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Abstract—Energy consumption is a major issue for modern
embedded mobile computing platforms, and with new techno-
logical developments, such as IoT and Edge/Fog computing, the
number of connected embedded mobile computing systems is
rapidly increasing. Heterogeneous multi-core CPUs seek to im-
prove the performance of these platforms, with a particular focus
on energy efficiency. By using different techniques like DVFS,
core mapping, and multi-threading, a substantial improvement
in the achievable CPU energy efficiency level for Multi-processor
system-on-chip (MPSoC) can be observed. However, controlling
only the CPU power dissipation has a limited effect on the overall
platform energy consumption. Other components of the platform,
including memory, disk, and other peripherals, play an important
role in the energy efficiency of the platform and need to be
taken into account. The availability of different sleep strategies
at various levels of the platform makes the energy efficiency issue
even more complex. In this paper, we set the view of energy
efficiency at the entire platform level and discuss computation
offloading as a mechanism to help in reaching the optimal
platform energy-efficient state. As an application, we consider
object detection performed on several types of images to define
when offloading is beneficial to the platform energy efficiency.
We survey the energy efficiency of different neural network
algorithms in an embedded environment, with the possibility to
perform computation offloading, and discuss the obtained results
concerning the level of object recognition accuracy provided by
different neural networks.

Index Terms—Energy efficiency, computation offloading, object
recognition, embedded computing platforms.

I. INTRODUCTION

In recent years, the number of connected devices has been
dramatically increasing, with predictions for 2025 suggesting
the number to reach over 8 Billion mobile broadband connec-
tions and over 5 Billion IoT connections [1]. Furthermore, new
classes of services are emerging requiring support in future
networks, such as rich 4K/8K video services for Mixed Reality
(MR) applications with tactile feedback [1]. These, together
with industrial automation control, autonomous ground, and
air vehicles will provide further challenging requirements for
future networks, noticeably from bandwidth, latency, reliabil-
ity, and energy efficiency perspectives. Edge computing can
theoretically provide high bandwidth, low latency, and the
computing agility required by today’s new digital services. On
the other hand, Information and Communication Technology
(ICT) drives an unstoppable process of ever-growing energy
consumption, with new devices, services, and data produced
at a rapid pace. The 5G and beyond network is set to support
huge volumes (in the order of TBs of data per day [2]) of
multi-dimensional data coming from different heterogeneous

nodes, devices, and applications. This raises major challenges
with respect to data transmission and processing. Ultimately,
such a vast amount of data together with low latency appli-
cation requirements, e.g., cloud gaming [3] calls for new ap-
proaches to perform processing in an energy-efficient manner.
One key aspect of edge is that many of the devices are battery-
powered or deployments are power limited. The more energy-
efficient the edge processing is, the more computation can
be done with the same power budget. Application complexity
and power consumption are increased when distributed AI
is deployed to edge devices. Furthermore, due to the ever-
increasing number of such devices, the technology is expected
to consume a significant amount of energy [4], thus playing
a major concern in future strategies of curbing down energy
consumption.

Multi-core heterogeneous CPUs promise to give a substan-
tial contribution to the increase of the energy efficiency in
edge platforms. Different strategies inside the MPSoC are
explored to achieve a reduction in power dissipation and
relative energy consumption. Nevertheless, it is not enough
to consider only one component, e.g., at the CPU level,
in the strategy for achieving energy efficiency, rather one
must consider energy consumption at the platform level [5].
Depending on the platform type, I/O connected, and the type
of applications executed on it, different execution strategies
might be the solution to energy conservation. For instance,
the Race to Halt strategy is proved to be a solution if the
CPU is not the major power consumer in the platform [6].
By contrast, if the static power dissipation of the platform
is relatively low, the execution with a lower clock frequency
of the application might save energy by going slowly to the
application results [6].

In this paper, we aim at locating the working configura-
tion in which the overall platform energy consumption is
minimized. Computational offloading is the mechanism of
moving heavy tasks to more powerful computing units. This
mechanism can be a winning strategy for achieving good
levels of energy efficiency in the case of highly demanding
applications. The goal of this paper is to analyze the impact
of computational offloading on modern embedded mobile
computing platforms, having multi-core heterogeneous archi-
tectures, to achieve platform-level energy efficiency in the
case of highly computational-demanding object detection and
recognition applications.

The main contributions of this paper are the following:
• We present experimental results including energy ef-
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ficiency analysis of embedded environment from the
platform energy consumption perspective.

