

 بسم الله الرحمن الرحیم

Efficient Network traffic classifier: Composition
approach.

by

Hossein Doroud

A dissertation submitted by in partial fulfillment of the requirements for
the degree of Doctor of Philosophy in

Telematic Engineering

Universidad Carlos III de Madrid

Advisor:

Prof. Andrés Marín López

Tutor:

Prof. Andrés Marín López

October 2019

© Hossein Doroud. Some rights reserved.
This thesis is distributed under license “Creative Commons Attribution – Non Commercial –

Non Derivatives”.

iii

Acknowledgements
This thesis is the culmination of my journey of Ph.D which was just like climbing
a high peak step by step accompanied with encouragement, hardship, trust, and
frustration. When I found myself at top experiencing the feeling of fulfilment, I
realised though only my name appears on the cover of this dissertation, a great many
people including my family members, my friends and colleagues have contributed
to accomplish this huge task.

Firstly, I would like to express my sincere gratitude to my advisor Prof. Andrès
Marìn Lòpez for the continuous support of my Ph.D study and related research, for
his patience, motivation, and immense knowledge. His guidance helped me in all
the time of research and writing of this thesis.

My sincere thanks also goes to Prof. Antonio Pescapè, Dr. Narseo Vallina-
Rudriguez, Prof. Adam Wolisz and Prof. Anatolij Zubow, who provided me an
opportunity to join their team as intern, and who gave access to the laboratory and
research facilities. Without they precious support it would not be possible to conduct
this research.

Finally, I acknowledge the people who mean a lot to me, my parents, Nazir and
Iran, for showing faith in me and giving me liberty to choose what I desired. I salute
you all for the selfless love, care, pain and sacrifice you did to shape my life. Al-
though you hardly understood what I researched on, you were willing to support
any decision I made. I would never be able to pay back the love and affection show-
ered upon by my parents. Also I express my thanks to my brother Reza, and sisters
Lina, Bahareh for their support and valuable prayers.

I owe thanks to a very special person, my Wife, Elnaz for her continued and
unfailing love, support and understanding during my pursuit of Ph.D degree that
made the completion of thesis possible. You were always around at times I thought
that it is impossible to continue, you helped me to keep things in perspective. I
greatly value her contribution and deeply appreciate her belief in me.

PUBLISHED AND SUBMITTED CONTENT

• H. Doroud, G. Aceto, W. D. Donato, E. A. Jarchlo, A. M. Lopez, C. D. Guerrero, and A.
Pescape, “Speeding-Up DPI Traffic Classification with Chaining,” 2018 IEEE Global
Communications Conference (GLOBECOM), 2018.

o DOI: 10.1109/GLOCOM.2018.8648137
o As the main author, the idea, implementation and evolution were my contribution

and I wrote the paper in collaboration and under supervision of the participated
authors.

o All content of the paper is used in the thesis and distributed in:

▪ Introduction

▪ Chapter 2

▪ Chapter 6
o The material from this source included in this thesis is not singled out with

typographic means and references.

• F. Michclinakis, H. Doroud, A. Razaghpanah, A. Lutu, N. Vallina-Rodriguez, P. Gill, and
J. Widmer, “The Cloud that Runs the Mobile Internet: A Measurement Study of Mobile
Cloud Services,” IEEE INFOCOM 2018 - IEEE Conference on Computer
Communications, 2018.

o DOI: 10.1109/INFOCOM.2018.8485872
o As the second author, my responsibility was to carrying out passive measurement

and write the corresponded section of the paper under supervision and in
collaboration with the rest of the authors.

o The content of the paper is used partially in this thesis. Chapter 4 represent my
research work which I contributed with this paper.

o The material from this source included in this thesis is not singled out with
typographic means and references.

• F. Michelinakis, H. Doroud, A. Razaghpanah, A. Lutu, N. Vallina-Rodriguez P. Gill & J.
Widmer, (2017). Content Distribution Networks in the mobile age.

o URL: http://eprints.networks.imdea.org/id/eprint/1745
o As the second author, my responsibility was to carry out passive measurement

corresponded to the relevant section of the poster under supervision and in
collaboration with the rest of the authors.

o The content of the poster is used partially in this thesis. Chapter 4 represent my
research work which I contributed with this poster.

o The material from this source included in this thesis is not singled out with
typographic means and references.

OTHER RESEARCH MERITS

• E. A. Jarchlo, X. Tang, H. Doroud, V. P. G. Jimenez, B. Lin, P. Casari, and Z.
Ghassemlooy, “Li-Tect: 3-D Monitoring and Shape Detection Using Visible Light
Sensors,” IEEE Sensors Journal, vol. 19, no. 3, pp. 940–949, 2019.

• E. A. Jarchlo, S. M. Kouhini, H. Doroud, G. Maierbacher, M. Jung, B. Siessegger, Z.
Ghassemlooy, A. Zubow, G. Caire, “Flight: A Flexible Light Communications network
architecture for indoor environments”, Conference Proceeding Contel2019

vii

UNIVERSIDAD CARLOS III DE MADRID

Abstract
Telematic Engineering

Doctor of Philosophy

Efficient Network traffic classifier: Composition approach.

by Hossein Doroud

Internet Service Providers (ISP) are eagerly looking for obtaining metadata from the
traffic that they carry. The obtained metadata is a valuable asset for ISPs to enhance
their functionality and reduce their operational cost. Classifying a network traffic
based on the application (app) that generates the traffic is vital for today’s ISPs and
network providers. They use Network Traffic Classification (NTC) to improve many
aspects of their network like security and resource allocation. In addition, NTC en-
ables the ISPs to offer new services to their customers and end users.

However, NTC faces a big challenge due to the high dynamic Internet ecosys-
tem. Thousands apps are published daily[1] and NTC needs to be updated with
their footprint. Moreover some of the existing apps do not follow IANA[2] port
number assignment list to use port number which provides more complexity to the
ecosystem. Besides, encryption is a trend to secure end-to-end communication and it
makes performing NTC hard for those classifiers who relay on information in users
payload. Last but not least the volume of traffic that NTC has to investigate is dras-
tically increasing. Therefore, NTC should be fast enough to do the classification
on-line which is an essential requirement for many NTC applications. in this thesis,
I propose Chain as a novel algorithm to do NTC. Chain sequentially investigates dif-
ferent aspects of a network traffic and brings a significant improvement in tradeoff
between classification performance and speed. Besides, it shows a great flexibility to
adopt to the new network traffic due to its modularity design. I have implemented
Chain in Traffic Identification Engine (TIE) [3] platform and have evaluated its per-
formance with data set [4] which is published by CBA research group at Technical
University of Catalunya. Following I have developed a platform named GTEngin to
collect ground truth driven from mobile apps and then I have reevaluated the per-
formance of my proposal with the new ground truth. In addition, I participated in an
investigation carrying out on mobile Internet to study the possibility of improving
my proposal performance in mobile ecosystem.Consequently, I leverage the result of
the investigation and measure the enhancement of my proposal performance which
achieved accordingly.

HTTPS://WWW.UC3M.ES
https://www.uc3m.es/master/telematics-engineering

ix

Contents

Acknowledgements iii

Abstract vii

1 Introduction 1
1.1 Background . 1

1.1.1 Port-based Approach . 1
1.1.2 Payload-based Approach . 2
1.1.3 Statistical-based Approach . 2
1.1.4 Pros and Cons . 3

1.2 Objective . 3

2 The State of the art 5
2.1 nDPIng . 5
2.2 C4.5 . 5
2.3 CoralReef . 6
2.4 Testbed . 6
2.5 Overall Performance . 7

3 Chain: A Network Traffic Classifier 9
3.1 Related Works . 9
3.2 How Chain Works . 10
3.3 Implementation . 11
3.4 Evaluation . 12

3.4.1 Data and Tools . 12
3.4.2 Experimental Evaluation . 14
3.4.3 Experimental Comparison . 14

4 Mobile Traffic Classification 17
4.1 GTEngin: the Ground Truth Builder . 17

4.1.1 GTEngin Setup . 18
4.2 Mobile Traffic & Chain Performance . 20

5 Mobile Ecosystem 23
5.1 Datasets . 23
5.2 Method . 24

5.2.1 Leveraging reverse DNS lookups 24
Manual Inspection . 25

5.2.2 Leveraging AS information . 25
5.2.3 Method Limitations . 26

5.3 CSP Presence on Mobile Apps . 26
5.4 The Study Outcome . 28

x

6 Influence of CSP on NTC Performance 29
6.1 Filtering out CSP related Flows . 29
6.2 Performance Measurment . 32

7 Conclusion and Future Works 35
7.1 Conclusion . 35
7.2 Future Works . 36

A CSP Footprint 39
A.1 list of CSP PTR records . 39
A.2 list of CSP Autonomous System . 43

Bibliography 45

xi

List of Figures

2.1 TIE Architecture[41]. 6

3.1 Multiple classifiers approach. 9
3.2 Multiple classifiers approach. 10
3.3 Chain classifier block diagram. 11
3.4 TIE Architecture. 12
3.5 Classification Precision of Chain and its competitors among different appli-

cations. The applications are ordered by increasing number of samples. . . . 15
3.6 Classification Recall of Chain and its competitors among different applica-

tions. The applications are ordered by increasing number of samples. 15
3.7 The average and standard deviation of classification time over 100 iterations. 16

4.1 Diagram of GTEngin structure. 18
4.2 Classification Recall of Chain and its competitors among different applica-

tions. The applications are ordered by increasing number of samples. 21
4.3 Classification Precision of Chain and its competitors among different appli-

cations. The applications are ordered by increasing number of samples. . . . 21
4.4 nDPIng confusion matrix . 22

5.1 A simplified case of the Flipboard app demonstrates the network domains
reached by the app (each red arrow represents a traffic flow to a domain). . . 23

5.2 Combination of ASN and PTR approaches to detect CSPs 25
5.3 Top 15 CSP by app usage. We show their domain penetration for ref-

erence, both at the FQDN-level and second-level domains (SLD). . . . 26
5.4 CSP and domain coverage as a function of domain popularity (i.e.,

domain-in degree: number of connecting apps). 27

6.1 Precision of j48 with and without CSP traffics 32
6.2 Precision of Chain with and without CSP traffics 32

xiii

List of Tables

1.1 Strengths and weaknesses of classification relaying on the main approaches . 3

2.1 Performance of state-of-the-art classifiers in terms of Precision (P) and Recall
(R) percentages. 8

3.1 Structure of the ground truth in term of number of flows, number of packet
and size of flows which are generated by different apps. 13

3.2 Performance of Chain classifier (Overall) and its modules in terms of Preci-
sion (P) and Recall (R) percentages. 14

3.3 Characterization of classification performance of Chain and nDPIng. 16

4.1 List of selected apps for traffic generation process 19
4.2 Structure of the ground truth in term of number of flows, number of packet

and size of flows which are generated by different app. 20

5.1 Classification of 33 ASs which entirely belong to a given CSP according to
Caida database . 26

5.2 Top 5 domain based on their app penetration 27
5.3 CSP penetration by FQDN . 27
5.4 CSP penetration by Second Level Domain of FQDN 27

6.1 Detected CSPs and their distribution on the ground truth 29
6.2 App reliance to CSP services considering the traffic generated by apps 30
6.3 Structure of the ground truth without CSP related traffic in term of number of

flows, number of packet and size of flows which are generated by different
apps. 31

A.1 List of PTR record assocsiated to CSPs. 39
A.2 List of Autonomous System (AS) number associated with CSPs 43

xv

List of Abbreviations

NTC Network Traffic Classification
app application
DPI Deep Packet Inspection
ML Machine Learning
CSP Cloud Service Provider
LPI Lightweight Packet Inspection
DNS Domain Network Service
TIE Traffic Identification Engine
ID Intrusion Detection
IoT Internet of Thing

1

Chapter 1

Introduction

Network Traffic Classification (NTC) is a process of classifying network’s traffic ac-
cording to its corresponding applications (generally known as the app) which gen-
erates the traffic. There are several defined practical applications of NTC for Internet
Service Providers (ISP), governmental agencies and end users which are described
below:

1. NTC enables an ISP to detect the emerging application traffic requirements
and develop its infrastructure accordingly.

2. Besides, ISPs can do traffic engineering and improve their Quality-of-Service.

3. Therefore, they can offer new services to their customers with a better network
service pricing.

4. NTC can be used in the core of an automated intrusion detection system [5],
in order to detect patterns of denial of service attacks or the users’ suspicious
activities and worms .

5. In addition, NTC can assist the automated intrusion detection system to re-
allocate the network resources dynamically based on the customers’ priori-
ties [6].

6. NTC is a fundamental component of ISP-based Lawful Interception (LI) solu-
tions [7], since the governments enforce ISPs to provide LI of IP data traffic [8].
Therefore, the ISPs can report network activities of a specific user in a specific
time upon the government’s request.

1.1 Background

Many research works have been done to participate in NTC evolution, since two
decades ago.[9] The majority of the works have been focused on an approach corre-
sponding to one of the three main aspects of a flow. There is a brief introduction to
each one of them in the following paragraphs .

1.1.1 Port-based Approach

Port-based is the first approach since early days of Internet. It classifies flows based
on their destination’s port number. Although it is a fast and a low memory/process
consumption approach, it suffers from high false positive ratio due to many apps
which do not have a registered port number like Team Fortress 2 [10] or use ’well
known’ port numbers such as using ICMP proxies to bypass firewalls or even regis-
tration at hotels’ hotspots [11]. This limits port-based classifiers accuracy from 30%

2 Chapter 1. Introduction

up to 70%[12]. Nevertheless, there are still some apps such as Email that have to use
registered port number to communicate with different servers. Therefore, the port
number is still valuable to classify specific apps.

