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Abstract

Finding the optimal weights for a set of financial assets is a difficult task. The mix of real world constrains
and the uncertainty derived from the fact that process is based on estimates for parameters that likely to be
inaccurate, often result in poor results. This paper suggests that a combination of a filtering mechanism
based on random matrix theory with time-stamped resampled evolutionary multiobjective optimization
algorithms enhances the robustness of forecasted efficient frontiers.
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1. Introduction

The choice of the right allocation of funds among
alternatives is a major topic of interest for both prac-
titioners and researchers focused in finance. The
number of alternative distributions funds, portfolios,
might be large and their profiles are likely to be dif-

ferent. The topic is complex and it can be analysed
from different points of view. Bearing that in mind,
this work fits in the literature in the specific area of
robust portfolio optimization. The intended contri-
bution is an analysis of the potential benefits derived
from a combination of a resampled approach based
on evolutionary algorithms with a filtering mecha-
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nism derived from random matrix theory.
The amount of research devoted to portfolio op-

timization is ample and it is mostly based on a core
contribution made by Markowitz1,2. This author
frames the problem of asset allocation as multiob-
jective optimization task where the investor tries to
balance two opposing objectives, the minimization
of risk and the maximization of return of the portfo-
lio as a whole.

Formally, the basic version of the bi-objective
problem could be defined as:

• Minimize portfolio risk:

σ
2
p = Σ

n
i=1Σ

n
j=1wiw jσi j (1)

• Maximize portfolio return:

E(Rp) = Σ
n
i=1wiµi (2)

• Subject to the following constraints:

Σ
n
i=1wi = 1 (3)

0 6 wi 6 1; i = 1...n (4)

where n is the number of available assets, µi the
expected return of asset i, σi j the covariance be-
tween asset i and j, and wi are the weights for the
components of the portfolio. These weights are the
decision variables. For practical purposes, risk is
represented with the standard deviation σp. The con-
strains referenced in equations 3 and 4 represent re-
quirements for the full investment of funds and the
prohibition from shorting any asset, respectively.

This framework may be extended to consider
some additional real world constraints 3 such as:

• Cardinality constraint: it is possible to define the
maximum Cmax and minimum Cmin number of as-
sets in which it is possible to invest (wi 6= 0):

Cmin 6 Σ(wi 6= 0)6Cmax (5)

• Values limit constraint: each weight wi must have
a value in the interval [limin f , limsup], where:

0.0 6 limin f 6 wi 6 limsup 6 1.0 (6)

The solution for this problem consists of a set of
portfolios that defines a Pareto front, which is usu-
ally referred to as the efficient frontier. The points
of this curve represent portfolios that have the min-
imum amount of risk given a certain expected re-
turn, and viceversa. Given that the preference for
one objective over the other one is conditioned by
the attitudes of the decision maker, these portfolios
are neither better or worse than the rest of the com-
ponents of the solution. These portfolios, plotted in
the risk-return space, define a curve similar to fig. 1.

Risk
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Fig. 1. Efficient frontier

The difficulty of tackling this optimization prob-
lem varies widely depending on the assumptions.
Once the basic model is extended with real world
ones, the limitation of standard exact approaches be-
comes apparent. For this reason, both academics and
practitioners have been exploring for decades the
possibilities offered by evolutionary computation.

The multiobjective nature of the problem makes
it well suited for Multiobjective Evolutionary Algo-
rithms (MOEAs). As reflected in a paper by Metax-
iotis and Liagkouras 4, there is a large number of
recent papers exploring their performance in portfo-
lio optimization. Among them, we could mention
Skolpadungket et al.5, Radziukyniene and Xilinskas
6, Anagnostopoulos and Mamanis 7 or Deb et al.8.

Despite all this research effort on MOEAS for
portfolio optimization there are still open issues that
require further investigation such as the problem of
robustness 9. The lack of robust solutions is one of
the main concerns regarding optimization; in con-
sequence some approaches have emerged that deals
with that issue 10. Focusing in asset allocation, we
find that the reliability of the solutions provided by
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the algorithms is subject to the accuracy of the esti-
mates for two key parameters that underlie the op-
timization process: the expected asset returns and
their associated variance-covariance matrix. Their
true values are difficult to predict, and this often re-
sults on expected efficient frontiers that turn out to
lie far from the observed ones.