• We demonstrate computational offloading as a solution
to help to achieve the goals of platform energy efficiency
for embedded computing platforms.

• We analyse the energy cost of different neural networks
performing object detection and recognition on a mix of
input images.

The rest of the paper is organized as follows. In Section
II, we review the related work. In Section III, we develop
the discussion of energy efficiency extended to the platform
level. In Section IV, we present an offloading strategy aim-
ing at achieving energy efficiency. Section V is explained
AI approach for object detection and recognition. Finally,
we conclude with experimental testing and numerical result
discussion in Sections VI and VII.

II. RELATED WORK

Several works are addressing the topic of energy manage-
ment and computation offloading in mobile systems. More
specifically, offloading compute-intensive tasks towards more
powerful systems is a well-known research area, which dates
back to the ‘70s. In [7], the authors present a framework
for computation offloading that is based on a comparison of
local and remote cost of computations. The decision making
part of the framework predicts the communication bandwidth
for assessing the costs. In this work, we experimentally
validate different communication bandwidths and propose the
bandwidth as a metric for the offloading decision. In [8]–
[12] authors present offloading techniques that target battery-
operated devices with the characteristic of possible offloading
of single methods inside the task that needs to be executed.
By contrast, we focus on offloading the full task without
previously running it on the local or remote side. On the
energy management side of the multi-core architectures, [5],
[13] show the possibility to maintain low-power dissipation
and at the same time to accommodate computation-intensive
applications. In [5], authors propose an algorithm that selects
the best execution option in terms of energy conservation,
depending on the type of application and during runtime the
mapping decision might change depending on the phases of
the program. On the other hand, we adopt a joint approach
of finding the optimal execution configuration inside the
heterogeneous architecture and explore the usage of offloading
as a mechanism for achieving energy efficiency.

III. ENERGY EFFICIENCY AT THE PLATFORM LEVEL

Multi-core heterogeneous CPUs have been introduced in an
attempt to increase the energy efficiency of mobile devices, by
using the appropriate computing element for the considered
task. Complex out-of-order cores are used to handle compute-
intensive tasks where performance is central to the outcome,
meanwhile, simple lightweight in-order cores provide support
for background repetitive tasks that run continuously, yet do
not have time constraints. Modern platforms offer a range of
different core capabilities: simple cores have simple data-path

and low power profile, medium-complexity cores introduce
more complex pipeline, and high-complexity cores work with
high levels of parallelism and high voltages. The use of high
voltages in complex cores comes with highly dynamic power
dissipation which will increase the temperature of the chip and
also the relative static power dissipation which comes as main
side effect [14]. The adoption of actuators in today’s MPSoC
can certainly provide energy efficiency at the chip level as
demonstrated in [15], [16] but cannot have a major effect in
the overall platform energy consumption. Other parts of the
system like memory and I/O result in high energy expenditure.
Lowering the core voltage (V ) can make transistors switch
slowly which, in turn, forces the frequency (f ) of the core
to a lower level. This can have a great impact on reducing
the dynamic power which is proportional to f ∗V 2. However,
it comes with the cost of increasing the running time of a
task which may increase the energy consumption of other
parts of the platform [17] and, therefore decrease the overall
energy efficiency of the platform. In Figure 1 we run a neural
network application on a Single-board Computer (SBC) and
we measured the energy consumption of the CPU, platform
and overall board for different CPU frequencies. As it can
be noticed from the results, the best strategy from an energy
point of view would be neither to use the low nor the high
clock frequencies, but setting the clock frequency in between.
The dots represent experimental data while the lines show the
polynomial curve fitting.

In our previous work [15] we explored the energy efficiency
of the MPSoC in multi-core heterogeneous architectures by
using the concept of configuration points, that is a tuple of
parameters, such as the type of cores used in computations,
number of cores, performance level of cores (DVFS), and
utilization level of the task using a core. By selecting for
execution a specific class of these points, we can achieve better
energy efficiency on the level of the CPU.
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Fig. 1: Measured CPU, base, and total energy consumption of the platform.

IV. OFFLOADING STRATEGY

Despite continuous technological and performance improve-
ments, embedded mobile computing devices come also with
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physical constraints, such as processing power and, more
importantly, battery life. Many applications including natural
language processing, image recognition or online gaming, are
challenging in terms of computational requirements. Com-
putational offloading is a mechanism where a task can be
sent for computation to a more capable remote unit. As soon
as the remote machine has completed the task execution,
the results are sent back to the device which initiated the
offloading. In turn, computational offloading is expected to be
an effective solution to address the data explosion produced
by the massive increase of digital services most often run by
resource-constraint devices.

