

This is a postprint version of the following published document:

Gramaglia, M., et al. Experimenting with SRv6: a tunneling protocol
supporting network slicing in 5G and beyond. In, 2020 IEEE 25th
International Workshop on Computer Aided Modeling and Design of
Communication Links and Networks (CAMAD), 14-16 September 2020
(Virtual Conference). IEEE, 2020, 6 Pp.

DOI: https://doi.org/10.1109/CAMAD50429.2020.9209260

© 2020 IEEE. Personal use of this material is permitted. Permission from
IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or
promotional purposes, creating new collective works, for resale or
redistribution to servers or lists, or reuse of any copyrighted component
of this work in other works.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidad Carlos III de Madrid e-Archivo

https://core.ac.uk/display/343145831?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1109/CAMAD50429.2020.9209260
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

Experimenting with SRv6: a Tunneling Protocol

supporting Network Slicing in 5G and beyond

Marco Gramaglia∗, Vincenzo Sciancalepore†, Francisco J. Fernandez-Maestro‡,

Ramon Perez∗§, Pablo Serrano∗, Albert Banchs∗¶

∗Universidad Carlos III de Madrid, Spain †NEC Laboratories Europe, Germany ‡Ericsson Spain
§Telcaria Ideas, Spain ¶IMDEA Networks Institute, Spain

Abstract—With network slicing, operators can acquire and
manage virtual instances of a mobile network, tailored to a
given service, in this way maximizing flexibility while increasing
the overall resource utilization. However, the currently used
tunnelling protocol, i.e., GTP, might not be the most appropriate
choice for the envisioned scenarios, given its unawareness of
the underlay network. In this paper, we analyse the use of an
alternative tunnelling protocol to transport user data, namely,
Segment Routing IPv6 (SRv6). More specifically, we discuss its
qualitative advantages, present a prototype implementation, and
carry out an experimental comparison vs. GTP, confirming that
it constitutes a valid alternative as tunnelling protocol.

I. INTRODUCTION

The success of the upcoming 5th generation of mobile

network (5G) and beyond is heavily tied with the implementa-

tion of a novel paradigm: network slicing. Strongly supported

by the virtualization and programmability concepts, network

slicing represents a turning point that allows network operators

(NOPs) to acquire and self-manage a virtual instance of a

mobile network to deliver diverse network services while

increasing the overall resource utilization.

However, higher flexibility and augmented revenues might

come at a price. Technical challenges have to be solved while

installing network slicing along all network domains, such as

(Radio) Access Network (R)AN, Transport and Core. Such

a domains need a simultaneous and efficient interaction to

properly provide service-level agreement (SLA) guarantees:

this is accomplished by a novel architectural block, dubbed

as Management and Orchestration (MANO), able to control,

monitor and trigger actions onto each network (virtual) func-

tion. As a result, networks supporting slicing require advanced

orchestration solutions that have attracted interest from both

industry and academia showing advantages and drawbacks in

current deployments.

Interestingly, the main standardization bodies (ISGs) have

also listed network slicing in their priority activities. Recently,

3GPP has released the first official guidelines for 5G net-

works (Rel-15) wherein the network slicing concept has been

unveiled associated with novel use cases and new standard-

ization blocks. In particular, four different main classes have

been defined: extreme/enhanced Mobile Broadband (x/eMBB),

Ultra Low Latency and Reliable Communications (URLLC),

massive Machine Type Communications (mMTC) and (re-

cently) Vehicular-to-Infrastructure communication (V2X) [1].

Additionally, specific core network functions and procedures

have been introduced to correctly manage network slice life-

cycle management operations, such as Network Slice Selection

Function (NSSF), Network Slice Selection Assistance Infor-

mation (NSSAI), and so on.

While this effort usually focuses on the control plane and

management functions, most of the network-slicing-related

researches from the user plane perspective are targeting issues

at the RAN level. Indeed, achieving flexible network slicing in

the network access is fundamental to correctly route “sliced”

network flows and to transport service-related (and isolated)

information to the intended core instance in an efficient

manner.