The problem of finding robust portfolios has al-
ready been studied in literature 11. Among the dif-
ferent authors who have tackled this issue we could
mention Costa et al. 12 who deals with the problem
of robust optimal portfolio selection, or Nguyen et
al. 13 who introduce a generic robust ranking model
and apply it to portfolio optimization. Literature
shows some other studies which work in the opti-
mization of the worst-case scenarios such as Ghaoui
et al. 14, who consider the problem of computing and
optimizing (by using conic optimization) the worst-
case mean-variance, or Zymler et al. 15, who sug-
gest a novel robust optimization model for design-
ing portfolios, that model trades off weak and strong
guarantees on the worst-case portfolio return.

Summarizing, most of the literature on robust
portfolio optimization falls into two fields: papers
that emphasize the need for robust estimates for the
parameters or those where authors try to manage un-
certainty in the optimization process itself. The first
one usually tries to filter the estimates to control,
for instance, the influence of extreme past events
on their computation 16. We also find many au-
thors who focus on a second way, handling the un-
certainty in parameters during the optimization pro-
cess 17,18,19,20. Other efforts regarding the second
line were made to introduce robustness in multi-
objective optimization 21. For instance Deb et al. 22

launched a robust adaptation for NSGA-II algorithm
to optimize portfolios and then Garcia et al. 23 dealt
with the problem of robustness but using resampling
and a third objective as a time-stamp.

In this paper we suggest combining both, time-
stamped resampling and filtering the variance-
covariance matrix or, more exactly, the associated
correlation matrix. Details of this new approach will
be provided in the next section. Then, a wide set
of experiments is shown in order to validate the ap-
proach. Finally, the last section will be focused on

conclusions and future work.

2. Robust Approach

As we already discussed in the introduction, the
portfolio optimization process depends on imperfect
forecasts for two key sets of parameters, future re-
turns and the variance-covariance matrix. Given that
this usually has a major impact in the reliability of
the results, there is a clear need for control mecha-
nisms. In this section we introduce two approaches
that have never been tested together: a set of filters
based on random matrix theory and time-stamped
resampling strategy based on MOEAs. This will be
followed by an introduction to robustness metrics.

2.1. RMT Filtering

The origins of Random Matrix Theory (RMT) can
be traced back to efforts by nuclear physicists during
50’s and 60’s in the context of gaining understanding
the energy levels of complex nuclei. More recently,
these studies on the statistical properties of matrices
based on independent random elements have been
tested on the context of portfolio optimization by the
econophysics community 24,25,26,27.

These authors, among others, show that empir-
ical variance-covariance matrices of financial re-
turns are affected by spurious correlations. The
cross-correlation matrix, directly connected to the
variance-covariance matrix, shows a mix of noise,
correlation among the random component of the re-
turns series, and signal. As Laloux et al. report 25,
the consequence of using the correlation matrix di-
rectly obtained from historical data is an underesti-
mation of real risk. Hence, the need of using a cor-
rected one.

RMT provides the tools to identify the men-
tioned two components analysing the eigenvalues,
λ , of the correlation matrix. Given that theoretical
limits for the distribution of eigenvalues for random
matrices are known 28, it is possible to identify most
of purely random component. Plerou et al. 24 review
the original analytical results and conclude that for
return series where the number of assets, n, is larger
than the number of time periods considered, p, the
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lower limit, λmin, and the upper one λmax, are given
by the analytical expression:

λmax/min = 1+
1
q
±2

√
1
q

(7)

where q = p/n.
These authors suggest a reconstruction process

where the original noisy correlation matrix, C, is re-
placed by a filtered one. It starts with the construc-
tion of a diagonal matrix Λ, with n eigenvalues for
C. Then, those values out in the range defined by
equation 7 are replaced with zeros and the result-
ing structure, Λ′, gets transformed to the basis of
C. Using the eigendecomoposition theorem with the
original eigenvectors E we would obtain the filtered
cross-correlation matrix C′ using the expression

C′ = EΛ
′E−1 (8)

The final step would be setting the diagonal el-
ements of C′ to 1 in order to make sure that both C
and C′ have the same trace. The outcome of all this
is a clean correlation matrix that can subsequently
be used in the optimization process.

