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Enabling Mobile Service Continuity across
Orchestrated Edge Networks

Osamah Ibrahiem Abdullaziz, Student Member, IEEE, Li-Chun Wang, Fellow, IEEE, Shahzoob Bilal
Chundrigar and Kuei-Li Huang

Abstract—Edge networking has become an important technology for providing low-latency services to end users. However, deploying an edge
network does not guarantee continuous service for mobile users. Mobility can cause frequent interruptions and network delays as users leave the
initial serving edge. In this paper, we propose a solution to provide transparent service continuity for mobile users in large-scale WiFi networks. The
contribution of this work has three parts. First, we propose ARNAB architecture to achieve mobile service continuity. The term ARNAB means rabbit
in Arabic, which represents an Architecture for Transparent Service Continuity via Double-tier Migration. The first tier migrates user connectivity,
while the second tier migrates user containerized applications. ARNAB provides mobile services just like rabbits hop through the WiFi infrastructure.
Second, we identify the root-causes for prolonged container migration downtime. Finally, we enhance the container migration scheme by improving
system response time. Our experimental results show that the downtime of ARNAB container migration solution is 50% shorter than that of the

state-of-the-art migration.

Index Terms—Mobility, Service continuity, SDN, MEC, Virtualization, Container, Migration.

1 INTRODUCTION

F UTURE wireless networks will soon provide ultra-reliable
and low latency services, such as industrial automa-
tion, e-health, and entertainment applications. For a delay-
sensitive service, multi-access edge computing (MEC), net-
work function virtualization (NFV) [1], and software defined
networking (SDN) [2] [3] are three key network technologies.
First, the MEC reduces end-to-end latency by bringing the
services closer to the edge of the network. Second, NFV
separates the network functions and applications from the
underlying hardware by implementing them as software.
Third, SDN provides a dynamic and responsive network for
these new services. Orchestrating SDN, MEC and NFV can
improve network performance. In particular, these technolo-
gies can be integrated for access convergence. For example,
the 5G-CORAL project [4] has developed an integrated edge
platform for multiple radio access technologies such as WiFi
and cellular mobile networks. In this platform, lightweight
virtualization, such as Linux containers (LXC), enables high-
quality and real-time services in WiFi networks.

However, large-scale edge-enabled WiFi networks must
address two challenges to provide seamless mobile services:
1) connection interruptions due to frequent handoffs, and
2) network delay due to backhauling. First, the handoff
process in the standard IEEE 802.11 protocol can take up to
two seconds [5]. This long interruption time may cause the
connection to be dropped, thereby degrading the quality of
user experience. Second, the end-to-end delay increases due
to backhauling when the users leave the initial serving edge.
This latency can affect the performance of delay-sensitive
applications.

In the literature, several research works aim to resolve
the problem of handoff interruption in WiFi networks and

backhaul latency across edge networks [6]-[17]. On the one
hand, the handoff interruption is resolved by reducing the
scan and authentication time [6]-[10]. Although these efforts
reduce interruptions, they introduce additional signaling
and require modification of the user equipment. On the
other hand, the backhaul latency problem is resolved by
relocating applications to the vicinity of the users [11]-[17].
However, the state-of-the-art (SoA) container migration [17]
has significant downtime even for small applications.

In this paper, we present an Architecture for Transparent
Service Continuity via Double-tier Migration (ARNAB) to
resolve the frequent connection interruptions and the back-
haul latency issues'. ARNAB uses a double-tier migration
approach to provide continuous service. The first tier mi-
grates user connectivity, while the second tier migrates con-
tainerized edge applications. Connectivity migration reduces
the handoff interruption time, while application migration
eliminates the backhaul latency. In the context of ARNAB, a
service is a combination of user connection and applications.
There are three contributions to this work:

1) ARNAB Architecture - A new architecture is proposed to
provide transparent service continuity for mobile users.
To the best of our knowledge, ARNAB is the first work
to orchestrate connectivity and application migration
simultaneously for edge-enabled WiFi networks.

« Based on [19] we develop a virtual access point solu-
tion to enable ARNAB connectivity migration.

1. A preliminary and conceptual version of ARNAB is presented
in [18]. In this manuscript, we analyze ARNAB in a realistic large-
scale campus WiFi scenario with double-tier orchestration policy. More
importantly, we characterize the root-causes for significant migration
downtime, present novel strategies to reduce the downtime, and con-
duct experimental evaluation over a real system.



o We develop a pre-copy migration scheme to relocate
containerized applications in edge environment.

2) Downtime Analysis - We identify the root-causes of pro-
longed downtime during container migration.

3) Migration Enhancement - Based on the analysis, we en-
hance the container migration scheme by incorporating
real-time computing capabilities and fast storage into
ARNAB. Our experimental results outperform the SoA
container migration by 50% less downtime.

The rest of the paper is organized as follows. Section 2
introduces the prominent virtualization technologies and
introduces 5G-CORAL as a user of these technologies. Sec-
tion 3 reviews the prior art in the area of connectivity
and application migration. Section 4 presents the ARNAB
architecture and the double-tier migration scheme. Section 5
first analyzes the root-causes for significant downtime, and
then presents our enhancements to the container migra-
tion scheme. Section 6 shows our experimental results and
Section 7 describes the relevant use cases that show the
applicability of ARNAB in various scenarios. Finally, we give
our concluding remarks in Section 8.

2 BACKGROUND

2.1 \Virtualization Technologies

Virtualization is the concept of abstracting the underlaying
physical infrastructure and providing virtualized resources
for edge and cloud applications. Edge and cloud service pro-
viders are the driving force behind the recent advances in vir-
tualization technologies. Traditionally, server virtualization
is associated with hypervisor-based virtualization. Recently,
container technology has become a promising solution for ef-
ficient resource virtualization. Many cloud service providers
are now using containerization technologies [20][21].

Nevertheless, there are still blurry lines on the differences
between traditional hypervisor-based virtualization, system-
based containerization and application-based containeriza-
tion techniques in the literature [22][23]. Thus, we provide
a concise comparison between those technologies and we
consider kernel-based virtual machines (KVM), LXC and
Docker as references.