1.1.2 Payload-based Approach

Payload-based classifier or Deep Packet Inspection (DPI) is another approach which
implies string matching on packet payload to find apps’ signature. It is known as the
most accurate approach in the field and many publications ground truth are based
on that[13][14][15][16]. Despite its high accuracy, it has three main drawbacks: (i) It
is expensive in terms of memory and process consumption because it needs to store
apps’ signature in a data structure and also it requires checking each byte of packet
payload exhaustively to find signature. Therefore, it is not practical to be used online
for a high speed link. Many research works [17][18] [19] developed DPI implemen-
tation on hardware like NetFPGA [20] to meet the high speed link requirement for
NTC. (ii) Looking inside the user data rises privacy concerns. (iii) It is incapable
against encrypted flows and applications with no existing signature data such as
evolving, polymorphic, and zero-day malware.

Although both port-based and DPI approaches have their limitations, they are
still widely used in practice [21] as adopted by commercial products (e.g., Cisco
NBAR1, Ipoque PACE2) mainly to implement application-level firewalls. Specifi-
cally, many commercial solutions apply DPI to encrypted HTTPS traffic by adopting
a man-in-the-middle [22] technique based on trusted SSL certificates (e.g., SonicWall
DPI-SSL3, A10 Thunder SSLi4). Within this approach, a DPI classifier is placed in
the middle of communication of an end user and its corresponded server. Both end
points establishes a SSL [23] tunnel to the DPI classifier and the classifier forward
the traffic to either side. Therefor, the DPI classifier can decrypt the traffic and do its
classification while the communication is protected by the encryption.

In addition, J.Sherry et al. proposed BlindBox [24] to use DPI directly on the
encrypted traffic. BlindBox encrypts DPI rules with the end points public key and
considers the encrypted rules to detect different apps.

However the other limitations of DPI still apply to these cases.

1.1.3 Statistical-based Approach

To overcome the above mentioned issues, recognizing apps based on the flow statis-
tical fingerprints by means of Machine Learning (ML) has been the dominant trend
in the field of NTC [7], [25]. ML classifiers automatically build a model to map flow-
level statistical features to apps during a training phase and then use the model to
classify new flows. As the resulting model is much smaller than the signatures used
by DPI approaches and, its computational complexity is way lower than regular ex-
pression matching, it is more efficient in terms of memory and processing usage. In
addition, since it does not require access to packets payload, it does not rise any pri-
vacy concern and remains practical against encrypted flows. However, real life tests
show that it can recognise a few traffic categories and it is not accurate for mission
critical applications.[26]

1http://bit.ly/cisco-nbar
2http://i-en.co.th/ipoque-pace/
3http://bit.ly/sonic-wall-dpi-ssl
4http://bit.ly/a10-thunder-ssli

http://bit.ly/cisco-nbar
http://i-en.co.th/ipoque-pace/
http://bit.ly/sonic-wall-dpi-ssl
http://bit.ly/a10-thunder-ssli

1.2. Objective 3

1.1.4 Pros and Cons

Each approach offers several advantages while suffers from some drawbacks. Ta-
ble 1.1 illustrates pros and cons of the classifiers developed based on the main ap-
proaches principle. The table compares compares the approaches considering the
parameters mentioned below:

• Accuracy of classification

• Cost of classification in term of memory and processing consumption

• Privacy violation of users

• Updating a classifier to recognise traffic generated by new apps

TABLE 1.1: Strengths and weaknesses of classification relaying on the
main approaches

Port Number ML DPI
Accuracy Low Moderate High
Cost Cheap Cheap Expensive
Privacy Safe Safe Violate
Updating easy Moderate complex

Besides Accuracy and Cost parameters which have been discussed earlier, I would
like to focus on Privacy and Updating aspects of different NTC approaches.

The user sensitive data is wrapped in packet’s payloads and a DPI classifier re-
lies on the payload information to perform the classification. Therefore, DPI is the
only NTC approach which has access to the user’s private data. However, there are
several DPI based classifiers such as PortLoad[27] and Libprotoident [14] which in-
tend to respect the user’s privacy by limiting their inspections to just a small portion
of the first payloads.

Many new apps are developed and installed by users daily all around the world.
Consequently, a classifier is required to update constantly to recognise the new traf-
fic types. Updating a port based classifier is as easy as adding a new entry to the
table which maps a given port number to its corresponding app. However, the up-
dating procedure is more complex for a classifier based on ML or DPI. A ML based
classifier needs an accurate training dataset to update its model. A DPI classifier
requires to be reinforced with the app signature of a new app to recognise its traffic.
To this end, it is essential to collect a representative traffic set of the new app and
extract a unique string from the traffic as the app signature. Following, signature
database of the classifier should be updated with the new signature.

1.2 Objective

Considering the vital role of NTC in toddy’s networks, I focus my effort to improve
NTC in my PhD thesis. My initial hypothesis is that NTC can be enhanced by a
composition of well-known approaches.

The objectives in order to validate my hypothesis are the following:

• Propose and implement Chain classifier

• Develop a platform to build a reliable ground truth

4 Chapter 1. Introduction

• Study environmental parameters that affect NTC performance

I designed a research plan consist of the following milestones to achieve the tar-
geted objectives.

• Reviewing literature

• Designing and proposing my classifier named Chain

• Implementing Chain

• Evaluating Chain performance with publicly available ground truth (fixed traf-
fic)

• Comparing Chain performance with its competitors

• Developing a platform to collect ground truth from mobile apps

• Collecting a first hand and fairly representative ground truth from the most
popular mobile apps (mobile traffic)

• Evaluating the performance of Chain and its competitors with the ground truth
collected from mobile apps

• Measuring the dependency of android apps on CSPs in the mobile internet
ecosystem

• Studying the impact of traffic generated from communication between CSPs
and mobile apps on Chain

Within the thesis, I explain the state-of-the-art classifier following the well-known
approaches in Chapter II. I introduce related works combining different classifica-
tion approaches and introduce my proposal (Chapter III). In addition, Chapter III
contains performance evaluation of the proposal and a comparison between Chain
and state of the art. Chapter IV introduces GTEngin platform and illustrates the
proposed classifier performance in mobile ecosystem. I study mobile ecosystem to
improve my proposal performance in Chapter V. Chapter VI illustrates the perfor-
mance enhancement achieved in the mobile internet. Finally, there is a discussion
session which discuss pros and cons of the proposed classifier and draw conclusions
and future directions (Chapter VI).

5

Chapter 2

The State of the art

I select a set of classifiers as competitors to my proposal. These classifiers are ei-
ther state of the art instances of the well-known approaches, or their properties are
investigated comprehensively in many research works. The following chapter in-
troduces the selected classifiers and reports their performance based on the ground
truth which is summarised in table 3.1.

2.1 nDPIng

nDPIng [28] is the next generation of nDPI [26] which involved many data structure
modifications to report different levels of a classification result in a consistent for-
mat. nDPI is developed to be: (i) reliable (ii) extensible to accommodate new proto-
cols (iii) integratable with applications and kernel which are developed under open
source license (iv) capable to extract basic network metrics and metadata such as
network latency and DNS query/response. nDPI relays on the host name extracted
from server certificate to classify an encrypted traffic. e.g., an encrypted flow with
server "api.twitter.com" is classified as Twitter. Although research works [29][30]
confirmed the high accuracy of nDPI, its output has a limited usage. The output is
a mixture of label from different levels which supposed to introduce a flow in the
most detail way. Therefore, the output can be content type (Flash, MPEG, etc.), ser-
vice providers (Twitter, Facebook, etc.), application protocol (DNS, HTTP, etc.) or
even IP protocol (UDP, TCP, etc.). Consequently, nDPI can label a flow with its con-
tent type and labels the other based on its application protocol. nDPIng modifies
nDPI data structure to return all the detected characteristics of an classified flow to
provide more practical classification results which can be used by different network
applications targeting a specific characteristic of flows [31].

2.2 C4.5

C4.5 is a decision tree algorithm which is developed to build a classifier based on
nominal attributes. However, the continuous attributes are still applicable as C4.5
algorithm can convert them into the nominal by performing a binary split based
on a threshold. The algorithm considers all possible thresholds for a continuous
attribute and calculates its corresponded gain. The threshold with the highest gain
will be the final candidate to perform the binary split. Therefore, it is compatible
with both nominal and continues value attributes. C4.5 selects the attribute with the
highest gain as a root of the tree and expends the three based on the other attributes
information [32].

6 Chapter 2. The State of the art

P. Perera et al. [33] and M. Shafiq et al. [34] measured the performance of differ-
ent ML algorithms such as Bayes Net [35] and C4.5. Their studies confirmed the
superiority of C4.5 among the selected ML algorithms.

In addition, [36] reported the high accuracy (97%) of C4.5 to detect P2P traffic
based on the first 5 packets of a flow. Following, Y. Zhang et al. [37] skipped 10 to
1000 packets from the beginning of flows to study its impact on C4.5 performance
by considering P2P traffic. The experiment showed that C4.5 is robust against such
a distortion.

2.3 CoralReef

Using the port numbers to classify network traffic is the most straightforward ap-
proach. However, it is essential to relay on a up-to-date mapping table which re-
flects the latest modification of IANA [2] list to achieve the maximum classification
gain reachable by a port based classifier. CoralReef is a network monitoring suit de-
veloped by CAIDA [38] to analyse network traffic. The database of CoralReef con-
tains the most up-to-date list of port numbers assigned by IANA. Several research
works [39][27][40] relay on CoralReef to measure the different aspects of port-based
classifiers.

2.4 Testbed

NeTraMark [40] [41] and Traffic Identification Engine(TIE) are two platforms
which are introduced to the community of NTC to implement and compare classi-
fiers. Both of the testbeds intend to provide comparability, reproducibility, exten-
sibility, synergy, and flexibility/ease-of-use to the researchers. Both of them offer
several ready to use classifiers based on different classification approaches in format
of plugins. Besides, the testbeds permit their users to implement their own classifier
as a new plugin.

Although NeTraMark offers a user-friendly GUI, it does not support online classi-
fication. Furthermore, there is no other support to maintain it up to date neither from
its development team, nor from the researcher’s community. On the other hand, TIE
has been involved in many enhancements since its creation date on 2009 by its orig-
inal developers team as well as research communities such as Universidad de la
Republica of Montevideo [42] and University of Brescia [43]. In addition, TIE
has the capability of online classification functionality. Therefore, I consider it as the
testbed for implementation and evaluation of my proposal and the state of the arts.

Trainer

Output

Pre-classifier

Decision
Combiner

Feature
Extractor

Session
Builder

Packet
Filter

Classifying

Training

Classification
Results

Training
Results

Classification Plugins

FIGURE 2.1: TIE Architecture[41].

TIE classifies network traffic in three different levels of granularity: app group,
app and sub app or content. E.g., TIE classifies a flow generated from Skype to

2.5. Overall Performance 7

Conferencing, Skype and Image category as the group, app and content label re-
spectively.

Also it is possible to run TIE depending on the traffic source and operation con-
cern in offline, online and cycling mode. The latest mode performs the classification
periodically in a user define interval time.

Figure 2.1 illustrates the block diagrams of TIE components. A user can run TIE
either to train a machine-learning classifier, or to do the classification. TIE processes
packets in five different stages which the last two stages vary depending on the
objective of the user.

Packet filtering is the first stage of TIE process which captures or reads a raw
packet (link layer frame) by means of Libpcap library[44]. In addition, it has the ca-
pability of filtering the data by both Berkeley Packet Filters [45] and user-space
filtering rules like targeting traffic within a specified time interval.

Session builder stage splits traffic to sessions based on their five tuples and a
user-define timeout (source and destination IP address and port number as well as
transport protocol with 60 sec timeout) or their host. Host sessions consist of all
income and outcome traffic of a host.

Feature extractor is invoked by Session builder upon arrival of a new packet
and is in charge of extracting features which are required by classification plugins.

Considering classification objective, Decision combiner is the fourth stage of
TIE process. This stage checks the availability of all features required for a list of
selected classifier plugins to invoke them and collect their result consequently. Fol-
lowing, Decision combiner combines the obtained results based on different con-
figurable combination rules. Finally, Decision combiner labels a session based on
the outcome of the combination rule with a percentage of confidence which shows
the reliability of the classification result.

TIE defines plugin as a format with standard interface for integration of new clas-
sification techniques. Therefore, Classification plugins are the classifiers which
are encapsulated in TIE plugin format. The plugins are loaded dynamically on run
time.

Output generator is responsible for creating an output file consists of the ses-
sions information and their corresponded classification results.

However, the forth TIE stage would be Pre-classifier if the objective of process
was focused on training. Pre-classifier loads labels corresponded to each flow
from a ground-truth file.

Finally, Trainer triggers the signature collection function implemented in clas-
sifier plugins and permits the plugins to collect the information of each session in
order to train themselves.

2.5 Overall Performance

Table 2.1 reports the measurement performance of state-of-the-art classifiers in terms
of Recall and Precision (equation 3.4.1). I conduct the measurement on a server
equipped with Intel(R) Xeon(R) CPU E5-2430@2.20GHz processor and 15 GB of
RAM, running Linux Ubuntu 14.04.5 LTS. TIE is considered as the testbed of the
measurement and the ground truth which is provided by Carela-Español et al. [4].

