility models

Score-driven volatility models have recently been introduced to the literature on dynamic volatility
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models. The first score-driven volatility model is the Beta-t-EGARCH model (Harvey and Chakravarty

2008), which assumes the Student’s t-distribution for financial returns. In relation to Beta-t-EGARCH,

we also refer to the works of Creal et al. (2013) and Harvey (2013). Furthermore, we also refer to an

important recent score-driven volatility model that is extended in the present work, the one-component

Beta-t-EGARCH-M model of Harvey and Lange (2018), in which the score-driven volatility filter is

included in the risk premium component of returns.

In the work of Blasques et al. (2015), it is shown for univariate score-driven filters, such as Beta-

t-EGARCH, that a score-driven update of the time series model, asymptotically and in expectation,

reduces the Kullback–Leibler divergence in favour of the true data generating process at every step.

The authors also show that only score-driven updates have this property. The work of Blasques et al.

(2020) presents simulation-based results for finite samples, which support the use of Beta-t-EGARCH.

Alternatives to Beta-t-EGARCH are: GED-EGARCH (general error distribution EGARCH) (Har-

vey 2013); Beta-Skew-t-EGARCH (skewed t-distribution EGARCH) (Harvey and Sucarrat 2014);

EGB2-EGARCH (exponential generalized beta distribution of the second kind EGARCH) (Caivano

and Harvey 2014); Beta-Skew-Gen-t-EGARCH (skewed generalized t-distribution EGARCH) (Harvey

and Lange 2017); NIG-EGARCH (normal-inverse Gaussian distribution EGARCH) (Blazsek et al.

2018); MXN-EGARCH (Meixner distribution EGARCH) model (Blazsek and Haddad 2020).

In this section, we also refer to the following works from the literature, in which practically relevant

applications of score-driven expected return plus volatility models are presented: Blazsek and Mendoza

(2016), Blazsek et al. (2016), Blazsek and Monteros (2017a, 2017b), Blazsek and Hernandez (2018),

Blazsek et al. (2018), Ayala and Blazsek (2018a, 2018b, 2019a, 2019b), and Blazsek and Licht (2018,

2020). Sufficient conditions of ML are not presented in those works, which motivates the development

of the ML conditions for Beta-t-QVAR in the present paper.

2.3. Multivariate score-driven filters

In the work of Harvey (2013), the dynamic conditional score (DCS) model for the multivariate t-

distribution is introduced, which is abbreviated as t-QVAR(1), for the modelling of I(0) or co-integrated

I(1) variables (Granger 1981; Engle and Granger 1987). In the work of Creal et al. (2014), t-QVAR(1)

is extended to t-QVARMA(p, q). In the recent works of Blazsek and Licht (2020) and Blazsek et al.

(2020), applications of t-QVAR(1) and t-QVARMA(p, q), respectively, are presented. In the work of

Blazsek et al. (2019), t-QVARMA(p,q,r) is introduced, extending the score-driven location models of
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Harvey (2013) and Creal et al. (2014). The t-QVARMA(p,q,r) model is for a joint modelling of I(0)

and co-integrated I(1) variables. In the present work, the multivariate Beta-t-QVAR(1) filter is used

for risk premium and volatility, by using the univariate Student’s t-distribution.

3. Econometric model

The score-driven model of log-return, yt = 100× ln(st/st−1) for t = 1, . . . , T , is:

yt = µt + vt = µt + exp(λt)εt = µt + exp(ω + λ†t)εt (1)

where pre-sample data define s0, µt is a dynamic parameter representing the risk premium, vt is

the unexpected return, and exp(λt) ≡ exp(ω + λ†t) is the dynamic scale parameter with time-invariant

parameter ω and filter λ†t . The error term εt ∼ t(ν), with degrees of freedom 2 < ν <∞, is independent

and identically distributed (i.i.d.) with respect to the Student’s t-distribution. Hence, the second

moment of εt is finite, and the conditional volatility for period t is σt = exp(λt)[ν/(ν − 2)]1/2.

In the work of Harvey and Lange (2018), for the one-component score-driven EGARCH-M model,

risk premium is specified as µt = c + β2 exp(λt), where c is a time-invariant parameter, β2 exp(λt)

represents the in-mean (M) component, and λt is formulated according to a score-driven EGARCH

model. In the present paper, two alternatives are considered, named Beta-t-QVAR(1) and Beta-t-

QVAR(1)-M, respectively, in which the risk premium is specified as follows:

µt = c+ β1µ
†
t (2)

µt = c+ β1µ
†
t + β2 exp(λt) = c+ β1µ

†
t + β2 exp(ω + λ†t) (3)

where µ†t is a new filter in the score-driven EGARCH. The latter specification is an extension of the

one-component model of Harvey and Lange (2018), by adding β1µ
†
t into risk premium. In Eqs. (1)-(3),

E(λt) = ω and E(µ†t) = E(λ†t) = 0. The β1µ
†
t term in the risk premium measures an extra serial

correlation in the mean of the log-return on a financial asset, in addition to β2 exp(ω + λ†t).
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The following updating mechanism is used for µ†t and λ†t : µ†t

λ†t

 =

 φ11 φ12

φ21 φ22


 µ†t−1

λ†t−1

+

 ψ11 ψ12

ψ21 ψ22


 uµ,t−1

uλ,t−1

 (4)

where updating terms uµ,t and uλ,t are named score functions. Updating term uµ,t is the scaled

conditional score of the LL (log-likelihood) with respect to µt. Updating term uλ,t is the conditional

score of the LL with respect to λt. Both uµ,t and uλ,t are MDSs with zero mean and finite variance.

Hence, uµ,t and uλ,t are white noise variables (Harvey 2013, p. 6, Definition 1). Formal definitions and

stochastic properties of uµ,t and uλ,t are presented in Section 5.2.

In matrix form, Eq. (4) can be written as:

θt = Φθt−1 + Ψut−1 (5)

where θt = (θ1,t, θ2,t)
′ ≡ (µ†t , λ

†
t)
′ and ut = (u1,t, u2,t)

′ ≡ (uµ,t, uλ,t)
′. In Eq. (5), a first-order speci-

fication, i.e. Beta-t-QVAR(1), is assumed, which can be extended to Beta-t-QVARMA(p,q) in future

works. Moreover, it is assumed that the maximum modulus of eigenvalues of Φ is less than one. Filter

θt is initialized by its deterministic unconditional mean: θ1 = E(θt) = 02×1.

The work of Hansen and Lunde (2005) motivates the use of leverage effects for forecasting the

volatility of stock returns. Therefore, we include leverage effects in θt in the following filter:

 µ†t

λ†t

 =

 φ11 φ12

φ21 φ22


 µ†t−1

λ†t−1

+

 ψ11 ψ12

ψ21 ψ22


 uµ,t−1

uλ,t−1

+ψ∗

 0

sgn(−εt−1)(uλ,t−1 + 1)

 (6)

where parameter ψ∗ ∈ IR measures leverage effects, sgn(·) is the signum function, and the leverage

effects formulation is from Harvey (2013, p. 105). In matrix form, Eq. (6) is:

θt = Φθt−1 + g(ut−1) (7)

where θt = (θ1,t, θ2,t)
′ ≡ (µ†t , λ

†
t)
′. Moreover, g(ut) = g[(u1,t, u2,t)

′] ≡ g[(uµ,t, uλ,t)
′] represents the

second and third terms on the right side of Eq. (6), and θ1 = E(θt) = 02×1 is used for initialization.

In Eq. (7), we assume that the maximum modulus of eigenvalues of Φ is less than one. The Beta-t-
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QVAR(1) and Beta-t-QVAR(1)-M specifications with leverage effects are named Beta-t-QVAR(1)-lev

and Beta-t-QVAR(1)-M-lev, respectively.

We note that for Beta-t-QVAR(1)-M and Beta-t-QVAR(1)-M-lev, the most recent information on

asset return influences the risk premium in two ways: (i) through µ†t , which is updated by a linear

transformation of ut; (ii) through exp(ω + λ†t), which is updated by a nonlinear transformation of ut.

The differences between those updates are the functional forms of the updates and the parameters

that scale ut. Details of the model formulation for all Beta-t-QVAR(1) specifications, by showing the

dynamics of risk premium and volatility with explicit formulas, are presented in the Supplementary

Material.

4. Data

Weekly and daily log-return data are used from the DJIA stock market index for the period of

January 1985 to February 2020 (source: Yahoo Finance). In this paper, gross return is used instead of

excess return over a risk-free rate, since it is assumed that the forecast users of the empirical illustration

are DJIA options investors. Weekly data frequency is motivated by the volatility forecast study for

Beta-t-EGARCH-M in the work of Harvey and Lange (2018). Daily data frequency is motivated by the

volatility forecast study for GARCH-type volatility models in the work of Hansen and Lunde (2005).

In the volatility forecasting case study of the present paper, the full data window is divided into

the initial estimation and the forecasting windows (Table 1). A rolling-window approach is used for

forecasting. After the use of the initial estimation window, for the remaining estimation windows, the

first observation is excluded from the estimation window and a new last observation is added to the

estimation window. Descriptive statistics are presented in Table 1. The evolution of weekly and daily

DJIA log-returns is presented for the period of January 1985 to February 2020 in Fig. 1.
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Table 1. Descriptive statistics of DJIA log-return yt (% points).

Full data window: Weekly Daily

Start date 28 January 1985 31 January 1985

End date 24 February 2020 27 February 2020

Sample size 1, 830 8, 840

Forecasting window: Weekly Daily

Start date 4 January 2010 4 January 2010

End date 24 February 2020 27 February 2020

Sample size 530 2, 555

Initial estimation window: Weekly Daily

Start date 28 January 1985 31 January 1985

End date 28 December 2009 31 December 2009

Sample size 1, 300 6, 285

Final estimation window: Weekly Daily

Start date 27 March 1995 10 March 1995

End date 17 February 2020 26 February 2020

Sample size 1, 300 6, 285

Statistics: Weekly Daily

Minimum −20.0298 −25.6315

Maximum 10.6977 10.5083

Average 0.1634 0.0339

Standard deviation 2.2516 1.0956

Skewness −1.0302 −1.6607

Excess kurtosis 7.2389 41.4272

Corr(yt, yt−1) −0.0624 −0.0330

Corr(yt, |yt−1|) −0.0149 0.0302

Corr(|yt|, yt−1) −0.1996 −0.1242

Corr(|yt|, |yt−1|) 0.2610 0.2319

Shapiro–Wilk test 0.9382∗∗∗ 0.8779∗∗∗

Notes: The null hypothesis of the Shapiro and Wilk (1965) test is normal distribution. ∗∗∗ indicates significance at the 1% level.
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(a) Weekly DJIA log-return

Initial estimation window: 28 January 1985 to 28 December 2009 (T = 1, 300)

Forecasting window: 4 January 2010 to 24 February 2020 (Tf = 530).

(b) Daily DJIA log-return

Initial estimation window: 31 January 1985 to 31 December 2009 (T = 6, 285)

Forecasting window: 4 January 2010 to 27 February 2020 (Tf = 2, 555).

Fig. 1. DJIA log-return yt = 100× ln(pt/pt−1) for the period of January 1985 to February 2020.

Notes: In each panel, a tick constant line indicates the forecasting window.
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5. Statistical inference

5.1. ML estimator

The parameters of Beta-t-QVAR are estimated by using the ML method, as follows:

Θ̂ = arg max
Θ

LL(y1, . . . , yT |Θ) = arg max
Θ

T∑
t=1

ln f(yt|Ft−1,Θ) (8)

where Θ is a S × 1 vector of time-invariant parameters, the information set is Ft−1 = (θ1, y1, . . . , yt−1)

(Blasques et al. 2017), and the log conditional density of yt|Ft−1 is:

ln f(yt|Ft−1,Θ) = (9)

ln Γ

(
ν + 1

2

)
− ln Γ

(ν
2

)
− 1

2
ln(πν)− λt −

ν + 1

2
ln

[
1 +

(yt − µt)2

ν exp(2λt)

]
For the Beta-t-QVAR(1) model, Θ = [c, β1, vec(Φ)′, vec(Ψ)′, ω, ν]′, where S = 12. For the Beta-t-

QVAR(1)-M model, Θ = [c, β1, β2, vec(Φ)′, vec(Ψ)′, ω, ν]′, where S = 13. For the Beta-t-QVAR(1)-lev

model, Θ = [c, β1, vec(Φ)′, vec(Ψ)′, ψ∗, ω, ν]′, where S = 13. For the Beta-t-QVAR(1)-M-lev model,

Θ = [c, β1, β2, vec(Φ)′, vec(Ψ)′, ψ∗, ω, ν]′, where S = 14. Within Θ, vec(x) indicates that the columns

of matrix x are being stacked one upon the other. With respect to the parameter set for Θ, we assume

that 2 < ν <∞, and each of the remaining parameters take finite values within the set of real numbers

IR. As a consequence, −∞ < λt <∞, and −∞ < µt <∞. We use the following assumption:

(A1) Parameter set Θ̃ ⊂ IRS is compact (Wooldridge 1994, Theorem 4.1).

In the following, the gradient vector Gt(Θ) and the Hessian matrix Ht(Θ) of LL are defined. The

T × S matrix of contributions to the gradient G(y1, . . . , yT ,Θ) is defined by its elements:

Gt,i(Θ) = −∂ ln f(yt|Ft−1; Θ)

∂Θi
(10)

for period t = 1, . . . , T , and parameter i = 1, . . . , S (Wooldridge 1994, p. 2674). The t-th row of

G(y1, . . . , yT ,Θ) is denoted by using Gt(Θ), which is the score vector for the t-th observation. Under
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the ML assumptions of this paper, the maximization problem of Eq. (8) is equivalent to:

1

T

T∑
t=1

Gt(Θ̂)′ =
1

T

T∑
t=1


Gt,1(Θ̂)

...