2.1.1 Hypervisor-based virtualization

Traditional hypervisor-based virtualization runs at the hard-
ware level and provides independent and host-isolated vir-
tual machines (VM). Each VM runs its own kernel and
operating system (OS). Therefore, the hypervisor can create
Windows guests on Linux host. However, isolation and host
abstraction features come at a cost. Memory, disk, and CPU
resources must be specified at runtime to execute VM kernel
and OS. Also, hardware emulation is required for I/O oper-
ations (see Fig. 1a). In the case of high-density virtualization,
VM deployment becomes resource-inefficient, especially for
small edge and cloud applications.
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Figure 1: (a) Virtual machines (KVM), (b) System containers

(LXC), and (c) Application containers (Docker)
Table 1: Virtualization technology comparison
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21dle memory is made available to the rest of the system
2.1.2 System-based containerization

Container isolates processes at the OS level and runs on
top of the host kernel. There are two types of containers,
namely system container and application container. System
containers (also known as machine containers) behave like a
standalone Linux system. That is, the system container has its
own root access, file system, memory, processes, networking
and can be rebooted independently from the host. While
system containers are lightweight due to the absence of guest
kernel and hardware emulation, they can only run on Linux
host and are bound to the host’s kernel (see Fig. 1b).

2.1.3 Application-based containerization

An application container (also known as process container)
isolates an application from other applications running on
top of shared kernel and shared OS. Because of sharing the
same kernel and OS, application containers are lighter than
system containers. A well-known example of an application
container is Docker. The application container only encap-
sulates the necessary libraries, configurations and depend-
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Figure 2: 5G-CORAL reference architecture [25]

encies needed to run the application (see Fig. 1c). There-
fore, its resource footprint is significantly lower than VM
and system containers. This fact enables the instantiation
of lightweight containerized applications suitable for IoT
services [24]. Table 1 compares the aforementioned virtualiz-
ation technologies.

2.2 5G-CORAL

The proposed ARNAB architecture is built based on the 5G-
CORAL approach to integrate MEC, NFV and SDN to deliver
continuous service across the orchestrated edge networks.
Here, we introduce 5G-CORAL reference architecture, in-
cluding the edge and fog computing system (EFS) and or-
chestration and control system (OCS) as shown in Fig. 2.

22.1

The EFS is a logical system comprised of edge and fog
resources belonging to a single administrative domain. An
administrative domain is a collection of isolated resources
managed by a single organization. The EFS virtualizes func-
tions and applications and can interact with EFS in other
domains. The software part of EFS consists of the following:

Edge and Fog Computing System

e Service Platform is a data storage for telemetric data
collected from the EFS environment.

e Function is a virtualized instance deployed within the
EFS for networking purposes.

o Application is a virtualized instance deployed within the
EFS for serving end users and third parties.

o Entity Manager is responsible for applying configuration
and management policies on the EFS elements as spe-
cified by the OCS.

2.2.2 Orchestration and Control System

The OCS is a logical system that manages, controls, or-
chestrates, and federates one or more EFS(s). It is designed
to address challenges such as heterogeneity, mobility and
volatility of resources. The OCS includes the following com-
ponents:
o Virtualization Infrastructure Manager (VIM) is respons-
ible for managing the virtual resources and the inter-
action between the EFS elements. Multiple VIMs can

be deployed to manage one or more administrative
domain(s).

e EFS Manager is responsible for managing the life cycle
of the EFS elements. Life cycle management includes in-
stantiating, updating, querying, scaling and terminating
EFS elements.

e EFS Orchestrator is responsible for orchestrating the
virtualized resources. It provides access to resources
and also provides forwarding graph for interconnected
functions and applications.

3 EXISTING ART

Here, we review the prior art related to handoff and con-
nectivity migration in WiFi networks as well as container-
ized application migration. In addition, we also point out
the challenges to achieving service continuity across edge
networks.

3.1 WiFi Handoff and Connectivity Migration

In the standard IEEE 802.11, the association procedure be-
gins with a discovery phase, where clients actively scan
for available APs. During the scan, the APs that respond
to probe messages become candidates for association. Once
an AP is selected, the association is defined between the
client’'s MAC address and the AP’s basic service set iden-
tifier (BSSID). In this procedure, the infrastructure can not
control the association decision. Therefore, to change an
AP, it takes up to two seconds for the client to initiate the
handoff process [5]. In order to reduce the re-association
time, many schemes for fast handoff are proposed [6]-[10].
These schemes can be classified into scan-time reduction and
authentication-time reduction. In the scan-time reduction,
the goal is to identify a target AP for association as fast as
possible. Examples for scan-time reduction schemes include
sync scan [6], intelligent channel scan [7], neighbor graph [8],
selective neighbor caching [9], AP prediction [10] and IEEE
802.11k. In authentication-time reduction, the concept of pre-
authentication is introduced in [10] and also specified in the
IEEE 802.11r. Although the proposed schemes can reduce
the re-association delay, these schemes require modification
to the client side and introduce additional signaling. This
fact challenges the concept of bring-your-own-device, which
implies that the infrastructure should accommodate diverse
range of user devices.

To move the client-AP association decision from the client
to the infrastructure, the concept of virtual access point (VvAP)
is introduced in [26]. The VAP is a network function abstrac-
tion which is created for connecting clients. Each client asso-
ciates with a dedicated vAP, which consists of the following
parameters: (1) client MAC address, (2) client IP address,
(3) a fake BSSID, and (4) service set identifier (SSID), to be
used in the communication. A client associated with a vAP
periodically receives a beacon to keep it aware that its AP is
still available within range. The signal level received from the
client is stuffed in the beacons so that the neighboring APs
can overhear. Every AP maintains two lists: managed and



monitored lists. The managed list contains the clients that
are currently associated with the AP and the monitored list
contains clients that the AP can hear. Connectivity migration
occurs when a neighboring AP receives a beacon from the
client with a signal level higher than what is advertised by
the serving AP. This approach moves the association decision
to the infrastructure, but has two drawbacks. First, all the
APs operating on the same channel will hear the advertised
signal level. This makes the solution impractical for actual
deployment and frequency planning. In addition, since the
management of vAPs is done in a distributed manner, there
is a lack of a global view.

Later, a multichannel vAP handoff extension of [26] is
proposed in [27]. In this solution, the APs operate in different
channels and communicate with each other to manage client
mobility. After the client connects to an vAP managed by
an AP, the AP monitors the client signal-level. If the signal-
level goes below a threshold, the AP sends a scan request
to the neighboring APs. When a neighboring AP responds
to the request, the client is forced to switch channel and
continues the communication with the new AP. This solution
overcomes the interference issue caused by operating on
the same channel, but still lacks a global view of the entire
infrastructure.