Considering the measurement outcome, nDPIng gains the highest Precision with
a negligible cost of reduction in Recall in the most classes. Although C4.5 does
not perform as well as nDPIng, it can be considered as a classifier for non-critical
applications. CoralReef shows the lowest performance among the other classifiers.

8 Chapter 2. The State of the art

Although it reaches the highest Precision and Recall in a couple of the app classes, it
fails to classify the rest of the classes.

The measurement aims to illustrate an overview of the classifiers performance.
There are more details about the classifier performance and the structure of the
ground truth which can be found in chapter 3.

TABLE 2.1: Performance of state-of-the-art classifiers in terms of Pre-
cision (P) and Recall (R) percentages.

CoralReef C4.5 nDPIng
P R P R P R

FTP (Control) 100 100 89 81 100 77
FTP (Data) 0 0 66 80 72 69
Flash 0 0 78 38 89 74
Emule 0 0 89 91 92 49
Bittorrent 100 3 86 96 100 94
Web (HTTPS) 100 100 92 96 100 94
Web (HTTP) 100 100 97 99 100 94

9

Chapter 3

Chain: A Network Traffic Classifier

This chapter provides a comprehensive explanation of Chain classifier’s function-
ality and its implementation. Besides, I evaluate the performance of the proposed
classifier and compare its results with the well-known approaches.

However, I consider similar classifiers in prior to my proposal and introduce
them briefly in the Related Works section.

3.1 Related Works

There is a tradeoff between performance and resource consumption in the NTC field.
In order to tackle this issue, a trend has arisen from multiple research studies: the
proposal of various combinations of different approaches. Alcock et al. [14] proposed
libprotoident, which is a Lightweight Packet Inspection (LPI) implemented as a
C library. It inspects the first four payload bytes and the size of the first payload-
bearing packet of each flow in both directions and takes into account also the des-
tination port number. Several protocol identification rules are checked against all
or part of extracted information in order to classify application flows. In this man-
ner a significant amount of processing and memory consumption is saved in com-
pared to DPI. However, the possible benefit of using port number information is not
gained comprehensively, because it is exploited only for applications using well-
defined ports such as port number 53 for Domain Network Service (DNS). In addi-
tion, since detection rules are checked before port numbers, the performance gain is
sub-optimal and neglecting flow-level statistical information makes it still ineffective
on encrypted traffic.

Several research works [46]–[48] use multiple classifiers in parallel and combine
the results with different algorithms in order to obtain a final result(figure 3.1).

Classifier 1

Classifier 2

Classifier N

∑
Label

FIGURE 3.1: Multiple classifiers approach.

Specifically, Dainotti et al. [47] demonstrates how such approach leads to an im-
provement of the accuracy, but at the cost of increasing the processing costs linearly
with the number of classifiers.

Foremski et al.[49] introduced the Waterfall multi-classifier, which consists of
five cascaded classifiers (figure 3.2).

10 Chapter 3. Chain: A Network Traffic Classifier

dstip

dnsclass

portsize

npkts

port

Time (10 Sec)

FIGURE 3.2: Multiple classifiers approach.

For each flow, classifiers criteria are checked against extracted features and more
features get extracted until all classifiers are able to proceed with the classification.
Waterfall relies on flow-level statistical information (i.e., packet size and inter-
arrival time), destination port, and IP address, as well as DNS name associated with
IP. Presented results show that Waterfall is quite accurate and it reduces process-
ing consumption significantly, but due to the depth of the cascaded architecture it
can introduce a significant delay for obtaining the classification result. Compared
to Waterfall, my proposal is based upon a similar approach of cascading classi-
fiers, but I limit the chain to just two stages, using different classification algorithms
and features than Waterfall (ignoring IP address and adding a DPI-based stage).
Moreover, I adopt a principled approach for the sequence of stages: while Waterfall
classification sequence is not informed by decreasing complexity (the authors defer
to future works the criterion for choosing a specific sequence of classifiers), I decide
to employ the simplest (and fastest) methods first, as my goal is to improve the effi-
ciency of DPI without compromising its state of the art classification performance.

3.2 How Chain Works

The overall idea proposed with Chain is a classifier architecture made of sequential
stages, implemented with modules of increasing resource (time, computation, mem-
ory) cost. Each stage consists of one or more classifiers, which either identify flows
precisely (with low rate of false positives), letting the flows out the chain, or passes
them to the next stage. Therefore classification precision is the primary objective of
each stage , and only low-confidence results will be passed on to subsequent(more
resource-demanding) stages. In this work I propose a specific instance of the Chain
architecture made of two stages. The first stage is a consensus-based multi-classifier,
composed of a port-based classifier and a ML one. The result of this stage is a clas-
sification verdict only if both classifiers agree, otherwise the flow is passed on to
the subsequent stage. The second stage is a DPI-based classifier. Figure 3.3 illus-
trates how network flows traverse Chain classifier components up to the end of the
classification process.

Although port-based and ML classification approaches suffer from high rate of
false positives, they are very fast classifiers. In considering them for the first stage, I
am motivated by the expectation that the intersection of their false positives is rela-
tively very small, because port numbers and flow-level statistic are two independent
aspects of a flow and the concepts behind the two classifiers are highly different. I
refer to the next section for the experimental validation of such expectation. Hence,
the first stage of Chain exploits this property to quickly (in few packets) classify

3.3. Implementation 11

FIGURE 3.3: Chain classifier block diagram.

flows in case both classifiers agree. This way I am able to overcome the main weak-
ness of port-based classifiers, i.e. the intentional adoption of well-known (usually
unfiltered) ports to carry traffic of other applications.

The remaining unclassified (Unknown) traffic is passed to the second stage, im-
plemented using a DPI approach, which is the most precise but most demanding in
terms number of packets, memory, and processing. To improve Recall, the second
stage considers the classification response of the ML module as fall-back, in case DPI
is not able to issue a verdict. We have reported results proving the improvement
in Table 3.2, in columns “DPI only” and “DPI+ML”. Chain issues the verdict of the
second stage without further investigation.

The following algorithm 1 explains the Chain classification procedure.

Algorithm 1 Chain classifier

1: Port_label ← Port_based(Flow)
2: while packets_arrived_in_each_directions ≤ 5 do
3: Flow_ f eatures← extract_ f eatures(packet)
4: end while
5: ML_label ← ML(Flow_ f eatures)
6: if Port_label = ML_label then
7: return Port_label . Verdict of 1st Stage
8: else . 2nd Stage
9: repeat

10: DPI_label ← DPI(Flow)
11: until (packets_arrived ≤ 20 OR
12: DPI_label 6= Unknown)
13: if DPI_label 6= Unknown then
14: return DPI_label
15: else
16: return ML_label
17: end if
18: end if

3.3 Implementation

To implement a working prototype of Chain classifier I based it on the Traffic
Identification Engine (TIE) [50], a well-known open source platform for imple-
menting and evaluating network traffic classifiers. Due to its modularity design, TIE

12 Chapter 3. Chain: A Network Traffic Classifier

provides a platform to fairly compare different NTC techniques, where new classi-
fication technique can be introduced as plug-ins, and combined according to a user-
defined combination rule. Figure 3.4 shows TIE’s logical blocks components. Some
of the components are designed to be utilised just for scenarios [3]. TIE’s combiner
component is designed to combine several classification result in parallel scheme.
Therefore I develop a new combiner specifically for Chain to follow its workflow.
In addition, I develop and update the required plugins corresponded to the Chain
modules. The modified and developed components are highlighted in the figure 3.4
with orange colure.

Trainer

Output

Pre-classifier

Decision
Combiner

Feature
Extractor

Session
Builder

Packet
Filter

Classifying

Training

Classification
Results

Training
Results

Classification Plugins

FIGURE 3.4: TIE Architecture.

The instance of Chain we propose in this work requires for its stages three classi-
fication techniques. As for the first stage, the port-based classifier is implemented via
the port plug-in, which adopts the CoralReef [51] database. This is the only available
plug-in that Chain uses without any modification. The ML classifier, instead, is an
updated version derived from TIEWeka, a fork of TIE introducing a plug-in to stream
flow features to Weka ML engine [52] and collects its results. As for the second stage,
I developed a new plug-in based on nDPIng [28], which is the most advanced and
up-to-date DPI algorithm publicly available, to the best of my knowledge.

The original TIE combiner invokes plug-ins and passes them the required subset
of classification features without considering the results of other plug-ins (thus im-
plementing a purely parallel architecture). Instead, Chain requires to invoke some
plug-ins sequentially depending on the result of others. The TIE combiner has been
modified significantly in order to implement the sequential Chain architecture and
algorithm 1, instead of the original (purely parallel) one.

3.4 Evaluation

In order to investigate Chain classifier’s performance, there is a need to implement
and evaluate it. An existing NTC platform is selected and modified to implement
Chain classifier. In addition, obtaining a ground truth is considered as a challenge
for the evaluation. One of the main challenges which Network Providers establish
strict rules for it is capturing traffic due to the privacy protection issue. The other
challenge to face with is assigning labels to the captured traffic according to their
app accurately.

3.4.1 Data and Tools

Carela-Español et.al [53] made an experiment to investigate the accuracy of ground
truths obtained with DPI. Although it has been used on several research works [13],
[49], [54]–[57], it reveals that DPI is unable to provide a reliable ground truth. Fur-
thermore, using a ground truth generated with DPI would overestimate the preci-
sion in the case of Chain, since it includes a DPI stage. Based on these considerations,

3.4. Evaluation 13

TABLE 3.1: Structure of the ground truth in term of number of flows,
number of packet and size of flows which are generated by different

apps.

App # Flow # Packet Size (byte)
HTTP 46336 4797697 4,091 M
HTTPS 8181 970354 728 M
Bittorrent 3187 677024 617 M
Emule 582 2003270 1,529 M
Flash 498 2676943 2,850 M
FTP-Data 366 988674 1,026 M
FTP-CTL 43 7146 184,351
Total 59193 12121108 10,841 M

I considered as ground truth the dataset provided by Carela-Español et. al [4], which
contains three traffic traces labeled at their generation point. Each trace includes a
PCAP file and a related info file including general metadata concerning the captured
flows as well as the app labels. Table 3.1 reports a summary of the dataset.

The dataset has been filtered excluding unlabelled flows and divided in two sets
to provide training and testing datasets for the ML classifier. Since flows were cap-
tured in sequences according to their app label, I have to modify the ordering of
flows within the traces before the division. There are two rounds of evaluation used
in this as the dataset is divided in two parts: the one used for training in the first
round is used for testing in the second round and the other way round. In this way,
both training and testing dataset contain an equal number of flow from each app.
Therefore all the flows are used for the classification once. Moreover, to compensate
for the unbalance among the classes, we adopted a classification comparison metric
suitable for unbalanced datasets when comparing our proposal with the reference
state-of-art.

I selected j48 (the Weka implementation of C4.5 decision tree) as ML algorithm
because it demonstrated to achieve high performance [33][34]among the common
ML algorithms in NTC field. Statistics (min, max, mean, standard deviation) of
packet length and packet inter-arrival time of the first five packets in each direc-
tion are considered to train ML model and classify flows on-line. TIE has been used
for features extraction of training data set which Weka uses it to build j48 ML model
with its default parameter.

The evaluation is based on the well-known classification metrics:

Precision =
Tp

(Tp + Fp)
Recall =

Tp
(Tp + Fn)

Accuracy =
Tp + Tn

N
F1 = 2× Precision× Recall

Precision + Recall
where Tp, Fp, Fn, and N stand for true positives, false positives, false negatives,

and the total of samples, respectively. Finally, Area Under the Curve (AUC) [58] is
used in classification analysis to determine which of the considered classifiers pre-
dicts better the classes (the higher the better, with 1 as maximum). prediction in
compare with its competitors. AUC has been originally used in binary classification
problems, but several works (e.g. [59]) extend the concept to multiclass problems
via classifying each class versus all the others and averaging the AUCs derived for
each class. I follow macro-average principle (equation 3.1) to measure the AUC of

14 Chapter 3. Chain: A Network Traffic Classifier

each classifier to eliminate any bias toward classes with high number of instances.
In equation 3.1, M is the number of app classes which are included in my dataset
and AUCi is AUC of i− th class.

AUC =
∑M−1

i=0 AUCi

M
(3.1)

The experiments were conducted on a server equipped with Intel(R) Xeon(R)
CPU E5-2430@2.20GHz processor and 15 GB of RAM, running Linux Ubuntu 14.04.5
LTS.

3.4.2 Experimental Evaluation

My experiments shows that Chain successfully classifies 98% of the flows (recall)
with 98% precision. It should be noted that 89% of the flows are classified by the
first stage with 97% precision.

Table 3.2 reports the performance of the Chain classifier and its sub stages in
more details. According to the table and focusing on Recall, although the first stage
is unable to classify some apps (e.g., Bittorrent, for which only 2% of flows is classi-
fied, albeit correctly), it reaches high performance to classify a significant amount of
flows generated by the other apps, such as Web and FTP (Control).

TABLE 3.2: Performance of Chain classifier (Overall) and its modules
in terms of Precision (P) and Recall (R) percentages.