In this context, the GPRS Tunnelling Protocol (GTP) cur-

rently used in mobile networks might not result the best fit

to support sliced networks. The reasons are as follows. GTP

consists of control-plane (C-plane) and user-plane (U-plane)

sections, where the former signals movements of a user and

establishes user-plane data paths by means of tunnels between

the end user and an anchor-node (over IP-based backhaul

network). This reduces the complexity as the control-plane

does not require communication with the underlay networks

(such as MPLS label-switched paths, VLANs, L3-VPNs and

so on). However, when network slices are in place, the orches-

tration solution should be aware of the underlay networks, to

guarantee the expected SLAs from the U-plane perspective.

To solve the above problem while keeping the network de-

ployment simple, it would be recommendable to integrate the

U-plane into a layer that forwards packets through requested

data-paths (note that GTP do not support such operation).

The most appropriate network layer able to integrate all the

required functions is the end-to-end IP layer. More specifically,

an IPv6-enabled layer might play a relevant role in this con-

text, given the “limitless” amount of available address space

that can be used for multiplexing mobile sessions between

tunnel endpoints of the user-plane.

The IPv6 layer might also integrate network functions into

it—as specified by the IETF work on Segment Routing IPv6

(SRv6) [2]—thereby enabling that forwarding functions are

represented as IPv6 addresses. SRv6 network programming

might also define different forwarding functions, such as, e.g.,

encapsulation or decapsulation and routing while comprising

VPNs, traffic engineering, and service chaining aspects. Ad-

ditionally, SRv6 might also compose data paths in the end-to-

end IPv6 address layer by means of network programmability.

This adds flexibility as mobile applications only need a single

IPv6 layer to run on, for e.g. network resources and optimized

paths for low-latency (and high-reliability) may be represented

as an IPv6 address. Once they have been abstracted as IPv6

IDs, the C-plane could comprise of slices with them as nodes

of the U-plane function (UPF), and deploy required data-paths

for mobile applications on them [3].

In this paper, we make the case for the use of SRv6 as

a transport protocol in network slicing environments, which

include 5G and beyond networks. More specifically, we make

the following contributions:

• In Section II, we summarize and compare GTP and SRv6,

discussing the qualitative advantages of the latter over the

former.

• In Section III, after an overview of the existing alterna-

tives to implement SRv6, we present our implementation

based on the P4 programming language.

• In Section IV, we present a quantitative performance

evaluation of SRv6, comparing its performance vs. GTP

in a number of scenarios.

Finally, we summarize the main results and sketch new lines

for future research in Section V.

II. TUNNELING PROTOCOLS FOR USER DATA TRAFFIC IN

5G NETWORKS

The tunnelling protocol design is of paramount importance

to properly run network slices. Hereafter, we overview the

overall Rel-15 architecture to illustrate the main interfaces

that have been disclosed by the recently published standard

guidelines. We then summarize the existing GTP properties

while shedding the light on the main novelties introduced by

the Segment Routing IPv6 (SRv6) protocol.

A. 3GPP UPF reference points

We summarize in Fig. 1 the 3GPP-related reference points

of the User Plane Function (UPF), which are illustrated along

with other elements of the 5G architecture [4]. The User

Equipment (UE) establishes a data session and gets assigned

the corresponding User Plane Function (UPF) in the core

network, responsible of routing and forwarding the traffic back

and forth between the UE and a Data Network (DN). The

UPF selects the appropriate transport network for the user

traffic by means of N4 reference point, which provides an

interface with the Session Management Function (SMF). This

interface enables selecting a Network Instance ID based on

the S-NSSAI of the PDU session.1 Considering the actual

transmission of user data traffic, this arrives from the gNB

to the UPF via the N3 interface, while the UPF is connected

to the DN via the N6 interface. Finally, the interface N9 is

defined in case there is communication between UPFs (e.g.

from an intermediate to an anchor UPF).

