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Abstract 

Sulfonated multiblock copolymers composed of Polysulfone (PSU) and 

Polyphenylsulfone (PPSU) poly(ether sulfone) segments (SPSU/SPPSU) are 

synthesized for the first time by polycondensation in a "one-pot two-step synthesis" of 

commercial monomers, followed by sulfonation reaction with trimethylsilyl 

chlorosulfonate (TMSCS). Both segments are responsible for proton conductivity, 

although the PSU block has greater affinity to be sulfonated. Even though no 

microphase separation is detected, the resulting ionomers exhibit good mechanical 

properties due to the non-sulfonated blocks remaining and to the high molecular 

weights of the ionomers. The chemical structure is confirmed by 1H-NMR, 19F-NMR 

and FTIR analysis. The degree of sulfonation (0.93-1.58) is determined from the IEC 

values and 1H-NMR spectra. In situ through-plane proton conductivity measured on the 

MEAs is 34.1 mS cm-1 at 70 ˚C. A maximum power density of 400 mW cm-2, a current 

density of 1100 mA cm-2 and outstanding thermo-mechanical stability, these proton-

conducting membranes can therefore be implemented in PEMFC. 
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membranes. 

Abbreviations 

FCs   Fuel cells 

PEMFCs   Proton exchange membrane fuel cells 

PEM   Proton exchange membrane 

PFSA   Perfluorosulfonic acid 

PBI   Polybenzimidazole 

SPEEK   Sulfonated poly(ether ether ketone) 

Tm   Melting temperature 

PES   Poly(ether sulfone) 

PSU   Polysulfone 

DS   Degree of sulfonation 

WU%   Water uptake 

TS   Tensile strength 

PPSU   Polyphenylsulfone 

PSU/PPSU   PES copolymers of PSU and PPSU segments 
1H-NMR   Proton nuclear magnetic resonance spectroscopy 

FTIR   Infrared spectroscopy 

SEC   Size exclusion chromatography 

SEC-MALLS   Size exclusion chromatography multi-angle laser light scattering 

MEA   Membrane electrode assembly 

DMSO   Dimethyl sulfoxide 

DMAc   N,N-dimethylacetamide 

DGME   Diethyleneglycol-monomethyl-ether 

TMSCS   Trimethylsilyl chlorosulfonate 

DCE   1,2-Dichloroethane 

DMF   Dimethylformamide 

DFDPS   4,4'-Difluoro-diphenylsulfone 

BPA   4,4'-Isopropylidenediphenol 

BP   4,4'-Dihydroxybiphenyl 

DHDPS   4,4'-Dihydroxydiphenylsulfone 
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SPES   Sulfonated PES copolymers of PSU and PPSU segments 

IEC   Ion-exchange capacity 

TGA   Thermogravimetric analysis 

TOD   Onset decomposition temperature 

TFD   Fastest decomposition temperature 

DSC   Differential scanning calorimetry 

FEG-SEM   Field emission gun scanning electron microscopy 

BSE   Energy selective backscatter 

DMA   Dynamo mechanical analysis 

EIS   Electrochemical impedance spectroscopy 

σm   Membrane ionic conductivity 

MWD   Molecular weight distribution 

Ip   Polydispersity index 

Mn   Number average molecular weight 

MHS   Mark-Houwink-Sakurada 

LS   Light scattering 

Mw   Weight average molecular weight 

Tg   Glass transition temperature 

AN   Acceptor number 

Tα   Temperature associated with a α relaxation 
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1. Introduction 

The greenhouse effect has received more attention in recent years due to large 

amount of harmful gas emissions, such as CO2, that are released to the atmosphere. 

Thus, in 2015, global CO2 emissions from fuel combustion reached 32.3 GtCO2 [1]. To 

reduce the human contribution of CO2 emissions, it is mandatory to efficiently store 

carbon-free or low-carbon renewable electricity. Less crucial for emissions, but 

necessary to decrease urban pollution, is electromobility, which is now attracting 

increased interest. Electrochemical energy storage (batteries, supercapacitors) and 

conversion (Fuel Cells, FCs) are currently the best solutions to cut both urban pollution 

and CO2 emissions. Proton exchange membrane fuel cells (PEMFCs) have been 

proposed as promising energy sources in diverse applications such as transportation, 

stationary energy, and even portable devices [2,3]. In PEMFCs, one of the critical 

components remaining is the proton exchange membrane (PEM). To date, 

perflurosulfonic acid ionomers (PFSA), e.g., Nafion® (long side-chains) or Aquivion® 

(short side-chains) are still considered a reference electrolyte of PEMFC but also an 

unavoidable binder of electrodes [4]. Due to its superacid groups, the outstanding 

commercial Nafion membrane provides high conductivities and high oxidative stability, 

leading to high performance and durability in PEMFCs [5,6]. However, Nafion displays 

disadvantages such as poor thermo-mechanical stability, high oxygen permeability [7], 

and high cost. In addition, this membrane undergoes degradation in real devices [8,9]. 

These drawbacks necessitate the search for other ionomers based on different polymeric 

backbones [10]. A comparison of the advantages and drawbacks of possible ionomer 

backbones is presented by Iojoiu et al. [11]. 
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PEMs synthesized from poly(benzimidazole) (PBI) show high mechanical and 

thermal stability [12,13], but their blends with phosphoric acid are above all considered 

for high-temperature PEMFC implementation. Sulfonated aromatic main-chain 

polymers have received attention due to their excellent properties, such as low cost and 

high chemical and thermal stabilities [10]. In particular, sulfonated poly(ether ether 

ketone) (SPEEK) have been extensively used [14,15] in polymer blends [16,17], 

copolymers [18], and as part of composites [19]. PEEK, due to its high crystallinity and 

melting temperature (Tm), is considered one of the best thermoplastics, but its 

sulfonation, typically achieved in highly concentrated sulfuric acid, makes its 

purification fairly difficult. Moreover, its main assets, i.e., high crystallinity and Tm, 

vanish in highly conducting sulfonated ionomers. Membranes based on amorphous 

poly(ether sulfone) (PES) have also been considered potentially viable for fuel cell 

applications [20,21]. Specifically, the use of polysulfone (PSU) as a backbone in the 

synthesis of PEMs, has been evident in the large number of research articles published 

in recent years [22-27]. 

Aryl-sulfonic based ionomers can be obtained either by a polycondensation 

involving an acidic monomer or by sulfonating a polymer bearing aryl-based repeat 

units. The bottom-up approach from ionic monomer to ionomers allows predicting and 

perfectly controlling the degree of sulfonation (DS). Nonetheless, the obtaining of a 

polycondensation grade i.e., a purity allowing a stoichiometric balance between the 

ionic and the other monomers is far from being easy, especially at the industrial scale. 

In contrast, the ionomer synthesis by post-sulfonation of polycondensates is well-

mastered and easier; hence paving the way to lower production costs [28,29]. 

