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Abstract—The fifth generation (5G) mobile network has paved
the way for innovations across vertical industries. The integration
of distributed intelligent edge into the 5G orchestrated architecture
brings the benefits of low-latency and automation. A successful
example of this integration is exhibited by the 5G-DIVE project,
which aims at proving the technical merits and business value
proposition of vertical industries such as autonomous drone
surveillance and navigation. In this paper, and as part of 5G-DIVE,
we present an aerial disaster relief system, called EagleEYE,
which utilizes edge computing and machine learning to detect
emergency situations in real-time. EagleEYE reduces training
time by devising an object fusion mechanism which enables
reusing existing datasets. Furthermore, EagleEYE parallelizes the
detection tasks to enable real-time response. Finally, EagleEYE
is evaluated in a real-world testbed and the results show that
EagleEYE can reduce the inference latency by 90% with a high
detection accuracy of 87%.

Index Terms—Low-latency computing, Object detection, Con-
tainer, Edge computing.

I. INTRODUCTION

Today, the fifth-generation (5G) mobile network has paved
the way for innovations across vertical pilots. 5G transforms
networks into intelligent orchestrated infrastructures and ce-
ments powerful relationships between verticals and operators.
This opens a new breed of business value propositions for
vertical industries such as autonomous drone surveillance and
navigation. Autonomous drones will have a major positive
impact in areas including agriculture, communication, and
disaster relief [1].

In disaster relief area, drones have been extensively utilized
because of their size and flexibility in operating environment
[2]. In [3], an aerial disaster relief response architecture is
proposed for victim detection. Using sensors such as laser
scanner and infrared depth camera, a 3D reconstruction of the
area is created to aid in the detection. Similar architecture was
developed in [4] where a drone with electromagnetic sensor
is utilized to perform victim detection. Another cloud-based
multi-drone approach is proposed in [5] for disaster relief
response. Although these aforementioned efforts can detect
disaster victims, they lack real-time capability and several do
not provide latency measurements.

Machine learning has also been used in disaster response
relief. In [6], Haar cascade classifier is utilized for real-time

detection of people and vehicles. The author reports a detection
rate of approximately 70% for people in each image frame.
However, the use of Haar cascade classifier for detection and
classification has a drawback of being application specific. On
the other hand, Convolutional Neural Network (CNN) has been
widely used for object detection and classification [7]–[11].
Unlike Haar cascade classifier, CNN feature set is learned
automatically during training. In [7], the use of CNN for aiding
a SAR team in a snow avalanche victim-detection scenario is
proposed. The author reports an accuracy of up to 97.59%
and processing latency of 2.8s per image frame. In [8] and
[9], two-stage object detection and classification is proposed.
However, this two-stage approaches produce a high inference
latency and are unable to perform the detection in the real-
time. Another method for object detection and classification
called single-shot detection is developed in [10], [11]. Unlike
the two-stage detection, this scheme skips one of the stages in
its two-stage counterpart and hence has a lower inference time
latency.

Nevertheless, the realization of these disaster relief response
systems gives rise to new challenges of meeting latency re-
quirement in addition to efficient deployment, reliability, and
scalability. To rise to these challenges, two key technologies,
mobile edge computing (MEC) and network function virtualiza-
tion (NFV), have emerged as solutions where applications and
services are brought closer to the edge of the network [12].
While MEC eliminates traffic backhauling and thus end-to-
end latency, NFV decouples network functions and applications
from the underlying hardware, and facilitates them in software
over commodity hardware. Together, MEC and NFV could be
complemented by machine learning and cognitive techniques
to orchestrate and manage the virtualization environment.

In our H2020 5G-DIVE project [13] (described in Sec. II),
we aim to prove the technical merits and business value pro-
position of vertical industries built around distributed intelligent
edge system. In a nutshell, 5G-DIVE architecture consists of
three logical components namely, 1) Edge and Fog Computing
System (EFS) that is comprised of edge and fog resources,
2) Orchestration and Control System (OCS) - that manages,
controls, orchestrates, and federates one or more EFS(s), and



3) 5G-DIVE Elastic Edge Platform (DEEP) - that supports
vertical industries operations, management, and automation of
businesses processes on-top of OCS and EFS.