1st-Stage 2nd-Stage 2nd-Stage Overall
(DPI only) (DPI + ML)

P R P R P R P R
HTTP 100 99 74 1 45 1 99 100
HTTPS 100 89 100 8 85 8 99 96
Bittorrent 100 2 100 91 98 94 98 96
Emule 0 0 100 20 94 91 94 91
Flash 0 0 100 0 99 38 77 38
FTP-Data 0 0 100 9 95 80 95 80
FTP-CTL 100 74 100 7 43 7 90 81

According to the evaluation, considering the result of ML submodule in case of
DPI substage failure (algorithm 1 at line 12) lead to significant improvement in the
classification result of apps which Port substage classifies them with pure precision.
My measurement shows that following this strategy enhances the average Precision
and Recall of FTP (Data), Flash Content and Emule by 22% and 59% respectively.
Consequently the overall Accuracy is increased by 2% and reaches up to 98%.

3.4.3 Experimental Comparison

Since the Chain classifier includes three well-known and state-of-the-art NTC ap-
proaches, I compare the performance of our proposed classifier with them individ-
ually: CoralReef, j48 and nDPIng. Using the mentioned classifiers as competitors
provide also the opportunity to compare both classification accuracy and time of
stand-alone classifiers with their composition in the Chain schema.

Figures 3.5 and 3.6 show drastic fluctuations of Precision and Recall of stand-
alone CoralReef classification results, confirming that in that form it is unpractical

3.4. Evaluation 15

for many real-life applications. However, it reaches the highest Precision and Recall
for standard apps, which represent the majority of network traffic [60].

Comparing Precision of the considered classifiers in Figure 3.5 shows that j48
reaches the lowest precision after CoralReef. Also a closer look into the set of mis-
classified instanced which are classified by j48 and CoralReef with the same label,
shows that their intersection is as low as 1.71%, confirming the expectation that mo-
tivated me in using their consensus as the first stage of Chain.

FIGURE 3.5: Classification Precision of Chain and its competitors
among different applications. The applications are ordered by in-

creasing number of samples.

FIGURE 3.6: Classification Recall of Chain and its competitors among
different applications. The applications are ordered by increasing

number of samples.

As for nDPIng and Chain, there is a close competition between them to reach
the highest overall Precision and overall Recall. Table 3.3 provides more details
about such comparison, where both classifiers achieve approximately the same per-
formance in terms of Precision and F1, with nDPIng being better by less than 2%,
while Chain results superior in terms of Recall, Accuracy, and AUC (by 5%, 6%, and

16 Chapter 3. Chain: A Network Traffic Classifier

7% respectively). This confirms the ability of Chain to keep classification perfor-
mance comparable to stand-alone DPI (even slightly improving it for some metrics).

TABLE 3.3: Characterization of classification performance of Chain
and nDPIng.

Precision(%) F1 Recall(%) Accuracy(%) AUC
Chain 98 0.98 98 98 0.91
nDPIng 99 0.96 93 93 0.89

As for the efficiency, I measure the overall time necessary to classify the whole
dataset for all the considered approaches. I run the measurement 100 times for each
classifier and report in Figure 3.7 mean and standard deviation of the resulting clas-
sification time. According to the results, as expected CoralReef and j48 respectively
result the fastest classifiers, while nDPIng the slowest one. As expected, since Chain
includes both CoralReef and j48 it results slower than them individually, but still
45% faster with respect to nDPIng. Such result demonstrates that Chain is able to
improve the trade-off between performance and classification delay of DPI signifi-
cantly.

FIGURE 3.7: The average and standard deviation of classification time
over 100 iterations.

17

Chapter 4

Mobile Traffic Classification

The previous chapter (chapter 3) introduced Chain and explained its functional-
ity. Besides, I measured Chain performance and showed its superiority in compare
with its competitors. However, the ground truth limits the performance evaluation
to Internet traffic generated by fixed nodes or fixed traffic. Although fixed traffic
contributes a considerable amount of network’s traffic, the volume and number of
mobile traffic [61] and apps [62] increases dramatically daily. The following chap-
ter studies the classification performance of Chain and the instances of the well-
known classification approaches in mobile Internet. Obtaining a fairly representa-
tive ground truth collecting from mobile apps is the first challenge which should be
faced.

4.1 GTEngin: the Ground Truth Builder

In section 4 chapter 3 I mentioned that the privacy concern prohibits ISPs to share
their users traffic with third parties. The nature of mobile devices which attaches
them to their user personal life, includes private data to the mobile traffic more than
ever. Therefore, ISPs do not publish their traffic publicly without any significant
anonymization to preserve their users’ privacy which make it unpractical for DPI
performance evaluation.

Nevertheless, a ground truth from mobile Internet is an essential ingredient for
studying the classifiers performance with mobile traffic. Therefore, it is necessary to
develop a platform to generate and capture mobile traffic from different mobile apps
on multiple mobile devices. Furthermore, the platform should label the captured
traffic with their apps’ name to be applicable for NTC.

I have proposed and implemented an architecture called GTEngin to answer the
need based on inspiration from Ciuonzo et al. work [63]. Ciuonzo et al. structure
supports just one android device while my proposal is scalable and can support
multiple android devicess. GTEngin controls multiple android devices and run ran-
domly different apps an each of them simultaneously. In parallel, GTEngin captures
the generated network traffic from the router which connects the devices to the net-
work. Also GTEngin records the network activity logs of the devices to extract the
final label at the end of the process.

Figure 4.1 shows that GTEngin uses Monkey Tool [64] to play with an app in a
device. Monkey Tool generates pseudorandom stream of events to manipulate an
app which leads to network traffic generation.

A router with DDWRT [65] platform has the capability to accept remote com-
mand like tcpdump [66]. GTEngin runs tcpdump on the router at the beginning of
traffic generation process to capture the traffic and forwards them to the local by
means of NetCat [67].

18 Chapter 4. Mobile Traffic Classification

I relay on "Network Log" to collect information about the process which gener-
ates the traffic. "Network Log" provides a unique opportunity to monitor all net-
work activities running on an android devices. I record the information which is
monitored by "Network Log" to label the captured traffic later. The source, desti-
nation IP and port number of a flow as well as its transport protocol are used as
identifier to map a captured flow with its corresponded process’s name existing in
"Network Log" information.

!"#$%"$#
!"#$%&# #'(&)'*

FIGURE 4.1: Diagram of GTEngin structure.

GTEngin process consist of the following stages:

• GTEngin runs Network Log on all the attached devices and executes tcpdump on
the router in the initialisation phase. Besides, a NetCat connection is stablished
between the local node and the router in order to forward the tcpdump (raw
packets) output to the local node.

• GTEngin selects an app from a list of predefined apps for each of the devices
and run them simultaneously on the devices. The process continues until all
of the apps in the list get executed once on each device.

• GTEngin terminates tcpdump and NetCat connection. GTEngin saves captured
traffic in a pcap file format locally.

• I label the captured file with the help of "Network Log" information after
GTEngin accomplishes his task.

4.1.1 GTEngin Setup

Although, GTEngin can support multiple android devices, the available devices limit
me to include just two devices in the process of traffic generation. The utilised de-
vices are: Smartphone Samsung Galaxy S5 (SM-G900F) with android version 6.0.1
and tablet Samsung Galaxy Tab S2 with android version 7. Also I use a 13" MacBook
pro with 2,5 GHz Core i5 and 8 GB DDR3 as a host for GTEngin. I select 15 android
apps that are among the most popular apps reported by "ANDROIDRANK" [68] on
October 2018. Table 4.1 contains the list of the selected apps.

4.1. GTEngin: the Ground Truth Builder 19

TABLE 4.1: List of selected apps for traffic generation process

App Packagename Category
mytalkingtomfree com.outfit7.mytalkingtomfree Casual
spotify com.spotify.music Music & Audio
subwaysurf com.kiloo.subwaysurf Arcade
youtube (https) com.google.android.youtube Video Players & Editors
candycrushsaga com.king.candycrushsaga Casual
DU Battery com.dianxinos.dxbs Tools
instagram com.instagram.android Social
eightballpool com.miniclip.eightballpool Sports
snapchat com.snapchat.android Social
ucmobile (http) com.UCMobile.intl Communication
messenger com.facebook.orca Communication
facebook (https) com.facebook.katana Social
android.gms com.google.android.gms Tools
clashofclans com.supercell.clashofclans Strategy
clashroyale com.supercell.clashroyale Strategy
ucmobile (https) com.UCMobile.intl Communication

Multiple apps in the table 4.1 such as facebook and instagram fall in the social
category and they require a registered user to login prior to be used. Therefore, I
create distinct test profiles for each of them on each device and do the login before
starting GTEngin.

Also, GTEngin provides the possibility to customise the sequence of events gener-
ated by Monkey Tool. I inclose Monkey Tool to operate in a selected app by skipping
system key event such as pressing Home and Back bottom [64]. In addition, I run
GTEngin five times and adjust the delay between the stream event to 250, 500, 750,
1000, 1500 milli seconds each contains 1000 events.

Following the mentioned setup, I succeed to collect 11,316 number of flows gen-
erated from the most popular android apps. Table 4.2 reports the structure of the
ground truth that I have obtained at the end of the process.

20 Chapter 4. Mobile Traffic Classification

TABLE 4.2: Structure of the ground truth in term of number of flows,
number of packet and size of flows which are generated by different

app.

App # Flow # Packet Size (byte)
mytalkingtomfree 1477 29,909 11,2M
spotify 560 11,890 3,7M
subwaysurf 477 9,611 3,6M
youtube (https) 427 9,278 2,9M
candycrushsaga 360 7,310 1,4M
DU Battery 306 6,524 2M
snapchat 248 5,458 1,7M
instagram 236 4,726 1M
eightballpool 207 4,095 1,7M
messenger 182 3,630 0.7M
facebook (https) 150 3,080 0.5M
android.gms 120 2,661 0.8M
clashofclans 84 1,746 0.7M
clashroyale 73 1,445 0.5M
ucmobile (https) 50 1,079 0.2M
ucmobile (http) 43 1,181 0.08M
Total 5,000 103,623 32.68M

4.2 Mobile Traffic & Chain Performance

I use the same configuration as section 3.4.1 to evaluate the performance of the pro-
posed classifier and its competitors with the ground truth collecting from mobile
apps.

4.2. Mobile Traffic & Chain Performance 21

FIGURE 4.2: Classification Recall of Chain and its competitors among
different applications. The applications are ordered by increasing

number of samples.

FIGURE 4.3: Classification Precision of Chain and its competitors
among different applications. The applications are ordered by in-

creasing number of samples.

Figures 4.2 and 4.3 illustrate performance of the classifiers to classify different
apps considering Recall and Precision metrics. As it is expected, the CoralReef ’s
performance which relays on the port number information, is unacceptable. CoralReef

22 Chapter 4. Mobile Traffic Classification

identifies flows just from two apps with low precision. According to the figures
nDPIng also performs as unacceptable as CoralReef. Outdated signature database
is the reason behind of nDPIng ’s bad performance. In fact, nDPIng apps’ signatures
are not updated since 2014 and apps have been involved in many changes since
then. E.g., Razaghpanah and et al. studied TLS[69] usage in android apps and re-
ported that 84% of the apps relay on default OS APIs to encrypt the user commu-
nications [70]. On the other hand, android has canceled SSL[71] support and SSL
was substituted by TLS since android 6 [72]. This explains the low performance of
nDPIng to detect HTTPS traffics.

In addition, there are apps in the ground truth which were developed after 2014
and its signature is missing from nDPIng signature database. Figure 4.4 is a heat
map representation of confusion matrix of nDPIng classification result. The heat map
shows that nDPIng fails to identify the majority of the flows.

FIGURE 4.4: nDPIng confusion matrix

However, figures 4.2 and 4.3 illustrate that j48 outperform among all the clas-
sifiers. In fact, j48 adopts to the new environment faster than nDPIng and training
its model with a new ground truth is much easier than to update nDPIng signature
database. However, it classifies just 45% of flows with 49% precision which is not
sufficient for many real life applications.

Considering the figures, Chain follows j48 performance in most of classes. How-
ever, Chain reaches the highest or equal precision in compare with j48 in the major-
ity of the classes. Although Chain relays on nDPIng as its core module, its perfor-
mance is not limited within Chain signature database. In fact, the fall-back 1 mecha-
nism bypasses the nDPIng drawback. Therefore, Chain is more flexible than nDPIng
to adopt to the mobile traffic thanks to its modularity design.

There is an inconsistency of classification performance measured in this chapter
and chapter 3. Performance of most of the classifiers dropped drastically when they
classify mobile traffic. This motivates me to take a closer look in to the issue by
studying mobile Internet ecosystem. Next chapter is dedicated to study the relation-
ship between mobile apps and cloud services as one of the key players in the mobile
Internet ecosystem.

23

Chapter 5

Mobile Ecosystem

Mobile applications typically connect to two types of on-line services: first-party
services controlled by application developers, and third-party services integrated in
mobile apps for advertising and tracking purposes [73], or to embed other services
like online payment and weather reports [74]. These third-party services may also
rely on CSPs for outsourcing their cloud infrastructure. Vallina-Rodriguez et al. have
shown that third-party traffic dominates all app traffic in the mobile ecosystem [73],
demonstrating the importance of studying this type of mobile traffic in addition to
first-party traffic. Besides, connecting to third party services generates network traf-
fic which is not statistically unique to the app. Therefore, these traffic can be consid-
ered noise for NTC relaying on ML approach. Consequently, it is essential to identify
and filter out the third party traffic before doing NTC.