Membrane properties depend not only on the DS of the polymer but also on the 

experimental conditions used in the sulfonation reaction [26,30]. The proton 
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conductivity of PEMs can be generally favoured when the percentage of sulfonic groups 

increases [27], but this fact is accompanied by high water uptake (WU%), leading to the 

loss of dimensional stability of the membranes and their water dissolution. 

Multiblock copolymers have recently attracted attention as starting materials for 

membrane synthesis due to their robust chemical structure, which is characterized by 

good mechanical properties, even when there are many functional groups [31]. 

Sannigrahi and coworkers [32] have prepared block copolymers based on the 

combination of both hydrophilic sulfonated polysulfone and hydrophobic aromatic 

polyfluoroether segments. As a result, mechanically robust membranes with a very high 

proton conductivity of 100 mS cm-1 under fully hydrated conditions and 80 ˚C are 

obtained. Membranes based on sulfonated PEEK-b-PES copolymers also exhibit high 

conductivities of approximately 200 mS cm-1 and excellent dimensional stability, i.e., 

the tensile strength (TS), and the elongation at break of the membranes are in the range 

of 23-35 MPa and 20-51% [33]. In this case, sulfonation occurred on the anisole groups 

and not the polymeric backbone, allowing PEEK crystallinity to be suppressed. In 

addition, copolymers based on sulfonated and non-sulfonated PSU or fluorinated PES 

polymers are synthesized using an ionic monomer (sulfonated diphenol) and are 

successfully used as membranes for FC applications [20,21]. Thus, a powerful 

copolymer structure in multiblocks, which can be used to prepare PEMs, has been 

proposed as a main goal in this research field. Among high-performance polymer 

backbones, amorphous PES are likely the best candidates, since they (i) do not face the 

sulfonation issues of PEEK related to their high crystallinity, (ii) are not sensitive to 

hydrolysis as polyimides and (iii) have a low brittle-ductile transition related to their 

low transition, Tβ, which is close to -123 ˚C. For these reasons, we based our 

polycondensated multiblock on PES alternating PSU and polyphenylsulfone (PPSU) 
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blocks (PSU/PPSU). In our case, sulfonated multiblock ionomers are obtained via an 

easy process composed of a "one-pot two-step synthesis" followed by their sulfonation. 

This approach has several advantages, namely: (i) it reduces the number of synthesis 

steps compared with the usual polycondensation, which comprises three steps (two 

steps for the synthesis and purification of the two oligomers and one step for their 

copolycondensation), (ii) it allows obtaining high molecular weight using commercial 

monomers of high purity, and (iii) sulfonation of high performance polymers is well-

mastered. Additionally, this approach allows decreasing the solvent volumes used and 

the overall reaction time. The present work also includes molecular characterization of 

the copolymers by proton nuclear magnetic resonance spectroscopy (1H-NMR), infrared 

spectroscopy (FTIR), size exclusion chromatography and size exclusion 

chromatography multi-angle laser scattering (SEC and SEC-MALLS). The morphology 

of the polymeric membranes is evaluated through scanning electron microscopy. The 

properties of thermal stability, WU%, dynamo mechanical behaviour, and membrane 

ionic conductivity are also investigated and compared with other sulfonated polymers. 

Furthermore, the membrane electrode assembly (MEA) performance of this material is 

also tested. 

 

2. Experimental procedure 

2.1 Materials and reagents 

 Dimethyl sulfoxide-d6 (DMSO-d6, 99.9%), N,N-dimethylacetamide (DMAc, 

99.0%), potassium carbonate (K2CO3, ≥ 99.0%), and diethyleneglycol-monomethyl-

ether (DGME, 98%) were purchased from Acros Organics and used as received. 

Chloroform-d (CDCl3-d, 99.9% D), trimethylsilyl chlorosulfonate (TMSCS, 99.0%), 

1,2-dichloroethane (DCE, 98.9%), dimethylformamide (DMF, ≥ 99.8%), and toluene 
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(99.8%) were supplied by Sigma-Aldrich. The 4,4'-difluoro-diphenylsulfone (DFDPS), 

4,4'-isopropylidenediphenol (BPA), 4,4'-dihydroxybiphenyl (BP), 4,4'-

dihydroxydiphenylsulfone (DHDPS), were purchased from Alfa Aesar and 

recrystallized from isopropanol before use. 

 

2.2 Synthesis of copolymer backbone 

2.2.1 Synthesis of PSU/PPSU copolymer 

As shown in Scheme 1, the multiblock copolymer was synthesized via 

polycondensation in a "one-pot two-step synthesis". The synthesis pathway was 

performed as follows. First, 4.00 g (15.73 mmol) of DFDPS, 3.18 g (17.09 mmol) of 

BP, and 7.08 g (51.29 mmol) of anhydrous K2CO3 were added to a three-neck round-

bottom flask provided with mechanical stirring, argon inlet and a dean-stark trap. The 

reagents, DFDPS and BP, were dissolved in DMAc (29 mL). Toluene (15 mL) was 

added as an azeotropic agent for water removal. The reaction mixture was heated at 

reflux to 160 ˚C and kept at this temperature for 4 h to dehydrate the system. The 

temperature was increased to 180 ˚C to eliminate the toluene. After distillation, the 

solution was maintained at 120 ˚C for 18 h. Once the reaction was over, 2.91 g (12.74 

mmol) of BPA dissolved in 7 mL of DMAc, 5.28 g (38.24 mmol) of K2CO3, and 13 mL 

of toluene were added. The azeotropic process was performed a second time. Just before 

distilling off the toluene, 3.58 g (14.11 mmol) of DFDPS dissolved in 19 mL of DMAc 

were injected into the flask. The mixture reacted for 18 h and acquired a high viscosity. 

The copolymer was isolated by precipitation in a 1 M HCl solution. Finally, the 

resulting precipitate was dried under vacuum at 60 ˚C for 48 h. 

2.2.2 Sulfonation of PSU/PPSU copolymer 
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The sulfonation of PSU/PPSU copolymer was performed according to the 

procedure described by Chao et al. [34] with minor modification. The reaction was 

performed under anhydrous conditions in a three-neck round-bottom flask equipped 

with an argon inlet, magnetic stirring and a dean-stark trap. As shown in Scheme 2, 5.00 

g of copolymer was dissolved in 50 mL of DCE at room temperature. Once PSU/PPSU 

was totally dissolved, the temperature was increased to 90 ˚C to remove the water by 

azeotropic distillation (approximately 20 mL). When water from the copolymer solution 

was removed, the temperature of the mixture was decreased at R.T., and TMSCS, which 

was used as sulfonating agent, was diluted in dried DCE and added dropwise to the 

flask. To obtain varying degrees of sulfonation, volumes of TMSCS which ranged from 

5.23 mL to 20.89 mL were employed. The reaction was maintained for 24 h. The 

obtained sulfonated copolymer was precipitated in a 0.1 M NaOH solution and then 

filtered and washed with deionized water to neutral pH and dried under vacuum at 60 ˚C 

for 24 h. 