A. Application type

The range of applications that are deployed on embedded
mobile computing devices, for example in autonomous robots
or drones, potentially benefiting from offloading, is very
broad. 3-D mapping, speech recognition, object detection and
recognition are among the usual candidates for employing
computational offloading. Applications change between each
other with a diversity of factors e.g., concurrency, which might
be at the task level or at the data level as in streaming
applications. Emerging use cases are those requiring intelligent
image processing in drones for example, where first processing
of the captured images could be done on the drones, even
though computationally expensive pattern recognition to detect
certain special conditions, as fire or floods, could be done in
the edge. Another interesting application from Industry 4.0
seeks for achieving zero-defect manufacturing (ZDM), where
cameras provide 4k/HD video stream of the goods moving
in conveyor belts, and AI services deployed in the edge/fog
can provide the intelligence for identifying damaged parts and
controlling the robotic arm to sort the material in accordance.
In this work, we consider an object-detection application
run through a deep neural network. We run different neural
networks for object detection on images of different sizes
and background complexity. We then define what are the
conditions to consider to achieve an optimal solution when
offloading tasks.

B. Offloading criteria

Offloading is a natural solution when the application
presents real-time constraints that could not be met by the
mobile platform. Applications are divided into two parts: one
part is executed on the mobile platform and the second part,
which requires the majority of computations, is handled by
the remote server. The mobile platform could be considered
as an interface that handles requests or takes images from
a camera, and the remote side might be responsible for the
heavy computation. If we denote mobile platform speed as
sl and the application workload as w, the time needed to
compute locally would be w

sl
. Next, to offload to a remote

server, we need to send some input data denoted as di over
network communication, which has a bandwidth B, to a server,
whose speed is denoted as sr, and receive the results as do.
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Fig. 2: Energy efficiency of local and remote computation.

The synchronization with the remote side is achieved over
TCP protocol and the synchronization time is denoted as ttcp.
Overall the time spent to execute the remote computation is:

2 ∗ ttcp +
di
B

+
w

sr
+

do
B

Offloading increases the performance if the inequality holds:

w

sl
> 2 ∗ ttcp +

di
B

+
w

sr
+

do
B

=⇒

w ∗
(
sr − sl
sr ∗ sl

)
>

di + do
B

+ 2 ∗ ttcp
(1)

and this can happen in the following cases:
• large w: the amount of computation is considerable;
• sr � sl: the remote side is way faster than local side;
• di + do, the amount of transmitted and received data, is

small;
• B is large.
We can also notice that if w

sl
< di+do

B then offloading will
not increase performance even if the remote side is infinitely
fast (sl −→∞). In Figure 2 we show the result of performing
object detection, using an Single Shot Detector (SSD) neural
network as described below, locally by a mobile platform or
offloaded to a remote server for computation. In graph c), we
present a comparison of the performance vs. energy efficiency
reached by the local platform and remote side. We can notice
that the mobile platform can achieve performance up to 1.2fps,
and if we need an additional frame rate, the computation
should be offloaded to the remote side. Again from Figure
2, we notice in graph a) that offloading is energy efficient if
the bandwidth of network transmission is as high as possible,
on the other hand from graph b) we see that local computation
is energy efficient if we use middle core frequencies instead
of high or low frequencies.
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Another factor that concerns mostly battery-operated de-
vices is energy. Despite technological improvements, battery
technology is still far behind the improvements made in
other areas of computing systems such as memory, CPU,
and screen. Therefore, offloading to extend battery life and
conserve energy is of paramount importance, and this criterion
can be named as offloading for energy efficiency. If the power
to compute task w by the mobile platform is pl, then the energy
consumed by executing the task locally is pl ∗ w

sl
. Otherwise

with pi the power of the system while idling and pt the power
of platform while transmitting, the energy to offload the task
can be defined as:

pt ∗
(
di + do

B
+ 2 ∗ ttcp

)
+ pi ∗

w

sr

In this case, the offloading mechanism saves energy if:

pl ∗
w

sl
> pt ∗

(
di + do

B
+ 2 ∗ ttcp

)
+ pi ∗

w

sr
(2)

The same observation applies as before, so: to save energy
we should look at the amount of data to be transferred, the type
of workload and the available bandwidth of the transmission
network.