While different authors suggest different ap-
proaches to get to C′, the core ideas are the same.
They tend to differ only in the choice of the values
used to replace the eigenvalues in the range λmin/max
in Λ to get Λ′.

Daly et al. 27 review several filtering approaches
and introduce a new one based on Krzanowski sta-
bility 29. The method is very similar to the one de-
scribed above. The difference is that the replace-
ment eigenvalues for Λ′ are given by the expression

λ
′
i = λ

′
1 +(i−1)k (9)

In this context, k is a constant defined as

k = 2
a−λ ′1
r−1

(10)

where r is the number of noisy eigenvalues to be
replaced and a is their mean (Λnoisy).

The key parameter to be defined is the minimum
value λ ′1, which the authors define in terms of a
fraction of a. KR2, therefore, would correspond to

a Krzanowski stability-based filter with λ ′1 = a/2,
KR4 to a filtering with λ ′1 = a/4 etc.

Daly et al. report that, in their experiments,
KR2, KR4 and KR8 showed the highest potential
for realised risk reduction. For this reason, we will
consider them, together with the RMT filtering by
Plerou et al., in our experimental analysis. The fil-
tering methods described above will be combined
with a time-stamped resampled optimization strat-
egy

2.2. Optimization Algorithm

The multiobjective nature of the optimization prob-
lem to be solved, together with the complexity de-
rived from the real-world constraints, makes strate-
gies based on MOEAs very appropriate. A basic
modelling would provide approximations to the effi-
cient frontier that would suffer from the unreliability
discussed before, hence our choice of complement-
ing them with a time-stamped resampling strategy.

This approach, proposed by García et al.23, gen-
erates sets of likely scenarios, pairs of expected re-
turns and variance-covariance matrices, based on
historical data following the nonparametric boot-
strap process described in algorithm 123. Each can-
didate portfolio faces a number of scenarios dur-
ing the evolution process and the algorithm weeds
out those that are too sensitive to deviations in ex-
pected returns and variance-covariance matrix. This
general process limits the possibility of selecting
portfolios that are overspecialized in a scenario, the
expected asset returns and the forecasted variance-
covariance matrix, that will differ from reality with
a high probability. The algorithm also considers the
age of candidate portfolios, and favors those that
have performed better for a longer time. This time-
stamped component of the approach, together with
the resampling, improves the robustness of the solu-
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tions.

Algorithm 1: Resampling method

1: S: original sample set with a size Ns.
2: S′: new sample set with a size N′s. At the beginning,

S′ =∅ and N′s = 0.
3: while N′s 6= Ns do
4: Select one instance Xi, at random, from S.
5: Add instance to the new set. S′ = S′+Xi.
6: end while
7: return (S′)

Given that the combination of RMT filtering and
time-stamped resampling that we suggest is com-
patible with many MOEAS, we will test the ap-
proach with four of the most popular: NSGA-II,
SPEA2, GDE3 and SMPSO. These metaheuristics
represent three different algorithm families, genetic
algorithms, differential evolution and particle swarm
optimization, and we introduce them next.

Genetic algorithms have two representatives in
the set. The first one is the Non-dominated Sorting
Genetic Algorithm II, NSGA-II, proposed by Deb
et al. 30. It is a multi-objective genetic algorithm
that operates applying the standard genetic opera-
tors (selection, crossover, and mutation) to a basic
population. Then, it sorts both the individuals in the
new and old populations according to a dominance
rank. The best solutions are chosen to create a new
population. In case of tie in terms of rank, the al-
gorithm considers a density estimation based on the
crowding distance to the surrounding individuals be-
longing to the same rank. The second one is the
Strength Pareto Evolutionary Algorithm 2, SPEA2.
It was proposed by Zitler et al. 31 and one of its core
features is that each individual has a fitness value
that is the sum of its strength raw fitness plus a den-
sity estimation. It also uses a population of solu-
tions plus an external archive. The algorithm applies
the mentioned standard operators to a population of
solutions to fill the archive of individuals; then, the
nondominated individuals from the combination are
copied into a new population. If the number of non-
dominated individuals happens to be greater than the
population size, a truncation operator based on the
distances to the k-th nearest neighbor is used.