In this paper, we propose an Aerial Edge-enabled Disaster
Relief Response System, referred to as EagleEYE, as one of
the major subsystems in the DEEP of 5G-DIVE. It builds on
top of the work presented in [11] for its superior performance
and simultaneously provide low-latency object detection by
parallelizing computing tasks at the edge of the network.
Equally important, EagleEYE can seamlessly adjust to various
computational loads, and hence it is scalable. The contributions
of this work are threefold:

• Objects fusion - we devise a mechanism called Merged
Object Detection (MOD) to enable reusing existing data-
sets for the purpose of emergency detection.

• Low-latency object detection - we parallelize computing
tasks in a virtualized edge environment to enable real-time
object detection for emergency response.

• Experimental evaluation - we evaluate EagleEYE detec-
tion precision and computing latency on a real-world
environment.

The rest of the paper is organized as follows. Section II
provides an overview of the 5G-DIVE architecture. Section III
presents the proposed EagleEYE system and the low-latency
object detection scheme. Section IV shows our experimental
results while we give our concluding remarks in Section V.

II. 5G-DIVE OVERVIEW

The 5G-DIVE project [13] aims to facilitate intelligent
infrastructure orchestration and automation for 5G networks. It
targets end-to-end 5G vertical pilots and is built around distrib-
uted edge and fog system incorporating intelligence located at
the proximity of the users. 5G-DIVE architecture is comprised
of three logical components as follows (see Figure 1):

• Edge and Fog Computing System (EFS) - is a logical
system comprised of edge and fog resources belonging
to a single administrative domain.

• Orchestration and Control System (OCS) - is a logical
system that manages, controls, orchestrates, and federates
one or more EFS(s). It is designed to address challenges
such as heterogeneity, mobility and volatility of resources.

• 5G-DIVE Elastic Edge Platform (DEEP) - is a logical
system that supports vertical industries operations, man-
agement, and automation of businesses processes on-top
of OCS and EFS.

The DEEP subsystem plays an important role in the overall
architecture. It supports vertical industries with features such
as day-by-day operations, automation, and management of
business processes on-top of an edge and fog infrastructure.
DEEP has three main components namely, Data Analytics
Support Stratum (DASS), Intelligence Engine Support Stratum
(IESS), and Business Automation Support Stratum (BASS).
DASS acts as a support for collecting insightful information for
vertical industries, while IESS enriches their applications and

operations with artificial intelligence. Lastly, BASS enforces
policies into the platform by external OSS/BSS systems.
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Figure 1: 5G-DIVE reference architecture [13].

III. AERIAL EDGE-ENABLED DISASTER RELIEF RESPONSE
SYSTEM

In a disaster-impacted area where ground infrastructure is
damaged, drones can be deployed to provide disaster relief.
Drones can be utilized to provide aerial video surveillance
and assessment of disaster impacted areas. This aerial video
surveillance can be leveraged further by an intelligent system
that is runs on the edge.

The intelligent system is able to provide insightful inform-
ation to aid for disaster relief response by processing and in-
ferring on the video surveillance data. One such information is
the GPS location of Person-in-need-of-Help (PiH) in a disaster-
impacted area. To accommodate this scenario, we propose a
disaster relied system called EagleEYE which stands for: Aerial
Edge-enabled Disaster Relief Response System. Deployed at
the edge with high-computation capability, EagleEYE is able
to process the video surveillance data from aerial drones and
provide real-time PiH GPS location information.

A. EagleEYE Architectural Model

The EagleEYE system is built on top of 5G-DIVE architec-
ture to provide a real-time object detection service from the
edge to support disaster relief response team. Figure 2 shows
the EagleEYE system in detail. The workflow of the EagleEYE
system is detailed in the following logical steps.

Step 1: Stream Video and GPS Data - aerial video surveil-
lance stream alongside GPS information taken by the
drone are transmitted to the edge through the 5G
wireless communication network. We assume that the
edge will be in the same location as the gNB.

Step 2: Process Data - captured video stream will be chopped
into image frames, While the received GPS informa-
tion will be stored into the database.

Step 3: Allocate Task - a load balancer will allocate these
image frames in a Round Robin fashion to available
worker nodes for performing object detection and
classification. The number of worker nodes can be
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Figure 2: EagleEYE architectural model

scaled up/down according to the number of drones
and the required object detection and classification
latency.