V. OBJECT DETECTION IN IMAGES

All object recognition pipelines are usually composed of
3 stages: the detection phase, where objects of interest are
detected and located in bounding boxes, feature extraction
where the object inside the bounding box is analyzed to extract
features that represent it, and the recognition phase, where
labels are assigned to each object in the bounding box. In the
deep learning approach to object recognition, two components
are distinguished: the meta-architecture (or object detection
framework) and the base network.

A. Type of neural network meta-architectures

In this paper, we analyzed two different types of commonly
used neural network meta-architectures: SSD and You Look
Only Once (YOLO).

1) SSD: This general term is used to refer to architec-
tures that use a single feed-forward convolutional network
to directly predict classes and anchor offsets. This algorithm
eliminates proposal generation and subsequent pixel or feature
resampling and encapsulates computations into a single net-
work. This makes the system easy to train and integrates into
components that require detection [18].

2) YOLO: This introduces a new approach for the detection
phase. Instead of using an image classifier at the end, a single
neural network predicts bounding boxes and class probabilities
directly from the image. This gives the possibility to optimize
end-to-end performance. However, because of the detection
approach used in YOLO, small objects or groups of small
objects located next to each other might become difficult to
detect [19].

For local computation

For remote computation

Object recognition

Start End

Execution of different neural network

Communication

Start End

Remote
Execution

Com.

Variable execution time

Variable Variable Variable

Fig. 3: Definition of the regions of interest

B. Base networks for feature extraction

Several networks, such as Resnet, VGG-16, Inception,
Xception, MobileNet, have been developed as base networks
performing feature extraction. Some of them, e.g., VGG-16,
VGG-19, Resnet-101, have a relatively large memory footprint
which makes them impossible to execute on embedded mobile
computing platforms, having limited memory capabilities.
Other solutions, like Resnet-50 and especially MobileNet, are
optimized for running on embedded computing platforms and
have therefore smaller memory footprints and computational
requirements. In this paper, we evaluate the following four
base networks: Resnet, MobileNet, Inception, and Xception,
as they are the ones designed to be executed on embedded
computing platforms.

VI. EXPERIMENTAL PLATFORM AND TESTING

As a central mobile platform, we use an SBC which will
run our main application. We run our application on an Odroid
XU4 development platform provided by HARDKERNEL. The
board is equipped with an Exynos 5 MPSoC, which is an
octa-core composed of 4 ARM Cortex A7 and 4 ARM Cortex
A15 organized in a big.LITTLE architecture with Global Task
Scheduling (GTS). The A7 cores (little cores) can scale up to a
frequency of 1.4 GHz, while A15 cores (big cores) can reach a
frequency of 2 GHz. The development board runs a Linux OS
with kernel 4.2. The board network connectivity is provided
by a USB Wi-Fi 802.11n dongle W522U, which is a dual-band
wireless USB adapter that provides maximum wireless speed
up to 300Mbps over two bands, with a maximum transmit
power of 18dBm. The drivers offer two work modalities, one
for full power transmission and the other for low power oper-
ation while listening for connections. We use both modalities
in our experiments. We define our Region Of Interest (ROI)
as illustrated in Figure 3. When the object recognition task is
executed locally, the ROI is defined as the execution time
of the used neural network to recognize an object in the
provided input image. When the object recognition task is
executed remotely, the ROI is defined from the moment the
TCP connection is negotiated with the remote server until the
moment the embedded mobile computing platform receives all
coordinates, size, and tags associated to all recognized objects.

For measuring the power dissipation inside the ROI, we
need an approach that records at a high sampling rate the
current consumed during variable execution and communica-
tion periods. For example, for the input pictures used in this
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Fig. 4: Schematic of the components of the experiment
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paper, the smallest remote execution time is around 200 ms
while the longest execution time is around 1100 ms. For the
same set of used input pictures, the execution time of the
object recognition task on the embedded mobile computing
platforms range from 900 ms to 4 s. For setting the boundaries
of our ROI, we use one GPIO pin of the board as a flag to
measure the start and end the time of the ROI. For measuring
the power dissipation, while choosing to offload the task, we
use an oscilloscope with one probe recording the current drawn
from the board and the other sensing the voltage on the GPIO
pin, which is used as a flag for defining our ROI. The testbed
is composed of several components as shown in Figure 4.
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Fig. 6: Comparing the Energy Efficiency of different object detection algo-
rithms.

As a remote side, we use a server that is on the same LAN
as the Odroid board and listens for connections by the client.
We set the server for different performance levels, such as 5x
(five times faster than local side), 4x, and 2x. To measure the
power dissipated by the entire board during the ROI we used

an oscilloscope and a power meter, depending on the required
sampling rate, with measurements logged at a resolution of up
to 10 kHz.