Multiobjective particle swarm optimization al-

gorithms are represented by the Speed-constrained
Multi-Objective PSO algorithm, SMPSO 32. In PSO
algorithms a set (swarm) of candidate solutions (par-
ticles) to the problem navigate through the solution
space. This navigation is guided by a velocity equa-
tion, which specifies the way particles update their
location. Two key elements in this equation are the
current position of the particle and the best posi-
tions visited so far. Usually, both the best position
visited by the particle and the best position visited
by any particle in the swarm are taken into account.
The algorithm uses an external archive to store non-
dominated solutions and extends the basic frame-
work adding a constraining mechanism, already ap-
plied in mono-objective PSO algorithms, that mod-
ulates the speed at which particles fly 33.

Finally, we will consider differential evolution
by means of the Generalized Differential Evolution
3 algorithm, GDE3 34. This alternative starts with
a population of random solutions, which becomes
current population. Every generation, the algorithm
extends current population with an offspring popu-
lation obtained using the differential evolution oper-
ators. The result is subsequently reduced to main-
tain the size stable using nondominated sorting and
a pruning technique aimed at diversity preservation.

For this work, in order to ensure fair compar-
isons, we will use the same encoding and repair op-
erator across core algorithms. Portfolios will be rep-
resented by arrays of as many floats as available in-
vestment alternatives, where wi, represents the per-
centage invested in asset i. Solutions would consist
of sets of nondominated portfolios in terms of risk
and return that approximate the efficient frontier. As
for the repair operator, the need to meet the set of
hard constraints (Eqs. 3 to 6) requires a way to deal
with unfeasible solutions. The approach to be used
will be relying on the operator both after the initial-
ization of the population and the use of the genetic
operators.

Whenever the number assets where wi > 0 is
out of the interval [Cmin,Cmax], the individual goes
through an adjustment process to ensure compli-
ance with the cardinality constraint. This is done
adding or dropping assets until the requirement is
met. In case the sum of weights per individual is not
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1.0, Σn
i=1wi 6= 1, the algorithm adjusts the holdings

adding or subtracting random amounts up to the re-
quired adjustment. These processes are described in
detail in 23.

2.3. Robustness Evaluation

The evaluation of robust solutions requires spe-
cific quality indicator that differ for the the most
commonly used on in multiobjective optimization
such as Hypervolume (HV) or Spread 35. We will
consider four indicators to measure robustness that
mostly capture the divergence between expected re-
sults and actual results. These are Estimation Error,
Stability, Unrealized Returns, and Extreme Risk 23.
We outline their main features.

The first one to be considered is Estimation Er-
ror. This indicator measures the average Maha-
lanobis distance 36 between the expected risk and
return for every portfolio in the efficient frontier and
the actual risk and return a posteriori, once the real
values of the parameters are observed. As a result,
the smaller the value, the closer that the expected be-
haviour of the optimized portfolios would be to the
real one observed a posteriori.

The second quality indicator is Stability. In this
case, metric measures the average difference be-
tween the Pareto front obtained for the expected sce-
nario, and S feasible alternatives generated using the
nonparametric bootstrap described in algorithm 1.
Given that the use of a large set of scenarios is likely
to result on a good approximation to the real poten-
tial distribution of parameters, high values of this
metric would imply higher sensitivity to likely de-
viations form the expected scenario and, therefore,
lower reliability.