1Note that there is not a one-to-one mapping between network slices and
transport network slices, and that there are other mechanisms to select the
Network Instance ID

Fig. 1. Key components of the data plane in a 5G network.

B. GTP-U encapsulation

The existing encapsulation process is called GTP encapsu-

lation and is the one currently used in mobile networks (e.g.,

Gn and Gp interfaces in GPRS, Iu, Gn, and Gp interfaces in

UMTS). It has been proposed for 5G Systems as well, i.e.,

for the interfaces described above and the Xn interface (i.e.,

the one between RAN nodes, which is not considered in this

paper). According to its specification [5], the encapsulation

consists of adding a GTP-U header to the IP datagram (i.e.,

the T-PDU) and using UDP/IP as transport layer. Both IPv4

and IPv6 traffic types are supported.

The GTP-U header, as illustrated in Fig. 2, has a variable

length, depending on the number of optional fields. The

minimum length is 8 bytes and includes the Tunnel End-

point Identifier (TEID), which is the key variable towards

forwarding as this element is used by the receiving end of the

packet to identify the PDP context of the T-PDU. As already

discussed in Section I, this protocol does not provide native

path differentiation, and it is already falling short for some of

the use cases envisioned by 5G (we note that the first version

of GTP-U was standardized in [5], more than a decade ago).

C. Segment Routing v6

Segment Routing for IPv6 uses an IPv6 Routing Header

Extension, the Segment Routing Header (SRH), defined in [6].

Its structure is depicted in Fig. 2 and consists on the Segment

Lists (SL), in which each segment is identified with an IPv6

address, i.e., the SegmentID (SID). The current active segment

is the destination address of the packet, while the next address

is indicated by the Segments Left field of SRH.

The use of Segment Routing enables network programma-

bility, as one can associate a given SID with given processing

function behaviors (in [7] and [8], several basic examples are

defined, and in [3], it is also defined specific examples for

the user data plane of mobile networks). These functions can

be classified into two main categories: endpoint behaviors,

which have a Local SID to the destination address received,

being associated to a processing function in the local node, and

transit behaviors, in which there is no local SID associated to

the destination address of the packets received, so they are

not bound to a SID, corresponding then to either SRv6 source

                                         

      

 

 

 

 

 

 

 

 

 

 

 













�✁✂✄✁☎✆ ✝✞✟✆✠✞✡ ☛☞✌✍ ✎✞✆✟ ✏✑✒✓ ✔✕✕✖✁✟✟✗✘ ☞ ✙ ✞ 



 

 









   

 

Fig. 2. GTP-U (left) and SR (right) headers.

Fig. 3. Uplink packet flow. Top figure: using GTP (orange) or SRv6 in
Traditional Mode (blue). Bottom figure: SRv6 in Enhanced Mode.

nodes that are introducing the SRH in the packets or SRv6

transit nodes steering traffic.

Depending on whether it is considered as a simple replace-

ment for GTP-U, or instead a step towards the adoption of

network programmability, one can distinguish between two

modes of SRv6 operation in a mobile network [9] (note that,

in both cases, the network should be SR-aware):

• Traditional mode: With this mode, there is a direct

mapping between GTP-U and SRv6 encapsulations. It

does not introduce changes to the network architecture

and the impact is therefore kept minimum. This mode

would be used, for instance, in the topology illustrated in

Fig. 3 (top), where the user packet transverses four hops

to arrive to the DN.

• Enhanced mode: By introducing more than one SID in

the SRH (i.e., a packet can traverse more nodes than in the

Traditional mode), the use of more advanced functions

in the network path of the traffic user flows is allowed,

enabling to steer traffic in this way by using different

paths and supporting more sophisticated behaviors, e.g.,

service programming. Thanks to this SRv6 mode, one can

associate non-3GPP services, such as Traffic Engineering

in nodes along the path, as illustrated in Fig. 3 (bottom).