Gt,S(Θ̂)

 =
1

T

T∑
t=1


−∂ ln f(yt|Ft−1;Θ̂)

∂Θ1

...

−∂ ln f(yt|Ft−1;Θ̂)
∂ΘS

 = 0S×1 (11)

According to the mean-value expansion about the true values of parameters Θ0:

1

T

T∑
t=1

Gt(Θ̂)′ =
1

T

T∑
t=1

Gt(Θ0)′ +
1

T

[
T∑
t=1

Ht(Θ̄)

]
(Θ̂−Θ0) (12)

where each row of the S × S Hessian matrix (Wooldridge 1994, p. 2674):

Ht(Θ) = −∂
2 ln f(yt|Ft−1; Θ)

∂Θ∂Θ′
(13)

is evaluated at S different mean values Θ̄ (Eq. (12)). Each Θ̄ is located between Θ0 and Θ̂: ||Θ̄−Θ0|| ≤

||Θ̂−Θ0||, where || · || is the Euclidean norm. From Eqs. (11) and (12):

√
T (Θ̂−Θ0) =

[
− 1

T

T∑
t=1

Ht(Θ̄)

]−1 [
1√
T

T∑
t=1

Gt(Θ0)′

]
(14)

The asymptotic covariance matrix of parameters Θ̂ is estimated by using the inverse information

matrix: {(1/T )
∑T

t=1[Gt(Θ̂)′Gt(Θ̂)]}−1 (Creal et al. 2013; Harvey 2013; Blasques et al. 2017).

In the proofs of the stochastic properties of the score functions and in the asymptotic theory of the

ML estimator, the following maintained assumptions (A2) and (A3) are used:

(A2) f(yt|Ft−1; Θ0) = p0(yt|Ft−1; Θ0) for Θ0 from the parameter set Θ̃ ⊂ IRS , where p0 is the true

conditional density, and Θ0 represents the true values of Θ (Wooldridge 1994, p. 2672).

(A3) f(yt|Ft−1; Θ0) = p0(yt|Ft−1; Θ0) for Θ0 is a dynamically complete density (Wooldridge 1994, p.

2677; Woodridge 2010, p. 408).

One of the consequences of (A3) is that Gt(Θ0)′ is a MDS (Wooldridge 1994, p. 2677). Further

assumptions for the asymptotic theory of ML are presented in Section 5.3.
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5.2. Score functions of dynamic parameters

In this section, we present the properties of score functions uµ,t and uλ,t at the true values of

parameters Θ = Θ0. We use the following maintained assumption for the log-scale parameter:

(A4) |λt| < λmax <∞, ∀t

where λmax is a finite parameter that does not depend on εt for all t. (A4) assumes that volatility

cannot go to infinity, given that ν > 2. Several properties of the score functions are based on this

assumption.

Updating term uµ,t is the scaled conditional score of the LL with respect to µt (Harvey 2013):

∂ ln f(yt|Ft−1,Θ)

∂µt
=

ν + 1

ν exp(2λt)
× uµ,t (15)

uµ,t =
ν exp(2λt)(yt − µt)

ν exp(2λt) + (yt − µt)2
=
ν exp(λt)εt
ν + ε2t

(16)

is a continuously differentiable function of εt. In the last equation we replace λt by λmax. Hence,

|uµ,t| =
∣∣∣∣ν exp(λt)εt

ν + ε2t

∣∣∣∣ < ∣∣∣∣ν exp(λmax)εt
ν + ε2t

∣∣∣∣ (17)

The right side of Eq. (17) includes a continuously differentiable function of εt, and if |εt| → ∞, hence

the right side of Eq. (17) goes to zero. Therefore, uµ,t is a bounded function of εt.

Updating term uλ,t is the conditional score of the LL with respect to λt (Harvey 2013, p. 99):

uλ,t =
∂ ln f(yt|Ft−1,Θ)

∂λt
=

(ν + 1)(yt − µt)2

ν exp(2λt) + (yt − µt)2
− 1 =

(ν + 1)ε2t
ν + ε2t

− 1 (18)

If ν > 0, then uλ,t is a continuously differentiable and bounded function of εt. Variable |uλ,t| is bounded

because uλ,t is a transformation of the random variable [ε2t /(ν + ε2t )] ∈ (0, 1) (Harvey 2013).

In the following, we study the boundedness of the derivatives of score functions with respect to µt

and λt. The derivative of uµ,t with respect to µt is:

∂uµ,t
∂µt

=
νε2t − ν2

(ν + ε2t )
2

(19)
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which is a continuously differentiable function of εt = (yt − µt) exp(−λt). Hence,

∣∣∣∣∂uµ,t∂µt

∣∣∣∣ =

∣∣∣∣ νε2t − ν2

(ν + ε2t )
2

∣∣∣∣ < ∣∣∣∣νε2t − ν2

ν + ε2t

∣∣∣∣ < ∣∣∣∣ νε2t
ν + ε2t

∣∣∣∣ <∞ (20)

where the first inequality is true for ν > 1, and the last inequality is true because [ε2t /(ν + ε2t )] ∈ (0, 1).

As a consequence, ∂uµ,t/µt is a bounded function of εt. The derivative of uµ,t with respect to λt is:

∂uµ,t
∂λt

=
2ν exp(λt)ε

3
t

(ν + ε2t )
2

(21)

which is a continuously differentiable function of εt = (yt − µt) exp(−λt). Hence,

∣∣∣∣∂uµ,t∂λt

∣∣∣∣ =

∣∣∣∣2ν exp(λt)ε
3
t

(ν + ε2t )
2

∣∣∣∣ < ∣∣∣∣2ν exp(λmax)ε3t
(ν + ε2t )

2

∣∣∣∣ (22)

The right side of Eq. (22) includes a continuous function of εt. Moreover, if |εt| → ∞, hence, the right

side of Eq. (22) goes to zero. Hence, the right side of Eq. (22) is finite for all εt. Therefore, ∂uµ,t/∂λt

is a bounded function of εt. The derivative of uλ,t with respect to µt is:

∂uλ,t
∂µt

= −2ν(ν + 1) exp(−λt)εt
(ν + ε2t )

2
(23)

which is a continuously differentiable function of εt = (yt − µt) exp(−λt). Hence,

∣∣∣∣∂uλ,t∂µt

∣∣∣∣ =

∣∣∣∣2ν(ν + 1) exp(−λt)εt
(ν + ε2t )

2

∣∣∣∣ < ∣∣∣∣2ν(ν + 1) exp(λmax)εt
(ν + ε2t )

2

∣∣∣∣ (24)

The right side of Eq. (24) includes a continuous function of εt. Moreover, if |εt| → ∞, then the right

side of Eq. (24) goes to zero. Hence, the right side of Eq. (24) is finite for all εt. Therefore, ∂uλ,t/∂µt

is a bounded function of εt. The derivative of uλ,t with respect to λt is:

∂uλ,t
∂λt

= −2ν(ν + 1)ε2t
(ν + ε2t )

2
(25)

which is a continuously differentiable function of εt = (yt − µt) exp(−λt). Hence,

∣∣∣∣∂uλ,t∂λt

∣∣∣∣ =

∣∣∣∣2ν(ν + 1)ε2t
(ν + ε2t )

2

∣∣∣∣ < ∣∣∣∣2ν(ν + 1)ε2t
ν + ε2t

∣∣∣∣ <∞ (26)
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where the first inequality is due to ν > 1, and the second inequality is true because [ε2t /(ν+ε2t )] ∈ (0, 1).

As a consequence, ∂uλ,t/λt is a bounded function of εt.

Due to (A1), (A4), Var(εt) <∞ as ν > 2, and the boundedness of score functions, their derivatives,

and their products (products of bounded functions are also bounded), we have the following result:

E

[
(uj,t)

2−i
(
∂uk,t
∂lt

)i]
<∞ (27)

E

[(
∂uj,t
∂mt

)2−i(∂uk,t
∂lt

)i]
<∞ (28)

for i = 0, 1, 2, and j, k, l,m = µ, λ.

In the following, we study the consequences of (A3) on the score functions:

(i) Score function uµ,t is a MDS due to the following arguments. Due to (A3), Gt(Θ0)′ is a MDS:

Et−1

[
∂ ln f(yt|Ft−1,Θ)

∂Θ′

]
= Et−1

[
∂ ln f(yt|Ft−1,Θ)

∂µt

]
× ∂µt
∂Θ′

= 0 (29)

where index t− 1 indicates expectations that are conditional on Ft−1. Since (∂µt/∂Θ′) 6= 0,

Et−1

[
∂ ln f(yt|Ft−1,Θ)

∂µt

]
= Et−1

[
ν + 1

ν exp(2λt)
uµ,t

]
= Et−1(uµ,t)

ν + 1

ν exp(2λt)
= 0 (30)

Thus, Et−1(uµ,t) = 0.

(ii) Score function uλ,t is a MDS due to the following arguments. Due to (A3), Gt(Θ0)′ is a MDS:

Et−1

[
∂ ln f(yt|Ft−1,Θ)

∂Θ′

]
= Et−1

[
∂ ln f(yt|Ft−1,Θ)

∂λt

]
× ∂λt
∂Θ′

= 0 (31)

Since (∂λt/∂Θ′) 6= 0,

Et−1

[
∂ ln f(yt|Ft−1,Θ)

∂λt

]
= Et−1(uλ,t) = 0 (32)

(iii) E(uµ,t) = 0 and E(uλ,t) = 0, due to the law of iterated expectations.
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(iv) uµ,t is a MDS and Var(uµ,t) <∞, hence uµ,t is white noise.

(v) uλ,t is a MDS and Var(uλ,t) <∞, hence uλ,t is white noise.

(iv) Score function uµ,t is not i.i.d., because λt depends on λt−1.

(v) Score function uλ,t is i.i.d., because uλ,t is a continuous function of εt and εt is i.i.d. (White 2001).

(vi) Score function uλ,t is an F-measurable function of εt (White 2001), because uλ,t is a continuous

function of εt (Harvey 2013).

(vii) Score function uλ,t is strictly stationary and ergodic, because uλ,t is an F-measurable function

of εt, and because εt is strictly stationary and ergodic (White 2001, Theorem 3.35).

(viii) If the maximum modulus of eigenvalues of Φ is less than one, then, due to the finite variances of

score functions: λt is a sum of nonlinear functions of lags of εt. As a consequence, the continuous

uµ,t function, which includes λt, is an F-measurable function of εt (White 2001).

(ix) Score function uµ,t is strictly stationary and ergodic, because uµ,t is an F-measurable function of

(ε1, . . . , εt), and because εt is strictly stationary and ergodic (White 2001, Theorem 3.35).

In Fig. 2, the in-sample estimates, for the period of January 1985 to February 2020, of uµ,t and uλ,t

as a function of εt are presented for Beta-t-QVAR(1) by using DJIA data. The figure indicates the

continuity and boundedness of the score functions for the ML estimates.

Proposition 1(a): For Beta-t-QVAR(1) and Beta-t-QVAR(1)-M, if the maximum modulus of eigen-

values of Φ is less than one, and Ψ is non-zero, then θt is covariance stationary.

Proof: For filter θt = Φθt−1 + Ψut−1, ut is white noise, with zero mean and a well-defined covariance

matrix for ν > 2. If the maximum modulus of eigenvalues of Φ is < 1 and Ψ is non-zero, then θt

is covariance stationary. QED

Proposition 1(b): For Beta-t-QVAR(1)-lev and Beta-t-QVAR(1)-M-lev, if the maximum modulus

of eigenvalues of Φ is less than one, and Ψ or ψ∗ is non-zero, then θt is covariance stationary.

Proof: For filter θt = Φθt−1+g(ut−1), g(ut) is white noise, with zero mean and a well-defined covariance

matrix for ν > 2. If the maximum modulus of eigenvalues of Φ is < 1 and Ψ or ψ∗ is non-zero,

then θt is covariance stationary. QED
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(a) uµ,t for Beta-t-QVAR(1) (weekly, 28 January 1985 to 24 February 2020) (b) uµ,t for Beta-t-QVAR(1) (daily, 31 January 1985 to 27 February 2020)

(c) uλ,t for Beta-t-QVAR(1) (weekly, 28 January 1985 to 24 February 2020) (d) uλ,t for Beta-t-QVAR(1) (daily, 31 January 1985 to 27 February 2020)

Fig. 2. Score functions uµ,t (“asymptotic trimming”) and uλ,t (“asymptotic Winsorizing”), as functions of εt for the estimation window.

Notes: λt = 0, ν̂ = 7.4613 (weekly data), and ν̂ = 7.2765 (daily data). Estimates for Beta-t-QVAR(1) are presented because the Akaike information criterion (AIC), Bayesian

information criterion (BIC), and Hannan–Quinn criterion (HQC) of this model are superior to the statistical performance metrics of other Beta-t-QVAR(1) specifications.
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5.3. Asymptotic theory of the ML estimator

We use the following assumptions for the asymptotic theory of ML (Wooldridge 1994):

(A5) yt is strictly stationary and ergodic on IR (Wooldridge 1994, Theorem 4.1).

(A6) ln f(·|Ft−1; Θ) : IR× Θ̃→ IR is a real-valued function, where Θ̃ ⊂ IRS is the parameter set.

(A7) For each Θ ∈ Θ̃, ln f(·|Ft−1; Θ) is a Borel measurable function on IR (Wooldridge 1994, Theorem

4.1 and Definition A2).

(A8) For each yt ∈ IR, ln f(yt|Ft−1; ·) is a continuous function on Θ̃ (Wooldridge 1994, Theorem 4.1

and Definition A2).