In this work, the initial copolymer PSU/PPSU is abbreviated as PES in the 

results and discussion section. The synthesized SPSU/SPPSU membranes are 

abbreviated as SPES. The number of samples of SPES are denoted as a function of the 

amount of sulfonating agent added in the sulfonation reaction of the copolymers. Table 

1 shows the PSU unit: TMSCS molar ratios used in the synthesis. 

Table 1. PSU unit: TMSCS molar ratios used in sulfonation reaction for prepared 
membranes 

Membrane PSU unit: TMSCS 

SPES 1 1:3 

SPES 2 1:6 

SPES 3 1:9 
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2.2.3 Membrane preparation 

 The SPES copolymer was dissolved (5 wt %) in DMF, and the resulting solution 

was cast onto a petri glass and dried under vacuum using a ramp of temperature, which 

ranged between 30 and 80 ˚C over 48 h. The thickness of the obtained membranes was 

50-75 µm. Afterwards, the SPES membrane in the Na+ salt form was immersed in a 1 M 

HCl solution at 60 ˚C during 24 h to replace Na+ with H+ to obtain membrane in the 

acidic form. 

 

2.3 Measurements 

2.3.1 1H-NMR and 19F-NMR 

 All copolymers were analysed by 1H-NMR spectroscopy, employing a Bruker 

WM 250 spectrometer at 300.12 MHz. In the case of 19F-NMR, the frequency was 

282.39 MHz. The initial copolymer PSU/PPSU was dissolved in CDCl3 and the 

sulfonated copolymers in DMSO-d6. Tetramethylsilane was used as the internal 

reference. 

2.3.2 Acid-base titration 

2.3.2.1 Ion-exchange Capacity (IEC) by standard method 

 The IEC of the SPES membranes was determined by acid-base titration. First, 

dry membranes in the Na+ form were immersed in a 1 M HCl aqueous solution for 24 h 

at 60 ˚C to obtain the acidic form, and then in a 2 M NaCl aqueous solution for 24 h to 

replace H+ with Na+. The resulting solutions were titrated using a 0.01 M NaOH 

aqueous solution, which was previously normalized with a solution of potassium 
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hydrogen phthalate. Phenolphthalein was used as an indicator. The titrations were 

repeated three times per sample. The IEC values were calculated as follows [35]: 

    ��� = ����	×�����

����
    (1) 

where VNaOH and [NaOH] are the volume and concentration of NaOH used in the 

titration, respectively, and wdry is the weight of the dry membranes. 

2.3.2.2 IEC by titration in organic medium 

 The IEC was also determined by titration in the presence of DGME as the 

organic solvent and methyl orange as the indicator. The dry membranes in the Na+ form 

were immersed in a 1 M HCl solution for 24 h at 60 ˚C. Then, the membranes were 

washed with deionized water and dried under vacuum during 24 h to remove the water. 

The resulting membranes were dissolved in DGME. Once dissolved, the solutions were 

titrated using a 0.05 M NaOH solution in triplicate. IEC values were calculated using 

Eq. (1) as previously shown. 

2.3.3 FTIR 

 The FTIR spectra of the membranes were recorded in a Perkin-Elmer Spectrum 

GX Instrument in the range of 4000-400 cm-1 at a resolution of 4 cm-1 and 16 scans. 

Spectra are shown in the supporting information (Figure 2S). 

2.3.4 SEC and SEC-MALLS 

 SEC and SEC-MALLS analyses were performed in a SOPARES RI2000 

differential refractometer coupled to a WYATT DAWN EOS light scattering detector 

with a 2xPLgel-Mixed-D column. The pump was a Waters 515 HPLC. Measurements 

were performed at 70 ˚C at a flow rate of 1 mL min-1. A solution of 0.1 M NaNO3 in 

DMF was used as a solvent. The sample solutions were previously filtered with a 0.45-
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µm Millipore or PTFE filter. The molecular weights of the copolymers were referenced 

to polystyrene standards. 

2.3.5 Thermogravimetric analysis (TGA) 

A Pyris TGA1 instrument from Perkin-Elmer was employed to assess the 

thermal stability of the PEMs. The membrane sample (10.0 mg) was heated from 40 to 

600 ˚C at a rate of 10 ˚C min-1 under air. The thermal behaviour of the sulfonic groups 

was evaluated using the temperature from which the weight loss begins (onset 

decomposition temperature, TOD) and the temperature of the maximum in the weight 

loss rate (fastest decomposition temperature, TFD). The temperature at which a 5% 

weight loss occurred was chosen as the reference degradation temperature of the 

samples and was denoted as Td5%. Isotherms (weight loss versus time) were performed 

at 100 ˚C for 12 h under air flow to study the thermal durability of the membranes. 

2.3.6 Differential Scanning Calorimetry (DSC) 

DSC analysis was performed on a membrane sample (7.5-10.0 mg) from 50 to 

350 ˚C at a heating rate of 10 ˚C min-1 under N2. A Mettler Toledo 822 instrument was 

used for the DSC measurements. 

2.3.7 Field Emission Gun Scanning Electron Microscopy (FEG-SEM) 

 The morphology of membranes was characterized by FEG-SEM using a ZEISS 

Ultra 55 equipped with a backscattered electron detector that enables energy selective 

backscatter (BSE) imaging. FEG-SEM images were recorded operating at 3 kV. For a 

better inspection in FEG-SEM of a possible phase separation, mobile H+ coming from 

sulfonic groups were replaced by Pb2+ ions. First, the membranes in the Na+ form were 

immersed in a 1 M HCl solution several times to replace Na+ with H+. The resulting 

membranes were repeatedly rinsed with deionized water. Finally, the membrane 
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samples were immersed in a 1 M Pb(NO3)2 solution stirred for 48 h and dried in an oven 

at 60 ˚C. A representative image is shown in the supporting information (Figure 3S). 

2.3.8 WU% 

 The parameter of WU% were evaluated in the range of temperature from R.T. 

to 60 ˚C. The thickness of the membranes was approximately 75 µm. First, the samples 

were dried under vacuum at 60 ˚C to obtain the weight of the dry membranes, wdry. 

Then, the samples were immersed in deionized water for 72 h. Before obtaining the 

weight of the wet membranes, wwet, the excess surface water was removed with blotting 

paper. This process was systematically and quickly repeated three times at each 

temperature and for each sample. Thus, WU% was calculated according to Eq. (2) [36]. 

    ��% =
���������

����
× 100    (2) 

2.3.9 Mechanical properties 

 The Dynamo Mechanical analysis (DMA) in the tensile mode was performed 

using DMA Q800 equipment (TA Instruments, USA). The width and length of the 

analysed samples were 2.5 and 12.0 mm, respectively, and the thickness was 

approximately 50 µm. An initial static force of 0.15 N was employed in all experiments. 