Alternatively, a software defined WiFi network frame-
work called Odin is proposed in [28]. Odin integrates SDN-
based solutions to the concept of VAP. That is, the pro-
grammability and global view of the network can be used
to manage client mobility. In [29], the Odin framework is
utilized to move VAP between different APs, while a client
is generating game traffic. Although the solutions of [28]
[29] offer management flexibility and scalability, it is still
assumed that all the APs operate in the same channel.
More recently, a solution that provides both the multichannel
environment and a global view is presented in [19] [30]. In
ARNAB, we develop user connectivity migration to enable
service continuity at the network access.

3.2 Container Migration

Container migration can be classified into stateful and state-
less. In stateless migration (also known as non-live migra-
tion), the volatile state (i.e., memory pages and execution
state) of the container is not preserved when the container
is moved to the destination node. In the case of stateful
migration (also known as live migration), the state of the
container is preserved when the execution of the service is
resumed at the destination node. There are four types of
stateful migration techniques as follows:

o stop-and-copy - freezes the container, checkpoints its
state, copies the container’s image and state to the
destination, and then restore the container from the state
checkpoint [31] [32].

e pre-copy - performs iterative state checkpointing and
transfer while the container is running till the amount of
the dirty pages is at minimum, and then concludes with
a shorter stop-and-copy [33]. Iterative checkpointing
reduces the size of the final checkpoint that is performed

when the container is frozen. This minimizes the time
required for the final checkpoint and the time it takes to
copy the checkpoint to the destination node.

e post-copy - performs a short stop-and-copy to move
container’s execution state, and then starts the container
at the destination node and retrieves the memory pages
when needed [34]. This type of migration has small
downtime, but containers may suffer from performance
degradation due to the time needed to wait for the
requested memory pages.

o hybrid-copy - combines pre-copy and post-copy schemes
to reduce the total migration time and the performance
degradation due to fault pages transfer [35] [16]. First,
hybrid-copy performs a state pre-copy and transfer the
dumped state while the container is running. Con-
sequently, it freezes the container to checkpoint only the
execution state and then transfers it to destination node.
Finally, the container is resumed from the available state
at destination and the outdated memory pages (i.e.,
pages which are dirtied after the pre-copy phase) are
retrieved when needed.

In hypervisor-based virtualization, VM migration is well
investigated [36]-[39] and several solutions are commercially
available. For instance, a pre-copy VM live migration scheme
is presented in [33]. An active VM continues to run while
iteratively pre-copying state. During a consecutive iteration,
only changes in memory are transferred. At last, a final state
copy is performed while the VM instance is frozen and then
transferred to the destination node. This way, the down-
time is greatly reduced compared to a pure stop-and-copy
scheme. Although VM migration has matured, many existing
solutions are tailored to data center environment where
network attached storage (NAS) and specific virtualization
technology are utilized. NAS enables all host machines in the
data center to access a network-shared storage eliminating
the need to migrate disk storage. However, in the case of
migration between edge networks, state and disk storage
have to be relocated over the network [40] [41]. In [41], a non-
NAS VM migration schemes is proposed for edge networks.
Changes in VM disk storage and memory state are tracked
then deduplication and compression are utilized in a parallel
to improve agility and reduce bandwidth utilization.

Lately, container migration has caught more atten-
tion from the research community [14]-[17]. This is be-
cause containerization technology is superior to traditional
hypervisor-based virtualization, especially in terms of re-
source efficiency and performance. For instance, Voyager [15]
is a stop-and-copy container migration scheme which com-
bines page-server for volatile state transfer and NAS for per-
sistent data transfer in cloud environment. Furthermore, a
comprehensive evaluation of different migration schemes for
application-based containers in edge environment is intro-
duced in [16]. Recently, a framework for migrating system-
based containers is presented in [17]. This is the first frame-
work to consider edge environment for container migration.
Fundamentally, the framework is a layered model designed
to reduce the downtime during the migration process. Al-



though this framework is suitable for edge networks, it
suffers from long downtime and relies on stop-and-copy mi-
gration, which is not an effective method for containers with
large state. In ARNAB, we develop a pre-copy migration
scheme and propose strategies to significantly reduce the
downtime when migrating system-based and application-
based containers across edge networks.

3.3 Mobility Support in Edge Networks

In wireless networks, the low latency provided by edge
networks can only be leveraged within the coverage of the
corresponding network. In other words, mobility can cause
service interruption when users move away from the initial
serving edge. Supporting user mobility in edge networks has
been discussed by many research efforts [12]-[14], [42]-[47].

For instance, follow me cloud (FMC) [13] is a novel archi-
tecture that enables cloud services (i.e., running in distrib-
uted data centers) to follow the users as they roam through
the network. The FMC controller manages computing and
storage resources of the data centers and decides which
data center the user should be associated with. Based on
FMC, a migration mechanism is developed to ensure service
low latency [42]. However, the minimum reported migration
downtime remains high for seamless service experience.

In [43], companion for computing (CFC) is a novel plat-
form proposed to support IoT mobility through orchestrated
container migration. CFC continuously monitors the latency
between a fog service (i.e., a container) and user device.
Once the latency is above a defined threshold, CFC finds
a suitable fog node at the near proximity of the user. CFC
caters for user mobility at the computing tier while being
application latency-aware. However, mobility support at
the access network is not enhanced, migration downtime
remains significant and migration policy is not transparent
to the user device. Similar to [43], Foglets [44] migrates
geo-distributed IoT application components based on ap-
plication latency measurements. The experienced latency is
continuously monitored through ping messages, and then
the application component is migrated to a suitable node
when the latency exceeds a threshold. However, there is
no details on which migration scheme is used to migrate
application components between fog nodes and the standard
radio handover is assumed.

In [45] and [46], follow me fog (FMF) and seamless
fog (sFog) are proposed to pre-migrate computation jobs
before radio handover occurs during user mobility. This is
accomplished by constantly monitoring the received signal
strength indicator (RSSI) from different fog nodes. Once the
RSSI of the current node (i.e., serving the user) keeps de-
creasing and the RSSI of another node keeps increasing, the
computing jobs are pre-migrated to the new node before the
re-association takes place. This way, FMF and sFog support
user mobility by predicting the target fog node beforehand
and thus reducing the waiting time for computing jobs to
be available. However, these schemes are not transparent to
user device since the procedures are orchestrated at both the
user device and fog nodes. In addition, service interrupt due

to the actual handover event and the container migration
scheme remain significant.