(A9) ∃ function b(·) such that | ln f(yt|Ft−1; Θ)| ≤ b(yt) for all Θ, and E[b(yt)] <∞ (Wooldridge 1994,

Theorem 4.1).

(A10)
∫

IR f(yt|Ft−1; Θ)dyt = 1 for all Θ (Wooldridge 1994, p. 2673).

(A11) Θ0 is a unique solution to (Wooldridge 1994, Theorem 4.3):

max
Θ∈Θ̃

lim
T→∞

T∑
t=1

ln f(yt|Ft−1,Θ) (33)

(A12) Each element of Ht(Θ) is strictly stationary and ergodic (Wooldridge 1994, Theorem 4.1).

(A13) For each element of Ht(Θ), Hi,j,t(Θ) : IR× Θ̃→ IR is a real-valued function (Wooldridge 1994,

Theorem 4.1).

(A14) For each Θ ∈ Θ̃, each element of Ht(Θ) is a Borel measurable function on IR (Wooldridge 1994,

Theorems 4.1 and 4.4, and Definition A2).

(A15) For each yt ∈ IR, each element of Ht(Θ) is a continuous function on Θ̃ (Wooldridge 1994,

Theorems 4.1 and 4.4, and Definition A2).

(A16) ∃ function b(·) such that, for all elements of Ht(Θ), |Hi,j,t(Θ)| ≤ b[Hi,j,t(Θ)] for all Θ, and

E{b[Hi,j,t(Θ)]} <∞ (Wooldridge 1994, Theorems 4.1 and 4.4).

(A17) E[Gt(Θ0)Gt(Θ0)′] <∞ (Wooldridge 1994, Definition 4.3).
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(A18) (1/
√
T )
∑T

t=1E[Gt(Θ0)′]→ 0S×1 for T →∞ (Wooldridge 1994, Definition 4.3).

(A19) (1/
√
T )
∑T

t=1Gt(Θ0)′ →d N(0, B0) for T →∞, where (Wooldridge 1994, Definition 4.3):

B0 = lim
T→∞

Var

[
1√
T

T∑
t=1

Gt(Θ0)′

]
(34)

(A20) Θ0 is an interior point within Θ̃ ⊂ IRS (Wooldridge 1994, Theorem 4.4).

(A21) For each yt ∈ IR, ln f(yt|Ft−1; ·) is twice continuously differentiable on all of the interior points

of Θ̃ (Wooldridge 1994, Theorem 4.4).

(A22) ∂[
∫

IR f(yt|Ft−1; Θ)dyt]/∂Θ =
∫

IR[∂f(yt|Ft−1; Θ)/∂Θ]dyt (Wooldridge 1994, p. 2674).

(A23) ∂[
∫

IRGt(Θ)′f(yt|Ft−1; Θ)dyt]/∂Θ =
∫

IR[∂Gt(Θ)′f(yt|Ft−1; Θ)/∂Θ]dyt (Wooldridge 1994, p. 2675).

(A24) Matrix

A0 = lim
T→∞

1

T

T∑
t=1

E[Ht(Θ0)] = lim
T→∞

1

T

T∑
t=1

Var[Gt(Θ0)′] (35)

is positive definite (Wooldridge 1994, Theorem 4.4).

Conditions (A1), (A6), (A7), (A8), (A10), (A13), (A14), (A15), (A20), (A21), (A22), and (A23)

are standard regularity conditions in the literature, which hold for the Beta-t-QVAR model. Con-

ditions (A2), (A3), (A11), and (A24) are standard maintained assumptions in the literature, which

are assumed to hold in this paper. Condition (A4) can be interpreted as a regularity condition of

non-infinite volatility. Condition (A9) holds for the parameter set of the Beta-t-QVAR model, because

| ln f(yt|Ft−1; Θ)| is bounded for 2 < ν < ∞, −∞ < λt < λmax, and −∞ < µt < ∞, by using the

triangle inequality for Eq. (9). Condition (A16) holds due to the bounded derivatives of the score

functions for Θ̃ under (A4). Conditions (A5), (A12), (A17), (A18), and (A19) for the Beta-t-QVAR

model are proven in the remainder of this section. Consistency of the ML estimator of Beta-t-QVAR

is studied by using Monte Carlo simulation experiments of Section 5.4.

In the following, several propositions about the asymptotic properties of the ML estimates (i.e.

consistency and asymptotic normality of θ̂) are proven. We refer to the work of Wooldridge (1994).
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Proposition 2: If assumptions (A1), (A5), (A6), (A7), (A8), and (A9) hold. Hence, ln f(yt|Ft−1; Θ)

satisfies the uniform weak law of large numbers (UWLLN) (Wooldridge 1994, Definition 4.2).

Proof: It follows from Wooldridge (1994, Theorem 4.1). For (A5), we use the following result for

Beta-t-QVAR: θ̂t converges exponentially almost surely (e.a.s.) to the unique strictly stationary

and ergodic sequence θt(Θ0) for T →∞, which is proven in Propositions 7(a-b) (Supplementary

Material). Moreover, for (A5), we also use the work of White (2001, Theorem 3.35): In Eqs.

(1)-(3), θt is transformed to yt, by using an F-measurable function. Therefore, yt is strictly

stationary and ergodic for T →∞. (A1), (A6), (A7), (A8), and (A9) hold for the Beta-t-QVAR

models of this paper. QED

Proposition 3: If the following assumptions hold: (A1), (A2), (A7), (A8), (A10), (A11), and log-

density ln f(yt|Ft−1; Θ) satisfies the UWLLN. Hence, Θ̂ is weakly consistent, i.e. Θ̂→p Θ0.

Proof: It follows from Wooldridge (1994, Theorem 5.1). (A2) and (A11) are maintained assumptions.

(A1), (A7), (A8), and (A10) hold for the Beta-t-QVAR models of this paper. The assumption

‘ln f(yt|Ft−1; Θ) satisfies the UWLLN’ holds due to Proposition 2. QED

Proposition 4: If the following assumptions hold: (A1), (A12), (A13), (A14), (A15), and (A16).

Hence, Ht(Θ) satisfies the UWLLN.

Proof: It follows from Wooldridge (1994, Theorem 4.1). For (A12), we use the following result for

Beta-t-QVAR: Ht(Θ̂) converges e.a.s. to the unique strictly stationary and ergodic sequence

Ht(Θ0) for T → ∞ (conditions are in the Supplementary Material). (A1), (A13), (A14), and

(A15) hold for the Beta-t-QVAR models of this paper. (A16) is a maintained assumption. QED

Proposition 5: If the following assumptions hold: (A17), (A18), and (A19). Hence, Gt(Θ0) satisfies

the central limit theorem (CLT) with asymptotic variance B0.

Proof: It follows from Wooldridge (1994, Definition 4.3). For (A17), we use the following result:

E[Ht(Θ0)] = Var[Gt(Θ0)′)] = E[Gt(Θ0)′Gt(Θ0)] < ∞, where the equalities hold due to (A22)

(Wooldridge 1994, p. 2674) and (A23) (Wooldridge 1994, p. 2675), respectively. Inequality

E[Gt(Θ0)′Gt(Θ0)] <∞ is shown in Propositions 9(a-b) (Supplementary Material), which implies

E[Gt(Θ0)Gt(Θ0)′] < ∞, because the terms of the sum defined by Gt(Θ0)Gt(Θ0)′ are in the
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diagonal of Gt(Θ0)′Gt(Θ0). For (A18), we use the following result: E[Gt(Θ0)′] = 0S×1, which

holds under (A22) (Wooldridge 1994, p. 2674). For (A19) we, use White (2001, Theorem 5.16):

(i) Gt(Θ0)′ is a MDS, which holds under (A3) (Wooldridge 1994, p. 2677). Therefore, Gt(Θ0)

is an adapted mixingale (White 2001, Definition 5.15, p. 125). (ii) Gt(Θ̂)′ converges e.a.s. to

the unique strictly stationary and ergodic sequence Gt(Θ0)′ for T → ∞, which is proven in

Propositions 10(a-b) (Supplementary Material). (i) and (ii) provide (A18). QED

Proposition 6: If the following assumptions hold: (A1), (A2), (A3), (A7), (A8), (A10), (A11), (A20),

(A21), (A22), (A23), (A24), ln f(yt|Ft−1; Θ) satisfies the UWLLN, Ht(Θ) satisfies the UWLLN,

and Gt(Θ0) satisfies the CLT with asymptotic variance:

B0 = lim
T→∞

Var

[
1√
T

T∑
t=1

Gt(Θ0)′

]
(36)

then,

√
T (Θ̂−Θ0)→d NS

(
0S×1, A

−1
0 B0A

−1
0

)
= NS

(
0S×1, A

−1
0

)
as T →∞ (37)

The equality in Eq. (37) is due to (A3), which provides: (i) Gt(Θ0)′ is a MDS (Wooldridge

1994, p. 2677), (ii) Gt(Θ0)′ is serially uncorrelated (Wooldridge 1994, pp. 2676-2677), and (iii)

A0 = B0 (Wooldridge 1994, p. 2676). The equality in Eq. (37) is due to (iii).

Proof: It follows from Wooldridge (1994, Theorem 5.2). (A2), (A3), (A11), and (A24) are maintained

assumptions. (A1), (A7), (A8), (A10), (A20), (A21), (A22), and (A23) hold for the Beta-t-QVAR

models. The assumption ‘ln f(yt|Ft−1; Θ) satisfies the UWLLN’ holds due to Proposition 2. The

assumption ‘Ht(Θ) satisfies the UWLLN’ holds due to Proposition 4. The assumption ‘Gt(Θ0)

satisfies the CLT asymptotic variance B0’ holds due to Proposition 5. QED

5.4. Monte Carlo results

In Table 2, we present the results of a Monte Carlo study, which is based on the simulations of

200 trajectories of yt with TMC = 2, 500. The sample size TMC is larger than the sample size of the

weekly DJIA data, and it is smaller than the sample size of the daily DJIA data. Each trajectory is

drawn independently of each other. In the Monte Carlo study, we use one set of true parameter values
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that is similar to the parameter estimates for Beta-t-QVAR(1)-M-lev of weekly DJIA for the period of

January 1985 to February 2020. Beta-QVAR(1)-M-lev is used in the Monte Carlo study, because that

model has the most accurate prediction accuracy for volatility from the Beta-t-QVAR specifications

(Section 7). Due to the specific set of true parameter values, the specific econometric model, and the

relatively limited number of trajectories, it is important to note that the Monte Carlo results provide

only an illustration of the consistency of ML estimation of score-driven location plus scale models.

To compare true and estimated parameter values, the Sign test (i.e. distribution-free or non-

parametric test) is used, which compares the median of the parameter estimates with the true value for

each parameter. An advantage in using the Sign test is that it is based on few assumptions about the

true data generating process. The test results indicate that the Sign test statistic is not significantly

different from zero for any of the parameters (Table 2).

Table 2. Sign test results for simulated data

True value Median Sign statistic p-value

c 0.3000 0.2865 0.5000 0.4795

β1 0.1000 0.1019 0.7200 0.3961

β2 −0.0400 −0.0353 0.5000 0.4795

φ1,1 0.8024 0.8029 0.0200 0.8875

φ1,2 −0.0191 −0.0177 0.3200 0.5716

φ2,1 −0.0226 −0.0219 0.7200 0.3961

φ2,2 0.9776 0.9726 1.6200 0.2031

ψ1,1 −0.6100 −0.6090 0.3200 0.5716

ψ1,2 0.2200 0.2198 0.0000 1.0000

ψ2,1 −0.0800 −0.0798 0.0800 0.7773

ψ2,2 0.0600 0.0590 0.9800 0.3222

ψ∗ −0.0200 −0.0203 0.9800 0.3222

ω 0.5600 0.5612 0.1800 0.6714

ν 7.5000 7.5885 0.9800 0.3222

Notes: The Monte Carlo study is based on the simulations of 200 trajectories of yt with TMC = 2, 500 observations for each trajectory.

6. Impulse response functions (IRFs)

For Beta-t-QVAR(1) and Beta-t-QVAR(1)-M, the IRFs of filter θt are:

IRFj+1,t =
∂θt+j+1

∂(vt, vt)
=
∂θt+j+1

∂u′t

 ∂uµ,t/∂vt ∂uµ,t/∂vt

∂uλ,t/∂vt ∂uλ,t/∂vt

 = ΦjΨ

 ∂uµ,t/∂vt ∂uµ,t/∂vt

∂uλ,t/∂vt ∂uλ,t/∂vt

 (38)
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for j = 0, 1, . . . ,∞. For Beta-t-QVAR(1)-lev and Beta-t-QVAR(1)-M-lev, the IRFs of filter θt are:

IRFj+1,t =
∂θt+j+1

∂(vt, vt)
=
∂θt+j+1

∂u′t

 ∂uµ,t/∂vt ∂uµ,t/∂vt

∂uλ,t/∂vt ∂uλ,t/∂vt

 = ΦjΨk

 ∂uµ,t/∂vt ∂uµ,t/∂vt

∂uλ,t/∂vt ∂uλ,t/∂vt

 (39)

for j = 0, 1, . . . ,∞. For the latter IRF, two versions are defined, k = P,N , where k = P assumes

positive unexpected return vt−1 > 0, and k = N assumes negative unexpected return vt−1 < 0, and

ΨP =

 ψ11 ψ12

ψ21 ψ22 − ψ∗

 , ΨN =

 ψ11 ψ12

ψ21 ψ22 + ψ∗

 (40)

respectively. In Eqs. (38) and (39), the derivatives are given by:

∂uµ,t
∂vt

=
ν exp(2λt)[ν exp(2λt)− ε2t ]

[ν exp(2λt) + v2
t ]

2
(41)

∂uλ,t
∂vt

=
2ν(ν + 1) exp(2λt)vt

[ν exp(2λt) + v2
t ]

2
(42)

respectively. The IRFs of Eqs. (38) and (39) are time-dependent, since they correspond to nonlinear

models. For the definitions of IRFs of nonlinear models there are several alternatives in the literature

(e.g. Lütkepohl 2005; Herwartz and Lütkepohl 2000).