Step 4: Perform Object Detection & Classification - worker
nodes will work in parallel to process the input image
frames. The output of these worker nodes will be
an image frame that is marked with Bounding Box
(BBox) information of ’Person’ and ’Flag’ object.

Step 5: Store Output Frame - BBox marked image frame are
stored in the storage for later use.

Step 6: Monitoring - marked image frames are displayed to a
dashboard in real-time with the respective PiH GPS
information. Drone GPS waypoint are also provided
to update the drones trajectory.

B. Object Detection using CNN

EagleEYE adopts YOLOv3 object detection model [11]. This
algorithm uses CNN as its backbone for object detection and
classification. For our use case, we train YOLOv3 model to
detect two object classes namely, Person and Flag. We chose
those two object classes, specifically as a way to simulate the
PiH mentioned in the use case scenario. Our rationale is that if
the model was able to detect and classify both ‘Person’ and
‘Flag’ object, then we will be able to devise an algorithm
that can correlate the objects together as a PiH. We have
implemented this correlation algorithm, and it will be explained
in further detail in the next sub-section.

The training for the model was done using a mix of publicly
available datasets, (1) COCO Dataset [14] and (2) Google
Open Image Dataset [15]. As to our knowledge, there is no
single dataset that has both the ‘Person’ and ‘Flag’ objects.

We train our model using the pre-trained weight provided by
the YOLOv3 original author [16].

C. Merged Object Detection

We build the MOD algorithm on top of the object detection
pipeline (See figure 2). It brings the benefit of using public
dataset and avoids the extra efforts of creating a custom training
dataset. To successfully pair the objects in real-time, MOD
algorithm requires to collect at least one Person object and one
Flag objects from YOLOv3 [11]. If this condition is fulfilled,
then the algorithm checks whether these objects exist in the
output frame that has a valid intersection. An illustration of
a valid intersection can be seen in Figure 3. In a successful
merge, a bounding box will be drawn in the final output frame.
Otherwise, no bounding box will be drawn. The pseudo-code
of the MOD can be found in Algorithm 1.

Person

Flag
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(A)	Detected	Objects
(No	intersection)

(B)	Detected	Objects
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Figure 3: Person and flag bounding boxes intersection



Algorithm 1 Merged Object Detection

Require:
Frame F ; F = {f1, fm+1, ..., fM}
Person Object

∑K
k=1 O

P ; OP = {OP
1 , O

P
k+1, ..., O

P
K}

Flag Object
∑L

l=1 O
F ; OF = {OF

1 , O
F
l+1, ..., O

P
L}

Each object OP
k and OF

l consists of (x1, y1, x2, y2)
Intersection between two objects I = {0 or 1}
Number of neighbours k = 1

Ensure:
Collection of Person and Flag objects pairs.

1: for each frame fm do . Object Detection outputs
2: if K ≥ 1 and L ≥ 1 then
3: for l = 1 to L do
4: Set an empty valid intersection IV = {};
5: for k = 1 to K do
6: if I(OP

k , O
F
l ) = 1 then . Intersection

7: Add into IV ;
8: end if
9: end for

10: Perform kNN between OF
l and ∀IV ;

11: Pair OF
l with the nearest OP

l ;
12: Label as a ‘person waving flag’ object;
13: Merge OP

k and OF
l ;

14: Draw the merged bounding box;
15: Delete key k from OP ;
16: end for
17: end if
18: end for

IV. EXPERIMENTAL RESULTS

A. Experimental Setup

EagleEYE system is deployed on top of OPTUNS edge
data center [17]. OPTUNS provides crucial features, such as
high scalability, high bandwidth capability, ultra-low latency
communication between servers, and fault tolerance. In our
experiment, we make an assumption that there is no communic-
ation latency between servers. In our setup, we run the object
detection and classification model in a server equipped with 48
cores CPU running at 3GHz frequency, 128GB of RAM and a
NVIDIA Tesla V100 GPU with 32GB of VRAM. As for the
drone video surveillance, we simulate it with a pre-recorded
FullHD video clip1 and is streamed from another machine in
the local network. FFmpeg and FFserver [18] software are used
to stream and capture the video clip respectively.