Furthermore, an architecture called SharedMEC is pro-
posed to support user mobility in edge cellular net-
works [14]. The architecture combines the standard cellular
handover process with service handover. In [47], a mobile-
edge gateway is proposed to enable mobility in cellular
networks by constructing mobile user location and steering
traffic to respective edge based on the calculated location.

In cellular networks, a handover event is handled by the
infrastructure and its interruption time is within 200 ms [48].
However, the handoff decision in WiFi networks is locally
made by the user equipment and re-association process takes
up to two seconds [5]. For these reasons, ARNAB moves the
handoff decision from the user device to the infrastructure
for control flexibility and interruption management. More
importantly, ARNAB is transparent to user and capable of
migrating containerized applications with very small down-
time. The simultaneous orchestration of user connectivity
and applications in WiFi networks makes ARNAB a novel
solution for smart cities, campuses, airports, museums and
shopping malls.

4 THE ARNAB ARCHITECTURE

We propose a new architecture called ARNAB to provide
mobile service continuity. ARNAB stands for: Architecture
for transparent service continuity via double-tier migration®.
The term ARNAB means rabbit in Arabic and it is dubbed
for the architecture because it illustrates the behavior of
the service hopping through the infrastructure following the
user. Moreover, ARNAB is transparent to the user because
it does not require any modification to the user device.
The ultimate goal of ARNAB is to provide a seamless user
experience through continuous service delivery. ARNAB
employs a double-tier migration, namely user connectivity
migration and edge application migration. On one hand,
the first tier utilizes VAP to minimize WiFi handoff inter-
ruptions and to move the association decision from the
clients to the infrastructure. On the other hand, the second
tier utilizes pre-copy migration to reduce downtime when
relocating containerized application across edge networks.
Fig. 3 illustrates the architectural model of ARNAB which
adopts centralized management approach for campus WiFi
infrastructures. On a high-level, ARNAB architecture con-
sists of three layers namely, network access, aggregation and
management layers. The network access layer is partitioned
into regions R; and comprised of the APs which provide
WLAN connectivity to the users. Each region consists of
multiple APs AP,, which connect to the same access switch.
The aggregation layer interconnects the APs and edge nodes
(i.e., EFS), and OCS. Finally, the management layer consists
of the OCS and its management applications.

3. The software components of the double-tier scheme are available at
https://github.com/oiasam/ARNAB
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Figure 3: Architectural model of ARNAB

4.1 Tier 1: User Connectivity Migration

ARNAB leverages several innovative technologies namely,
SDN, Odin framework [29], click modular router [49] and
OpenWRT firmware [50] to deliver seamless WiFi experience
using commodity hardware. Odin for ARNAB consists of a
master and agents, and provides two southbound protocols,
namely OpenFlow and Odin protocol. The master, which is
the control part of the OCS, uses OpenFlow protocol to install
flow rules in APs to redirect traffic when migrating vAPs. In
addition, the controller uses Odin protocol to communicate
with the agents running on the APs. In the experimental
setup, the used WiFi APs have two wireless interfaces and
run click modular router as part of OpenWRT. Finally, the
clients” association with vAPs and the migration of the
vAPs during mobility are managed by a mobility application
running in the controller. The Logical steps and example of
user connectivity migration are detailed as follows:

Step 1: vAP-association - a client C'1, scanning for a network,
associates with a dedicated vAP; that is spawned by
the agent running on AP, and operates in channel
CHg.

Step 2: vAP-keep - vAP; periodically unicast beacon frames
to its corresponding client to keep it informed that
AP, is still within its radio reach.

Step 3: RSSI-monitoring - AP; monitors RSSI from C1 and
informs the OCS when the RSSI is below a predefined
threshold.

Step 4: vAP-migration - The OCS commands all the APs at
the proximity of the client to switch their secondary
interface to C'Hg to listen to the client’s packets.
Then, the OCS identifies the best candidate AP for
the vAP migration. In this example, AP, operating
in CH; is selected. Next, the OCS command AP; to
inform C1 to switch to channel C'H,. Concurrently,
the OCS initiates vAP; in AP, which starts unicast-
ing beacons to C'1. Finally, once C'1 has switched to
CHj, its connection is handed over to AP, and the
vAP; in AP, is terminated.

From the client’s point of view, the AP that the client is
associated with has not changed. In fact, its VAP is still the
same, but its connection has been migrated to a different
physical AP. In this way, the handoff decision is shifted from
the client equipment to the network infrastructure. At the
same time, the handoff is no longer required to support
user mobility. Instead, channel switch and its relatively small
delay is what the client experiences when changing APs.

4.2 Tier 2: Edge Application Migration

ARNAB application migration enabling technologies include
LXC, checkpoint and restore in user-space (CRIU), and re-
mote synchronization (rsync). The orchestrator part of the
OCS manages the lifecycle of the containerized application
in the EFS nodes. It supports lifecycle management opera-
tions such as instantiation, cloning, migration, scaling and



termination. CRIU is used to dump the in-memory state of

the migrating containers. The local-disk (file system) and the

state of the containers are transferred by utilizing rsync for
its remarkable speed and efficiency.

To migrate a container between edge nodes with minimal
downtime, ARNAB utilizes a pre-copy procedure which is
summarized as follows:

Step 1: Local-disk-copy - the container file system is assumed
to be available in all edge nodes to reduce traffic
overhead and to keep the total migration time to a
minimum. Local-disk synchronization is performed
to copy application related files.

Step 2: Iterative-pre-copy - the container state is dumped to
source node storage, and then copied over to the des-
tination while the container continues to run. Next,
pre-copy iterations are performed to dump and copy
only the memory pages that have changed (dirtied)
since the previous checkpoint.

Step 3: Freeze-then-copy - the container is frozen in this step,
and then a final local-disk synchronization, state
checkpoint, and copy are performed. The downtime
observed by the user occurs during this step.

Step 4: Restore-and-terminate - the container is restored at
the destination node and the frozen container in the
source node is terminated.

It is worth noting that the edge node and the AP can
be the same physical device which has communication,
computing and storage capabilities. Also, the connectivity
migration is not necessarily a trigger for the application
migration. Different applications demand different latency
requirement. In the following subsection, we discuss possible
orchestration policies for the proposed double-tier migration
scheme.