Stress-Strain test conditions were fixed at 30 ˚C in controlled force mode at a ramp 

force of 0.3 N min-1, reaching 18.0 N. The frequency used was 1 Hz and the 

measurements were performed by heating from 30 to 250 ˚C with a rate of 2 ˚C min-1. 

Experiments were performed using membranes in the Na+ form that were previously 

dried under vacuum for 48 h at 100 ˚C to remove embedded water. Another set of 

experiments were performed on wet membranes which were tested directly after being 

immersed in a 1 M HCl solution for 24 h at 60 ˚C to obtain the H+ form. Each test was 

repeated at least three times, and the average value was considered. 
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2.3.10 Proton Conductivity 

 Proton conductivity measurements were determined via Electrochemical 

Impedance Spectroscopy (EIS) using a Material Mates 7260 frequency response 

analyser. The measurements were conducted in a frequency range between 10-1 and 106 

Hz using a voltage amplitude of 0.01 V. The influence that both temperature and 

relative humidity have on the electrochemical behaviour of the membranes was 

evaluated by varying (i) the temperature from 20 to 80 ˚C at a RH of 95%, and (ii) RH 

from 30 to 95% at a temperature of 80 ˚C. Both parameters, temperature and RH, were 

controlled in a Vösch 4018 climatic chamber. The test cell was composed of two gold 

electrodes separated by the membrane. The intercept point with the real axis in the 

Nyquist plot at high frequencies was considered to determine the resistance values. The 

proton conductivity of the membrane (σm) was determined from the resistance value via 

Eq. (3). 

     �� =  

!"×#
     (3) 

where L, Rm, and A are the thickness, resistance, and active area of the membrane. 

 The experimental data resulting from the EIS measurements were analysed 

using Z-View analysis impedance software (Scribner Associates, Inc., Southern Pines, 

NC, USA). 

2.3.11 MEA test 

 Performance tests of MEA were performed in a Scribner 850e multi-range fuel 

cell test system. Pure hydrogen and pure oxygen were used as fuel and oxidant, 

respectively, at a flow rate of 200 mL min-1. The measurements were performed at 

atmospheric pressure, 100% of relative humidity, and temperature from 50 to 80 ˚C. 

The membrane thickness was in the range of 50-60 µm. Cathode and anode catalyst 
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layers consisted of Pt/C catalyst (70 wt % Pt, Paxitech) (0.5 mg Pt cm-2). The 

polarization curves were recorded after the single cell had reached stable conditions, 

i.e., the potential remained constant over time at a fixed current. 

 The in situ through-plane proton conductivity of the membranes was conducted 

using Electrochemical Impedance Spectroscopy on the MEA at 100% relative humidity 

and different cell temperatures using a potentiostat Autolab PGStat30 provided with an 

FRA module. During testing, the system was supplied with humidified hydrogen (SHE, 

anode) and nitrogen (cathode) at a flow rate of 200 mL min-1. The amplitude sinusoidal 

signal was 10 mV, and the frequency was in the range between 100 kHz and 10 Hz. A 

DC bias potential of 0.45 V was used to record the spectra. The conductivity values 

were calculated according to Eq. (3). Each sample was measured at least five times after 

it reached a constant value to ensure good data reproducibility. 

 

3. Results and Discussion 

3.1.1. Strategy 

Obtaining proton exchange membranes that can operate in a wide temperature 

range (i.e., from sub-ambient temperatures to at least 90 ˚C) requires finding a balance 

between two opposing membrane characteristics: high conductivity that requires a high 

concentration in hydrophilic aryl sulfonic acids but a moderate WU% to avoid excessive 

swelling of the membranes. To avoid extensive swelling of sulfonated membranes in 

FCs, two main approaches have been considered: (i) the filling of sulfonated ionomers 

(composite membranes) by proton-conducting inorganic materials [37,22] endowed 

with high conductivity and (ii) the synthesis of multiblock copolymers with alternating 

hydrophobic and hydrophilic blocks [38]. The Holy Grail is to prepare proton-



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

17 
 

conducting blocks using ionic monomers, but these are not commercially available. 

Furthermore, their required purity grade faces upscaling issues that increase ionomer 

and membrane costs. For this reason, we decided to first prepare a polycondensated 

multiblock copolymer based on high-purity, commercial, cheap monomers that are used 

in the production of commercial PES and whose trademarks are Udel® and Radel®, 

and then to functionalize them exclusively or, if not possible, to preferentially 

functionalize one of them. The best route to obtain polycondensated multiblock 

copolymers consists of preparing and isolating linear blocks (i.e., cycle-free) obtained 

via monitored stoichiometric imbalance (i) to obtain the suited chain length, and (ii) to 

end-cap the resulting oligomers with suitable functions, allowing further 

polycondensation. These oligomers are reacted in a 1:1 stoichiometric ratio to obtain the 

targeted polyconsensated multiblock. While this is perfectly feasible in high yield at the 

lab-scale, this synthesis protocol is costly, and its upscaling is therefore questionable. 

We therefore opted for a "one-pot two-step synthesis", which is less ideal than the 

method described above but is likely to allow further upscaling. 

3.1.2. Synthesis and characterization of SPES copolymers 

3.1.2.1. Synthesis and spectroscopic characterizations 

 The synthesis of PSU/PPSU multiblock copolymers is performed by 

polycondensation in a "one-pot two-step synthesis" (Scheme 1). To obtain a 50:50 ratio 

of both blocks in the copolymer, the molecular weight of both segments is fixed at 5000 

g mol-1 by controlling the molar ratio between the monomers BPA:DFDPS and 

BP:DFDPS. In a first step, a 5000 g mol-1 PPSU block end-capped by phenates is 

synthesized by reacting DFDPS and BP, using a stoichiometric imbalance, i.e., a slight 

excess (~ 11%) of BP. The reaction is monitored by 19F-NMR, i.e., by the 

disappearance of fluorine signal from DFDPS. In the second step, the 5000 g mol-1 PSU 
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block is synthesized by adding BPA and DFDPS to a solution of the PPSU block. The 

successful formation of the PES multiblocks is confirmed by 1H-NMR analysis (Figure 

1). The characteristic peaks of both blocks in the range of δ between 6.80 and 8.00 ppm 

(H1, H2, H3, and H4 in the PSU block and H5, H6, H7, and H8 in the PPSU block) are 

verified by 1H-NMR spectroscopy [30]. The number structural units of PPSU and PSU 

blocks are m = 12.5 and n = 11.3, respectively. The PSU/PPSU molar ratio roughly 

corresponds to the expected value, i.e., m/n = 1.1. 