The Extreme Risk metric is closely connected to
the previous one. Both share the same definition,
but they differ in the set scenarios that is considered.
In this case, it considers the behaviour of the port-
folios in the solution when they face the worst-case
scenarios. These are are defined as the w resampled
scenarios, out of a S sample, with the highest aver-
age Mahalanobis distance between the risk/return of
the portfolios evaluated with these parameters and
the expected risk/return of the same portfolios. The
higher the metric, the lower the robustness.

Finally, Unrealized Returns evaluates, for every
portfolio in the solution, the difference between its
realized return and the maximum potential return for
that risk level. It represents potential income left on
the table. Hence, the higher the value for this indica-
tor, the larger the unrealized potential returns. This
meas a low value for this indicator would be consid-
ered desirable.

3. Experimentation

The combined approach described before was tested
with historical financial data using the four men-
tioned core algorithms: NSGA-II, SPEA2, GDE3
and SMPSO. In this section we report details on the
experimental design, sample used, parametrization
and results.

3.1. Experimental Setup

The approach was tested on a set of historical re-
turns for the components of the Spanish broad fi-
nancial index IBEX-35. The experiments were per-
formed using a sample of 240 monthly returns, 20
years worth of data, covering the period from Jan-
uary 1994 to December 2013. Given that the com-
position of the index changed during the period, we
selected the companies in the index as of the end of
2013 for which the was complete data. That meant
that original set of 35 companies was reduced to 18.
The source for the data was the commercial provider
Datastream.

The cardinality constraints [Cmin,Cmax] and the
limits to the minimum and maximum weight that
each asset can potentially have in the portfolios that
are part of the solution [limin f , limsup], were set to
[2,16] and [0.1,0.8] respectively.

In order to assure that the algorithms face a wide
range of historical situations, we decided to use a
sliding window approach. This means that the algo-
rithm relies on data from t1 to tn to identify the best
possible allocations for the period tn+1. For this pur-
pose, the size of the mentioned window was set to
n = 120 return periods, that is, to 10 years of data.
Therefore for each experiment the 10-year window
will move one month, 120 times in total. It is worth
noting that this is not a single testing ground for
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a dynamic multi-period approach over 120 months,
but a set of 120 different single-period portfolio op-
timization problem instances. Given the stochastic
nature of the algorithms used, all the experiments
were repeated 30 times.

The implementation was made in jMetal 37. This
Java framework, designed for multiobjective opti-
mization includes several different metaheuristics.
By reusing the base classes of jMetal we ensure a
fair comparison as all the alternatives share the same
basic core components (solution encodings, opera-
tors, etc.). Table 1 shows the parameters used for
each algorithm. These have not been optimized and
are the default values provided in the framework.

Table 1. Parameters. L = 18 (size of individuals). The termina-
tion condition is performing 300 iterations.

SPEA2
Population size 200 individuals
Archive size 200 individuals
Crossover SBX, pc = 0.9
Mutation Polynomial, pm = 1/L
Selection of Parents Binary tournament

NSGA-II
Population size 200 individuals
Crossover SBX, pc = 0.9
Mutation Polynomial, pm = 1/L
Selection of Parents Binary tournament

SMPSO
Archive size 200 particles
Swarm size 200 particles
Mutation Polynomial, pm = 1/L

GDE3
Population size 200 individuals
Crossover DE crossover, CR = 0.9
Mutation DE mutation, F = 0.5
Selection of Parents DE selection

Regarding the parameters needed to compute the
metrics, the number of scenarios S necessary to
compute Stability and Extreme Risk will be set to
500. The second indicator would also require the
specification the percentage of worst-case scenarios,
out of those 500, to be considered. In this case, the
metric will be based on the worst 1%, that is, w = 5.

3.2. Results

The combined approach was tested on the four
MOEAS already introduced (SPEA2, NSGA-II,

GDE3 and SMPSO) using four different filters:
KR2, KR4, KR8 plus the one based of Plerou et
al.. The robustness of the solutions was assessed us-
ing EE, ST, ER and UR. For each of these metrics,
we report the average, median and variance obtained
with every setup over the 30 runs in tables 2 to 5. We
also report the results for the basic algorithms and
tested the statistical significance of the differences
between the basic algorithm and the robust versions.
Due to the lack of normality of the distribution, we
relied on the Wilcoxon test.