4.3 Orchestration Policy

Although application migration enables low-latency connec-
tion to the edge, edge application migrations should be
minimized to maintain seamless service delivery and achieve
scalability since it often involves large data transfer and
relatively longer downtimes than connectivity migration.
As such, application migration is not coupled with the
connectivity migration. Users of ARNAB can still enjoy the
required latency even after re-associating with different APs.
Here, we discuss two possible policies that can govern the
orchestration of application migrations.

o Latency Monitoring - The latency can be measured
between the user device and the serving edge. Applic-
ations latency can range from tens of milliseconds (e.g.,
tele-surgery) to several seconds (e.g., video streaming).
The advantage of using such policy is the high-level of
granularity in making migration decision based on the
latency reports and application requirement. However,
transparency to user device is a disadvantage. The user
device has to collaborate with the edge for the latency
monitoring.

o Regional Access Change - Infrastructure planning can play
a major role on the migration decision making. Instead
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of continuously measuring the application latency, the
WiFi infrastructure can be partitioned into regions clus-
tering APs together at the access layer and interconnect-
ing them at the aggregation layer. This way, a region can
be served by edge node(s) and a regional access change
can trigger application migration. Edge nodes can also
be provisioned at the aggregation layer. Depending
on the application latency requirement, the migration
can be triggered if the number of hops has reached
a predefined value for the respective application. For
example, in the case of a time-sensitive application,
mobility Case 2 (see Fig. 3) may trigger the application
migration from Edge Node 1 to Edge Node 2. The
advantages of using such policy are: 1) simplicity of
implementation - the controller is aware of the user
proximity and hence obtaining regional information is
easy, 2) transparency to the user - the infrastructure
solely handles the orchestration policy tasks, thus the
user device is not involved in the latency monitoring.
However, this policy requires good infrastructure plan-
ning.

5 CONTAINER MIGRATION ENHANCEMENT

We acknowledge that even with the improvement intro-
duced by the developed pre-copy migration procedure, the
downtime remains significant even for small applications
(i.e., close to three seconds). As such, we first investigate the
root-causes of latency associated with the container migra-
tion, and then introduce edge node enhancements to further
reduce the downtime.

5.1 Downtime Anatomy and Definition

In general, migration schemes share a common pro-
cess which involves freezing the container, checkpointing
memory state (whole or part) to the source storage, copying
the state to destination, and finally restoring the container at
the destination. To understand the reasons behind prolonged
migration downtime, we take a closer look at the stop-and-
copy migration scheme. Fig. 4 shows an anatomy of the
stop-and-copy scheme when migrating an Ubuntu system-
based container. We note that there are three vectors that
contribute to the downtime, namely a) system latency, which
is the time taken by the system to execute migration tasks,



b) network latency, which is the time taken to copy con-
tainer state from source to the destination, and ¢) container
image overhead, which is the overhead cause by running
unnecessary processes in the container. Running unnecessary
processes increases the size of the container state and hence
increases the time taken to checkpoint, copy and restore the
container.

In the example illustrated in Fig. 4, the time taken to
checkpoint and restore the container is 2.42 seconds, collect-
ively. It consists of the time required to execute the CRIU
codes and the time it takes to write and read the checkpoint
files. On the other hand, the network latency (ie., 0.44
seconds) represents the time taken to copy the volatile and
persistent states over a 1 Gbps link using rsync and also the
time that it takes the destination node to write the received
files.

Accordingly, modeling the downtime in pre-copy migra-
tion depends on the following factors: the system response-
time in executing migration tasks, the size of the container
state, the container workload in terms of dirty pages rate,
and the network transmission rate. We denote the maximum
number of iterations as n and the memory copied in every
iteration as M; where i is 0 < 7 < n. The data copied in the
iteration 7 is calculated as:

s — 3 Minit,
‘ D'r‘ate : Tci_u

if i = 0;
otherwise

)

where D, is the memory dirtying rate and 7, is the
elapsed time while copying memory at each iteration. The
T,, can be calculated as:

Drate . Tci,l _ Mz

Tc; = - )
’ Crate Crate

2

where C,4¢. is the copying rate. Note that the copying time
depends on the amount of memory and the copying rate.
The system latency during checkpointing is denoted as T,
and represented by:

Tcm = Tcpfi—l + Tf'wi—l ) 3)

where T,,y, is the time taken to execute the checkpoint
function and TY,, is the time taken to write the process
tree and resources into files. Similarly, the restore time is
represented by:

Trt = Tfr + Trtf . (4)

From (2) and (3), we obtain the system and network latency
at each iteration:

Ty =T,y + T, . ®)

Combining (2), (3), (4) and (5) for the n'" iteration, the
migration downtime can be calculated by:

Tdown - Ti:n + T'rt

M,, 6
+ Tpr + Trey - ©
Crate

= Lepfn—a + wanfl +

Lastly, the total migration time can be obtained by adding
container image synchronization Tjsync, the summation of
T;, and the restore time. Then, it follows that

n
Tmigrate = Lisync + Z Tz + Trt . (7)
i=0

Most of the existing works attempt to reduce the mi-
gration downtime by reducing the network latency [42][17].
However, we believe that the system latency and container
overhead are equally important. In the following, we discuss
how to reduce the migration downtime by means of real-
time computing capabilities and fast storage.

5.2 Real-time Computing Capabilities

Checkpoint and restore (C/R) functions are computation-
ally expensive. The checkpoint function collects the process
tree and resources, freeze the process, and then write them
into files. The restore function reads the files, resolves the
shared resources, forks the process tree, and then restores the
process resources. Obviously, the migration scheme spends
long time waiting for the checkpoint and restore functions
to execute. This is because the Linux general-purpose kernel
can not provide time guarantees for applications execution.
The lack of time guarantees can cause time-sensitive tasks to
experience unpredictable delays [51]. Systems with real-time
computing capabilities can resolve this issue by providing
deterministic behaviors. In fact, the concept of real-time
execution is usually misinterpreted. Real-time execution is
not to execute a task as fast as possible, but rather it is to
execute a task as fast as specified (i.e., deterministic).