The Flipboard app leverages Facebook’s Graph API, which is hosted in Face-
book’s own cloud infrastructure, for user login and possibly for advertising pur-
poses. Figure 5.1 shows the Flipboard reliance to CSPs as an example. Using the
method which is described in the following sections, allows me to know that the
Flipboard app communicates with 5 different FQDNs, and that each contacted domain
is hosted in a different CSP.

The Flipboard is a typical example of mobile app to illustrate the tight relation-
ship between a mobile app and CSPs.

FIGURE 5.1: A simplified case of the Flipboard app demonstrates the
network domains reached by the app (each red arrow represents a

traffic flow to a domain).

5.1 Datasets

Lumen Privacy Monitor is a mobile application, available for free on Google Play [75],
that aims to promote mobile transparency and user awareness. Users use Lumen to
identify data leaks and the presence of online tracking services on their apps. Lumen

24 Chapter 5. Mobile Ecosystem

runs locally on the device and intercepts all network traffic without requiring root
permissions by using the Android VPN permission. In a nutshell, Lumen inserts
itself as a middleware between apps and the network interface. By operating locally
on the device, Lumen is able to correlate disparate and rich contextual information
such as process IDs, with flows. For example, Lumen can match DNS queries to out-
going flows and the process owning the socket. This feature makes Lumen a unique
mobile vantage point to understand how mobile apps communicate with online ser-
vices with real user input and network-stimuli “in the wild”. I leverage the data
provided by Lumen to identify the main third-party services providing support to
mobile apps and mobile-related online services.

Since October 2015, Lumen has been installed by more than 1,600 real users. This
user base has allowed me to have access to over 5,319,150 anonymous network flows
corresponding to 8,281 different mobile apps connecting to 36,918 unique FQDNs
and 135,325 unique IP addresses. The dataset contains both IPv4 and IPv6 flows
(7.5 % of total flows). Finally, I discard 1.5 % of the flows connecting to IP addresses
reserved by IANA for private networks and CGNs [76], [77] which may be associ-
ated to P2P traffic and home networking activity. 97% of the DNS responses were
provided by Google’s DNS.

The analysis of mobile traffic generated by real human action poses ethical chal-
lenges. In order to preserve user privacy, Lumen performs its flow processing and
analysis on the device, only sending anonymised data such as protocols used, do-
mains contacted, and type of privacy leaks identified to Lumen’s servers for re-
search purposes. No traffic payload and any form of identifier is collected. I also
exclude browser traffic as it may reveal user activity patterns, hence likely easing
de-anonymisation. Due to these precautions, the Lumen developers institutional
IRB has considered this project as “non-human research subject” as they analyse the
behaviour of software, not people.

To complement my measurements and datasets, I use a number of external re-
sources. I use Maxmind GeoLite2 database geo-IP database for IP geolocation. I also
leverage censys.io IP scans to contextualise and validate observation observed in
certain IP machines. Furthermore I use the domain-CDN mapping provided by CD-
NFinder [78] and the wptagent project [79] as a starting point to identify CSP-hosted
domains.

5.2 Method

To the best of my knowledge, no study has exhaustively analyzed the close relation-
ships that exist between mobile applications and CSP services. The first problem I
encounter in my effort is knowing which domains are hosted in third-party CSPs.

5.2.1 Leveraging reverse DNS lookups

Finding CSPs from PTR records: In order to identify the CSP providing support to a
given FQDN, I analyse the PTR records associated with each one of the IPv4 and IPv6
destination IP addresses provided by the Lumen dataset. I run reverse DNS lookups
to extract the PTR record, if available. This method allows me to map FQDNs to
CSPs via their PTR records. In total, my 18,272 FQDNs map to 2,995 second-level PTR
records. I could not harvest any PTR records for 37% of FQDN. I first check the presence
of the gathered PTR records on well-known CDN-domain maps like CDNFinder [78].
However, these public maps are CDN-specific, they are incomplete (e.g., they do

5.2. Method 25

amazonaws

2.android.pool.ntp.org

leaseweb

aruba

OVH

PTR(amazonaws.com)

AS(14618) PTR(nexxea.com)

PTR(aruba.it)

PTR(leaseweb.net)

img.cm.ksmobile.comAkamai

Amazon
CloudFront

AS(16509)

PTR(cloudfront.net)

PTR(akamaitechnologies.com)

xtrapath3.izatcloud.net

AS(16509)

PTR(cloudfront.net)securema.ikea.com

PT
R(

ak
am

ai
te

ch
no

lo
gi

es
.c

om
)

FIGURE 5.2: Combination of ASN and PTR approaches to detect CSPs

not consider unpopular CSPs like cdnetworks) and they contain domains such as
doubleclick.com–arguably a CDN provider. I sanitised these public mappings to
obtain a list of 145 second-level domains associated to 82 CDN providers.
Finding CSPs using URL classifiers: To extend their coverage to any type of CSP
provider as well as marginal CSPs, and also to minimise the false positive rate, I
leverage both McAfee [80] and OpenDNS [81] domain classifiers. First, I extract the
categories assigned by those services to well-known CDN providers: mainly “In-
ternet Services” and “Content Server” and then I search for other domains, ignored
by CNDFinder, falling in these categories. Unfortunately, URL classifiers provide
vague categories (e.g., ad networks are also classified as “Internet Services”) which
can introduce false positives in my list.

Manual Inspection

The scale of the set of PTR records does not allow me sanitising all of them manually
to identify such errors. As a result, I limit my manual inspection–which relies on the
information provided by WHOIS queries and censys.io [82]– to 248 popular domains
reached by at least three mobile apps and those containing the keywords “host” and
“cdn” on their names. The combination of these methods has allowed me to identify
194 second-level PTR records associated with 125 third-party CSPs. Only 43 of them
were present on CDNFinder. my CSP domain list is publicly available at A.1 and
publicly at [83].

5.2.2 Leveraging AS information

Following reverse DNS lookup approach, CSPs provide services to 39 % of FQDN
and their 54,996 IPs are spread among 217 Autonomous Systems. Caida classifies
74 % of the ASs as “Transit/Access“.

Further investigation by considering ipinfo.io information shows IP blocks
of 33 (15 %) of these Autonomous System are entirely dedicated to a given CSP.
Therefore I consider FQDNs that resolve to one of the late AS are served by its corre-
sponded CSP. This approach ables me to analysis FQDN without any PTR record and
to increase 14% the identification coverage of FQDN associated to CSPs. Table 5.1 re-
ports Caida classification result of the AS and indicates more than half of them are
Content. A list of ASs and their corresponded CSP is available at A.2 and publicly at
[83].

Figure 5.2 shows various relationship between CSPs and FQDNs. Also it explains
the combination of approaches to detect CSPs.

26 Chapter 5. Mobile Ecosystem

AS Type Volume (%)
Content 58.82

Transit/Access 20.58
Enterpise 17.64

N/A 2.94

TABLE 5.1: Classification of 33 ASs which entirely belong to a given
CSP according to Caida database

0

20

40

60

Amaz
on

 AWS

Goo
gle

Fa
ce

bo
ok

Aka
mai

Amaz
on

 C
lou

dF
ron

t

High
wind

s

Inc
ap

su
la

CDNGP

Ins
tar

tlo
gic

dc
−m

se
dg

e

Cac
he

fly

Word
Pres

s

Le
as

ew
eb

Drea
mho

st
Arub

a

%
 o

f t
ot

al Apps

FQDN

SLD

FIGURE 5.3: Top 15 CSP by app usage. We show their domain pen-
etration for reference, both at the FQDN-level and second-level do-

mains (SLD).

5.2.3 Method Limitations

Many CSPs offer several services such as CDN or cloud services to their customers.
The main challenge that my technology faces with is to distinguish between CDN
and cloud services. However this the first study to look at CSP space and it can be
consider as research field for future work.

5.3 CSP Presence on Mobile Apps

I represent in a graph the relationships found between mobile applications, FQDN and
PTR records as recorded by Lumen and my reverse DNS lookups. This representation
allows me to have a comprehensive view of how mobile applications leverage online
third-party service providers, and also identify those online services implementing
multi-CDN strategies. 85 % of the apps in the Lumen dataset connect at least to one
of the 55 CSPs. However, five CSPs play a central role on running mobile Internet
services. As we can see in Figure 5.3, over 64 % of the apps connect at least to
one service hosted on Amazonaws. 49 CSPs have a marginal presence in this market,
receiving connections from less than 1% of the apps.

Figure 5.3 concludes that Amazon dominates the market by Amazonaws and “Ama-
zon CloudFront“. Also 28 % of APKs communicate with facebook. According to the
hosting infrastructure analyse“Facebook “ CSP supports only its domains as well as
its affiliates such as “Instagram“. In addition considering that request to FB’s Graph
API is resolve to the same domain (fbcdn.net) I can conclude many APKs contact
facebook domain for non CSP services.

Difference of CDNs coverage and diversity of CSP services in general is a strong
motivation for CSP customers to enlist multiple CSP to enhance the reliability and
scale of their services. According to Table 5.2 “Facebook“ is a popular example of
such a customer that utilises “Akamai“ next to its own developed CSP infrastructure.

5.3.CSPPresenceonMobileApps 27

#app(%) Domain IP(%) CSP

29.43 googlesyndication.com 0.81 Google

28.47 doubleclick.net 1.44 Google

26.84 facebook.com 0.59
Facebook
Akamai

25.77 crashlytics.com 1.41 amazonaws

24.96 googleadservices.com 0.48 Google

TABLE5.2:Top5domainbasedontheirapppenetration

num-CSP FQDN(%)

1 98.94

2 1.04

3 0.02

4 0.01

TABLE5.3:CSPpenetrationbyFQDN

HoweverrelayingonmultipleCSP

●

●

●

● ●

●●●
●●●●●●●●

●●0

25

50

75

100

1 5 10 50 100 500 1K 2K

App threshold (domain in−degree)

C
ov
er
a
g
e
(
%)

● CSP Coverage (N=55)

FQDN Coverage (N=14537)

arguablyisacost-sensitivedecisionwhichjustify
itspowerlawdistributioninTables5.3and5.4.

FIGURE5.4:CSPanddomaincoverageasafunctionofdomainpop-
ularity(i.e.,domain-indegree:numberofconnectingapps).

FurthermoreIstudythedistributionofFQDNonCSP.Thereare14,537FQDNwith
4,178SecondLevelDomain(SLD)thatcommunicatewith55CSPs.ForthestudyI
focusonlyonSecondLevelofFQDN(SLD)whichareassociatedwithCSPcommu-
nication.Accordingtofigure5.427%ofconsideredSLDareusedtocommunicate
withAmazonaws.
Analysingthemostapppenetrateddomainsrevealsthatadrelateddomains

areatthetopofthelist.Table5.2showsthatadrelateddomainssuchas“dou-
bleclick.net“and“googlesyndication.com“havethehighestapppenetrationrate.

num-CSP SLD(%)

1 84.9

2 13.61

3 1.33

4 0.12

5 0.02

7 0.02

TABLE5.4:CSPpenetrationbySecondLevelDomainofFQDN

28 Chapter 5. Mobile Ecosystem

The mentioned domains are used to store ad or related content for “ Google Ad-
Sense“ and “ DoubleClick“. The fact can explain their equal app penetration.

5.4 The Study Outcome

In this chapter, I performed the first holistic analysis of the complex ecosystem
formed by mobile apps and cloud service providers (CSPs). I aimed to compre-
hensively characterise their relationships. I leveraged accurate traffic fingerprints
from thousands of mobile apps that was collected through crowd-sourcing with
Lumen [84]. This data allowed me to identify the most relevant CDNs and cloud
providers for mobile traffic. The results show a significant reliance of apps on mo-
bile CSPs with the major CSPs being used by 85% of the apps. Therefore using DNS
is not reliable in NTC filed. fact [85]

The tight relationship between mobile apps and CSPs as well as the fact that a
limited number of CSPs are dominated the market, impose a new challenge in to
NTC. A single CSP can support many apps from different category and provide them
similar resources. For e.g., several apps with different functionality can use the same
ad network to improve their revenue. In these case, the apps generate flows with the
same network footprint to connect to the ad network. Therefore the false positive
rate can increase and affect the NTC classifier performance.

P. Foremski and et al. proposed DNS-Class classifier based on DNS information
at [85]. They demonstrate that DNS-Class can classify 1/3 of their dataset. The study
of the mobile ecosystem indicates the coverage of DNS-Class can be reduced even
more in the ecosystem. Because third party connection is dominated the mobile apps
communications. In addition different mobile apps can hire services from the same
popular CSP.

This chapter concludes that third party communication brings more challenges
to NTC in mobile internet which consequently can alter the performance of classi-
fiers rely on ML approach or DNS information.

29

Chapter 6

Influence of CSP on NTC
Performance

The study of mobile Internet ecosystem illustrates that there is a strong reliance be-
tween mobile apps and CSPs like CDNs. In addition, the study proofs that a limited
number of CSPs dominate the ecosystem. Therefore, it is possible that several apps
with different functionalities are supported by the same CSP. Indeed, Table 5.2 re-
ports that several apps relay on DoubleClick to deliver advertisement and monetise
themselves. Such a communication generates a traffic from various apps with the
same statistical pattern despite their apps functionality. This mixture of the network
traffic increases the ambiguity to do NTC using ML approach. Therefore, CSP related
traffic can be considered noise for the ML approach. I study the effect of CSP traffic
on NTC in the following chapter by removing the CSP traffic from the ground truth
and measure the precision of j48 as well as Chain with the new ground truth.