Except for PEEK, which requires sulfuric acid as both the solvent and reactant 

[14,39], the most common sulfonation reagent is ClSO3H. This superacid is highly 

reactive but has two main drawbacks. First, if sulfonation occurs in a halogenated 

solvent, a precipitate forms as the ionomer is in its acidic form (hydrophilic), while the 

solvent is hydrophobic. This precipitation likely leads to heterogeneous reactions 

between the precipitate and reactant. Then, ClSO3H drastically decreases the intrinsic 

viscosity of sulfonated PES [23]. Due to the hydrophobic nature of the trimethylsilyl 

ester, sulfonation by the milder reagent TMSCS can be performed without precipitation. 

After electrophilic substitution, the ionomer can be indifferently precipitated, either in 

its sulfonic form (H+) or its sulfonate form (Na+ or Li+). The precipitation of the acidic 

form is not easy [40]. If the sulfonation is performed under sufficient flux of inert gas 

(N2 or Ar), no chain breakage is observed [30]. The BPA of the PSU block has two 

electron-donating groups: the ether group (-I, +M) and the isopropylidene group (+I). 

The latter decreases from ortho to meta but remains as a donating group, while the 

donating resonance effect of the ether outweighs its electron-withdrawing effect in the 

ortho position. Thus, both groups orient electrophilic substitution to the ortho position 

of BPA, while the ether is the sole electron-donating group in BP. To prove this fact, the 
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DS of both blocks are calculated through 1H-NMR analysis and IEC as determined by 

chemical titrations. 

 The peak associated with the protons adjacent to the attached sulfonic groups is 

clearly upshifted. In the PSU segment, it shifts from 7.25 to 7.69 ppm (4''), while in the 

case of the PPSU unit, it shifts from 7.60 to 8.06 ppm (5''). Unfortunately, in the 7.60-

7.80 ppm range, the peak denoted as 4'' is overlapped by peaks 5 and 5' in the PPSU 

block. Thus, 1H-NMR spectra do not allow accurate determination of the degree of 

sulfonation of PSU blocks. However, the peak at δ = 8.06 ppm (5'') associated with the 

PPSU repeat unit is well defined (Figure 2), appearing in the two spectra (SPES 1 and 

2), and its intensity increases significantly with the amount of sulfonating agent. 

 For this reason, the DS of the PPSU repeat unit is calculated according to Eq. 

(4) using the integral area of the peaks at 8.06 ppm (A(5'')), and 1.70 ppm (A(9)), which 

are associated with the 5'' peak of the PPSU block and isopropylidene moiety (9) (as 

shown in Figure 1S of the supporting information) of the PSU block, respectively. 

    $%�&!''() = *#+,--.

+#+/.×0.0.
    (4) 

 The DS of the PSU segment is also estimated from IEC values by subtracting 

the DS from PPSU units. The IEC is measured both by heterogeneous standard titration 

and by homogeneous titration of SPES organic solutions (Table 2). The IEC values 

determined using both methods are not significantly different, and a similar tendency is 

observed when the percentage of sulfonic groups increases in the copolymer. Thus, IEC 

varies from 1.01 (SPES 1) to 1.58 meq H+ g-1 (SPES 3) using standard heterogeneous 

titration and from 0.94 to 1.65 meq H+ g-1 using homogeneous titration of the ionomer 

solution. These results are analogous to the reported values of IEC for copolymers 

based on sulfonated PEEK-b-PES [33]. 
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 An estimation of the DS for the PSU unit (DSPSU), is obtained using Eq. (5). 

 $%'() =
2+0333345(�67889:×;3.×<=>�+5(�67889:×�.×0333?

2+0333�;3×<=>.×@?
  (5) 

where 10000 is the backbone average molecular weight of the PSU and PPSU blocks, 

80 g mol-1 is the molecular weight of the sulfonic group, m = 12.5 and n = 11.3 are the 

number of the structural units of PPSU and PSU blocks, respectively, and the averaged 

IEC value is used. 

 

Table 2. IEC, DSPSU and DSPPSU values of SPES copolymers 

Membrane IECa
 

(meq. H+ g-1) 

IECb
 

(meq. H+ g-1) 

IECaverage 

(meq. H+ g-1) 

DSPSU DSPPSU 

SPES 1 1.01 0.94 0.97 0.75 0.18 

SPES 2 1.48 1.44 1.46 0.81 0.61 

SPES 3 1.58 1.65 1.62 0.76 0.82 

a
 Standard titration; b Titration in organic medium. 

 

 Based on these results, sulfonation occurs preferentially on the PSU blocks, 

and once the PSU DS exceeds 0.5, the reaction is no longer regioselective. Thus, it can 

be inferred that when trimethylsilylsulfonate is incorporated (every two structural units), 

its electron-withdrawing effect counterbalances the electron-donating inductive effect of 

isopropylidene in the PSU units. At that point, the PPSU repeat units begin to react with 

TMSCS. In addition, both blocks are susceptible to sulfonation due to the excess 

TMSCS used in the reaction. This might be ascribed to the TMSCS dielectric constant 

that results in an overall polarity increase, favouring and levelling sulfonation on both 

blocks [26]. These described issues lead to, in the case of the SPES 3 membrane, close 

DS on each block. Sulfonation is also confirmed by FTIR. Pristine PES is compared 
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with SPES ionomers specifically in the frequency range of 1040-1000 cm-1 in Figure 2S 

of the supporting information. Two bands are observed. PES exhibits a single band at 

1014 cm-1, associated with the symmetric stretching vibration of the diphenyl-ether 

units. This band is also observed in SPES, in addition to a band centred at 1028 cm-1, 

which is ascribed to the symmetric stretching vibration of the sulfonic groups [41]. The 

intensity of this band increases with IEC from SPES 1 to 3. 

3.1.2.2. Molecular Weight Distribution (MWD) 

MWD and polydispersity index, Ip (Mw/Mn), determined by SEC and SEC-

MALLS are gathered in Table 3. Cyclization and difficulties in perfectly balance 

monomer stoichiometry are well known challenges. For this reason, polycondensation 

leads to molecular weights that are significantly lower than polymers prepared by free-

radical, anionic, or cationic initiation. Iojoiu et al [30] noted the decisive role of chain 

lengths on membrane durability. Thus, SPES based on PSU-3500 (DS=0.58) with a 

number average molecular weight (Mn) of 19900 and 38000 g mol-1 were compared. 

Classical SEC is first performed and molecular weights were calculated in equivalent 

polystyrene, as the Mark-Houwink-Sakurada (MHS) constants of our polycondensated 

multiblock copolymers are unknown. However, this routine analysis neglects changes in 

hydrodynamic volumes regarding, on the one hand, polymeric backbones PSU/PPSU 

blocks vs polystyrene and, on the other hand, non-ionic polymers and ionomers. SEC-

MALLS does not require any calibration and should provide the actual MWD. With the 

pristine polycondensated multiblock (Table 3), SEC-MALLS provides higher molecular 

weights than SEC (~50%), in agreement with PSU-3500 data [30]. More surprising is 

the gap between Ip, as polydispersity index is almost independent of MHS constants. 