Currently, there are three common approaches for provid-
ing real-time capabilities in Linux system. In the first ap-
proach, an embedded real-time OS is used for critical tasks
and a general-purpose kernel is used for non-critical tasks in
the same system [52]. The second approach utilizes a dual-
kernel where a microkernel runs in parallel with a separate
Linux kernel. This approach is employed by Xenomai [53]
and RTAI [54]. The third approach uses a single kernel
with real-time preemption support. Real-time Linux (RTL)
project [55] is an example of this approach. RTL initiative
aims to create a predictable and deterministic environment
to turn Linux into a real-time capable kernel.

To bring real-time capabilities to ARNAB, we utilize
the real-time preemption (PREEMPT-RT) patch maintained
by RTL. The deployed patch improves the overall system
response-time through the following features:

e Priority inheritance - resolve the phenomenon of priority
inversion in which a high priority task being blocked
by a low priority task for an unspecified period of time.
Priority inversion can cause a critical issue for real-time
applications since it affects scheduling and predictability
of execution. The priority inheritance solves this issue
by allowing the low priority task to inherit the highest
priority of the blocked tasks to execute its critical section
then return to its original priority after exiting.



o High resolution timers - allow precise timing for schedul-
ing tasks and eliminate the need for periodic scheduler
ticks.

o Kernel preemption - allow most of the kernel to be
preempted, except for small critical regions. This is
accomplished by converting kernel spinlocks to real-
time mutexes that adopt priority inheritance and hence
are preemptive [56].

o Interrupts management as threads - allow interrupt request
(IRQ) handlers to be run in kernel threads. Managing
IRQs as threads enables priority assignment, allowing
the IRQ handlers themselves to be preempted, thereby
mitigating latency due to interrupts.

Beside applying the PREEMPT-RT patch, we also im-
plement additional configurations to further improve the
ARNAB system response time. The additional performed
configurations are detailed in Table 2.

5.3 CPU Shielding

Beside the real-time tunings applied to kernel, CPU shielding
can further improve execution response of migration tasks.
CPU shielding is the ability to dedicate a CPU core to
running real-time tasks and the interrupts associated with
those tasks. This feature allows the CPU resources to be
reserved for high-priority tasks thus providing a more de-
terministic environment to support the execution of real-time
applications. To shield a CPU, the system kernel must permit
binding one or more processes to one or more CPU cores.
This concept is called CPU affinity. In Linux, an interface for
setting and retrieving a process CPU affinity is introduced
since the 2.5 kernel. There are two kinds of CPU affinity
namely, soft affinity and hard affinity. On one hand, soft
affinity refers to the tendency of a scheduler to attempt to
keep processes on the same CPU core as long as possible. The
processes move to another core when it becomes infeasible
to remain on the same core. On the other hand, hard affinity
refers to the ability to enforce process-CPU binding. This is
achieved by CPU affinity system interface. When a process
is bound to a CPU core, it must adhere and only run on the
assigned CPU core.

One issue that may affect time-sensitive applications is
processes bouncing between CPU cores. This can cause cache
invalidations and hence increases cache-miss rate. CPU affin-
ity prevents this issue and improves cache utilization. Time-
sensitive application processes can be bound to one core
and other system processes can be bound to the remaining
cores. This guarantees that the time-sensitive tasks obtain
complete attention from the dedicated processor. In ARNAB,
we scale the CPU frequency of the EFS nodes to performance
governor which allows operating at the maximum frequency
and thus enhancing system response. The higher the CPU
frequency the more instructions can be retired by the CPU
over a unit of time. However, scaling up CPU frequency
comes with a cost. The higher the frequency the more power
is drawn by the CPU. As such, we combine the benefits
of both, the CPU affinity and the CPU frequency scaling,
to reduce the effect of this tradeoff. That is, first we shield

Table 2: Additional kernel configurations used in our exper-
iment

Configuration Remarks

File system with | Registering file reading access time is
mount noatime option | disabled. As such, using noatime may
enabled lead to significant performance gains.
CPU frequency scal- Clock scaling allows changing the

clock speed of the CPUs on the fly.

ing with performance Performance governor sets the CPU to

governor operate at the highest frequency.
Reduce tendency of copying RAM

Reduced memory | contents to the system swap space.

swappiness This is also useful when using RAM

disks.

Increase the resolution of the hard-
ware timer for interrupting the ker-
nel (best-case resolution of 1ms). This
reduces the kernel latency when per-
forming process accounting, scheduler
time slice accounting, and internal
time management.

Turn off the timer tick only when a
CPU is idle.

High resolution ker-
nel timer (1000Hz)

A tickless timer sup-
port

a CPU core from the kernel scheduler in ARNAB multi-
processors systems so it can be dedicated to time-sensitive
processes. Then, we bind all the migration related tasks to
this dedicated core. Finally, the shielded CPU core frequency
is scaled to performance governor while the rest of the CPU
cores continue to operate at power-save mode.

5.4 Storage Performance

The checkpoint function writes the process tree and re-
sources into files, while the restore function reads the files
to fork the process tree and restore the resources. Both of
these functions perform memory and I/O operations which
are usually slow, especially on rotational block devices such
as hard drives. Therefore, we observe that storage speed is
an important factor in the performance of the checkpoint
and restore function and ultimately the migration scheme.
Here, we study different types of storage, namely hard disk
drive (HDD), solid state drive (SSD), RAM disk, also known
as temporary file system (TMPFS), and persistent memory
file system (PMFS). First, we briefly explain each storage
technology and state their advantages and disadvantages.
Then, in Section VI, we evaluate each storage speed, taking
into account different file sizes to determine which storage is
best for various migration scenarios.

5.4.1 Hard disk drive (HDD)

HDD is a rotational storage device that uses hard magnetic
surface to persistently write data in blocks of 512 bytes. To
read from a magnetic surface, HDD senses the magnetic pat-
terns on the disk and to write to disk it induces a change into
the magnetic surface. This mechanism is accomplished by
disk rotation and disk head. Normally, input/output (I/0)
operation in HDD experience delays including seek time (i.e.,
the time it takes the head to find the target track), rotational
delay (i.e., the time it takes the target sector to arrive under
the head after rotation) and transfer time. Although HDD
technology has evolved throughout many years, it has not
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delivered a cost-effective solution for enterprise applications
that require high capacity and performance at the same time.
It is reported in [57] that HDD capacity increases by 40%,
while its I/O performance increases by only 2% annually.