In Figs. 3 and 4, for weekly and daily DJIA data, respectively, the estimates of ∂θt+j+1/∂u
′
t are

presented. In the panels of Figs. 3 and 4, the following significant dynamic interaction effects are

shown: dynamic overreaction effects, dynamic risk premium effects, dynamic leverage effects, and dy-

namic volatility effects. The measurement of the dynamic effects of the score functions is motivated by

Fig. 2, in which it is presented that the score functions are robust to extreme observations. Therefore,

the dynamic interaction effects ∂θt+j+1/∂u
′
t can provide robust information about the significance and

the signs of the dynamic interaction effects between risk premium and volatility.
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(a) uµ,t → µt+j+1, “dynamic overreaction effects” for Beta-t-QVAR(1) (b) uλ,t → µt+j+1, “dynamic risk premium effects” for Beta-t-QVAR(1)

(c) uµ,t → λt+j+1, “dynamic leverage effects” for Beta-t-QVAR(1) (b) uλ,t → λt+j+1, “dynamic volatility effects” for Beta-t-QVAR(1)

Fig. 3. IRFs ∂θt+j+1/∂u
′
t = ΦjΨ for j+ 1 = 1, . . . , 20 for weekly DJIA for the estimation window (28 January 1985 to 24 February 2020). Notes: 90% Monte Carlo confidence

interval for Φ̂jΨ̂ is presented. Beta-t-QVAR(1) is presented since the AIC, BIC, and HQC of this model are superior to the same metrics of other Beta-t-QVAR(1) specifications.
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(a) uµ,t → µt+j+1, “dynamic overreaction effects” for Beta-t-QVAR(1) (b) uλ,t → µt+j+1, “dynamic risk premium effects” for Beta-t-QVAR(1)

(c) uµ,t → λt+j+1, “dynamic leverage effects” for Beta-t-QVAR(1) (b) uλ,t → λt+j+1, “dynamic volatility effects” for Beta-t-QVAR(1)

Fig. 4. IRFs ∂θt+j+1/∂u
′
t = ΦjΨ for j + 1 = 1, . . . , 20 for daily DJIA for the estimation window (31 January 1985 to 27 February 2020). Notes: 90% Monte Carlo confidence

interval for Φ̂jΨ̂ is presented. Beta-t-QVAR(1) is presented since the AIC, BIC, and HQC of this model are superior to the same metrics of other Beta-t-QVAR(1) specifications.
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7. Prediction accuracy

One-step ahead forecasts of volatility, σt = exp(λt)[ν/(ν − 2)]1/2, are computed for the forecasting

window. For each Beta-t-QVAR(1) specification, λt is given by Eqs. (1)-(7). As a proxy of true volatility

σ∗t , the square root of realized variance is used (source: Oxford-Man Institute of Quantitative Finance

(OMI), https://realized.oxford-man.ox.ac.uk/data/download). From the realized variance data file of

OMI, variable ‘rv5’ is used (Harvey and Lange 2018). Prediction accuracies are compared by using the

Diebold–Mariano test for the following loss functions (Hansen and Lunde 2005; Patton 2011):

MSE1,i,t = (σ∗t − σi,t)2 MSE2,i,t = [(σ∗t )
2 − σ2

i,t]
2

QLIKEi,t =

{
(σ∗t )2

σ2
i,t
− ln

[
(σ∗t )2

σ2
i,t

]
− 1

}
R2LOGi,t =

{
ln

[
(σ∗t )2

σ2
i,t

]}2

MAE1,i,t = |σ∗t − σi,t| MAE2,i,t = |(σ∗t )2 − σ2
i,t|

(43)

for model i and for each period of the forecasting window t = 1, . . . , Tf . We use the general LOSSi,t

notation for all loss functions. The Diebold–Mariano test studies the significance of the mean difference

between the loss functions of two forecasting models:

di,j =
1

Tf

Tf∑
t=1

di,j,t =
1

Tf

Tf∑
t=1

(LOSSi,t − LOSSj,t) (44)

If di,j is significantly positive, then the forecast accuracy of model j is superior to that of model i.

If di,j is significantly negative, then the forecast accuracy of model i is superior to that of model j.

Otherwise, the forecast accuracy of the two models does not differ significantly.

With respect to the statistical properties of Beta-t-QVAR for the rolling windows, the empirical

estimate of the maximum modulus of eigenvalues of Φ is denoted CStat. In Fig. 5, rolling-window

estimates, for the period of January 2010 to February 2020, of CStat for DJIA are presented for Beta-

t-QVAR(1). Furthermore, the empirical estimate of the Lyapunov exponent is CInv. In Fig. 5, rolling-

window estimates, for the period of January 2010 to February 2020, of CInv for DJIA are presented

for Beta-t-QVAR(1). The condition of the negative Lyapunov exponent for Beta-t-QVAR(1) (Brandt

1986; Elton 1990; Alsmeyer 2003; Straumann and Mikosch 2006):

inf
n≥1

{
n−1E

[
ln

∣∣∣∣∣
∣∣∣∣∣
n∏
t=1

∂θt
∂(θt−1)′

∣∣∣∣∣
∣∣∣∣∣
1

]}
= inf

n≥1

{
n−1E

(
ln

∣∣∣∣∣
∣∣∣∣∣
n∏
t=1

Xt−1

∣∣∣∣∣
∣∣∣∣∣
1

)}
< 0 (45)
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where

Xt−1 ≡
∂θt

∂(θt−1)′
= Φ + Ψ

∂ut−1

∂(θt−1)′
(46)

which is one of the conditions of the e.a.s. convergence of θ̂t to θt(Θ0) for T →∞. We present further

technical details in the Supplementary Material. In Fig. 5, CStat < 1 and CInv < 0 are supported.

The prediction accuracy of Beta-t-QVAR is compared with the prediction accuracies of the following

models: (i) Motivated by the work of Hansen and Lunde (2005), A-PARCH, normal-GARCH, and t-

GARCH are used. For normal-GARCH and t-GARCH, we study prediction accuracies with and without

leverage effects in the model specifications. Similarly to the work of Hansen and Lunde (2005), the zero

mean, constant mean, and GARCH-in-mean (GARCH-M) alternatives are used for expected return in

the benchmark models. With respect to the lag-orders, Beta-t-EGARCH(1,1), A-PARCH(1,1), normal-

GARCH(1,1), and t-GARCH(1,1) specifications are considered. (ii) Beta-t-EGARCH, for which the

zero mean, constant mean, and EGARCH-in-mean (EGARCH-M) cases are considered, and we study

prediction accuracies with and without leverage effects in each specification.

In Tables 3 and 4, for weekly and daily data, respectively, mean loss functions for the forecasting

window are presented. For each mean loss function, the significance of the Diebold–Mariano test

statistic is presented (without presenting the estimate of the Diebold–Mariano test statistic). We

use Beta-t-QVAR(1)-M-lev as the benchmark volatility forecasting model, for which the mean loss

function estimates are highlighted by bold numbers in Tables 3 and 4. We find that Beta-t-EGARCH,

A-PARCH, and GARCH are not superior to Beta-t-QVAR for any of the loss functions, and, for several

loss functions, Beta-t-QVAR provides significantly more accurate forecasts than the competing models.

26



(a) CStat for Beta-t-QVAR(1) (weekly, 4 January 2010 to 24 February 2020) (b) CStat for Beta-t-QVAR(1) (daily, 4 January 2010 to 27 February 2020)

(c) CInv for Beta-t-QVAR(1) (weekly, 4 January 2010 to 24 February 2020) (d) CInv for Beta-t-QVAR(1) (daily, 4 January 2010 to 27 February 2020)

Fig. 5. Rolling-window-based estimates of CStat and CInv for the forecasting window.

Notes: Beta-t-QVAR(1) is presented since the AIC, BIC, and HQC of this model are superior to the same metrics of other Beta-t-QVAR(1) specifications.
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Table 3. Out-of-sample prediction accuracy for weekly data (forecasting window: 4 January 2010 to 24 February 2020)

Model MSE1 MSE2 QLIKE R2LOG MAE1 MAE2

Beta-t-QVAR(1) 0.4362 20.8477 0.2426 0.5820 0.4899 1.9073

Beta-t-QVAR(1)-lev 0.4324 20.9979 0.2432 0.5694 0.4811 1.8749

Beta-t-QVAR(1)-M 0.4313 20.7235 0.2393 0.5729 0.4850 1.8919

Beta-t-QVAR(1)-M-lev 0.4253 20.7816 0.2399 0.5598 0.4755 1.8511

Beta-t-EGARCH(1,1) zero mean 0.6090∗∗∗ 23.8141∗∗ 0.3365∗∗∗ 0.8523∗∗∗ 0.5969∗∗∗ 2.2899∗∗∗

Beta-t-EGARCH(1,1)-lev zero mean 0.4719+ 19.8236 0.2624 0.6875∗∗∗ 0.5359∗∗∗ 2.0559∗∗

Beta-t-EGARCH(1,1) constant mean 0.5647∗∗∗ 23.0201∗∗ 0.3085∗∗∗ 0.7755∗∗∗ 0.5677∗∗∗ 2.1915∗∗∗

Beta-t-EGARCH(1,1)-lev constant mean 0.4714+ 20.2329 0.2586 0.6669∗∗∗ 0.5293∗∗∗ 2.0413∗∗

Beta-t-EGARCH(1,1)-M 0.5581∗∗∗ 22.8170∗∗ 0.3073∗∗∗ 0.7746∗∗∗ 0.5650∗∗∗ 2.1775∗∗∗

Beta-t-EGARCH(1,1)-M-lev 0.4651 20.0838 0.2569 0.6629∗∗∗ 0.5258∗∗∗ 2.0249∗∗

A-PARCH(1,1) zero mean 0.4373 20.2683 0.2521 0.6302∗∗ 0.4974+ 1.8923

A-PARCH(1,1) constant mean 0.4370 20.3250 0.2514 0.6257∗∗ 0.4960 1.8894

A-PARCH(1,1)-M 0.4313 20.2729 0.2495 0.6179∗∗ 0.4903 1.8647

Gaussian-GARCH(1,1) zero mean 0.5816∗∗∗ 21.9378 0.3272∗∗∗ 0.8880∗∗∗ 0.5957∗∗∗ 2.2549∗∗∗

Gaussian-GARCH(1,1)-lev zero mean 0.4514 18.5132 0.2596 0.7033∗∗∗ 0.5277∗∗ 2.0139+

Gaussian-GARCH(1,1) constant mean 0.5328∗∗∗ 20.8898 0.2996∗∗∗ 0.8112∗∗∗ 0.5664∗∗∗ 2.1544∗∗∗

Gaussian-GARCH(1,1)-lev constant mean 0.4441 18.4878 0.2546 0.6854∗∗∗ 0.5208∗∗ 1.9894

Gaussian-GARCH(1,1)-M 0.5296∗∗∗ 20.7867 0.2995∗∗∗ 0.8107∗∗∗ 0.5652∗∗∗ 2.1463∗∗∗

Gaussian-GARCH(1,1)-M-lev 0.4422 18.4652 0.2550 0.6869∗∗∗ 0.5202∗∗ 1.9828

t-GARCH(1,1) zero mean 0.6064∗∗∗ 23.2001∗∗ 0.3395∗∗∗ 0.8921∗∗∗ 0.6040∗∗∗ 2.2900∗∗∗

t-GARCH(1,1)-lev zero mean 0.4623 19.0508 0.2669 0.7182∗∗∗ 0.5345∗∗∗ 2.0294∗

t-GARCH(1,1) constant mean 0.5577∗∗∗ 22.1752 0.3109∗∗∗ 0.8155∗∗∗ 0.5761∗∗∗ 2.1947∗∗∗

t-GARCH(1,1)-lev constant mean 0.4607 19.2999 0.2634 0.7014∗∗∗ 0.5309∗∗∗ 2.0225∗

t-GARCH(1,1)-M 0.5526∗∗∗ 21.9898 0.3100∗∗∗ 0.8155∗∗∗ 0.5744∗∗∗ 2.1859∗∗∗

t-GARCH(1,1)-M-lev 0.4586 19.2604 0.2639 0.7039∗∗∗ 0.5297∗∗∗ 2.0143∗

Notes: Bold numbers indicate the loss functions of Beta-t-QVAR(1)-M-lev, which we use as the reference specification of Beta-

t-QVAR. The Diebold–Mariano test compares the loss functions of Beta-t-QVAR(1)-M-lev with the loss functions of Beta-t-

EGARCH(1,1), A-PARCH(1,1), Gaussian-GARCH(1,1), and t-GARCH(1,1). For each loss function, the significance of the Diebold–

Mariano test statistic is presented. Note that the lowest loss function values do not always correspond to Beta-t-QVAR(1)-M-lev.