(a) Base (b) KR2

(c) KR4 (d) KR8

Fig. 2. Correlation matrices. Base vs KR filtering.

The effect of KR2, KR4 and KR8 filters on the
correlation matrix is illustrated in figure 2. This
panel shows a graphic representation of correlation
matrices in gray-scale. Given that we have 18 invest-
ment alternatives, each graph consists of a 18x18
symetric grid. The lighter the color, the larger the
number, hence the fact that the main diagonal, where
the correlations are always equal to one, is white.
This way, we can observe the differences between
the original noisy matrix and the filtered versions.
In this example, the underlying data corresponds to
the first time period considered in the sliding win-
dow, that is, returns from January 1994 to Decem-
ber 2003. As we can see, the cross correlations of
the returns for the 18 companies tend to be low. We
can infer from the graphs that KR2 filtering affects
the original matrix to a higher degree than the rest.
Among the other two, KR8 reconstruction leads to
more subtle changes.
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(a) Base (b) PL

Fig. 3. Correlation matrices. Base vs Plerou et al. filtering.

Figure 3 is very similar. It compares side-by-
side the original correlation matrix with the recon-
structed one once we used the approach by Plerou
et al. In this case, the scale of the differences in the
color pattern makes apparent that this second strat-
egy leads to changes of a larger magnitude than the
suggested KR alternatives.

Table 2. ST - Stability metric.

SPEA2 Average Median Variance
Base 3.9767 3.5364 3.3538
Combined KR2 2.2052 1.9873 0.7706
Combined KR4 2.2154 2.0039 0.7776
Combined KR8 2.2144 2.0080 0.7656
Combined PL 2.2159 2.0007 0.7780

NSGAII Average Median Variance
Base 3.9771 3.5246 3.3746
Combined KR2 2.1250 1.9601 0.6073
Combined KR4 2.1161 1.9395 0.6118
Combined KR8 2.1144 1.9537 0.6008
Combined PL 2.1494 1.9631 0.6131

GDE3 Average Median Variance
Base 3.2202 2.9744 1.3919
Combined KR2 2.5142 2.2699 1.0856
Combined KR4 2.5242 2.2935 1.0553
Combined KR8 2.5241 2.2910 1.0459
Combined PL 2.5241 2.2961 1.0371

SMPSO Average Median Variance
Base 3.5175 3.2155 1.6320
Combined KR2 2.3057 2.1029 0.7250
Combined KR4 2.3055 2.1090 0.7431
Combined KR8 2.3064 2.1258 0.7174
Combined PL 2.3301 2.1410 0.7686

Table 2 shows the main descriptive statistics for
the Stability robustness indicator. In terms of stabil-
ity, NSGA-II is the core algorithm that obtains the
best values for both the metric and the largest av-
erage improvement. The Daly et al.-based KR fil-
ters combined with the time-stamped resampled ap-

proach offer the best performance for all the core
algorithms with the exception of GDE3. The re-
sults for the same filters are similar, but the filter de-
scribed by Plerou et al. tends to offer slightly worse
results. Combined KR8 over NSGA-II improves the
basic value of the metric by 46.8%. It is worth not-
ing that the combined approach offers, in addition to
a lower mean value for the metric, a clearly smaller
variance.

Table 3. EE - Estimation Error metric.

SPEA2 Average Median Variance
Base 1.2068 0.8152 1.2250
Combined KR2 0.8843 0.7421 0.5085
Combined KR4 0.8742 0.7461 0.5087
Combined KR8 0.8664 0.7340 0.4984
Combined PL 0.9035 0.7470 0.5435

NSGAII Average Median Variance
Base 1.2038 0.8630 1.0827
Combined KR2 0.8541 0.7090 0.4956
Combined KR4 0.8402 0.6923 0.4920
Combined KR8 0.8412 0.6926 0.4854
Combined PL 0.8787 0.7078 0.5409