5.4.2 Solid state drive (SSD)

SSD has no mechanical mechanism because it is built from
flash-type memory chips. Since there are no moving parts
in SSDs, they have no rotational delay and near-zero seek
time which allow them to access data with high speed and
precision. In addition, unlike HDDs, SSDs have consistent
performance because they are not affected by fragmentation.
While SSD have exceptionally higher I/O performance than
HDD, they offer less capacity per drive, relatively more
expensive, and have endurance limit.

5.4.3 RAM disk (TMPFS)

TMPEFES does not use traditional non-volatile media to store
files. Instead, TMPFS reside in the virtual memory main-
tained by the kernel. TMPFS is primarily designed to en-
hance performance as it allows short-term files to be written
and read without generating disk I/O. The enhanced per-
formance is due to leveraging the kernel resource manage-
ment policies [58]. However, TMPFS has no dedicated disk
space and its data can be swapped out to drive to free up
virtual memory resources for other needs.

5.4.4 Persistent memory (PMFS)

Recently, flash storage technology has brought down the per-
formance gap between storage and memory significantly. For
example, non-volatile DIMM (NVDIMM) connects storage
directly to a dual data rate interface. NVDIMM is becoming
popular due to its ability to provide high input/output op-
erations per second (IOPS) with low latency and predictable
performance. But, NAND-based NVDIMM is still accessed
as a block device since it has a separate address space. PMFS
has the non-volatility feature of flash storage and the byte-
addressable feature of memory [59]. Since PMFS is byte-
addressable like memory, it is optimized to have a direct ac-
cess to memory without going through the block layer. That
is, PMFS utilizes memory-mapped 1/O where load/store
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Figure 6: Preliminary comparison between ARNAB pre-copy
(pc) and the SoA [17] stop-and-copy (sc) migration down-
time.

Table 3: Hardware and software specifications used in the
experimental setup.

Model ProLiant DL160

Hardware CPU Intel Xeon 2.10GHz
RAM 124GiB DIMM 2400
Network | 2 x 1350 Gigabit

Edge S
ge ervers oS Ubuntu 16.04
Kernel 4.4.0-119-generic
ft

Software 57 303
CRIU 3.11
Model TL-WR1043ND v2
Wireless

Hardware | dapter Qualcomm Atheros

_ Flash 8MB + (16GB)
Access Points Network | 4xEth 2xWireless
(O}) OpenWRT (15.05.1)
Kernel 3.18.23
ff

Software |=5yg 282

Click 2.1

are used instead of read/write instructions. Currently, PMFS
emulation is supported in Linux systems with direct access
(DAX) to persistent memory.

6 RESULTS AND DISCUSSIONS

In this section, we first present preliminary results of the pro-
posed double-tier migration scheme, including a) through-
put evaluation of a containerized video streaming applica-
tion during user connectivity migration, and b) downtime
evaluation during the migration of applications. Then, we
evaluate the enhanced container migration in terms of exe-
cution determinism, system latency and overall downtime.
Fig. 3 also shows the experimental setup of ARNAB. The
hardware and the software specifications for the setup are
detailed in Table 3.

6.1 Preliminary Experimental Results

To measure the impact on application throughput due to
connectivity migration, a video streaming server is installed
in a container. This server is made accessible through the
client browser. Fig. 5 shows the impact of the vAP migration
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on the application throughput. The dashed segment of the
plot represents the application throughput when the client is
associated with vAP; running on AP, that operates in C'Hg.
The dotted segment of the plot represents the application
throughput after the migration, when the client is associated
to vAP; running on AP, that operates in C' H;. Because the
signal level is below the threshold, the OCS migrates vAP;
from AP; to AP,. Note that the client only sees a channel
switch. Thus, the client’'s TCP session resumes after the
migration. The impact on the video streaming throughput is
momentary because channel switching interruption is very
small. Channel switching delay depends on the hardware of
the physical APs. In our case, the channel switching time of
the APs used in experiment is between 90 ms to 110 ms [19].

To benchmark the application migration, we implement
stop-and-copy (sc) scheme to reproduce the results presented
in [17] and evaluate its downtime against the proposed pre-
copy (pc) migration scheme. In this evaluation, we measure
the downtime during the migration of two containerized
applications, video streaming (14 MB of container state) and
RAM simulation (1.2 GB of container state) applications.
Both applications are encapsulated within LXC system-based
containers running Ubuntu 16.04. The RAM simulation ap-
plication represents those applications with intensive use of
memory (i.e., high rate of dirty pages) such as in-memory
database, big data analytics and deep learning.

To simulate RAM simulation application, a very small
program is used to load data and manipulates the loaded
data to reflect page dirtying. This is particularly important
when pc migration is utilized. The container state size of
every iteration in pc procedure depends on the rate of
dirty pages. Fig. 6 shows the downtime when performing
sc [17] and the proposed pc migration. The results are based
on average values of ten trails for each reported case. In
the case of video streaming application, pc shows minimal
improvement over sc. Most of the downtime is due to the
execution of the checkpoint and restore of both migration
schemes rather than the time taken to copy the container
state to the destination.

In the case of RAM simulation, note that the downtime
of sc is much higher than pc due to the amount of data being
transferred when the container is frozen. For example, when
20% of the state frequently changes, the downtime of sc and
pc are approximately 14.7 s and 6 s during state copy of
1.2 GB and 171 MB, respectively. Furthermore, as the rate of
dirty pages increases, the downtime of the pc scheme slightly
increases but still outperforms the sc scheme. Note that the
downtime of the sc also slightly increases with the dirty rate.
This state increase is attributed to the OS executing data
manipulation and not to the application data itself.

6.2 Enhanced Container Migration

The ARNAB’s EFS kernel latency is evaluated using the
Linux kernel tool cyclictest which measures the difference
between the expected wake-up time of a thread and its
actual wake-up time. This way, cyclictest provides statistics
about the EFS latency. Fig. 7(a) and Fig. 7(b) show the

latency and the predictability analysis of the general-purpose
and ARNAB configured kernels. It can be seen that the
configured EFS kernel has very low latency compared to the
general-purpose kernel. The maximum measured latency for
the general-purpose and the configured kernels are 354ms
and 25ms, respectively. In addition, Fig. 7(b) also indicates
that the EFS latency is predictable because the measured
latency does not vary much. Therefore, it is clear that
ARNAB can provide determinism and low response time
for delay-sensitive applications. The parameters used in this
experiment are shown in Table 4.