6.1 Filtering out CSP related Flows

I follow the same approach as described in Chapter 5 to detect CSP related traffic
and then filter them out from the ground truth collected with GTEngin. The ground
truth contains 742 unique IP addresses which I could not harvest PTR record for 25%
of them. I relay on Autonomous System (AS) information for those IP addresses
without PTR record. During filtering process, 69% of the flows are detected as CSP
related traffic. 30% of the detection are based on the AS information.

TABLE 6.1: Detected CSPs and their distribution on the ground truth

CSP Name Distribution (%)
Google 40.08

Facebook 21.95
Amazon AWS 20.96

Amazon CloudFront 8.39
Akamai 7.1
CDNGP 1.15

Highwinds 0.33
BunnyCDN 0.05

Table 6.1 reports distribution of detected CSP on the ground truth. The table
confirms the domination of limited number of CSPs in the mobile Internet ecosys-
tem which was already shown in Chapter 5, figure 5.3. The consistency between
table 6.1 and figure 5.3 confirms that GTEngin succeed to provide a fairly representa-
tive ground truth for NTC.

30 Chapter 6. Influence of CSP on NTC Performance

Table 6.2 summaries the distribution of CSPs traffic generated by considered app
in the ground truth.

TABLE 6.2: App reliance to CSP services considering the traffic gener-
ated by apps

App Name CSP Reliance (%) CSP Provider(s)
youtube (https) 100.0 Google, Amazon AWS, Akamai

spotify 61.35
Google, Akamai, Facebook, Amazon AWS
Highwinds

android.gms 100.0 Google
instagram 89.73 Facebook

clashroyale 100.0
Amazon AWS, Facebook, Amazon CloudFront
Google

snapchat 100.0 Google, Amazon CloudFront, Amazon AWS
candycrushsaga 7.76 Amazon CloudFront, Facebook, Akamai

messenger 100.0 Facebook, Amazon AWS, Amazon CloudFront
facebook (https) 97.51 Facebook

subwaysurf 82.72
Amazon AWS, Facebook, Amazon CloudFront
Akamai, Google

DU Battery 55.08
Facebook, Google, Amazon AWS, CDNGP
Amazon CloudFront, Highwinds

clashofclans 100.0
Amazon AWS, Google, Facebook
Amazon CloudFront

ucmobile (http) 0.0
eightballpool 49.61 Amazon AWS, Facebook, Amazon CloudFront

mytalkingtomfree 69.75
Akamai, Google, Amazon AWS, CDNGP, Facebook
Amazon CloudFront, Highwinds, BunnyCDN

ucmobile (https) 0.0

According to table 6.2, all the considered apps except ucmobile relay on CSPs
services. In addition, most of the studied apps follow multiCSP strategy to stay close
to their users’ expended all around the world. In addition, most of the app under
the study prefer to outsource their services and relay on multiple CSPs infrastructure
to serve their users.

Furthermore, it is expected that apps like mytalkingtomfree and DU Battery fol-
low multi-CDN strategy as it communicate with multiple CDN providers. However,
it is not possible to make a strong conclusion wether the app itself follow the strat-
egy or a service that it hires from a CSP causes the communication to different CDN
providers. To clarify the issue, it is required upgrading GTEngin to record FQDNs.

Relaying on destination IP address information (such as PTR record and AS in-
formation) to identify a flow as a CSP traffic, can not reveal the service that a CSP
provides for an app. Therefore, significant amount of traffic generated from apps
developed by a given CSP (e.g. instagram, messenger) is identified as CSP traffic
and filtered from the ground truth. Identifying CSPs services that a flow carries, is
beyond the scope of my thesis and can be considered as a future work.

Following, table 6.3 reports the remaining traffic after filtering out the CSP related
traffic.

6.1. Filtering out CSP related Flows 31

TABLE 6.3: Structure of the ground truth without CSP related traffic
in term of number of flows, number of packet and size of flows which

are generated by different apps.

App # Flow # Packet Size (byte)
mytalkingtomfree 382 7822 2,7M
candycrushsaga 330 6629 1,2M
spotify 221 4875 1,7M
DU Battery 134 2795 0.9M
subwaysurf 84 1648 0.6M
eightballpool 79 1707 0.5M
ucmobile (https) 50 1079 0.2M
ucmobile (http) 43 1181 0.08M
instagram 30 644 0.2M
Total 1353 28380 8.08M

Excluding CSP related traffic leads to shrinking the ground truth size signifi-
cantly. Consequently, considering parameters such as recall is not fair to evaluate
the influence of CSP’s traffic on classifiers using the ML approach. Therefore, I focus
on precision alternation to study the effect of CSP related traffic on NTC.

I use the same configuration setup as described in section 3.4.1 to do the study
with the ground truth summarised by table 6.3.

Figure 6.1 clearly states that filtering CSP’s related traffic enhances precision in
most of the classes. However, in couple of app classes the performance does not
follow the trend. A learning model from imbalanced training dataset is always bi-
ased toward the classes with the majority instances. Filtering CSP related traffic sig-
nificantly reduces the instagram instances from 236 to 30. Although j48 is more
robust than other conventional ML algorithms in dealing with imbalanced training
dataset [86], it affects the classifier performance in extreme cases like instagram.

The high recall and low precision of ucmobile using CoralReef classifier in fig-
ures 4.3 and 4.2 indicated that other apps also generate HTTP and HTTPS traffics
with the same statistics as ucmobile. Therefore, this reduced the contrast of traffic
generated from ucmobile and the other apps. Consequently, the reduction in the
contrast causes reduction on the precision of ucmobile classifying by j48. Several
apps and many flows are removed from the ground truth by filtering CSP related
traffic. This improves the contrast of traffic generated from ucmobile’s and other
apps. Figure 6.1 shows that the contrast improvement enhances the precision of
ucmobile classification significantly.

32 Chapter 6. Influence of CSP on NTC Performance

6.2 Performance Measurment

FIGURE 6.1: Precision of j48 with and without CSP traffics

FIGURE 6.2: Precision of Chain with and without CSP traffics

6.2. Performance Measurment 33

It is expected that the precision of Chain gets increased due to its sequential de-
sign. Indeed figure 6.2 shows that j48 precision improvement leads to precision
enhancement of Chain in several classes consequently. However, nDPIng does not
inherit the same precision improvement from j48 and a fraction of the improvement
is dumped by nDPIng module. The outdated signature database of nDPIng limits the
second module of Chain’s results to ucmobile(http), ucmobile(https) or unkown
classes. Therefore, nDPIng increases the false positive rate of ucmobile classes and
reduces their precision.

j48 can label just those flows which nDPIng considers them as unknown. nDPIng
classifies 42% and 52% of subwaysurf traffic as ucmobile(http) and ucmobile(https)
respectively. Following, j48 classifies 6% of the remaining traffic generated by subwaysurf
as spotify. Therefore, the precision of subwaysurf is zero in the figure 6.2.

j48 contributes false positive to instagram class by misclassifying some flows
from candycrushsaga, spotify, DU Battery, subwaysurf, ucmobile (https) classes.
nDPIng as the second module of Chain labels all of them except flows from DU Battery
and ucmobile (https) incorrectly as ucmobile (https). Consequently, the preci-
sion of instagram classification is increased with the trade of precision reduction of
ucmobile (https) which is shown in figure 6.2.

35

Chapter 7

Conclusion and Future Works

7.1 Conclusion

This thesis proposed the Chain classifier as a practical approach for improving the
efficiency of DPI traffic classification techniques by chaining it to a low-recall, but fast
and high-precision classification stage (based on port and ML). I have demonstrated
within this thesis that Chain classifier improves the classification efficiency with re-
spect to nDPIng, a state-of-the-art DPI classifier: it precisely classifies network traffic
45% faster than nDPIng, with comparable classification performance. Since DPI is
widely used in application firewalls, Chain can be used as a solution to operate on-
line classification quicker and with less computational resources.

DPI suffers from low flexibility to adopt with a new ecosystem. Indeed, extract-
ing signatures from a vast number of new apps which merge to internet daily ecosys-
tem is an intensive human work. Furthermore, updating a DPI database with the
new signatures contributes additional overhead to adopt a DPI classifier to a new
ecosystem. On the other hand, Chain can be adopted with the same level of com-
plexity as a ML classifier with a new ecosystem. In this case, Chain performs close
to the ML classifier which is much higher than a DPI classifier with outdated sig-
nature database. However, it is required to update Chain’s DPI module to achieve
its maximum performance. Therefore, Chain outperforms a DPI classifier when the
mixture of traffic is in transition phase by emerging a new concept (e.g., Emerging
mobile traffic to the internet ecosystem).

The multi-stage architecture is specifically suited for the recently standardised
approach for network services defined in [87] (Service Function Chaining Archi-
tecture). Both stages of Chain can be implemented as Virtual Network Functions
(VNFs) and can perform the role of Classifiers for the network policies depending
on the app that generated the traffic [88]. Their implementations as VNFs allows
to separately instantiate them, maximally benefiting from the scalability and elas-
ticity of Network Function Virtualisation to dynamically adjust resources and traf-
fic forwarding depending on the traffic mix that traverses the Chain stages. Ser-
vice Chaining also provides a standard mechanism for the encapsulation of flow
metadata that affects traffic forwarding and service chaining: the Network Service
Header (NSH) [89]. In the case of Chain, the first stage encapsulates in the NSH
either the classification response of the first stage (and exits Chain services), or the
verdict of ML and the subsequent classification service (next stage of Chain).

Chain allows for a relatively more privacy-friendly approach compared with
full-DPI, by limiting the extraction of features from the payload of the packets only
when classification has not been possible with other privacy-preserving means.

Within this thesis I have studied the relationship between mobile app and CSP as
well as its impact on NTC precision. The outcome shows that the traffic generated
based on CSP and app communication reduces the performance of classifiers which

36 Chapter 7. Conclusion and Future Works

developed following of ML approach. It proves that although evaluating different
aspects of a flow is an efficient approach in many ways to detect the original app, it
is not sufficient. In fact, having a deep knowledge about the ecosystem is essential
to deal appropriately with the network traffic mixture and interpret correctly the
information which is included in a flow.

Although a ground truth is a fundamental ingredient to do any measurement
in NTC filed, it is challenging task to obtain a representative ground truth. I have
proposed and implemented GTEngin as a reliable and scalable platform to build a
ground truth consisting of network traffic from any desired android apps. Multiple
devices usually share a connection link in the real life scenario. This divides the
available capacity of the link among the devices and consequently affects the statistic
of their traffic. The ability of involving and controlling multiple devices, gives the
unique ability to GTEngin to build the ground truth with statistics close to real-world
traffic which is vital for ML classifiers.

7.2 Future Works

Online operation is an important capability of a NTC classifier which is vital for
many real life applications like security and resource management. Chain is de-
signed to perform online and implement on a platform which also supports online
operation. However, Chain online classification functionality has not been investi-
gated yet and it is an open filed of research for future.

Furthermore, implementing Chain in a hardware like NetFPGA can be consid-
ered as a next step in direction of investigating its online performance characteristic.

The multi-stage architecture of Chain is also specifically suited for implementa-
tion in the form of VNF chaining, where stages of different memory/computational
cost can be independently scaled and deployed according to dynamic network traf-
fic mix and rate.

Detection of any illegitimate access to a network resource is in the scope of In-
trusion Detection (ID) [90]. Many IDs[91][92][93] use DPI to detect malware and
malicious activity looking for their signature in the flowing traffic. Although it is
beyond the scope of this thesis to study the performance of Chain in different net-
work application, it is interesting to investigate the performance gain which can be
achieved by substituting conventional DPI classifiers by Chain in IDs.

CSP absorbs the attention of many network players and motivates apps devel-
oper to outsource their infrastructures by relaying on the cloud services more than
ever. Consequently, the communication of an app is not limited to its servers any
more. In this thesis I have proposed an algorithm to detect CSP communication
based on PTR and ASN. However, my solution does not have the ability of distin-
guishing between the various services which a CSP can provide. The CSPs services
can be categorised in two main categories: I) Standard services such as advertise-
ment and CDN, II) General services like cloud computing which can be modified to
support the main functionalities of an app. Although the generated traffic from the
second communication is valuable for NTC, the first category traffic is considered
noise from the point of view of NTC following ML approach. Therefore, it is es-
sential to distinguish between traffic generated from these two communication cat-
egories to filter the noise and preserve the valuable data. Identifying CSPs’s services
is an interesting open area of research which can be considered as a future work.

There are vast number of apps which published world-wide and GTEngin pro-
vides a great opportunity to build a ground truth from their traffics. GTEngin is

7.2. Future Works 37

scalable and can control multiple devices simultaneously. Besides, GTEngin runs dif-
ferent apps on different devices in a given time. Therefore, the captured traffic is a
mixture of flows from different devices and apps which reflects the real life scenario.
App’s developers are interested to integrate a new functionality to their app daily
to satisfy their customers. Although GTEngin labels the capture flows based on their
process name, NTC needs a ground truth with the higher resolution to develop a
classifier with the ability of detecting the various functionalities of a given app. To
this end, GTEngin should be updated.

Besides, Internet of Thing (IoT) is supposed to bring sensors, computation and
communication in all aspects of human life. Therefore, supporting IoT devices com-
munication is one of the constrain of 5G design[94][95]. It is expected that traffic
which generate by IoT devices will shape the future network traffic. Consequently,
it is essential to update GTEngin to support IoT devices to build a ground truth re-
quired by any NTC study targeting IoT traffic.

39

Appendix A

CSP Footprint

A.1 list of CSP PTR records

TABLE A.1: List of PTR record assocsiated to CSPs.