GDE3 Average Median Variance
Base 1.2314 1.0071 0.7354
Combined KR2 1.0840 0.9054 0.6934
Combined KR4 1.0777 0.9086 0.6717
Combined KR8 1.0788 0.9177 0.6885
Combined PL 1.1398 0.9472 0.8058

SMPSO Average Median Variance
Base 1.2943 1.0869 0.7762
Combined KR2 1.0137 0.8998 0.5291
Combined KR4 1.0131 0.8751 0.5268
Combined KR8 1.0048 0.8756 0.5046
Combined PL 1.0426 0.9122 0.5432

The indicator that captures the discrepancy be-
tween the expected behavior of the selected portfo-
lios and reality, EE, shows clear pattern of improve-
ment across basic algorithms and filtering strategies.
Having said that, the contribution of the combined
approach is more variable and tends to be relatively
lower if we compare it to the previous metric. Out
of the four basic algorithms, NSGA-II provides the
best starting point with an average error of 1.2 (very
close to the result of the naked version on SPEA2).
The combined robust approaches also tend to be spe-
cially appropriate with this algorithm as it offers the
lowest average value for the metric. In this case, the
improvement in relative terms is not as sizeable as it
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was for ST. PL filtering clearly offers result that are
worse that KR alternatives. KR4 and KR8 tended to
offer the best results. The former one with NSGA-II
and GDE3, and the latter with SMPSO and SPEA2.

Table 4 shows the results regarding the sensi-
tivity of the solution to a set of worst-case scenar-
ios where the deviations in terms of risk and return
are especially relevant, the robustness indicator la-
beled Extreme Risk. Given that ER and EE are
so closely linked, it not surprising that they show
a similar behavior. Once again, the combined ap-
proach improves the robustness of the basic algo-
rithms across the board, but the degree to which
these algorithms benefit varies. NSGA-II offers the
best results followed by the other genetic algorithm,
SPEA2, SMPSO and GDE3. The best combinations
were also consistent and KR4 and KR8 resulted in
lower values for the metric that PL.

Table 4. ER - Extreme Risk metric.

SPEA2 Average Median Variance
Base 1.5884 1.2105 1.2846
Combined KR2 1.2174 1.0547 0.6234
Combined KR4 1.2014 1.0504 0.6028
Combined KR8 1.2000 1.0404 0.6026
Combined PL 1.2087 1.0600 0.6668

NSGAII Average Median Variance
Base 1.5944 1.2877 1.1464
Combined KR2 1.1823 1.0095 0.6262
Combined KR4 1.1710 1.0011 0.6077
Combined KR8 1.1746 1.0132 0.6037
Combined PL 1.1866 1.0155 0.6839

GDE3 Average Median Variance
Base 1.6226 1.4283 0.9005
Combined KR2 1.4616 1.2669 0.9286
Combined KR4 1.4484 1.2774 0.8906
Combined KR8 1.4489 1.2697 0.9054
Combined PL 1.4813 1.2649 0.9846

SMPSO Average Median Variance
Base 1.6961 1.5109 0.8972
Combined KR2 1.4381 1.2716 0.7167
Combined KR4 1.4425 1.2509 0.7200
Combined KR8 1.4350 1.2503 0.7055
Combined PL 1.4575 1.2724 0.7765

The combined approach also has positive impact
on the divergence between the Pareto front defined
by the selected portfolios and the actual observed ef-
ficient frontier once the key parameters were known.
Table 5 shows that the addition of the combined ap-

proach designed to increase robustness reduces the
amount of money left of the table for all cases. The
best results were obtained with SMPSO. The multi-
objective PSO, combined with the time-stamped re-
sampling and a KR8 filtering achieved a 34.7% im-
provement over the basic SMPSO. As we can see in
the variances, the algorithm also turns out to be, by
far, the most consistent alternative among algorithm
runs. Consistently with the rest of the quality indi-
cators, the performance of PL filtering was slightly
worse that the Daly et al.-based KR alternatives

Table 5. UR - Unrealized Returns metric.