For the evaluation of storage speed, we utilize a tool
called flexible I/O [60] to measure the input/output oper-
ation per second (IOPS). Random read/write and different
file size are considered in this experiment to understand the
behavior of storage technologies when the file size increases.
Fig. 7(c) shows that when the file size is small, the IOPS is not
significantly different especially in the case of SSD, TMPFS
and PMFS. However, when the file size increases, HDD and
SSD performance degrades substantially. Thus, PMFS and
TMPEFS are recommended when migrating containers with
large in-memory state.

To show the impact of the enhanced EFS on migration,
we evaluate the determinism behavior and the execution
time of LXC functions namely freeze, checkpoint and restore.
Fig. 8(a) shows thirty trails for performing each function
on a blank Alpine system container. The x-axis shows the
number of the sample taken while the y-axis shows the re-
spective execution time in milliseconds. Clearly, the general-
purpose kernel exhibits unpredictable delays with standard
deviations of 449 ms, 57 ms, and 25 ms for freeze, check-
point, and restore functions, respectively. On the contrary,
the enhanced EFS provides predictable execution time with
low standard deviations of 1.03 ms, 11.5 ms, and 8.9 ms.
Furthermore, the enhanced EFS kernel not only improves
determinism, but also reduces the system latency. We com-
pare the average time of LXC function execution between the
general-purpose and the enhanced EFS kernels. The result in
Fig. 8(b) suggests that the average performance gains when
running the enhanced kernel are 95%, 74%, and 33% for
freeze, checkpoint, and restore, respectively.

In addition, container overhead plays an important role
in migration performance. Optimizing container image re-
duces the number of processes to checkpoint and restore
during migration. In Fig. 8(c), we analyze the execution time
when performing checkpoint and restore for system con-
tainers (Ubuntu and Alpine) and application container (OCI
Alpine). The obtained result shows significant execution time
reduction in the case of the enhanced EFS. This also proves
that the lighter the container image, the shorter the migration
downtime.

In Fig. 9(a), we plot the empirical cumulative distribution
function (eCDF) to show the benefit of using CPU shield-
ing for the migration tasks. A blank Alpine 3.7 is used
to compare between general purpose kernel and ARNAB
with and without process affinity. The x-axis represents the
downtime in seconds of each checkpoint experiment while
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the y-axis represents the cumulative percent. For example,
the downtime values at the 80th percentile are 0.742 s, 1.044
s and 1.654 s, respectively. Also, the downtime variation
between migration trails of ARNAB with affinity is very
small which highlights the improved determinism.

Finally, we evaluate the migration downtime in Fig. 9(b)-
(c) for containers running lighttpd video streaming server.
We employ the proposed regional access change orchestra-
tion policy to trigger the container migration. The intercon-
nection between the source and destination edge nodes is
configured to 1 Gbps. Gigabit Ethernet links are common
in campus WiFi deployments and dedicated wide area net-
works [40] [61]. In Fig. 9(b) the (left) y-axis represents the
observed downtime while the (right) y-axis shows the size
of the accumulative checkpoint files in megabytes for the
respective container and migration scheme. In Fig. 9(c), we
analyze the latency between the user and the edge node
while migrating C2 container. The result shows the round-
trip time (RTT) obtained by a ping test and the interruption
caused by the container migration. Compared to [17], the
EFS enhancements can further reduce the downtime by
approximately 50%. More importantly, our migration scheme
proves to be capable of migrating small containers with very
short downtime, making it suitable for IoT systems.

7 ARNAB UsEk CASES

In this section, we present few use cases that could leverage
ARNAB to improve user experience and fulfill real-time

Table 4: Experiment settings.

Experiment Item Value
generic kernel 4.4.0-116
Kernel real-time kernel | 4.4.0-157-rt174
Latency runtime 5h 33m
N# of thread 1/CPU
sleep precision clock nanosleep
Brand/Model TOSHIBA
HDD RPM 7200
Interface SATA III 6Gb/s
Brand Transcend SSD370
Storage 3SD Flash Type MLC NAND flash
Speed Interface SATA 111 6Gb/s
Manufacturer Micron
RAM Speed 2133 MHz
Form Factor DIMM
C1 OS release Ubuntu 16.04
Container C2 OS release Alpine 3.7
Migration C3 Image OCI - Alpine 3.7

application requirements. Here, the presented use cases are
not limited to edge-enabled WiFi networks. Edge-enabled
cellular networks can also benefit from the support of live
container migration across edge networks.

o Augmented Navigation: Mobile service continuity is crit-
ical for augmented reality (AR) based indoor navigation
applications. AR applications for public places, such
as campuses, shopping malls, museums, airports, and
exhibition centers can benefit from ARNAB’s double-
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tier migration to support user mobility. That is, the in-
frastructure can host containerized application for each
user and maintains the state and connectivity as users
roam through the network.

o Cloud Robotics: There are various cases where cloud
robotics can be used to handle tasks in indoor environ-
ments such as factories, warehouses and also shopping
malls. For example, in shopping malls, robots can be
used for safety, operational assistance, goods transport.
In addition, robots can be part of the edge networks
hosting network functions such as APs in case of big
events. Again, an uninterrupted and low latency com-
munication are critical for these applications to work
safely and effectively.

o Connected vehicle: Vehicle vendors, network operators
and service providers are moving towards smart trans-
portation. To enable connected and smart vehicles,
massive amount of information, such as position, speed,
traffic conditions and road hazards, must be processed
and shared among neighboring vehicles on the fly. Edge
networks can host applications to provide warnings,
driver recommendations and parking lot reservation.
These applications require tight collaboration between
edge networks and vehicles, low latency and high com-
putational capacity. ARNAB can provide continuity and
reduce backhaul latency by instantly relocating connect
vehicle applications to the proximity of the users.

8 CONCLUSION

In this paper, we propose a solution to enable mobile ser-
vice continuity in large-scale edge-enabled WiFi networks.
Although edge networking is a promising technology for
providing services at the proximity of users, it does not
guarantee continuous service delivery for mobile users. As
users move away from the initial serving edge, handoff
interruption time and network latency become challenges
to maintaining seamless service delivery. In this work, we
make three contributions to achieve mobile service con-
tinuity. First, we propose a new architecture with double-
tier migration scheme to provide transparent mobile service
continuity. Then, we identify the root-causes of prolonged

container migration downtime. Finally, we enhance the con-
tainer migration scheme by improving system response-
time. Our experimental results show that the ARNAB con-
tainer migration downtime is 50% shorter than the state-of-
the-art.
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