D. Scalability and flexibility in SRv6-based networks

Segment routing supports performing source routing for

traffic engineering without incurring in the heavy workload of

states and signalling in the nodes by using IDs, such as MPLS

labels or IPv6 addresses. In contrast, GTP is mainly coupling

the mobile infrastructure to the underlying transport network

representing a threat to the status-quo, as it leans towards a

single-vendor monolithic mobile network implementation.

Adopting SRv6 in the mobile infrastructure brings an added-

value as the operator may employ the same Layer-3 VPN

techniques that will be used for managed and deliver enter-

prise services, which represent a valuable business change

in fixed mobile convergence (FMA) and 5G fixed mobile

access (FMA). In addition, SRv6 will help to boil down

the unnecessary complexity by reducing protocol overheads

while completely eliminating the need of the UPF to keep

states. This would noticeably improve the scalability (for e.g.

in cloud native applications). As outlined within the IETF

draft document, SRv6 allows efficient SLA-enabled multi-cast

content injection by means of the standard unicast core with

a novel method, namely “Spray.”

However, SRv6 will also show its drawbacks when dealing

with legacy suppliers as a packet processing engine should

continually dig deep into the IPv6 header. Essentially, SRv6

may require a programmable software data plane to be effec-

tively implemented, UPF as fully virtualized network function,

and specialized data plane acceleration solutions to continu-

ously meet deep packet inspection requirements.

Given the amount of advantages as well as the main

technology limitations, the 3GPP has started a study item

“Study on User Plane Protocol in 5GC” to find candidates for

updating the user-plane protocols within Rel-16 of 5G phase-

2: SRv6 is a reasonable option to evaluate.

III. IMPLEMENTATION

Here we describe our experimental methodology based on

open source software. All the code used in this experimenta-

tion is available online.2

2https://github.com/wnlUc3m/slicing-srv6

A. Existing implementations of GTP and SRv6

To evaluate the performance of a SRv6 implementation of

the 5G Core Network internal interfaces, we had to analyze

several components, as discussed in the following.

a) GTP-U: Besides the proprietary implementations of

the major network component manufacturers, the main open

source solution for the GTP-U implementation is the one

available in the Linux Kernel, from v4.7.0. This implemen-

tation [10], contributed to the Linux Kernel by osmocom, can

be compiled as an external module. However, as the 3GPP

standard [5] sets IPv4 as the required protocol to be supported

by any implementation of the GTP-U protocol, IPv6 is left

as a recommendation. As a result, the current Linux Kernel

implementation of the GTP-U does not support IPv6 neither

as inner nor as outer protocol [11].

b) SRv6: There is a wider landscape of open source

alternatives for implementing SRv6. The recent versions of

the Linux Kernels (starting from v4.10) already support the

latest definition of the SRv6 protocol as defined in [7] and

[8] and, additionally, the srext module [12] is also available

for experimentation. Besides pure Kernel implementation, also

the Fast Data Project (FD.io) [13] implements several of the

SRv6 behaviors. However, the lack of integration with the

kernel stack indeed provides very high performance for data

packets processing, but it also lock-in the packet forwarding

technology to the hardware platform.

To address this possible issue and allow a more modular

implementation of the network functionality, starting from

Linux v4.18, there is also an available SRv6 implementation

[14] based in extended Berkeley Packet Filter (eBPF) [15]. By

leveraging the advanced features of eBPF (which can inject

arbitrary code down into the kernel stack to achieve a sort of

per packet processing), this implementation can offer specific

SRv6 behaviors for every handled packet. In the specific case

of SRv6, the eBPF implementation handles packets that have

SRH with segments left (SL) greater than 0.

B. Implemented solution

Given the limitation of the solutions described above, we

decided to follow a completely software defined approach

for our implementation. More specifically, the lack of IPv6

support for GTP-U in the kernel forced us to implement both

SRv6 and GTP-U on top of behavioral model software switch

(or bmv2) [16] to allow a fair comparison between the two

solutions. The encapsulation and decapsulation methods where

implemented thus in P4 [17], using the SRv6 interface [18].

The software has been modified to adding new tables and

actions as needed.