Light scattering (LS) is very sensitive to high molecular weight aggregates that increase 

both weight average molecular weight (Mw) and Ip. Indeed, comparing the LS curve and 
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refractive index curve (which measures the amount of polymer), a gap is observed, 

confirming the presence of aggregates that were previously ascribed to chains end-

capped by phenol, leading to inter-chain hydrogen bonding. Even though the multiblock 

microstructures of our polymers make it difficult to accurately assessing their MWD, 

both techniques allowed the determination of Mn values (weakly impacted by 

aggregates). These Mn values are five-fold and fourfold higher than PSU-3500, as 

determined by SEC-MALLS and SEC, respectively. Following sulfonation, the 

molecular weights seemed to slightly decrease when they should increase. Even though 

it is impossible to discard possible chain breaks, it must be emphasized that great 

attention was paid to maintaining of a sufficient argon flux to remove the HCl by-

product. Nonetheless, the SPES 1 sample seems to have undergone chain breaks during 

sulfonation. However, samples analysed in exhibit Mn values two- (SPES 1) to three-

fold (SPES 2 and 3) higher than the best values obtained from PSU-3500. The absence 

of oligomers can be inferred from the unimodal SEC curves. This would be an 

indisputable asset, as sulfonic acid oligomers progressively eluted during PEMFC 

operation and are detrimental to the membrane homogeneity and lifetime. 

Table 3. Number (Mn) and weight (Mw) average molecular weight of PSU/PPSU and 
SPSU/SPPSU copolymers. Polydispersity index (Ip) was also calculated 

Polymer 
Mn

a
 

×103(g mol-1) 

Mn
b
 

×103(g mol-1) 

Mw
a
 

×103(g mol-1) 

Mw
b
 

×103(g mol-1) 

Ip
a
 

 

Ip
b
 

 

PES 177 121 528 329 2.9 2.7 

SPES 1 61 94 117 221 1.9 2.3 

SPES 2 115 136 279 339 2.4 2.4 

SPES 3 118 85 165 210 1.4 2.4 

a
 Real; b Calculated in polystyrene equivalents. 
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3.2 Thermal properties 

 The thermal stability of the membranes is studied by thermogravimetric 

analysis, TGA. The TGA curves for PSU/PPSU and SPES 1, 2, and 3 membranes are 

given in Figure 3. The non-sulfonated copolymer shows the main weight loss between 

400 and 500 ˚C, which corresponds to decomposition of the polymer backbone. 

Regarding the sulfonated membranes, three weight-loss steps are observed in these 

samples. The first weight loss, below 150 ˚C, is attributed to water elimination, and the 

second weight loss, between 200 and 400 ˚C, is assigned to the sulfonic group 

degradation, while the third loss, observed approximately 500 ˚C can be associated with 

decomposition of the polymer backbone. However, the first weight loss, which appears 

near 300 ˚C, can be associated with degradation of the polymer chains into lower 

molecular weights [40]. The thermal decomposition of the sulfonic groups (TOD and TFD 

values are higher than 240 ˚C and 260 ˚C, respectively (Table 4)) are in accordance with 

published data on SPSU, PSU and fluorinated PES copolymers [27,20,21]. This 

behaviour is similar to that reported for other PEMs based on PES block copolymers. 

Thus, multiblock copoly(arylene ether sulfone)s show Td5% values above 310 ˚C under 

similar experimental conditions [42]. In addition, TGA under isothermal conditions are 

performed at 100 ˚C, and after 12 h, a loss between 1.3-2.8% (Table 4) is observed, very 

close to the weight loss in the first step on the kinetic curve (Figure 3). 

 

Table 4. Thermal parameters of SPES membranes 

Membrane 
TOD  

(˚C)a 

TFD  

(˚C)b 

Td5%  

(˚C) 

Weight loss  

%b
 

Tg  

(˚C) 

SPES 1 245 333 300 1.35 184 

SPES 2 241 288 291 2.79 185 
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SPES 3 240 262  333 2.12 187 
a Sulfonic groups; b T = 100 ºC and t = 12 h. 

 

The thermal transitions of the sulfonated copolymers are analysed by DSC. 

SPES membranes show only one glass transition temperature (Tg) ranging from 184 to 

187 ˚C as a function of IEC values (Table 4). These values are close to that of PSU, i.e., 

186 ˚C, as determined in the same conditions [43]. The presence of a single Tg tends to 

illustrate the absence of phase separation between the two blocks. However, the Tg of 

the two blocks are probably very close, leading to overlapping. 

 

3.3 Membrane morphology 

 The morphology of the membranes has been examined via scanning electron 

microscopy. Aspects such as the homogeneity, the phase separation between 

hydrophobic and hydrophilic microstructures [44], or the presence of clusters [19], are 

essential to understanding the properties of the membranes, e.g., proton conductivity, 

mechanical properties and fuel cell performance. The FEG-SEM image of the SPES 2 

membrane at the surface is shown in Figure 3S of the supporting information. 

Sulfonated copolymers show a tight, homogeneous structure with no apparent cracks 

and pores. In accordance with the obtained DS values, both blocks are sulfonated, and 

thus the phase separation between PSU and PPSU blocks is poor or non-existent. This 

result is in agreement with the presence of a unique Tg as determined by DSC analysis 

(Table 4). 

 

3.4 WU% 
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 The water absorption of a proton exchange membrane is crucial for proper 

operation in a fuel cell and clearly affects ionic conductivity, mechanical properties and 

fuel cell performance. The WU% values at two different temperatures are displayed in 

Table 5. At 30 ˚C, WU% increased from 5.50 to 23.90% as IEC increased from 0.97 to 

1.62. This tendency is related to increase hydrophilicity (in acceptor number, AN), 

although increased polarity has also been evoked [45]. Thus, highly sulfonated 

membranes show higher hydrophilicity and, consequently, higher WU%. At 60 ˚C, no 

significant differences between SPES 1 and SPES 2 are observed (11.00 and 11.60%, 

respectively). However, hydration ability is favoured compared with 30 ˚C values (5.50 

and 7.00%). Thus, at low DS (SPES 1 and 2), the influence of temperature does not 

show a clear tendency. This might be ascribed to the limited content in hydrophilic 

sulfonic acids and to the high molecular weight of the copolymers, hence the high 

entanglement level. Nevertheless, at high DS (SPES 3) the WU% is significantly higher 

than at low DS and it increases from 23.90% to 31.20% between 30 ˚C and 60 ˚C. This 

means that the effect of temperature is clearer when the number of sulfonated groups 

increases. Notably, the WU% of our copolymers is much lower than that reported for 

sulfonated commercial PSU [46]. Thus, sulfonated PSU, with similar IECs to those of 

SPES 1 and 2, showed WU% of 17.4 and 61.1%, respectively [47]. The much lower 

WU% of our copolymers can be ascribed to their multiblock microstructure (although 

both blocks are sulfonated) as well as their fairly high molecular weight [31]. 