If the difference between loss functions is significant, then the prediction accuracy of Beta-t-QVAR(1)-M-lev is superior to the pre-

diction accuracy of Beta-t-EGARCH(1,1), A-PARCH(1,1), Gaussian-GARCH(1,1), or t-GARCH(1,1). The prediction accuracies of

Beta-t-EGARCH(1,1), A-PARCH(1,1), Gaussian-GARCH(1,1), and t-GARCH(1,1) are never significantly superior to the prediction

accuracy of Beta-t-QVAR(1)-M-lev. +, ∗, ∗∗, and ∗∗∗ indicate significance at the 15%, 10%, 5%, and 1% levels, respectively.
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Table 4. Out-of-sample prediction accuracy for daily data (forecasting window: 4 January 2010 to 27 February 2020)

Model MSE1 MSE2 QLIKE R2LOG MAE1 MAE2

Beta-t-QVAR(1) 0.1211 2.1494 0.3053 0.7215 0.2434 0.4546

Beta-t-QVAR(1)-lev 0.1192 2.0711 0.3012 0.7234 0.2452 0.4590

Beta-t-QVAR(1)-M 0.1213 2.1531 0.3065 0.7260 0.2436 0.4537

Beta-t-QVAR(1)-M-lev 0.1168 2.0491 0.2995 0.7191 0.2443 0.4562

Beta-t-EGARCH zero mean 0.1551∗∗∗ 2.3138∗∗∗ 0.3785∗∗∗ 0.9475∗∗∗ 0.2852∗∗∗ 0.5305∗∗∗

Beta-t-EGARCH-lev zero mean 0.1382∗∗∗ 2.1394∗∗∗ 0.3340∗∗∗ 0.8573∗∗∗ 0.2731∗∗∗ 0.5134∗∗∗

Beta-t-EGARCH constant mean 0.1519∗∗∗ 2.3002∗∗∗ 0.3669∗∗∗ 0.9136∗∗∗ 0.2807∗∗∗ 0.5252∗∗∗

Beta-t-EGARCH-lev constant mean 0.1381∗∗∗ 2.1472∗∗∗ 0.3329∗∗∗ 0.8479∗∗∗ 0.2720∗∗∗ 0.5122∗∗∗

Beta-t-EGARCH-M 0.1511∗∗∗ 2.2952∗∗∗ 0.3660∗∗∗ 0.9114∗∗∗ 0.2801∗∗∗ 0.5238∗∗∗

Beta-t-EGARCH-M-lev 0.1378∗∗∗ 2.1450∗∗∗ 0.3323∗∗∗ 0.8463∗∗∗ 0.2716∗∗∗ 0.5116∗∗∗

A-PARCH(1,1) zero mean 0.1323∗∗∗ 2.1083+ 0.3339∗∗∗ 0.8680∗∗∗ 0.2715∗∗∗ 0.4991∗∗∗

A-PARCH(1,1) constant mean 0.1327∗∗∗ 2.1095+ 0.3348∗∗∗ 0.8710∗∗∗ 0.2720∗∗∗ 0.5000∗∗∗

A-PARCH(1,1)-M 0.1324∗∗∗ 2.1085+ 0.3341∗∗∗ 0.8690∗∗∗ 0.2716∗∗∗ 0.4993∗∗∗

Gaussian-GARCH(1,1) zero mean 0.1498∗∗∗ 2.2180∗∗ 0.3746∗∗∗ 0.9936∗∗∗ 0.2881∗∗∗ 0.5296∗∗∗

Gaussian-GARCH(1,1)-lev zero mean 0.1406∗∗∗ 2.1348 0.3440∗∗∗ 0.9188∗∗∗ 0.2785∗∗∗ 0.5196∗∗∗

Gaussian-GARCH(1,1) constant mean 0.1479∗∗∗ 2.2152∗∗ 0.3672∗∗∗ 0.9686∗∗∗ 0.2851∗∗∗ 0.5268∗∗∗

Gaussian-GARCH(1,1)-lev constant mean 0.1402∗∗∗ 2.1302 0.3433∗∗∗ 0.9147∗∗∗ 0.2786∗∗∗ 0.5195∗∗∗

Gaussian-GARCH(1,1)-M 0.1471∗∗∗ 2.2080∗∗ 0.3665∗∗∗ 0.9666∗∗∗ 0.2845∗∗∗ 0.5252∗∗∗

Gaussian-GARCH(1,1)-lev-M 0.1402∗∗∗ 2.1328 0.3433∗∗∗ 0.9147∗∗∗ 0.2785∗∗∗ 0.5196∗∗∗

t-GARCH(1,1) zero mean 0.1538∗∗∗ 2.2616∗∗∗ 0.3796∗∗∗ 0.9889∗∗∗ 0.2894∗∗∗ 0.5348∗∗∗

t-GARCH(1,1)-lev zero mean 0.1443∗∗∗ 2.1669∗∗ 0.3443∗∗∗ 0.9100∗∗∗ 0.2802∗∗∗ 0.5281∗∗∗

t-GARCH(1,1) constant mean 0.1510∗∗∗ 2.2477∗∗∗ 0.3689∗∗∗ 0.9591∗∗∗ 0.2856∗∗∗ 0.5306∗∗∗

t-GARCH(1,1)-lev constant mean 0.1433∗∗∗ 2.1603∗∗ 0.3424∗∗∗ 0.9019∗∗∗ 0.2790∗∗∗ 0.5257∗∗∗

t-GARCH(1,1)-M 0.1503∗∗∗ 2.2428∗∗∗ 0.3681∗∗∗ 0.9570∗∗∗ 0.2851∗∗∗ 0.5294∗∗∗

t-GARCH(1,1)-lev-M 0.1434∗∗∗ 2.1623∗∗ 0.3426∗∗∗ 0.9026∗∗∗ 0.2791∗∗∗ 0.5260∗∗∗

Notes: Bold numbers indicate the loss functions of Beta-t-QVAR(1)-M-lev, which we use as the reference specification of Beta-

t-QVAR. The Diebold–Mariano test compares the loss functions of Beta-t-QVAR(1)-M-lev with the loss functions of Beta-t-

EGARCH(1,1), A-PARCH(1,1), Gaussian-GARCH(1,1), and t-GARCH(1,1). For each loss function, the significance of the Diebold–

Mariano test statistic is presented. Note that the lowest loss function values do not always correspond to Beta-t-QVAR(1)-M-lev.

If the difference between loss functions is significant, then the prediction accuracy of Beta-t-QVAR(1)-M-lev is superior to the pre-

diction accuracy of Beta-t-EGARCH(1,1), A-PARCH(1,1), Gaussian-GARCH(1,1), or t-GARCH(1,1). The prediction accuracies of

Beta-t-EGARCH(1,1), A-PARCH(1,1), Gaussian-GARCH(1,1), and t-GARCH(1,1) are never significantly superior to the prediction

accuracy of Beta-t-QVAR(1)-M-lev. +, ∗, ∗∗, and ∗∗∗ indicate significance at the 15%, 10%, 5%, and 1% levels, respectively.
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8. Conclusions

In the present paper, a new bivariate score-driven model has been introduced, that captures dynamic

interaction effects between the risk premium and volatility of financial assets, in order to improve

volatility forecast precision. Beta-t-QVAR is a score-driven location plus scale model, for which the

asymptotic properties of the ML estimator have been proven. The one-step ahead volatility forecasting

performance of the new score-driven model has been illustrated for weekly and daily DJIA data for the

period of January 1985 to February 2020. The prediction accuracy of Beta-t-QVAR has been compared

to the volatility prediction accuracies of Beta-t-EGARCH, A-PARCH, and GARCH. The results of the

empirical illustration have indicated that the volatility forecasts of Beta-t-QVAR are superior to the

volatility forecasts of Beta-t-EGARCH, A-PARCH, and GARCH for several loss functions.

The empirical illustration of this paper is specific in several aspects, which may be generalized in

future works: (i) A particular stock market index of 30 large United States firms is used. Alternatively,

stock indices involving the prices of more firms, e.g. the S&P 500 (Standard & Poor’s 500 Index),

or other financial assets may be considered. (ii) A particular set of rolling estimation and forecasting

windows are used for the data. (iii) Only one-step ahead volatility forecasts are used. (iv) Motivated

by studies in the body of literature on forecasting asset price volatility, a particular set of competing

dynamic volatility models are used. (v) For all econometric models of this paper, first-order dynamics

for all filters are used. (vi) A particular definition of IRFs is used. Alternative definitions of IRFs from

the literature on nonlinear econometric models may be considered. (vii) Motivated by studies from

the literature on forecasting asset price volatility, a particular set of loss functions is used. (viii) A

particular statistical test of out-of-sample forecast accuracy comparison is used.

Due to these specifications, the empirical illustration cannot be interpreted as a general finding

on Beta-t-QVAR that is valid for all financial assets. Our objectives are (i) to highlight the potential

usefulness of Beta-t-QVAR, as an alternative to Beta-t-EGARCH, A-PARCH, and GARCH, and (ii)

to present new conditions of statistical inference for score-driven location plus scale models.
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1. Introduction

The consequences of (A1), (A4), and the functional forms of uµ,t and uλ,t are:

E

[
(uj,t)

2−i
(
∂uk,t
∂lt

)i]
<∞ (1)

E

[(
∂uj,t
∂mt

)2−i(∂uk,t
∂lt

)i]
<∞ (2)

for i = 0, 1, 2, and j, k, l,m = µ, λ. In the proofs of the Supplementary Material, we use the finite

second moments and covariances of the derivatives of ut with respect to θt. Based on Eqs. (1)-(2), we

show that those moments are finite by using the chain rule:

∂ut
∂θ′t

=
∂ut

∂(µt, λt)

∂(µt, λt)
′

∂θ′t
(3)

The elements of ∂ut/∂(µt, λt) are bounded (Section 5.2). The elements of ∂(µt, λt)
′/∂θ′t, for the Beta-

t-QVAR(1)-M-lev specification, are bounded because:

∣∣∣∣∣∂µt∂µ†t

∣∣∣∣∣ = |β1| <∞ (4)

∣∣∣∣∣∂µt∂λ†t

∣∣∣∣∣ = |β2 exp(ω + λ†t)| = |β2 exp(λt)| < |β2 exp(λmax)| <∞ (5)

∣∣∣∣∣∂λt∂µ†t

∣∣∣∣∣ = 0 <∞ (6)

∣∣∣∣∣∂λt∂λ†t

∣∣∣∣∣ = 1 <∞ (7)
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For the other Beta-t-QVAR(1) specifications, the latter result can be applied by using parameter

restrictions in Eqs. (4)-(7). Since the product of bounded functions is also a bounded function,

E

[
(uj,t)

2−i
(
∂uk,t
∂θl,t

)i]
<∞ (8)

E

[(
∂uj,t
∂θm,t

)2−i(∂uk,t
∂θl,t

)i]
<∞ (9)

for i = 0, 1, 2, and j, k, l,m = 1, 2. We define:

Xt−1 ≡
∂θt

∂(θt−1)′
= Φ + Ψ

∂ut−1

∂(θt−1)′
(10)

From Eq. (8), we have that E(Xt−1) <∞ and E(Xt−1 ⊗Xt−1) <∞. We also define:

X∗t−1 ≡
∂θt

∂(θt−1)′
= Φ + Ψ∗t

∂ut−1

∂(θt−1)′
≡ Φ +

 ψ11 ψ12

ψ21 ψ22 + ψ∗sgn(−εt−1)

 ∂ut−1

∂(θt−1)′
(11)

where sgn(·) is the signum function. From Eq. (8), E(X∗t−1) < ∞ and E(X∗t−1 ⊗ X∗t−1) < ∞. In

relation to Eqs. (8) to (11), we refer to Creal et al. (2013), Harvey (2013), and Blasques et al. (2017).

The remainder of the Supplementary Material is organized as follows: In Section 2, it is proven in

Propositions 7(a-b) that filter θ̂t converges exponentially almost surely (e.a.s.) to the strictly stationary

and ergodic sequence θt(Θ0) for T →∞. Propositions 7(a-b) are applied to Proposition 2. In Section 3,

in Propositions 8(a-b), it is proven that E[Gt(Θ0)′] < ∞. Those proofs involve technical details that

are used in the proofs of E[Ht(Θ0)] = Var[Gt(Θ0)′)] = E[Gt(Θ0)′Gt(Θ0)] <∞ in Propositions 9(a-b).

In Section 4, Propositions 9(a-b) are proven, which are applied to Proposition 5. In Section 5, it

is proven in Propositions 10(a-b) that Gt(Θ̂)′ converges e.a.s. to the strictly stationary and ergodic

sequence Gt(Θ0)′ for T → ∞. Propositions 10(a-b) are applied to Proposition 5. In Section 6, we

present how the conditions of the following result can be obtained: Ht(Θ̂) converges e.a.s. to the

strictly stationary and ergodic sequence Ht(Θ0) for T → ∞. This result is applied to Proposition 4.

In Sections 7 and 8, the dynamics of yt and σt, respectively, are presented by using explicit formulas.
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2. Stationarity and ergodicity of θ̂t

In Propositions 7(a-b), conditions of e.a.s. convergence of θ̂t to the unique strictly stationary and

ergodic sequence θt(Θ0) are presented. Results from Brandt (1986), Elton (1990), and Alsmeyer (2003)

are used. We also refer to Straumann and Mikosch (2006), and Blasques et al. (2017, 2018).