Then bmv2 switches could be assigned to a specific network

interface of the host, with a specific P4 configuration produced

by the P4 compiler. To achieve flexibility in the configuration,

we injected the specific runtime configuration trough a Com-

mand Line Interface (CLI) connects to a Thrift RPC server3

running in each switch process.

3https://thrift.apache.org

The original bmv2 prototype contained three tables: fwd,

gtp_v6, and srv6_localsid, that are executed in a

pipeline. Each table has some matches associated and, hence,

actions associated to the match. Thus, the code has been

extended to include new actions for reduced SRv6 encapsu-

lation, where only one destination SID is included, so the P4

parser was be extended to allow IPv6 over IPv6 encapsulation

without having an SRH (when using reduced encapsulation

and only one segment in the SRL).

Also, we implemented new actions to change from one

GTP encapsulation with certain TEID to another tunnel TEID

encapsulation. Finally, we extended the original P4 code to

handle the switch from one GTP encapsulation to another GTP

one, or the enforcement of an SRv6 action.

IV. PERFORMANCE EVALUATION

A. Testbed setup

Given that our performance evaluation considers a number

of different network topologies, the testbed setup has been

done by deploying Vagrant boxes4 (using underlying Virtual-

Box5 as virtualization provider). This facilitates the setup and

connectivity of several VMs for the different testbeds using the

different configuration files options and provisioning scripts.

The host running the VMs is equipped with i7-8650 CPU at

1.90GHz and 32 GB of RAM. Each VM is executed with

1 virtual CPU core and 2 GB of RAM.

B. Throughput performance in multi-slice scenario

To evaluate and compare the potential differences in

throughput performance between GTP and SRv6, we focus on

the uplink in a multiple slice scenario that contemplates the

different deployment options studied, and which is presented

in Fig. 4. The scenario consists of an UPF (UPF #1), shared

among two slices, receiving GTP traffic from a gNB classified

in two different tunnel IDs, where each tunnel (#1 and #2)

identifies the traffic that belongs to a specific slice (A and B,

respectively). Depending on how the traffic is handled from

the UPF #1 in the uplink flow, according to the protocol used,

it has been defined three different deployment options, also

reflected in Fig. 4 with three different colours:

a) GTP-U (orange): this option is based on the tradi-

tional GTP protocol, where the traffic received in UPF #1

(from tunnels #1 and #2) is routed into different GTP tunnels

(#3 and #4, respectively) through the N9 interface towards

specific UPFs (#2 and #3) assigned to each slice (A and

B). These UPFs then de-encapsulate the user plane traffic in

order to send it to the corresponding DNs (#1 and #2). No

encapsulation is performed in the N6 interfaces.

b) SRv6 Traditional Mode (blue): this case contemplates

a gradually migration from GTP to SRv6 in user plane by

implementing the SRv6 Traditional Mode as a direct alterna-

tive to GTP, with a mapping between TEID and SRv6 once

the GTP traffic arrives to UPF #1. It has the same logical

4https://www.vagrantup.com
5https://www.virtualbox.org

 













 











 







 

 







 












 








Fig. 4. Multiple slice scenario with different choices for the N9 user plane: (a) GTP, (b) SRv6 Traditional Mode, and (c) SRv6 Enhanced Mode.

blocks as the previous option, but also includes in UPF #1

the End.M.GTP6.D behavior, which is the “Endpoint function

with IPv6/GTP decapsulation into SR policy,” defined in [3]

(i.e., it de-encapsulates incoming traffic coming in GTP and it

encapsulates with SRv6)). More specifically, only one segment

is used in the SRv6 traffic, so after reaching the next hop in the

uplink flow (UPF #2 and #3), the SRH and outer IP headers

are removed in the traffic that is delivered to the corresponding

DNs (#1 and #2), according to [9].