CSP Name PTR Record
Akamai .akamaitechnologies.fr
Akamai .akamaitechnologies.com
Akamai .akamaized.net
Akamai .edgekey.net
Akamai .akadns.net
Akamai .srip.net
Akamai .edgesuite.net
Akamai .akamai.net
Akamai .akamaiedge.net
Akamai .akamaihd.net
Google 1e100.net
Google .l.doubleclick.net
Google .youtube.
Google .googlesyndication.
Google .googleusercontent.com
Google .gstatic.com
Google .google.
Google .googlehosted.com
Google googlevideo.com
Edgecast .transactcdn.net
Edgecast .v4cdn.net
Edgecast .v2cdn.net
Edgecast .v5cdn.net
Edgecast .v3cdn.net
Edgecast .v1cdn.net
ChinaCache .ccgslb.com
ChinaCache .ccgslb.net
EdgeCast .wac.
ChinaCache .c3cache.net
EdgeCast .edgecastcdn.net
EdgeCast .systemcdn.net
EdgeCast .adn.
ChinaCache .chinacache.net

To be Continue

40 Appendix A. CSP Footprint

Table A.1 – The continue of the PTR record list
CSP Name PTR Record
EdgeCast .wpc.
ChinaCache .c3cdn.net
ChinaNetCenter .wscdns.com
CDNetworks .panthercdn.com
Yahoo .yahooapis.com
Yahoo .ay1.b.yahoo.com
Facebook .facebook.net
ChinaNetCenter .lxdns.com
Yahoo .yimg.
Facebook .cdninstagram.com
Yahoo yimg.com
Facebook .facebook.com
Facebook .fbcdn.net
ChinaNetCenter .wscloudcdn.com
CDNetworks .cdngc.net
ChinaNetCenter .ourwebpic.com
CDNetworks .gccdn.net
CDNetworks .gccdn.cn
Azion .azion.net
MaxCDN .netdna.com
Azion .azioncdn.com
Mirror Image .cap-mii.net
Aryaka .aads1.net
Mirror Image .instacontent.net
Fastly .fastly.net
Mirror Image .mirror-image.net
MaxCDN .netdna-cdn.com
Azion .azioncdn.net
Medianova .mncdn.net
Aryaka .aads-cn.net
Aryaka .aads-cng.net
Fastly .fastlylb.net
MaxCDN .netdna-ssl.com
Taobao .tbcdn.cn
Taobao .taobaocdn.com
Taobao .gslb.taobao.com
Fastly .nocookie.net
Medianova .mncdn.org
Medianova .mncdn.com
Limelight .lldns.net
CDN77 .cdn77.org
NYI FTW .nyiftw.com
Cloudflare .cloudflare.net
Windows Azure .vo.msecnd.net
Windows Azure dc-msedge.net
OnApp .r.worldcdn.net

To be Continue

A.1. list of CSP PTR records 41

Table A.1 – The continue of the PTR record list
CSP Name PTR Record
LeaseWeb CDN .lswcdn.eu
TurboBytes .clients.turbobytes.net
KINX CDN .kinxcdn.com
leaseweb leaseweb.net
leaseweb leaseweb.com
CDN77 .cdn77.net
TurboBytes .turbobytes-cdn.com
KINX CDN .kinxcdn.net
amazonaws amazonaws.com
Cloudflare .cloudflare.com
Instartlogic .insnw.net
LeaseWeb CDN .lswcdn.net
NYI FTW .nyiftw.net
OnApp .r.worldssl.net
amazonaws amazonaws.com.ch
Limelight .llnwd.net
Rev Software .revdn.net
Rev Software .revcn.net
Instartlogic .inscname.net
ntt cloudn-service.com
a2hosting a2hosting.com
hiberniacdn hiberniacdn
bluehost cdnlive.net
SwiftCDN .swiftcdn1.com
fasthosts fasthosts.net.uk
cloudvps cloudvps.com
Rackspace .raxcdn.com
MediaCloud .cdncloud.net.au
ReSRC.it .resrc.it
Internap .internapcdn.net
sgded sgded.com
x2n x2n.com.br
cdnetworks cdnetworks.com
PageRain .pagerain.net
dsl dslnet.pk
theplanet theplanet.com
jsDelivr .cdn.jsdelivr.net
Incapsula .incapdns.net
section.io .squixa.net
ovh nexxea.com
Blue Hat Network .bluehatnetwork.com
rockynet rockynet.com
hostnet hostnet.nl
vrvm vrvm.com
cdngp cdngp.net
xlshosting xlshosting.net

To be Continue

42 Appendix A. CSP Footprint

Table A.1 – The continue of the PTR record list
CSP Name PTR Record
BitGravity . doubleclick.net
inmotionhosting inmotionhosting.com
clara clara.net
GoCache .cdn.gocache.net
dreamhost dreamhost.com
Akamai China CDN .tl88.net
afxcdn.net .afxcdn.net
idealhosting idealhosting.net.tr
BunnyCDN .b-cdn.net
KeyCDN .kxcdn.com
Cotendo CDN .cotcdn.net
Open Telekom open-telekom-cloud.com
hosting hosting.com
aruba aruba.it
hostforweb hostforweb.com
Reflected Networks .rncdn1.com
virtua virtua.com.br
SwiftServe .swiftserve.com
smartfocus emv2.com
Tata communications .cdn.bitgravity.com
UnicornCDN .unicorncdn.net
basefarm basefarm.net
hostgator hostgator.com
CDNify .cdnify.io
Zenedge .zenedge.net
Highwinds .hwcdn.net
quadhost quadhost.net
Optimal CDN .optimalcdn.com
Twitter .twimg.com
BelugaCDN .belugacdn.com
Telefonica .cdn.telefonica.com
CDNsun .cdnsun.net
Simple CDN .simplecdn.net
SFR .cdn.sfr.net
hostingxs hostingxs.nl
NGENIX .ngenix.net
hostpoint hostpoint.ch
BO.LT .bo.lt
Netlify .netlify.com
aclst aclst.com
hosteurope hosteurope.de
QUANTIL/ChinaNetCenter .speedcdns.com
Ananke .anankecdn.com.br
HiberniaCDN .hiberniacdn.com
Level3 .footprint.net
Level 3 .fpbns.net

To be Continue

A.2. list of CSP Autonomous System 43

Table A.1 – The continue of the PTR record list
CSP Name PTR Record
Bison Grid .bisongrid.net
Yottaa .yottaa.net
nyinternet nyinternet.net
Telenor .cdntel.net
Caspowa .caspowa.com
psychz psychz.net
AT&T .att-dsa.net
VoxCDN .voxcdn.net
Microsoft Azure .azureedge.net
WordPress .wp.com
Advanced Hosters CDN .pix-cdn.org
xlhost xlhost.com
StackPath .stackpathdns.com
cubeCDN .cubecdn.net
Reapleaf .rlcdn.com
cbi cbici.net
purepeak purepeak.com
Hosting4CDN .hosting4cdn.com
Cachefly .cachefly.net
Amazon CloudFront .cloudfront.net
Alimama .gslb.tbcache.com
bandwidthx bandwidthx.net
myracloud myracloud.com

A.2 list of CSP Autonomous System

TABLE A.2: List of Autonomous System (AS) number associated with
CSPs

CSP Name AS Name AS Number
Akamai akamai-lon 34164
Akamai akamai-asn1 20940
Akamai akamai-as 35994
Akamai akamai-as 16625
Akamai AKAMAI-ASN2 21342
Akamai AKAMAI-TYO-AP Akamai Technologies Tokyo ASN 24319
Yahoo yahoo-swb 393245
Yahoo inktomi-lawson 14776
Yahoo YAHOO-ULS 43428
Yahoo yahoo-cha 14196
amazonaws amazon-aes 14618
amazonaws amazon-as-ap 38895
amazonaws amazon-02 16509
basefarm BASEFARM-SE-ASN Basefarm AB. Stockholm 8523

To be Continue

44 Appendix A. CSP Footprint

Table A.2 – The continue of the AS list
CSP Name AS Name AS Number
inmotionhosting imh-west 22611
Highwinds highwinds3 20446
Highwinds HIGHWINDS5 29798
inmotionhosting inmoti-1 54641
basefarm basefarm-asn 25148
Google google 15169
dc-msedge microsoft-corp-msn-as-block 8068
Cachefly cachenetworks 30081
hostnet hostnet 197902
Instartlogic instart 33047
Incapsula incapsula 19551
smartfocus emailvision 39905
Facebook facebook 32934
hostpoint hostpoint-as 29097
dreamhost dreamhost-as 26347
leaseweb LEASEWEB-NETWORK Amsterdam 16265
cdngp cdnetworksus-02 36408
xlhost enet-2 10297
HiberniaCDN Hibernia-cdn 60922
NGENIX CCT-AS NGENIX 34879

45

Bibliography

[1] • number of daily android app releases worldwide 2018 | statista, https://www.
statista.com/statistics/276703/android- app- releases- worldwide/,
(Accessed on 07/24/2019).

[2] Service name and transport protocol port number registry, https://www.iana.
org/assignments/service- names- port- numbers/service- names- port-
numbers.xhtml, (Accessed on 08/04/2019).

[3] Home [traffic identification engine], http://tie.comics.unina.it/doku.php?
id=topmenu:home, (Accessed on 07/24/2019).

[4] Cba - broadband communications research group - traffic classification, https://
cba.upc.edu/monitoring/traffic-classification, (Accessed on 07/24/2019).

[5] V. Paxson, “Bro: A system for detecting network intruders in real-time”, Com-
puter Networks, vol. 31, no. 23-24, pp. 2435–2463, 1999. DOI: 10.1016/s1389-
1286(99)00112-7. [Online]. Available: https://doi.org/10.1016%2Fs1389-
1286%2899%2900112-7.

[6] L. Stewart, G. Armitage, P. Branch, and S. Zander, “An architecture for auto-
mated network control of QoS over consumer broadband links”, in TENCON
2005 - 2005 IEEE Region 10 Conference, IEEE, 2005. DOI: 10.1109/tencon.2005.
301139. [Online]. Available: https://doi.org/10.1109%2Ftencon.2005.
301139.

[7] T. T. Nguyen and G. Armitage, “A survey of techniques for internet traffic clas-
sification using machine learning”, IEEE Communications Surveys & Tutorials,
vol. 10, no. 4, pp. 56–76, 2008. DOI: 10.1109/surv.2008.080406. [Online].
Available: https://doi.org/10.1109%2Fsurv.2008.080406.

[8] F. Baker, B. Foster, and C. Sharp, “Cisco architecture for lawful intercept in
IP networks”, Tech. Rep., 2004. DOI: 10.17487/rfc3924. [Online]. Available:
https://doi.org/10.17487%2Frfc3924.

[9] C. Wright, F. Monrose, and G. M. Masson, “HMM profiles for network traffic
classification”, in Proceedings of the 2004 ACM workshop on Visualization and data
mining for computer security - VizSEC/DMSEC 04, ACM Press, 2004. DOI: 10.
1145/1029208.1029211. [Online]. Available: https://doi.org/10.1145%
2F1029208.1029211.

[10] Port forwarding on your router for team fortress 2, https://portforward.com/
team-fortress-2/, (Accessed on 07/28/2019).

[11] Firewall evasion with icmp (pingtunnel) | insecurity, https://stephenperciballi.
blogspot.com/2014/09/firewall-evasion-with-icmp-pingtunnel.html,
(Accessed on 07/28/2019).

[12] A. W. Moore and K. Papagiannaki, “Toward the accurate identification of net-
work applications”, in Passive and Active Network Measurement, Springer, 2005,
pp. 41–54.

https://www.statista.com/statistics/276703/android-app-releases-worldwide/
https://www.statista.com/statistics/276703/android-app-releases-worldwide/
https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
http://tie.comics.unina.it/doku.php?id=topmenu:home
http://tie.comics.unina.it/doku.php?id=topmenu:home
https://cba.upc.edu/monitoring/traffic-classification
https://cba.upc.edu/monitoring/traffic-classification
http://dx.doi.org/10.1016/s1389-1286(99)00112-7
http://dx.doi.org/10.1016/s1389-1286(99)00112-7
https://doi.org/10.1016%2Fs1389-1286%2899%2900112-7
https://doi.org/10.1016%2Fs1389-1286%2899%2900112-7
http://dx.doi.org/10.1109/tencon.2005.301139
http://dx.doi.org/10.1109/tencon.2005.301139
https://doi.org/10.1109%2Ftencon.2005.301139
https://doi.org/10.1109%2Ftencon.2005.301139
http://dx.doi.org/10.1109/surv.2008.080406
https://doi.org/10.1109%2Fsurv.2008.080406
http://dx.doi.org/10.17487/rfc3924
https://doi.org/10.17487%2Frfc3924
http://dx.doi.org/10.1145/1029208.1029211
http://dx.doi.org/10.1145/1029208.1029211
https://doi.org/10.1145%2F1029208.1029211
https://doi.org/10.1145%2F1029208.1029211
https://portforward.com/team-fortress-2/
https://portforward.com/team-fortress-2/
https://stephenperciballi.blogspot.com/2014/09/firewall-evasion-with-icmp-pingtunnel.html
https://stephenperciballi.blogspot.com/2014/09/firewall-evasion-with-icmp-pingtunnel.html

46 BIBLIOGRAPHY

[13] K. Fukuda, “Difficulties of identifying application type in backbone traffic”,
in 2010 International Conference on Network and Service Management, IEEE, 2010.
DOI: 10.1109/cnsm.2010.5691234. [Online]. Available: https://doi.org/10.
1109%2Fcnsm.2010.5691234.