SPEA2 Average Median Variance
Base 8.4864 7.3674 24.3744
Combined KR2 5.9254 5.3010 8.6752
Combined KR4 5.9204 5.2848 8.6298
Combined KR8 5.8911 5.2439 8.4073
Combined PL 5.9489 5.3033 8.8232

NSGAII Average Median Variance
Base 8.4063 7.4374 22.6234
Combined KR2 5.8588 5.2758 8.3047
Combined KR4 5.8228 5.2553 8.0605
Combined KR8 5.8288 5.2678 8.0573
Combined PL 5.9400 5.3924 8.9086

GDE3 Average Median Variance
Base 6.2664 5.6185 12.3380
Combined KR2 4.7809 4.1935 9.5771
Combined KR4 4.7840 4.2502 8.9486
Combined KR8 4.7521 4.1845 8.8256
Combined PL 4.7894 4.2482 9.1235

SMPSO Average Median Variance
Base 6.6458 5.8349 13.3521
Combined KR2 4.3572 3.8316 5.3117
Combined KR4 4.3420 3.8478 5.4500
Combined KR8 4.3850 3.8172 5.4756
Combined PL 4.3859 3.8898 5.2117

The results of the experimentation suggest that
the combined strategy improves the robustness of
the solutions. The gain obtained depends on the
metric and core algorithm, but the final effect is al-
ways positive. The choice of the filtering mecha-
nism affects the results, and there is a clear pattern
that shows that KR filtering contributes to enhance
robustness to a greater degree than PL. Among KR
options, KR4 and KR8 generally are the best alter-
natives. Despite these differences, in every instance
the combined approach led to sizable improvements
in all metrics with respect to the non-robust standard
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algorithms. All the reported median differences be-
tween the baseline values of the metric for the stan-
dard MOEAs and the robust versions were signifi-
cant at 1%.

4. Conclusions

The issue of robustness is one of the most important
open research lines in financial portfolio optimiza-
tion. The fact that traditional methods tend to be
very sensitive to deviations on the estimates for fu-
ture returns and the associated variance-covariance
matrix often leads to unreliable forecasts for the ef-
ficient frontier. For this reason, in this paper we sug-
gested using a combined approach that adds time-
stamped resampling over four evolutionary multiob-
jective algorithms and random matrix theory based
filtering.

The combined approach was run on four filtered
set of parameters. Out of these, three corresponded
to the strategy based on Krzanowski stability sug-
gested by Daly et al. and the fourth to the alterna-
tive introduced by Plerou et al.. The first three were
specifically KR2, KR4 and KR8, the combination of
parameters that offered the best results in previous
financial portfolio optimization tasks. All of these
reconstruction strategies were tested on a 20-year re-
turn series on the components of the Spanish broad
index, IBEX-35, using four core algorithms: two ge-
netic algorithms NSGA-II and SPEA2, a representa-
tive of multiobjective differential evolution, GDE3,
and a multiobjective particle swarm optimization al-
gorithm, SMPSO.

The stability of the solutions was assessed based
on four different metrics: stability, estimation error,
sensitivity to extreme scenarios and unrealised re-
turns. The use of the combined approach improved
significantly the stability of the final solution regard-
less of the filtering chosen. Having said that, KR
strategies, specially KR4 and KR8, clearly outper-
formed Plerou et al. The choice of the basic meta-
heuristic did no have any impact on that regard, as
the mentioned pattern was very prevalent. It made,
however, a big difference in terms of obtaining the
most robust portfolios. No core algorithm offered
better results than the rest across all of the four ro-

bustness indicators, but NSGA-II turned out to be
the dominant one. This genetic algorithm offered
the best performance for ER, EE and ST. SMPSO
provided the best results in terms of UR, as its port-
folios tended to be closer to the actual efficient fron-
tier. For this reason, unless the decision maker had
a very special interest in UR, among the reviewed
alternatives we would recommend NSGA-II.

Future extensions of this work might include the
increase of range of core algorithms tested, a com-
prehensive optimization effort on the parameters of
each algorithm or the analysis of the scalability of
the approach with larger sets of investment alterna-
tives.
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