The neural network used in the object detection and recog-
nition application is a CAFFE implementation of an SSD
meta-architecture with MobileNet [20] as a base network.
We tested the change in the neural network used for our
object detection. By using neural networks for object detection
recognition in embedded environments, the most stringent
limitation is the memory available on the device. With only
2 GB of memory, a few networks might be executed on the
board. We analyzed three pre-trained base networks: Resnet-
50, Inception and Xception implemented in Keras and trained
with ImageNet dataset. We used YOLO v3 neural network
which is implemented in the darknet framework and trained
with COCO dataset.

In the Odroid board, we have different options for run-
ning computations related to a certain application. Having 8
computing cores divided into two cluster types, with each
type of core being able to work in different performance
levels (DVFS), opens possibilities for selecting the optimal
energy-efficient way for running the application. We run the
object detection application on a single image with all the
possible configurations present in our experimental board and
we ranked the energy efficiency of each configuration. By
reviewing the results of the energy efficiency achieved for
each configuration we discover that only the configurations
using all four A15 cores, which provide high performance,
are ”relevant” for this use case. The best scores in energy
efficiency are only achieved by the configurations using all
four A15 cores at the middle range frequency. We consider
this configuration point as the one we will use in local
computations, providing the highest energy efficiency at the
platform level.

We executed the neural networks on a set of pictures
composed of mix images with high and low resolution, large
and small complexity in terms of the number of objects inside,
and with different backgrounds. When offloading the detection
and recognition task to the remote side, the input images were
transmitted with bandwidths from 1 to 60 Mbps.

VII. NUMERICAL RESULTS

Figure 5 shows the average energy consumed to process,
using SSD, an image with different execution speeds provided
by the remote and local side. We can notice that when using
offloading we reach similar energy efficiency for an achieved
performance level, regardless of the performance of the remote
side. The crossing with local computation is done from 0.5fps
to 0.7fps, and for higher performance, the energy cost to
perform the detection and recognition task locally is higher
than using computational offloading.

We also measured the energy efficiency for processing an
image by different types of neural networks. We used a mix of
images for testing different neural networks and the results of
the average energy consumed to process a frame are shown in
Figure 6. As shown, there is a large difference in the results
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from each neural network: while we can notice that SSD-
MobileNet is the most efficient one in terms of energy, it also
provides the highest performance possible on the SBC. Next,
we have three other models that provide nearly similar results
of energy efficiency: Resnet, Inception and Xception with the
first one performing better in terms of energy and achievable
performance. Yolo is the one that is energy demanding and
has the highest requirements in terms of computations. In [21]
authors experiment with different base networks and report the
results of the accuracy that the networks provide in terms of
the mean Average Precision (mAP) score. They test different
meta-architectures with different base models and the results
show that SSD with MobileNet is overall the fastest one but
provides the lowest accuracy. According to [22], Xception
outperforms Inception and Resnet in terms of accuracy. On the
other hand, Resnet is less accurate than Inception. Regarding
YOLO, according to [23], this network is 20% to 30% more
accurate than SSD-MobileNet, but from Figure 6 we notice
that it is 170% to 180% less energy efficient. In comparison
with Resnet, Yolo is more accurate as described in [24].

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we discussed computation offloading as a pos-
sible mechanism to reach the optimal platform energy-efficient
state considering the energy consumption of all components in
the mobile system. As an application test case we considered
object detection and recognition performed on several types
of images to define when offloading is beneficial to the
platform energy efficiency. We identified the configuration
points, where the platform provides the maximum energy
conservation approach. We concluded that if the bandwidth
of the network connection is large enough, then the offloading
strategy turns out to be more energy-efficient than the local
computing. We surveyed the energy efficiency of different
neural network algorithms in an embedded environment and
concluded that not many neural networks for object detection
can be handled by average embedded platforms. In some cases,
to improve the accuracy between 20% to 30%, the cost in
degrading energy efficiency is 170% to 180%.

As future work, we consider to extend investigations with
more recent MPSoC like Kirin 960 and extend the discussion
of platform efficiency by including the GPU for the neural
network computations. We also plan to run experiments with
GPUs ranging from the ones present in smartphone chips, like
ARM Mali-G71 in Kirin 960, to NVIDIA GPUs present in
Jetson-TX2 with 265 CUDA Pascal cores and NVIDIA Xavier
with 512 CUDA Volta cores.
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