 

3.5 Mechanical Properties 

 The thermo-mechanical characteristics of membranes are essential, as they 

govern their performances and durability in PEMFC. Thus, high TS (in a wide range of 

temperature, humidity), and ductility allow the shaping of ionomers into thin and non-
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brittle films. This fact contributes to minimizing the ohmic drop in the electrolyte. 

Membranes must adapt to changes in relative humidity and temperature while 

maintaining their dimensional stability. To assess their mechanical performance, both 

stress-strain tests and dynamo mechanical tests have been conducted. 

3.5.1 Stress-Strain Tests 

The mechanical properties of a fuel cell membrane clearly depend on their 

ability to absorb water [4]. Thus, stress-strain tests are performed on the membranes in 

dry and wet forms (SPES-Na and SPES-H, respectively). Thus, tensile stress-strain 

curves for both dry and wet SPES 1 membranes are compared in Figure 4. In general, 

dry membranes exhibit higher tensile strength and higher stiffness (slope of the linear 

part of the stress-strain curve) than wet membranes. As a small molecule strongly 

interacting with the hydrophilic sulfonic groups, water should indeed plasticize SPES-

H, even though it increases SO3H dissociation. Narducci et al. ascribes the water 

plasticizing effect to a decrease in Van der Waals interactions between macromolecular 

chains, as induced by its high dielectric constant [48]. This tendency is observed for all 

sulfonated membranes (Table 5). The most pronounced effect is observed for SPES 3 

(TS decreases by approximately 36% due to the higher WU%). The TS depends also on 

the IEC. Thus, TS increases from 66 to 87 MPa for dry membranes when the IEC 

increases from 0.97 to 1.62 meq H+ g-1. The increase in TS with IEC can be explained 

by considering the interactions of sulfonic groups in the polymer matrix [31,33]. These 

TS values can be compared with the value for Nafion 112 with a similar thickness, 

showing greater TS for SPES (Table 5). In the case of wet SPES-H membranes, tensile 

strengths are considerably higher than for other wet membranes based on similar 

polymeric backbones, for instance sulfonated polyphenylsulfone (TS of 13 MPa) [49], 
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SPSU (TS = 11 MPa) [27] or sulfonated PEEK-b-PES copolymers (TS values ranging 

from 23.8 to 35.4 MPa) [33]. 

SPES-Na membranes in the dry form have low ductility. Thus, elongations at 

break (ε) are lower than 5% for all samples (Table 5). However, wet membranes are 

much more ductile. Thus, ε for SPES-H 2 membrane is 57%, while the high ductility of 

SPES-H 3 impedes obtaining a reliable ε. Guo and coworkers [33] reported similar ε 

values for wet sulfonated PEEK-b-PES copolymers (ε ranging from 20.1 to 51.8%). 

However, these membranes are not sulfonated on the polymeric backbones but rather on 

the anisole groups. 

 

Table 5. WU% values and mechanical properties of dry and wet SPES membranes; 
Tensile Strength (TS) and Elongation at Break (ε), Storage Modulus at 50 ˚C (E′50̊ C) 
and Temperature associated with a α Relaxation (Tα) (from DMTA Experiments) 

Membrane 

WU 

% 

TSa
 

(MPa) 

εa
 

% 

E′50˚C 

(MPa) 

Tα DMTA  

(˚C) 

30˚C 60˚C 
Dry 

Na+ 

Wet 

H+ 

Dry 

Na+ 

Wet 

H+ 

Dry 

Na+ 

Wet 

H+ 

Dry 

Na+ 

Wet 

H+ 

SPES 1 5.50 11.00 66 55 5.0 15.0 2986 2427 205 219 

SPES 2 7.00 11.60 74 67 3.5 57.0 3210 2414 226 221 

SPES 3 23.90 31.20 87 56 3.7 - 5004 3424 230 223 

Nafion 112b - - 19 - - - - - - - 

a T = 30 ̊ C; b TS determined in H+ form [50] 

 

3.5.2 Dynamic Mechanical Analysis 
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To evaluate the thermo-mechanical properties and relaxation processes of 

sodium and proton forms of SPES membranes (SPES-Na and SPES-H, respectively), 

the variation of storage (E′), and loss modulus (E′′) with temperature is studied. Indeed, 

the Na+ form undergoes much easier drying. As an example, Figure 5 displays DMA 

curves for SPES-Na and SPES-H 1. The drop in storage modulus and peak of loss 

modulus are directly related to the α relaxation process associated with the Tg of SPES-

Na and SPES-H, respectively. For each membrane, Tg is determined from the peak of 

the loss modulus and reported in Table 5, as is the storage modulus. 

The storage modulus at 50 ˚C (E′50˚C) appears to depend on the presence of 

sodium sulfonate groups, which increase with IEC. Τhus, α relaxation temperatures of 

SPES-Na (Tα), associated with Tg are gathered in Table 5. Tα increases from 205 to 230 

˚C with the content in sodium sulfonate groups, i.e., from SPES 1 to 3. Once 

characterized in the sodium forms, the acidic ionomers (SPES-H) are also tested. It is 

well-known that in ionomers based on homopolymer (due to the increase in ionicity), Tg 

increases substantially from acidic forms to salts. Thus, in the series of acrylate and 

methacrylate, Tg shifts from 105 to 230 ˚C and from 228 to 310 ˚C, respectively, when 

moving from the acidic form to sodium one [51]. However, the increase in ionicity is 

mitigated by the stiffness of the backbone, as highlighted by the gap decrease in 

polymethacrylate compared to acrylate and as previously observed in the H+ and Na+ 

form for SPSU [26]. Indeed, in the case of SPES-H, from DMA curves, a very slight 

decrease in E′ is observed between room temperature and approximately 200 ˚C with 

respect to the SPES-Na form. Surprisingly, creeping is delayed from approximately 20 

˚C in the case of SPES-H. This can be ascribed to inter-chain hydrogen bonding, and 

possibly to partial crosslinking induced by the formation of anhydrides at high 

temperature [52]. Nonetheless, the membranes in their dry state exhibit sufficient 
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strength to be operated in FCs, especially as WU% is much more limited than in SPSU 

based on PSU homopolymer [27]. 

 

3.6 Proton conductivity of SPES membranes 

The proton conductivity of the SPES membranes is determined by EIS. The 

evolution of ionic conductivity with temperature (Figure 6A) and relative humidity 

(Figure 6B) for the three different membranes is displayed in Figure 6. EIS 

measurements are performed using a homemade device whose accuracy was previously 

established [53]. As shown in the Arrhenius plots in Figure 6A, conductivity increases, 

as expected, with IEC; the gap is more pronounced between the SPES 1 and SPES 2. 