Proposition 7(a): For Beta-t-QVAR(1) and Beta-t-QVAR(1)-M, θ̂t converges e.a.s. to the unique

strictly stationary and ergodic sequence θt(Θ0), i.e. ||θ̂t − θt(Θ0)||1
e.a.s.−−−→ 0 for t → ∞, when

the following conditions hold: (i) E(ln+ ||Ψu||1) < ∞, where ||Ψu||1 ≡ sup{||Ψu1x||1 : x ∈

IR2, ||x||1 ≤ 1}, and ln+(x) = 0 if 0 ≤ x ≤ 1 and ln+(x) = ln(x) if x > 1. (ii) E(ln+ ||X||1) <∞,

where ||X||1 ≡ sup{||X1x||1 : x ∈ IR2, ||x||1 ≤ 1}. (iii) The Lyapunov exponent is negative:

inf
n≥1

{
n−1E

[
ln

∣∣∣∣∣
∣∣∣∣∣
n∏
t=1

∂θt
∂(θt−1)′

∣∣∣∣∣
∣∣∣∣∣
1

]}
= inf

n≥1

{
n−1E

(
ln

∣∣∣∣∣
∣∣∣∣∣
n∏
t=1

Xt−1

∣∣∣∣∣
∣∣∣∣∣
1

)}
< 0 (12)

(iv) Ψut is strictly stationary and ergodic. (v) Xt is strictly stationary and ergodic. In this paper,

matrix norm ||A||1 = max1≤j≤2
∑2

i=1 |ai,j | is used, where A = {ai,j} for i, j = 1, 2.

Proof: It follows from Brandt (1986), Elton (1990), and Alsmeyer (2003). (i) and (ii) hold for the

Beta-t-QVAR models. (iii) is a maintained assumption, which can be verified empirically. (iv) is

due to the properties of the score functions of Beta-t-QVAR. (v) is due to the following arguments:

According to Eqs. (10) and (3), by using the properties of the score functions (Section 5.2), Xt is

an F-measurable function of (ε1, . . . , εt). Variable Xt is strictly stationary and ergodic, because

εt is strictly stationary and ergodic (White 2001, Theorem 3.35). QED

Proposition 7(b): For Beta-t-QVAR(1)-lev and Beta-t-QVAR(1)-M-lev, θ̂t converges e.a.s. to the

unique strictly stationary and ergodic sequence θt(Θ0), i.e. ||θ̂t − θt(Θ0)||1
e.a.s.−−−→ 0 for t → ∞,

if: (i) E(ln+ ||g(u)||1) < ∞, where ||g(u)||1 ≡ sup{||Ψu1 + ψ∗[0, sgn(−ε1)(uλ,1 + 1)]′x||1 : x ∈

IR2, ||x||1 ≤ 1}. (ii) E(ln+ ||X∗||1) < ∞, where ||X∗||1 ≡ sup{||X∗1x||1 : x ∈ IR2, ||x||1 ≤ 1}. (iii)

The Lyapunov exponent is negative:

inf
n≥1

{
n−1E

[
ln

∣∣∣∣∣
∣∣∣∣∣
n∏
t=1

∂θt
∂(θt−1)′

∣∣∣∣∣
∣∣∣∣∣
1

]}
= inf

n≥1

{
n−1E

(
ln

∣∣∣∣∣
∣∣∣∣∣
n∏
t=1

X∗t−1

∣∣∣∣∣
∣∣∣∣∣
1

)}
< 0 (13)

(iv) g(ut) is strictly stationary and ergodic. (v) X∗t is strictly stationary and ergodic.
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Proof: It follows from Brandt (1986), Elton (1990), and Alsmeyer (2003). (i) and (ii) hold for the

Beta-t-QVAR models. (iii) is a maintained assumption, which can be verified empirically. (iv) is

due to the properties of the score functions of Beta-t-QVAR. (v) is due to the following arguments:

According to Eqs. (11) and (3), by using the properties of the score functions (Section 5.2), X∗t is

an F-measurable function of (ε1, . . . , εt). Variable X∗t is strictly stationary and ergodic, because

εt is strictly stationary and ergodic (White 2001, Theorem 3.35). QED

3. Time-invariant expected value of the gradient, E[Gt(Θ0)′] <∞

In Propositions 8(a-b), the conditions of the time-invariant expected value of the gradient for Beta-

t-QVAR(1) are presented. Expected value E[Gt(Θ0)′] < ∞ if E(∂θt(Θ0)/∂Θ′) < ∞ (Harvey 2013).

For the proofs, arguments from the work of Harvey (2013) are extended.

Proposition 8(a): For Beta-t-QVAR(1) and Beta-t-QVAR(1)-M, the expected value of the gradient

is time-invariant if the maximum modulus of eigenvalues of E(Xt−1) is less than one.

Proof: (i) In the first part of the proof, we focus on the derivatives of θt with respect to ψi,j , which

are in Gt(Θ0)′ and Ht(Θ0). The derivatives of θt with respect to ψi,j are:

∂θt
∂ψi,j

= Φ
∂θt−1

∂ψi,j
+ Ψ

∂ut−1

∂ψi,j
+Wi,jut−1 (14)

for i, j = 1, 2; Wi,j is a 2× 2 matrix, in which element (i, j) is one, and the rest of the elements

are zero. Therefore, Wi,jut−1 is the j-th element of ut−1. By using the chain rule, from Eq. (14):

∂θt
∂ψi,j

=

(
Φ + Ψ

∂ut−1

∂θ′t−1

)
∂θt−1

∂ψi,j
+Wi,jut−1 = Xt−1

∂θt−1

∂ψi,j
+Wi,jut−1 (15)

The expectation of the latter equation, that is conditional on Ft−2, is:

E

(
∂θt
∂ψi,j

|Ft−2

)
= E(Xt−1|Ft−2)

∂θt−1

∂ψi,j
+Wi,jE(ut−1|Ft−2) (16)

where ∂θt−1/∂ψi,j is outside the conditional expectation, because it is determined by Ft−2. We

5



consider the unconditional expectation of Eq. (16). Firstly, we focus on the term

E

[
E(Xt−1|Ft−2)

∂θt−1

∂ψi,j

]
≡ E(A×B) = E


 a1,1 a1,2

a2,1 a2,2

×
 b1

b2


 (17)

where

a1,1 = E

(
φ1,1 + ψ1,1

∂uµ,t−1

∂µ†t−1

+ ψ1,2
∂uλ,t−1

∂µ†t−1

|Ft−2

)
(18)

a1,2 = E

(
φ1,2 + ψ1,1

∂uµ,t−1

∂λ†t−1

+ ψ1,2
∂uλ,t−1

∂λ†t−1

|Ft−2

)
(19)

a2,1 = E

(
φ2,1 + ψ2,1

∂uµ,t−1

∂µ†t−1

+ ψ2,2
∂uλ,t−1

∂µ†t−1

|Ft−2

)
(20)

a2,2 = E

(
φ2,2 + ψ2,1

∂uµ,t−1

∂λ†t−1

+ ψ2,2
∂uλ,t−1

∂λ†t−1

|Ft−2

)
(21)

b1 =
∂µ†t−1

∂ψi,j
(22)

b2 =
∂λ†t−1

∂ψi,j
(23)

Hence, E(A×B) from Eq. (17) can be written as:

E(A×B) = E(A)E(B) + Cov(A,B) = E(A)E(B) +

 Cov(a1,1, b1) + Cov(a1,2, b2)

Cov(a2,1, b1) + Cov(a2,2, b2)

 (24)
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In the following, we show that each term in Eq. (24) is finite. Firstly,

E(A) = E[E(Xt−1|Ft−2)] = E(Xt−1) <∞ (25)

due to Eqs. (8) and (10). Secondly,

E(B) = E

(
∂θt−1

∂ψi,j

)
= E

∂
(∑∞

j=0 ΦjΨut−j−2

)
∂ψi,j

 <∞ (26)

where the second equality is under the assumption of covariance stationary θt, and finiteness is

due to Eq. (8). Thirdly, we study the covariances in Eq. (24), and we prove the finiteness of the

variances of the variables in Eqs. (18) to (23). We consider from Eq. (18):

Var(a1,1) = Var

[
E

(
φ1,1 + ψ1,1

∂uµ,t−1

∂µ†t−1

+ ψ1,2
∂uλ,t−1

∂µ†t−1

|Ft−2

)]
(27)

= E

[
E2

(
φ1,1 + ψ1,1

∂uµ,t−1

∂µ†t−1

+ ψ1,2
∂uλ,t−1

∂µ†t−1

|Ft−2

)]
−E2

[
E

(
φ1,1 + ψ1,1

∂uµ,t−1

∂µ†t−1

+ ψ1,2
∂uλ,t−1

∂µ†t−1

|Ft−2

)]

= E

[
E2

(
φ1,1 + ψ1,1

∂uµ,t−1

∂µ†t−1

+ ψ1,2
∂uλ,t−1

∂µ†t−1

|Ft−2

)]
−E2

(
φ1,1 + ψ1,1

∂uµ,t−1

∂µ†t−1

+ ψ1,2
∂uλ,t−1

∂µ†t−1

)

≤ E

E
(φ1,1 + ψ1,1

∂uµ,t−1

∂µ†t−1

+ ψ1,2
∂uλ,t−1

∂µ†t−1

)2

|Ft−2

−E2

(
φ1,1 + ψ1,1

∂uµ,t−1

∂µ†t−1

+ ψ1,2
∂uλ,t−1

∂µ†t−1

)

= E

(φ1,1 + ψ1,1
∂uµ,t−1

∂µ†t−1

+ ψ1,2
∂uλ,t−1

∂µ†t−1

)2
−E2

(
φ1,1 + ψ1,1

∂uµ,t−1

∂µ†t−1

+ ψ1,2
∂uλ,t−1

∂µ†t−1

)
<∞

for which both terms of the latter equation are finite due to Eqs. (8) and (9), and the inequality

follows from the Jensen inequality. For the finiteness of Var(a1,2), Var(a2,1), and Var(a2,2), the

same arguments are used, hence the proofs are not reported. Next, we consider:

Var(b1) = Var

(
∂µ†t−1

∂ψi,j

)
<∞ (28)

where the finiteness is due to the following arguments. Under the assumption of covariance

stationarity, µ†t−1 is a linear combination of lags of the score functions. Therefore, the derivative

7



with respect to ψi,j involves a linear combination of the score functions, which have finite variance

due to the properties of the score functions for Beta-t-QVAR. For the finiteness of Var(b2), the

same arguments are used.

Therefore, the unconditional expectation of Eq. (16) can be written as:

E

[
E

(
∂θt
∂ψi,j

|Ft−2

)]
= E

[
E(Xt−1|Ft−2)

∂θt−1

∂ψi,j

]
+Wi,jE[E(ut−1|Ft−2)] (29)

which is equivalent to

E

(
∂θt
∂ψi,j

)
= E(Xt−1)E

(
∂θt−1

∂ψi,j

)
+ Cov(A,B) +Wi,jE(ut−1) (30)

Due to Eq. (8), and due to the previous arguments from Eqs. (17) to (28), E(∂θt/∂ψi,j) <∞ if

the maximum modulus of eigenvalues of E(Xt−1) is less than one.

(ii) In the second part of the proof, we focus on the derivatives of θt with respect to φi,j , which

are in Gt(Θ0)′ and Ht(Θ0). The derivatives of θt with respect to φi,j are:

∂θt
∂φi,j

=

(
Φ + Ψ

∂ut−1

∂θ′t−1

)
∂θt−1

∂φi,j
+Wi,jθt−1 = Xt−1

∂θt−1

∂φi,j
+Wi,jθt−1 (31)

for i, j = 1, 2. Therefore, Wi,jθt−1 is the j-th element of θt−1. The expectation of the latter

equation, that is conditional on Ft−2, is:

E

(
∂θt
∂φi,j

|Ft−2

)
= E(Xt−1|Ft−2)

∂θt−1

∂φi,j
+Wi,jE(θt−1|Ft−2) (32)

where ∂θt−1/∂φi,j is outside the conditional expectation, because it is determined by Ft−2. We

use the unconditional expectation of Eq. (32), for which the finiteness of the terms is proven by

using the same arguments as in the first part of this proof. Therefore, E(∂θt/∂φi,j) is finite if the

maximum modulus of eigenvalues of E(Xt−1) is less than one. QED

Proposition 8(b): For Beta-t-QVAR(1)-lev and Beta-t-QVAR(1)-M-lev, the expected value of the

gradient is time-invariant if the maximum modulus of eigenvalues of E(X∗t−1) is less than one.

Proof: We only summarize the key details of the proof, since the proof of Proposition 8(b) is similar

8



to the proof of Proposition 8(a). The derivatives of θt with respect to ψi,j , φi,j , and ψ∗ are:

∂θt
∂ψi,j

= X∗t−1

∂θt−1

∂ψi,j
+Wi,jut−1 (33)

∂θt
∂φi,j

= X∗t−1

∂θt−1

∂φi,j
+Wi,jθt−1 (34)

∂θt
∂ψ∗

= X∗t−1

∂θt−1

∂ψ∗
+W2,2ut−1 +

 0

sgn(−εt−1)

 (35)

respectively, for i, j = 1, 2. Eqs. (33) to (35) indicate that the condition for the existence of the

unconditional mean of the gradient is that the maximum modulus of eigenvalues of E(X∗t−1) is

less than one. To validate this statement, firstly, the expectations of Eqs. (33) to (35), that are

conditional on Ft−2, are written. The law of iterated expectations, and Eqs. (8), (9), and (11)

are used, to show that the unconditional means of Eqs. (33) to (35) are finite. QED

4. Time-invariant expected value of the Hessian matrix, E[Ht(Θ0)′] <∞

In Propositions 9(a-b), the conditions of the time-invariant expected value of the Hessian, E[Ht(Θ0)] <

∞, for the Beta-t-QVAR(1) models are presented. Expected value E[Ht(Θ0)] < ∞ if expected value

E{[∂θt(Θ0)/(∂Θ∂Θ′)]′} <∞. For the proofs, arguments from the work of Harvey (2013) are extended.

We also refer to the works of Blasques et al. (2017, 2018).

Proposition 9(a): For Beta-t-QVAR(1) and Beta-t-QVAR(1)-M, the expected value of the Hessian

matrix is time-invariant if the maximum modulus of eigenvalues of E(Xt−1 ⊗Xt−1) is less than

one, where ⊗ is the Kronecker product.