c) SRv6 Enhanced Mode (green): this last option gives

the more flexibility and network programmability capabilities,

where the traffic is steered into different slices and, inside

each slice, with different SRv6 policies. Moreover, it includes

some additional nodes that can be either non-3GPP entities or

functions, and also implements different behaviors for each

of the SIDs in the segment list of the SRH. In this case,

the SRv6 traffic in N9 interface contemplates two segments

(<S1, S2> in slice A, <S3, S4> in slice B), and the next-

hop VMs (#3 and #5, respectively) have been extended by

including a new P4 bmv2 (displayed with a different colour

in Fig. 4, according to the corresponding slice), identified as

FUNC nodes (#1 and #2), where packets are delivered. As a

result, the first segments (S1 for slice A, and S3 for slice B)

correspond to the next UPFs (#2 and #3, respectively), and the

second ones (S2 for slice A, and S4 for slice B) correspond

to FUNC #1 and #2, respectively (these segments are also

displayed under each UPF-FUNC connection in Fig. 4). As

a result, the segment lefts field in SRH is being decreased in

each hop, and finally the FUNC entities are the latest ones in

the segment list.

In this kind of multi-slice scenario, the use of SRv6 as an

alternative to GTP protocol in user plane presents a number

of advantages, due to its flexibility and the possibility to

program different behaviors for the network and slices in an

easier way (as compared vs. GTP). In what follows, we test

these advantages against the throughput obtained for the three

configurations. To this aim, for simulating UE traffic data

coming from gNB, it has been generated GTP traffic with a

Python script elaborated with scapy libraries 6, which is then

injected in N3 interface at different rates with the tcpreplay

utility 7 through a GTP tunnel as transport protocol.

In Fig. 5, we plot the Packet Delivery Ratio (PDR) as a

function of the injected throughput, which is generated using

the iperf tool.8 As the figure illustrates, for low generation

rates the PDR is 1 for all cases, but as the rates increases,

the network has some issues to transport the traffic, and losses

appear. More specifically, the figure illustrates that the appear-

ance of the losses depend on the configuration configured:

the SRv6 Traditional Mode provides the best performance,

with the highest values in terms of PDR, particularly at higher

rates, which is when the computational differences are more

noticeable.

Next in performance comes the traditional GTP case, which

has a similar performance to the previous one, but has a

notable PDR drop around 30 Mbps. Finally, the worst per-

forming scheme is the SRv6 Enhanced Mode, which starts

suffering from losses at approx. 20 Mbps –still, note that the

PDR is 1 for all values below that threshold. In this way,

we have identified the cost of the more flexible operation

introduced by the SRv6 Enhanced Mode: this configuration

enables new paths for the traffic, being able to steer and

6https://scapy.net
7https://tcpreplay.appneta.com
8https://iperf.fr

Fig. 5. Packet Delivery Ratio (PDR) comparison between the three protocol
options in a multi-slice scenario.

Fig. 6. Total percentage of CPU usage for different encapsulation methods.

perform additional functions that are not possible with GTP or

SRv6 Traditional Mode (which is basically a 1-to-1 mapping

of the GTP scenario). As a result, this extra functionalities

and flexibility for adding new functions dynamically in the

slices gives an added value which is not present in the legacy

networks based on GTP, but causes a small performance

reduction in the maximum traffic that can be supported (in

our scenario).

C. Resource consumption

One of the main advantages of the SRv6 approach is the

computational efficiency. As the path information is indicated

upfront, less effort is required to achieve this information

and perform switching compared to the GTP-U approach.

Therefore, we evaluate this aspects with a simple source - sink

scenario with two VMs running the bmv2 P4 implementation

discussed before. Then, we measured the CPU consumption

using the Linux top command when generating 10 Mbps

UDP/IPv6 traffic of 100 kbytes jumbo datagrams. As shown

in Fig. 6, on average the SRv6 implementation in all of his

flavours always uses less resources than the GTP-U one, show-

ing the validity of this approach also from the infrastructure

optimization point of view. The figure also suggests that the

number of segments has an impact on performance, an analysis

that we will perform in the future work.