Indeed, sulfonation of both blocks (DS > 0.5) and resulting higher WU% lead to better 

percolation of ionic domains and a lower tortuosity. The maximum ionic conductivity is 

at 95% RH and 80 ˚C, namely 25 mS cm-1 for SPES 3 (Table 6). However, these values 

are higher than those reported for SPSU [30]. Moreover, these membranes, even in a 

hydrated state, exhibit very good mechanical strength (Table 5) and no brittleness. 

 The conductivity dependence on RH is also evaluated (Figure 6B), and the 

conductivity increased markedly from 30 to 95% RH. In the case of the SPES 3 

membrane, the conductivity increases by an order magnitude. 

 

3.7 Fuel Cell test 

 The SPES 3 membrane, combining high conductivity and excellent mechanical 

properties, is selected for the fuel cell. For comparison with our membrane, 

measurements of Nafion 112 and 117 are performed in the same conditions. MEA based 

on a 5 cm2 active area single cell is evaluated at temperatures from 50 to 80 ˚C, under 
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100% RH and at atmospheric pressure. Figure 7 shows voltage-current density (A) and 

power density-current density (B) curves. As shown in this figure, fuel cell performance 

improves with temperature up to 70 ˚C, where the maximum power density (∼ 400 mW 

cm-2 ) and the maximum current density (1100 mA cm-2) are achieved. 

These results are much better than those reported on sulfonated cardo PEEK-

WC-PES random copolymers, which showed a maximum power density of 90 mW cm-2 

and a maximum current density of 340 mA cm-2 at 50 ˚C and 100% RH [36]. Notably, 

the results are very promising, especially compared to commercial membranes with 

similar thickness such as Nafion 112 (power density of 729 mW cm-2 and a current 

density of 2400 mA cm-2 at 70 ˚C and 100% RH) and the thicker Nafion 117 (power 

density of 310 mW cm-2 and a current density of approximately 999 mA cm-2 at 70 ˚C 

and 100% RH), which are often used as reference materials. From these comparative 

MEA tests, it can be concluded that a membrane based on SPES copolymers exhibit 

satisfying performance. 

In situ through-plane proton conductivity of SPES 3 membrane (σm MEA) is 

determined on the MEA by EIS using the same cell hardware as fuel cell tests and 

H2/N2 gases. Table 6 compares the ionic conductivity values of SPES 3 membrane 

obtained by both ex situ and in situ measurements at different temperatures, at 

atmospheric pressure and under humidified gases (100% RH). In addition, the in situ 

proton conductivities of Nafion 112 and 117 are included in Table 6 as reference 

materials. The hydration of our membrane at 50 ˚C is higher than in Nafion 117. Thus, 

the temperature required to register a value of conductivity for SPES membranes is 

lower. The aforementioned experimental conditions allowed us to obtain approximate 

conductivities in conditions close to MEA operation (see section 3.5) (Table 6). As 

shown in this table, close ionic conductivities are obtained using blocking electrodes 
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and an MEA cell. The σm MEA increases considerably when the temperature varied from 

50 to 80 ˚C. Nevertheless, at temperatures above 70 ˚C, conductivity does not improve. 

At 70 ˚C and 100% RH, the SPES 3 membrane achieves a value of 34.1 mS cm-1 for σm 

MEA. This value is slightly lower than that measured under the same conditions for 

Nafion 117 (σ MEA= 57.3 mS cm-1) and similar to that observed for Nafion 112 (σ MEA= 

34.0 mS cm-1), which are considered a reference material. Thus, these new copolymers 

show satisfactory conductivity and electrochemical performance for use as conducting 

membranes in fuel cells. 

 

Table 6. Proton conductivity of SPES 3 membrane obtained by ex situ (σm) and in situ 
(σm MEA) measurements 

T 

(˚C) 

σm
a
 

(mS cm-1) 

102 × R 

(Ω) 

σm
b MEA 

(mS cm-1) 

σN112

MEA 

(mS cm-1) 

σN117

MEA 

(mS cm-1) 

50 19.2 6.00 19.7 - - 

60 23.4 4.58 25.8 33.0 55.3 

70 24.5 3.47 34.1 34.0 57.3 

80 25.4 3.97 29.8 34.3 52.6 

a
 Determined as described in section 3.5. b 59.2 µm of thickness 

 

4. Conclusions 

This study targeted ionomers based on multiblock polycondensates that could be 

produced at industrial scale. Indeed, the one-pot two-step synthesis allows (i) using 

available monomers and (ii) avoiding the use of ionic monomers. In fact, obtaining high 

molecular weight polycondensates requires the best stoichiometric balance possible and, 

therefore highly pure monomers, while scaling up ionic monomer purification is often 

difficult and costly. For that purpose, the commercial, cheap, and very pure monomers 
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used in Udel® and Radel® production are reacted using a "one-pot two-step synthesis" 

approach. This led to high molecular weight multiblock polyethersulfone that is further 

sulfonated. Using mild sulfonation conditions (moderate reaction temperature, mild 

sulfonating reactant, low concentration of TMSCS) we bet on the lesser reactivity of the 

PPSU repeat unit towards electrophilic substitution compared to PSU. Therefore, no 

microphase separation is detected on the most conductive ionomer. Although separation 

does not occur, the resulting ionomers exhibit good performances in terms of WU% and 

mechanical strength. SPES shows a tensile strength of 56 MPa, considerably higher 

than those observed for SPSU, which showed a TS of 11 MPa and sulfonated PEEK-b-

PES copolymers whose TS ranges between 23.8 and 35.4 MPa. The preliminary MEA 

tests perform on the highest sulfonated ionomer are promising, as power and current 

density of 400 mW cm-2 and 1100 mA cm-2, respectively, are achieved at 70 ˚C. While 

many experiments have already been performed, the material can be further refined. 

Thus, we are currently testing some strategies (e.g., still milder sulfonation conditions to 

favour PSU sulfonation) to generate better immiscibility between blocks to induce an 

actual microphase separation. 
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Scheme 1. Synthesis of PSU/PPSU. 
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Scheme 2. Sulfonation of PSU/PPSU. 

 

 

Figure 1. 1H-NMR spectrum of PSU/PPSU (Solvent: CDCl3). 
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Figure 2. 1H-NMR spectra of SPES 1, and 2 (Solvent: DMSO-d6). 
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Figure 3. TGA curves for PSU/PPSU and SPES membranes under an air atmosphere. 
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Figure 4. Tensile stress-strain curves for SPES 1 membranes at 30 ˚C. 

 

 

Figure 5. DMA curves for SPES 1 membrane. 
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Figure 6. Proton conductivity of SPES 1 (■), 2 (●) and 3 (▲) membranes as a function 
of A) temperature at 95% RH and B) RH% at 80 ˚C. 
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Figure 7. A) Polarization and B) power density curves of SPES 3 membrane at 50, 60, 
70, and 80 ˚C and 100% RH. 
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