Proof: (i) In the first part, we focus on the following derivative, which contributes to Ht(Θ0):

∂θt
∂ψi,j

(
∂θt
∂ψk,l

)′
= Xt−1

∂θt−1

∂ψi,j

(
∂θt−1

∂ψk,l

)′
(Xt−1)′ +Xt−1

∂θt−1

∂ψi,j
u′t−1W

′
k,l (36)
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+Wi,jut−1

(
∂θt−1

∂ψk,l

)′
X ′t−1 +Wi,jut−1u

′
t−1W

′
k,l

which, by using the equation vec(ABC) = (C ′ ⊗A)vec(B), Eq. (36) can be written as:

vec

[
∂θt
∂ψi,j

(
∂θt
∂ψk,l

)′]
= (Xt−1 ⊗Xt−1)vec

[
∂θt−1

∂ψi,j

(
∂θt−1

∂ψk,l

)′]
(37)

+[(Wk,lut−1)⊗Xt−1]vec

(
∂θt−1

∂ψk,l

)
+[Xt−1⊗ (Wi,jut−1)]vec

(
∂θt−1

∂ψk,l

)′
+vec

(
Wi,jut−1u

′
t−1W

′
k,l

)
The expectation of the latter equation, that is conditional on Ft−2, is:

E

{
vec

[
∂θt
∂ψi,j

(
∂θt
∂ψk,l

)′]
|Ft−2

}
= E(Xt−1 ⊗Xt−1|Ft−2)vec

[
∂θt−1

∂ψi,j

(
∂θt−1

∂ψk,l

)′]
(38)

+E[(Wk,lut−1)⊗Xt−1|Ft−2]vec

(
∂θt−1

∂ψk,l

)
+ E[Xt−1 ⊗ (Wi,jut−1)|Ft−2]vec

(
∂θt−1

∂ψk,l

)′
+vec

[
Wi,jE

(
ut−1u

′
t−1|Ft−2

)
W ′k,l

]
where vec[(∂θt−1/∂ψi,j)(∂θt−1/∂ψk,l)

′], vec[(∂θt−1/∂ψi,j)], and vec[(∂θt−1/∂ψk,l)
′] are outside the

conditional expectations, because they are determined by Ft−2. We use the unconditional expec-

tation of Eq. (38). For the unconditional expectation of the first three terms on the right side

of Eq. (38), covariances appear in the same way as explained for Eq. (24). We summarize those

covariance terms by using the notation Cov∗. The unconditional expectation of Eq. (38) is:

E

{
vec

[
∂θt
∂ψi,j

(
∂θt
∂ψk,l

)′]}
= E(Xt−1 ⊗Xt−1)E

{
vec

[
∂θt−1

∂ψi,j

(
∂θt−1

∂ψk,l

)′]}
(39)

+E [(Wk,lut−1)⊗Xt−1]E

{
vec

(
∂θt−1

∂ψi,j

)}
+ E [Xt−1 ⊗ (Wi,jut−1)]E

{
vec

[(
∂θt−1

∂ψk,l

)′]}
+vec

[
Wi,jE

(
ut−1u

′
t−1

)
W ′k,l

]
+ Cov∗

The terms on the right side of Eq. (39) are finite due to Eqs. (8) to (11), by using the same argu-

ments as for Propositions 8(a-b). Therefore, E[(∂θt/∂ψi,j)(∂θt/∂ψk,l)
′] is finite if the maximum

modulus of eigenvalues of E(Xt−1 ⊗Xt−1) is less than one.

10



(ii) In the second part, we focus on the following derivative, which contributes to Ht(Θ0):

vec

[
∂θt
∂φi,j

(
∂θt
∂φk,l

)′]
= (Xt−1 ⊗Xt−1)vec

[
∂θt−1

∂φi,j

(
∂θt−1

∂φk,l

)′]
(40)

+[(Wk,lθt−1)⊗Xt−1]vec

(
∂θt−1

∂φi,j

)
+[Xt−1⊗(Wi,jθt−1)]vec

[(
∂θt−1

∂φk,l

)′]
+vec

(
Wi,jθt−1θ

′
t−1W

′
k,l

)
The expectation of the latter equation, that is conditional on Ft−2, is:

E

{
vec

[
∂θt
∂φi,j

(
∂θt
∂φk,l

)′]
|Ft−2

}
= E(Xt−1 ⊗Xt−1|Ft−2)vec

[
∂θt−1

∂φi,j

(
∂θt−1

∂φk,l

)′]
(41)

+E[(Wk,lθt−1)⊗Xt−1|Ft−2]vec

(
∂θt−1

∂φi,j

)
+ E[Xt−1 ⊗ (Wi,jθt−1)|Ft−2]vec

[(
∂θt−1

∂φk,l

)′]
+vec

[
Wi,jE

(
θt−1θ

′
t−1|Ft−2

)
W ′k,l

]
By using the additional Cov† term, which represents the covariances from the first three terms

on the right side of Eq. (41), the unconditional expectation of Eq. (41) is:

E

{
vec

[
∂θt
∂φi,j

(
∂θt
∂φk,l

)′]}
= E(Xt−1 ⊗Xt−1)E

{
vec

[
∂θt−1

∂φi,j

(
∂θt−1

∂φk,l

)′]}
(42)

+E[(Wk,lθt−1)⊗Xt−1]E

[
vec

(
∂θt−1

∂φi,j

)]
+ E[Xt−1 ⊗ (Wi,jθt−1)]E

{
vec

[(
∂θt−1

∂φk,l

)′]}
+vec

[
Wi,jE

(
θt−1θ

′
t−1

)
W ′k,l

]
+ Cov†

The terms on the right side of Eq. (42) are finite due to Eqs. (8) and (9), by using the same argu-

ments as for Propositions 8(a-b). Therefore, E[(∂θt/∂φi,j)(∂θt/∂φk,l)
′] is finite if the maximum

modulus of eigenvalues of E(Xt−1 ⊗Xt−1) is less than one. QED

Proposition 9(b): For Beta-t-QVAR(1)-lev and Beta-t-QVAR(1)-M-lev, the expected value of the

Hessian matrix is time-invariant if the maximum modulus of eigenvalues of E(X∗t−1 ⊗ X∗t−1) is

less than one.

Proof: We only summarize the key details of the proof, since the proof of Proposition 9(b) is very

similar to the proof of Proposition 9(a). By using Eqs. (33) to (35), dynamic equations of the
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second-derivatives with respect to ψi,j , φi,j , and ψ∗, respectively, can be written as follows:

vec

[
∂θt
∂ψi,j

(
∂θt
∂ψk,l

)′]
= (X∗t−1 ⊗X∗t−1)vec

[
∂θt−1

∂ψi,j

(
∂θt−1

∂ψk,l

)′]
(43)

+[(Wk,lut−1)⊗X∗t−1]vec

(
∂θt−1

∂ψk,l

)
+[X∗t−1⊗ (Wi,jut−1)]vec

(
∂θt−1

∂ψk,l

)′
+vec

(
Wi,jut−1u

′
t−1W

′
k,l

)
and

vec

[
∂θt
∂φi,j

(
∂θt
∂φk,l

)′]
= (X∗t−1 ⊗X∗t−1)vec

[
∂θt−1

∂φi,j

(
∂θt−1

∂φk,l

)′]
(44)

+[(Wk,lθt−1)⊗X∗t−1]vec

(
∂θt−1

∂φi,j

)
+[X∗t−1⊗(Wi,jθt−1)]vec

[(
∂θt−1

∂φk,l

)′]
+vec

(
Wi,jθt−1θ

′
t−1W

′
k,l

)
and

vec

[
∂θt
∂ψ∗

(
∂θt
∂ψ∗

)′]
= (X∗t−1⊗X∗t−1)vec

[
∂θt−1

∂ψ∗

(
∂θt−1

∂ψ∗

)′]
+[(W2,2ut−1)⊗X∗t−1]vec

(
∂θt−1

∂ψ∗

)
(45)

+


 0

sgn(−εt−1)

⊗X∗t−1

 vec

(
∂θt−1

∂ψ∗

)
+ (X∗t−1 ⊗W2,2ut−1)vec

[(
∂θt−1

∂ψ∗

)′]

+(W2,2 ⊗W2,2)vec(ut−1u
′
t−1) +


 0

sgn(−εt−1)

⊗W2,2

 vec(ut−1)

+

X∗t−1 ⊗

 0

sgn(−εt−1)


 vec

[(
∂θt−1

∂ψ∗

)′]
+

W2,2 ⊗

 0

sgn(−εt−1)


 vec(u′t−1)

+vec


 0

sgn(−εt−1)


 0

sgn(−εt−1)


′

Eqs. (43) to (45) indicate that the condition for the existence of the unconditional mean of the

gradient is that the maximum modulus of eigenvalues of E(X∗t−1 ⊗ X∗t−1) is less than one. To

validate this statement, firstly, the expectations of Eqs. (43) to (45), that are conditional on

Ft−2, are written. The law of iterated expectations, and Eqs. (8), (9), and (11) are used, to show

that the unconditional means of all terms of Eqs. (43) to (45) are finite. QED
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5. Stationarity and ergodicity of Gt(Θ̂)′

In Propositions 10(a-b), the conditions of e.a.s. convergence of Gt(Θ̂)′ to the unique strictly sta-

tionary and ergodic sequence Gt(Θ0)′ for the Beta-t-QVAR(1) models are presented. Stationarity and

ergodicity of Gt(Θ̂)′ are implied by the stationarity and ergodicity of ∂θ̂t/∂Θ′ to the unique strictly

stationary and ergodic sequence ∂θt(Θ0)/Θ′. For the proofs, results from Brandt (1986), Elton (1990),

and Alsmeyer (2003) are used. We also refer to Straumann and Mikosch (2006), and Blasques et al.

(2017, 2018).

Proposition 10(a): For Beta-t-QVAR(1) and Beta-t-QVAR(1)-M, Eqs. (15) and (31) are:

∂θt
∂ψi,j

= Xt−1
∂θt−1

∂ψi,j
+Wi,jut−1 (46)

∂θt
∂φi,j

= Xt−1
∂θt−1

∂φi,j
+Wi,jθt−1 (47)

for i, j = 1, 2. Vector Gt(Θ̂)′ converges e.a.s. to the unique strictly stationary and ergodic

sequence Gt(Θ0)′, i.e. ||Gt(Θ̂)′ −Gt(Θ0)′||1
e.a.s.−−−→ 0 for t→∞, when the following hold:

(i) E(ln+ ||Wi,ju||1) <∞ and E(ln+ ||Wi,jθ||1) <∞ for i, j = 1, 2, where respectively

||Wi,ju||1 ≡ sup{||Wi,ju1x||1 : x ∈ IR2, ||x||1 ≤ 1} (48)

||Wi,jθ||1 ≡ sup{||Wi,jθ1x||1 : x ∈ IR2, ||x||1 ≤ 1} (49)

(ii) E(ln+ ||X+Wi,j(∂u/∂uj)||1) <∞ and E(ln+ ||X+Wi,j(∂θ/∂θj)||1) <∞ for i, j = 1, 2, where

respectively

||X +Wi,j(∂u/∂uj)||1 ≡ sup{||[X2 +Wi,j(∂u2/∂uj,1)]x||1 : x ∈ IR2, ||x||1 ≤ 1} (50)
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||X +Wi,j(∂θ/∂θj)||1 ≡ sup{||[X2 +Wi,j(∂θ2/∂θj,1)]x||1 : x ∈ IR2, ||x||1 ≤ 1} (51)

(iii) the following Lyapunov exponents are negative:

inf
n≥1

n−1E

ln

∣∣∣∣∣∣
∣∣∣∣∣∣
n∏
t=1

∂
(

∂θt
∂ψi,j

)
∂
(
∂θt−1

∂ψi,j

)
∣∣∣∣∣∣
∣∣∣∣∣∣
1

 (52)

= inf
n≥1

{
n−1E

(
ln

∣∣∣∣∣
∣∣∣∣∣
n∏
t=1

[
Xt−1 +Wi,j

(
∂ut−1

∂uj,t−2

)]∣∣∣∣∣
∣∣∣∣∣
1

)}
< 0

inf
n≥1

n−1E

ln

∣∣∣∣∣∣
∣∣∣∣∣∣
n∏
t=1

∂
(
∂θt
∂φi,j

)
∂
(
∂θt−1

∂φi,j

)
∣∣∣∣∣∣
∣∣∣∣∣∣
1

 (53)

= inf
n≥1

{
n−1E

(
ln

∣∣∣∣∣
∣∣∣∣∣
n∏
t=1

[
Xt−1 +Wi,j

(
∂θt−1

∂θj,t−2

)]∣∣∣∣∣
∣∣∣∣∣
1

)}
< 0

for i, j = 1, 2.

(iv) Wi,jut−1 and Wi,jθt−1 are strictly stationary and ergodic.

(v) Xt +Wi,j(∂ut/∂uj,t−1) and Xt +Wi,j(∂θt/∂θj,t−1) are strictly stationary and ergodic.

Proof: It follows from the proofs of Brandt (1986), Elton (1990), and Alsmeyer (2003). (i) and (ii)

hold for the Beta-t-QVAR models of this paper. (iii) is a maintained assumption, which can

be verified empirically. (iv) is due to the properties of the score functions of Beta-t-QVAR. (v)

is due to the following arguments: By using the properties of the score functions (Section 5.2),

Xt + Wi,j(∂ut/∂uj,t−1) and Xt + Wi,j(∂θt/∂θj,t−1) are F-measurable functions of (ε1, . . . , εt).