V. SUMMARY AND FUTURE WORK

In this paper, we have discussed the advantages of Segment

Routing v6 (SRv6) as a tunnelling protocol for upcoming

5G Core Networks. In particular, we envision SRv6 as the

replacement for the well-accepted GTP-U tunneling protocol

in the user plane. GTP-U is used to carry user data in existing

mobile networks by creating tunnels per session. However,

such tunnels are established between anchor nodes that may

connect different network domains within a rigid framework.

This prevents the network operator from efficiently optimizing

the data paths. As proved, SRv6 can make the transport much

simpler. With a SID field, tunnel endpoints identifiers (TEID)

can be easily encoded within the protocol stack. In addition,

SRv6 can also replace underlay transport layers, such as

MPLS or L2-tunneling protocol allowing for the introduction

of SRV6/IPV6 as the only valid transport layer in 5G and

beyond networks.

ACKNOWLEDGEMENTS

This work has been supported by the European Commis-

sion and the 5G-PPP H2020 Programme under the grants

825012 (5G-CARMEN), 815074 (5G-EVE) and 856950 (5G-

TOURS).

REFERENCES

[1] 3GPP, “Summary of rel-15 work items (release 15),” TR 21.915, v15.0.0,
Oct. 2019.

[2] E. C. Filsfils, “Segment routing architecture,” RFC 8402, Jul. 2018.
[Online]. Available: https://datatracker.ietf.org/doc/rfc8402/

[3] S. Matsushima, “Segment routing IPv6 for mobile user plane,”
draft-ietf-dmm-srv6-mobile-uplane-06, Sep. 2019. [Online]. Available:
https://datatracker.ietf.org/doc/draft-ietf-dmm-srv6-mobile-uplane/

[4] 3GPP, “System architecture for the 5G system (5GS),” TS 23.501,
v16.2.0, Sep. 2019.

[5] ——, “General packet radio system (GPRS) tunneling protocol user
plane (GTPv1-U),” TS 29.281, v15.6.0, Sep. 2019.

[6] E. C. Filsfils, “IPv6 segment routing header (SRH),” draft-ietf-6man-
segment-routing-header-24, Oct. 2019.

[7] ——, “SRv6 network programming,” draft-ietf-spring-srv6-network-
programming-03, Sep. 2019.

[8] ——, “SRv6 NET-PGM extension: Insertion,” draft-filsfils-spring-
srv6-net-pgm-insertion-00, Sep. 2019. [Online]. Available: https:
//datatracker.ietf.org/doc/draft-filsfils-spring-srv6-net-pgm-insertion/

[9] 3GPP, “Study on user-plane protocol in 5GC,” TR 29.892, v16.0.0, Sept.
2019.

[10] Osmocom, “Linux kernel GTP-U implementation.” [Online]. Available:
https://osmocom.org/projects/linux-kernel-gtp-u/wiki

[11] “The linux kernel GTP tunneling module.” [Online]. Available:
https://www.kernel.org/doc/Documentation/networking/gtp.txt

[12] “srext - a linux kernel module implementing SRv6 network
programming model.” [Online]. Available: https://netgroup.github.io/
SRv6-net-prog/

[13] “Fd.io. the world’s secure networking data plane.” [Online]. Available:
https://fd.io/

[14] “Programming network actions with BPF.” [Online]. Available:
https://segment-routing.org/index.php/Implementation/BPF

[15] “BPF and XDP reference guide.” [Online]. Available: https://cilium.
readthedocs.io/en/latest/bpf/

[16] “Behavioral model repository.” [Online]. Available: https://github.com/
p4lang/behavioral-model

[17] P. Bosshart et al., “P4: programming protocol-independent packet pro-
cessors,” ACM SIGCOMM Computer Communication Review, vol. 44,
pp. 87–95, July. 2014.

[18] “p4srv6. proto-typing SRv6 functions with P4 lang.” [Online].
Available: https://github.com/ebiken/p4srv6

	portadilla_postprint_IEEE
	CAMAD20_srv6.pdf