We perform the weight training for our object detection
model by using a GitHub fork from [19]. In total, we provide
four self-trained weights and named them as Trained Model
(TM-01 - TM04). We use weight TM-04 in our testing. As for
the object detection model itself, we adopt the work from [20].
The GitHub Project that we used from [20] is a YOLOv3 object
detection that is based on [11] work but re-written in PyTorch.
Our MOD algorithm is added on top of [20].

1https://youtu.be/YrVeDM0kafg

For the latency testing, we measure the latency that the
EagleEYE system needs to perform the whole image processing
pipeline, from capturing the video stream until finishing the
object detection pipeline. It also includes the time that the
EagleEYE system needs to perform merged object detection.

As for the deployment, we logically map each component
into 5G-DIVE architecture [13] by denote the blocks into three
logical components: EFS application, EFS service and EFS
function. We deploy six type of micro-services described as
follows:

• Video Server. A virtualized video server on top of FF-
Server to host HTTP video stream. It is categorized as an
EFS application.

• Load Balancer. A system to balance each frame collected
from HTTP stream into each corresponding YOLOv3
workers. It is categorized as an EFS function.

• YOLOv3 Worker. Virtualized YOLOv3 object detection
worked in parallel. We are deploying up to 6 workers in
this experiment. They are categorized as EFS applications.

• Web App PiH Monitoring System. A web-based dashboard
to monitor the status of located Person waving flag. It is
categorized as an EFS application.

• Redis Database. A key-value memory-based database. We
utilize this tool as a publish/subscribe message protocol as
well. It is categorized as an EFS service.

• Real-time Object Detection Monitoring. An application
to display detection output. It is categorized as an EFS
application.

B. Training Result of Object Detection Model

The results for testing and the training dataset used can be
seen in Table II and Table I. The metrics used to assess the
performance of TM are mean Average Precision (mAP) [21].
The mAP results were obtained by running the Object Detection
model on the pre-recorded FullHD video clip. We can see that
the TM performance for Person object is comparable with the
original YOLOv3 mAP result for Person object.

Trained
Model

COCO [14]
(Person)

OID [15]
(Person)

OID [15]
(Flag)

Total Training
Images

TM-01 - 991 968 1999
TM-02 1663 - 968 2631
TM-03 1663 991 968 3622
TM-04 3000 3000 6000 12000

Table I: Training Dataset Used

Trained
Model

AP
Person (%)

AP
Flag (%)

mAP
Value (%)

TM-01 90.45 71.69 81.07
TM-02 94.91 79.41 87.16
TM-03 90.27 72.92 81.94
TM-04 97.92 75.53 86.72

YOLOv3 [11] 98.43 N/A N/A

Table II: Trained Model Results



C. Latency Analysis

To evaluate the detection latency performed by our proposed
EagleEYE system, we do experiments by scaling up YOLOv3
workers. This evaluation aims to analyze: 1) the impact of
having the objection detection scaled up, and 2) the resource
allocation due to satisfying the increasing number of multiple
workers. To make a fair comparison, we calculate total recog-
nition latency for every 6 frames, called batch. The recognition
latency consists of the following measurements:

1) Video to frames Extraction. The latency to extract a HTTP
Stream into frames where each frame will be sent to each
YOLOv3 worker.

2) YOLOv3 Inference. The latency to perform object detec-
tion and classification of Person objects and Flag objects.

3) MOD Algorithm. The latency of the proposed algorithm
to generate pairs of PiH object.

Figure 4: EagleEYE detection latency

Figure 4 depicts the variation tendency of the recognition
latency captured different numbers of workers. The result shows
that by having the number of workers scaled up and process
frames in parallel, we manage to reduce the recognition latency
up to 90%. As for the resource utilization, our experiments
show that each worker consumes 4.7% GPU Memory, which
is around 1.515 GB out of 32 GB.

V. CONCLUSION

In this paper, we propose an aerial edge-enabled disaster
relief response system called EagleEYE. We make three contri-
butions to achieve real-time capable object detection for disaster
relief. First, we developed an object fusion mechanism, called
Merged Object Detection, to reduce training dataset preparation
effort by reusing existing datasets for new application. Second,
we parallelized the computation of the detection tasks to reduce
the inference latency. Finally, we evaluated EagleEYE in a real
testbed. Our experimental results show that EagleEYE can not
only reduce the inference latency by 90% but also has high
detection accuracy of 87%.
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