Variables Xt +Wi,j(∂ut/∂uj,t−1) and Xt +Wi,j(∂θt/∂θj,t−1) are strictly stationary and ergodic,

because εt is strictly stationary and ergodic (White 2001, Theorem 3.35). QED

Proposition 10(b): For Beta-t-QVAR(1)-lev and Beta-t-QVAR(1)-M-lev, Eqs. (33) to (35) are:

∂θt
∂ψi,j

= X∗t−1

∂θt−1

∂ψi,j
+Wi,jut−1 (54)
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∂θt
∂φi,j

= X∗t−1

∂θt−1

∂φi,j
+Wi,jθt−1 (55)

∂θt
∂ψ∗

= X∗t−1

∂θt−1

∂ψ∗
+ sgn(−εt−1)W2,2ut−1 +

 0

sgn(−εt−1)

 (56)

respectively, for i, j = 1, 2. Vector Gt(Θ̂)′ converges e.a.s. to the unique strictly stationary and

ergodic sequence Gt(Θ0)′, i.e. ||Gt(Θ̂)′ −Gt(Θ0)′||1
e.a.s.−−−→ 0 for t→∞, when:

(i) We assume E(ln+ ||Wi,ju||1) < ∞ for i, j = 1, 2, E(ln+ ||Wi,jθ||1) < ∞ for i, j = 1, 2, and

E(ln+ ||sgn(−ε)W2,2u+ [0, sgn(−ε)]′||1) <∞, where respectively

||Wi,ju||1 ≡ sup{||Wi,ju1x||1 : x ∈ IR2, ||x||1 ≤ 1} (57)

||Wi,jθ||1 ≡ sup{||Wi,jθ1x||1 : x ∈ IR2, ||x||1 ≤ 1} (58)

||sgn(−ε)W2,2u+ [0, sgn(−ε)]′||1 (59)

≡ sup{||sgn(−ε1)W2,2u1 + [0, sgn(−ε1)]′x||1 : x ∈ IR2, ||x||1 ≤ 1}

(ii) E(ln+ ||X∗ + Wi,j(∂u/∂uj)||1) < ∞ for i, j = 1, 2, E(ln+ ||X∗ + Wi,j(∂θ/∂θj)||1) < ∞ for

i, j = 1, 2, and E(ln+ ||X∗ + sgn(−ε)W2,2(∂u/∂uj)||1) <∞, where respectively

||X∗ +Wi,j(∂u/∂uj)||1 ≡ sup{||[X∗2 +Wi,j(∂u2/∂uj,1)]x||1 : x ∈ IR2, ||x||1 ≤ 1} (60)
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||X∗ +Wi,j(∂θ/∂θj)||1 ≡ sup{||[X∗2 +Wi,j(∂θ2/∂θj,1)]x||1 : x ∈ IR2, ||x||1 ≤ 1} (61)

||X∗ + sgn(−ε)W2,2(∂u/∂uj)||1 (62)

≡ sup{||[X∗2 + sgn(−ε1)W2,2(∂u2/∂uj,1)]x||1 : x ∈ IR2, ||x||1 ≤ 1}

(iii) the following Lyapunov exponents are negative:

inf
n≥1

n−1E

ln

∣∣∣∣∣∣
∣∣∣∣∣∣
n∏
t=1

∂
(

∂θt
∂ψi,j

)
∂
(
∂θt−1

∂ψi,j

)
∣∣∣∣∣∣
∣∣∣∣∣∣
1

 (63)

= inf
n≥1

{
n−1E

(
ln

∣∣∣∣∣
∣∣∣∣∣
n∏
t=1

[
X∗t−1 +Wi,j

(
∂ut−1

∂uj,t−2

)]∣∣∣∣∣
∣∣∣∣∣
1

)}
< 0

inf
n≥1

n−1E

ln

∣∣∣∣∣∣
∣∣∣∣∣∣
n∏
t=1

∂
(
∂θt
∂φi,j

)
∂
(
∂θt−1

∂φi,j

)
∣∣∣∣∣∣
∣∣∣∣∣∣
1

 (64)

= inf
n≥1

{
n−1E

(
ln

∣∣∣∣∣
∣∣∣∣∣
n∏
t=1

[
X∗t−1 +Wi,j

(
∂θt−1

∂θj,t−2

)]∣∣∣∣∣
∣∣∣∣∣
1

)}
< 0

inf
n≥1

n−1E

ln

∣∣∣∣∣∣
∣∣∣∣∣∣
n∏
t=1

∂
(
∂θt
∂ψ∗

)
∂
(
∂θt−1

∂ψ∗

)
∣∣∣∣∣∣
∣∣∣∣∣∣
1

 (65)

= inf
n≥1

{
n−1E

(
ln

∣∣∣∣∣
∣∣∣∣∣
n∏
t=1

[
X∗t−1 + sgn(−εt−1)W2,2

(
∂ut−1

∂uj,t−2

)]∣∣∣∣∣
∣∣∣∣∣
1

)}
< 0

for i, j = 1, 2.

(iv) Wi,jut−1, Wi,jθt−1, and sgn(−ε)W2,2u+ [0, sgn(−ε)]′ are strictly stationary and ergodic.
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(v) X∗t + Wi,j(∂ut/∂uj,t−1), X∗t + Wi,j(∂θt/∂θj,t−1), and X∗t + sgn(−εt)W2,2(∂ut/∂uj,t−1) are

strictly stationary and ergodic.

Proof: It follows from the works of Brandt (1986), Elton (1990), and Alsmeyer (2003). (i) and (ii)

hold for the Beta-t-QVAR models of this paper. (iii) is a maintained assumption, which can

be verified empirically. (iv) is due to the properties of the score functions of Beta-t-QVAR. (v)

is due to the following arguments: By using the properties of the score functions (Section 5.2),

X∗t + Wi,j(∂ut/∂uj,t−1), X∗t + Wi,j(∂θt/∂θj,t−1), and X∗t + sgn(−εt)W2,2(∂ut/∂uj,t−1) are F-

measurable functions of (ε1, . . . , εt). Variables X∗t + Wi,j(∂ut/∂uj,t−1), X∗t + Wi,j(∂θt/∂θj,t−1),

and X∗t + sgn(−εt)W2,2(∂ut/∂uj,t−1) are strictly stationary and ergodic, because εt is strictly

stationary and ergodic (White 2001, Theorem 3.35). QED

6. Stationarity and ergodicity of Ht(Θ0)

In this subsection, we present the conditions according to which Ht(Θ0) is strictly stationary and

ergodic. Firstly, we refer to Eqs. (37) and (40) for Beta-t-QVAR and Beta-t-QVAR-M:

vec

[
∂θt
∂ψi,j

(
∂θt
∂ψk,l

)′]
= (Xt−1 ⊗Xt−1)vec

[
∂θt−1

∂ψi,j

(
∂θt−1

∂ψk,l

)′]
(66)

+[(Wk,lut−1)⊗Xt−1]vec

(
∂θt−1

∂ψk,l

)
+ [Xt−1 ⊗ (Wi,jut−1)]vec

(
∂θt−1

∂ψk,l

)′
+ vec

(
Wi,jut−1u

′
t−1W

′
k,l

)
and

vec

[
∂θt
∂φi,j

(
∂θt
∂φk,l

)′]
= (Xt−1 ⊗Xt−1)vec

[
∂θt−1

∂φi,j

(
∂θt−1

∂φk,l

)′]
(67)

+[(Wk,lθt−1)⊗Xt−1]vec

(
∂θt−1

∂φi,j

)
+ [Xt−1 ⊗ (Wi,jθt−1)]vec

[(
∂θt−1

∂φk,l

)′]
+ vec

(
Wi,jθt−1θ

′
t−1W

′
k,l

)
Secondly, we refer to Eqs. (43) to (45) for Beta-t-QVAR-lev and Beta-t-QVAR-M-lev:

vec

[
∂θt
∂ψi,j

(
∂θt
∂ψk,l

)′]
= (X∗t−1 ⊗X∗t−1)vec

[
∂θt−1

∂ψi,j

(
∂θt−1

∂ψk,l

)′]
(68)

+[(Wk,lut−1)⊗X∗t−1]vec

(
∂θt−1

∂ψk,l

)
+ [X∗t−1 ⊗ (Wi,jut−1)]vec

(
∂θt−1

∂ψk,l

)′
+ vec

(
Wi,jut−1u

′
t−1W

′
k,l

)
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and

vec

[
∂θt
∂φi,j

(
∂θt
∂φk,l

)′]
= (X∗t−1 ⊗X∗t−1)vec

[
∂θt−1

∂φi,j

(
∂θt−1

∂φk,l

)′]
(69)

+[(Wk,lθt−1)⊗X∗t−1]vec

(
∂θt−1

∂φi,j

)
+ [X∗t−1 ⊗ (Wi,jθt−1)]vec

[(
∂θt−1

∂φk,l

)′]
+ vec

(
Wi,jθt−1θ

′
t−1W

′
k,l

)
and

vec

[
∂θt
∂ψ∗

(
∂θt
∂ψ∗

)′]
= (X∗t−1⊗X∗t−1)vec

[
∂θt−1

∂ψ∗

(
∂θt−1

∂ψ∗

)′]
+ [(W2,2ut−1)⊗X∗t−1]vec

(
∂θt−1

∂ψ∗

)
(70)

+


 0

sgn(−εt−1)

⊗X∗t−1

 vec

(
∂θt−1

∂ψ∗

)
+ (X∗t−1 ⊗W2,2ut−1)vec

[(
∂θt−1

∂ψ∗

)′]

+(W2,2 ⊗W2,2)vec(ut−1u
′
t−1) +


 0

sgn(−εt−1)

⊗W2,2

 vec(ut−1)

+

X∗t−1 ⊗

 0

sgn(−εt−1)


 vec

[(
∂θt−1

∂ψ∗

)′]
+

W2,2 ⊗

 0

sgn(−εt−1)


 vec(u′t−1)

+vec


 0

sgn(−εt−1)


 0

sgn(−εt−1)


′

Finally, by using Brandt (1986), Elton (1990), and Alsmeyer (2003), conditions of e.a.s. convergence of

Ht(Θ̂) to the unique strictly stationary and ergodic sequence Ht(Θ0) for the Beta-t-QVAR(1) models

can be obtained. We also refer to Straumann and Mikosch (2006), and Blasques et al. (2017, 2018).

7. Explicit formulas of the dependent variable yt

(i) Beta-t-QVAR(1):

yt = c+ β1

(
φ1,1µ

†
t−1 + φ1,2λ

†
t−1 + ψ1,1uµ,t−1 + ψ1,2uλ,t−1

)
+ exp

(
ω + φ2,1µ

†
t−1 + φ2,2λ

†
t−1 + ψ2,1uµ,t−1 + ψ2,2uλ,t−1

)
εt

(71)
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(ii) Beta-t-QVAR(1)-M:

yt = c+ β1

(
φ1,1µ

†
t−1 + φ1,2λ

†
t−1 + ψ1,1uµ,t−1 + ψ1,2uλ,t−1

)
+β2 exp

(
ω + φ2,1µ

†
t−1 + φ2,2λ

†
t−1 + ψ2,1uµ,t−1 + ψ2,2uλ,t−1

)
+ exp

(
ω + φ2,1µ

†
t−1 + φ2,2λ

†
t−1 + ψ2,1uµ,t−1 + ψ2,2uλ,t−1

)
εt

(72)

(iii) Beta-t-QVAR(1)-lev:

yt = c+ β1

(
φ1,1µ

†
t−1 + φ1,2λ

†
t−1 + ψ1,1uµ,t−1 + ψ1,2uλ,t−1

)
+ exp

[
ω + φ2,1µ

†
t−1 + φ2,2λ

†
t−1 + ψ2,1uµ,t−1 + ψ2,2uλ,t−1 + ψ∗sgn(−εt−1)(uλ,t + 1)

]
εt

(73)

(iv) Beta-t-QVAR(1)-M-lev:

yt = c+ β1

(
φ1,1µ

†
t−1 + φ1,2λ

†
t−1 + ψ1,1uµ,t−1 + ψ1,2uλ,t−1

)
+β2 exp

[
ω + φ2,1µ

†
t−1 + φ2,2λ

†
t−1 + ψ2,1uµ,t−1 + ψ2,2uλ,t−1 + ψ∗sgn(−εt−1)(uλ,t + 1)

]
+ exp

[
ω + φ2,1µ

†
t−1 + φ2,2λ

†
t−1 + ψ2,1uµ,t−1 + ψ2,2uλ,t−1 + ψ∗sgn(−εt−1)(uλ,t + 1)

]
εt

(74)

8. Explicit formulas of volatility σt

(i) Beta-t-QVAR(1), and (ii) Beta-t-QVAR(1)-M:

lnσ2
t = 2ω + 2λ†t + ν

ν−2

λ†t = φ2,1µ
†
t−1 + φ2,2λ

†
t−1 + ψ2,1uµ,t−1 + ψ2,2uλ,t−1

uµ,t =
[
1 + (yt−µt)2

ν exp(2λt)

]−1
(yt − µt)

uλ,t = (ν+1)(yt−µt)2
ν exp(2λt)+(yt−µt)2 − 1

(75)

(iii) Beta-t-QVAR(1)-lev, and (iv) Beta-t-QVAR(1)-M-lev:

lnσ2
t = 2ω + 2λ†t + ν

ν−2

λ†t = φ2,1µ
†
t−1 + φ2,2λ

†
t−1 + ψ2,1uµ,t−1 + ψ2,2uλ,t−1 + ψ∗sgn(−εt−1)(uλ,t + 1)

uµ,t =
[
1 + (yt−µt)2

ν exp(2λt)

]−1
(yt − µt)

uλ,t = (ν+1)(yt−µt)2
ν exp(2λt)+(yt−µt)2 − 1

(76)
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