[14] S. Alcock and R. Nelson, “Libprotoident: Traffic classification using lightweight
packet inspection”, WAND Network Research Group, Tech. Rep, 2012.

[15] C. Shen and L. Huang, “On detection accuracy of l7-filter and OpenDPI”,
in 2012 Third International Conference on Networking and Distributed Comput-
ing, IEEE, 2012. DOI: 10.1109/icndc.2012.36. [Online]. Available: https:
//doi.org/10.1109%2Ficndc.2012.36.

[16] S. Alcock and R. Nelson, “Measuring the accuracy of open-source payload-
based traffic classifiers using popular internet applications”, in 38th Annual
IEEE Conference on Local Computer Networks - Workshops, IEEE, 2013. DOI: 10.
1109/lcnw.2013.6758538. [Online]. Available: https://doi.org/10.1109%
2Flcnw.2013.6758538.

[17] T. N. Thinh, T. T. Hieu, V. Q. Dung, and S. Kittitornkun, “A FPGA-based deep
packet inspection engine for network intrusion detection system”, in 2012 9th
International Conference on Electrical Engineering/Electronics, Computer, Telecom-
munications and Information Technology, IEEE, 2012. DOI: 10.1109/ecticon.
2012.6254301. [Online]. Available: https://doi.org/10.1109%2Fecticon.
2012.6254301.

[18] M. Canini, W. Li, M. Zadnik, and A. W. Moore, “Experience with high-speed
automated application-identification for network-management”, in Proceed-
ings of the 5th ACM/IEEE Symposium on Architectures for Networking and Com-
munications Systems - ANCS 09, ACM Press, 2009. DOI: 10.1145/1882486.
1882539. [Online]. Available: https://doi.org/10.1145%2F1882486.1882539.

[19] W. Jiang and M. Gokhale, “Real-time classification of multimedia traffic using
FPGA”, in 2010 International Conference on Field Programmable Logic and Appli-
cations, IEEE, 2010. DOI: 10.1109/fpl.2010.22. [Online]. Available: https:
//doi.org/10.1109%2Ffpl.2010.22.

[20] N. Zilberman, Y. Audzevich, G. A. Covington, and A. W. Moore, “Netfpga
sume: Toward 100 gbps as research commodity”, IEEE micro, vol. 34, no. 5,
pp. 32–41, 2014.

[21] T. Bujlow, V. Carela-Español, and P. Barlet-Ros, “Independent comparison of
popular DPI tools for traffic classification”, Computer Networks, vol. 76, pp. 75–
89, 2015. DOI: 10.1016/j.comnet.2014.11.001. [Online]. Available: https:
//doi.org/10.1016%2Fj.comnet.2014.11.001.

[22] Man-in-the-middle attack - wikipedia, https://en.wikipedia.org/wiki/Man-
in-the-middle_attack, (Accessed on 07/28/2019).

[23] Transport layer security - wikipedia, https://en.wikipedia.org/wiki/Transport_
Layer_Security, (Accessed on 07/28/2019).

[24] J. Sherry, C. Lan, R. A. Popa, and S. Ratnasamy, “Blindbox”, in Proceedings
of the 2015 ACM Conference on Special Interest Group on Data Communication -
SIGCOMM 15, ACM Press, 2015. DOI: 10.1145/2785956.2787502. [Online].
Available: https://doi.org/10.1145%2F2785956.2787502.

http://dx.doi.org/10.1109/cnsm.2010.5691234
https://doi.org/10.1109%2Fcnsm.2010.5691234
https://doi.org/10.1109%2Fcnsm.2010.5691234
http://dx.doi.org/10.1109/icndc.2012.36
https://doi.org/10.1109%2Ficndc.2012.36
https://doi.org/10.1109%2Ficndc.2012.36
http://dx.doi.org/10.1109/lcnw.2013.6758538
http://dx.doi.org/10.1109/lcnw.2013.6758538
https://doi.org/10.1109%2Flcnw.2013.6758538
https://doi.org/10.1109%2Flcnw.2013.6758538
http://dx.doi.org/10.1109/ecticon.2012.6254301
http://dx.doi.org/10.1109/ecticon.2012.6254301
https://doi.org/10.1109%2Fecticon.2012.6254301
https://doi.org/10.1109%2Fecticon.2012.6254301
http://dx.doi.org/10.1145/1882486.1882539
http://dx.doi.org/10.1145/1882486.1882539
https://doi.org/10.1145%2F1882486.1882539
http://dx.doi.org/10.1109/fpl.2010.22
https://doi.org/10.1109%2Ffpl.2010.22
https://doi.org/10.1109%2Ffpl.2010.22
http://dx.doi.org/10.1016/j.comnet.2014.11.001
https://doi.org/10.1016%2Fj.comnet.2014.11.001
https://doi.org/10.1016%2Fj.comnet.2014.11.001
https://en.wikipedia.org/wiki/Man-in-the-middle_attack
https://en.wikipedia.org/wiki/Man-in-the-middle_attack
https://en.wikipedia.org/wiki/Transport_Layer_Security
https://en.wikipedia.org/wiki/Transport_Layer_Security
http://dx.doi.org/10.1145/2785956.2787502
https://doi.org/10.1145%2F2785956.2787502

BIBLIOGRAPHY 47

[25] V. Carela-Español, P. Barlet-Ros, M. Solé-Simó, A. Dainotti, W. de Donato, and
A. Pescapé, “K-dimensional trees for continuous traffic classification”, in Traf-
fic Monitoring and Analysis, Springer Berlin Heidelberg, 2010, pp. 141–154. DOI:
10.1007/978-3-642-12365-8_11. [Online]. Available: https://doi.org/10.
1007%2F978-3-642-12365-8_11.

[26] L. Deri, M. Martinelli, T. Bujlow, and A. Cardigliano, “Ndpi: Open-source
high-speed deep packet inspection”, in 2014 International Wireless Communi-
cations and Mobile Computing Conference (IWCMC), IEEE, 2014. DOI: 10.1109/
iwcmc . 2014 . 6906427. [Online]. Available: https : / / doi . org / 10 . 1109 %
2Fiwcmc.2014.6906427.

[27] G. Aceto, A. Dainotti, W. de Donato, and A. Pescape, “Portload: Taking the
best of two worlds in traffic classification”, in 2010 INFOCOM IEEE Conference
on Computer Communications Workshops, IEEE, 2010. DOI: 10.1109/infcomw.
2010.5466645. [Online]. Available: https://doi.org/10.1109%2Finfcomw.
2010.5466645.

[28] Ntop - revision 9350: /trunk/ndping, https://svn.ntop.org/svn/ntop/trunk/
nDPIng/, (Accessed on 07/24/2019).

[29] T. Bujlow, V. Carela-Español, and P. Barlet-Ros, “Independent comparison of
popular DPI tools for traffic classification”, Computer Networks, vol. 76, pp. 75–
89, 2015. DOI: 10.1016/j.comnet.2014.11.001. [Online]. Available: https:
//doi.org/10.1016%2Fj.comnet.2014.11.001.

[30] L. Deri, M. Martinelli, T. Bujlow, and A. Cardigliano, “Ndpi: Open-source
high-speed deep packet inspection”, in 2014 International Wireless Communi-
cations and Mobile Computing Conference (IWCMC), IEEE, 2014. DOI: 10.1109/
iwcmc . 2014 . 6906427. [Online]. Available: https : / / doi . org / 10 . 1109 %
2Fiwcmc.2014.6906427.

[31] T. Bujlow, Classification and analysis of computer network traffic. Networking &
Security, Department of Electronic Systems, Aalborg University, 2014.

[32] S. L. Salzberg, “C4.5: Programs for machine learning by j. ross quinlan. morgan
kaufmann publishers, inc., 1993”, Machine Learning, vol. 16, no. 3, pp. 235–240,
1994. DOI: 10.1007/bf00993309. [Online]. Available: https://doi.org/10.
1007%2Fbf00993309.

[33] P. Perera, Y.-C. Tian, C. Fidge, and W. Kelly, “A comparison of supervised ma-
chine learning algorithms for classification of communications network traf-
fic”, in Neural Information Processing, Springer International Publishing, 2017,
pp. 445–454. DOI: 10.1007/978- 3- 319- 70087- 8_47. [Online]. Available:
https://doi.org/10.1007%2F978-3-319-70087-8_47.

[34] M. Shafiq, X. Yu, A. A. Laghari, L. Yao, N. K. Karn, and F. Abdessamia, “Net-
work traffic classification techniques and comparative analysis using machine
learning algorithms”, in 2016 2nd IEEE International Conference on Computer and
Communications (ICCC), IEEE, 2016. DOI: 10.1109/compcomm.2016.7925139.
[Online]. Available: https://doi.org/10.1109%2Fcompcomm.2016.7925139.

[35] “Bayesian network classifiers”, in Chapman & Hall/CRC Computer Science &
Data Analysis, CRC Press, 2010, pp. 205–230. DOI: 10.1201/b10391-10. [On-
line]. Available: https://doi.org/10.1201%2Fb10391-10.

http://dx.doi.org/10.1007/978-3-642-12365-8_11
https://doi.org/10.1007%2F978-3-642-12365-8_11
https://doi.org/10.1007%2F978-3-642-12365-8_11
http://dx.doi.org/10.1109/iwcmc.2014.6906427
http://dx.doi.org/10.1109/iwcmc.2014.6906427
https://doi.org/10.1109%2Fiwcmc.2014.6906427
https://doi.org/10.1109%2Fiwcmc.2014.6906427
http://dx.doi.org/10.1109/infcomw.2010.5466645
http://dx.doi.org/10.1109/infcomw.2010.5466645
https://doi.org/10.1109%2Finfcomw.2010.5466645
https://doi.org/10.1109%2Finfcomw.2010.5466645
https://svn.ntop.org/svn/ntop/trunk/nDPIng/
https://svn.ntop.org/svn/ntop/trunk/nDPIng/
http://dx.doi.org/10.1016/j.comnet.2014.11.001
https://doi.org/10.1016%2Fj.comnet.2014.11.001
https://doi.org/10.1016%2Fj.comnet.2014.11.001
http://dx.doi.org/10.1109/iwcmc.2014.6906427
http://dx.doi.org/10.1109/iwcmc.2014.6906427
https://doi.org/10.1109%2Fiwcmc.2014.6906427
https://doi.org/10.1109%2Fiwcmc.2014.6906427
http://dx.doi.org/10.1007/bf00993309
https://doi.org/10.1007%2Fbf00993309
https://doi.org/10.1007%2Fbf00993309
http://dx.doi.org/10.1007/978-3-319-70087-8_47
https://doi.org/10.1007%2F978-3-319-70087-8_47
http://dx.doi.org/10.1109/compcomm.2016.7925139
https://doi.org/10.1109%2Fcompcomm.2016.7925139
http://dx.doi.org/10.1201/b10391-10
https://doi.org/10.1201%2Fb10391-10

48 BIBLIOGRAPHY

[36] J. Li, S. Zhang, Y. Lu, and J. Yan, “Real-time p2p traffic identification”, in IEEE
GLOBECOM 2008 - 2008 IEEE Global Telecommunications Conference, IEEE, 2008.
DOI: 10.1109/glocom.2008.ecp.475. [Online]. Available: https://doi.org/
10.1109%2Fglocom.2008.ecp.475.

[37] Y. Zhang, H. Wang, and S. Cheng, “A method for real-time peer-to-peer traf-
fic classification based on c4.5”, in 2010 IEEE 12th International Conference on
Communication Technology, IEEE, 2010. DOI: 10.1109 /icct.2010.5689126.
[Online]. Available: https://doi.org/10.1109%2Ficct.2010.5689126.

[38] Caida: Center for applied internet data analysis, http://www.caida.org/home/,
(Accessed on 08/02/2019).

[39] R. Fontugne and K. Fukuda, “A hough-transform-based anomaly detector
with an adaptive time interval”, in Proceedings of the 2011 ACM Symposium
on Applied Computing - SAC 11, ACM Press, 2011. DOI: 10.1145/1982185.
1982290. [Online]. Available: https://doi.org/10.1145%2F1982185.1982290.

[40] S. Lee, H. Kim, D. Barman, S. Lee, C. kwon Kim, T. Kwon, and Y. Choi, “Netra-
mark”, ACM SIGCOMM Computer Communication Review, vol. 41, no. 1, p. 22,
2011. DOI: 10.1145/1925861.1925865. [Online]. Available: https://doi.org/
10.1145%2F1925861.1925865.

[41] W. D. Donato, A. Pescape, and A. Dainotti, “Traffic identification engine: An
open platform for traffic classification”, IEEE Network, vol. 28, no. 2, pp. 56–64,
2014. DOI: 10.1109/mnet.2014.6786614. [Online]. Available: https://doi.
org/10.1109%2Fmnet.2014.6786614.

[42] Portal university of the republic | cover page, http://www.universidad.edu.uy/,
(Accessed on 08/04/2019).

[43] Brescia university, https://www.brescia.edu/, (Accessed on 08/04/2019).

[44] Tcpdump/libpcap public repository, https://www.tcpdump.org/, (Accessed on
08/06/2019).

[45] Bpf, https://www.freebsd.org/cgi/man.cgi?query=bpf, (Accessed on
08/06/2019).

[46] L. I. Kuncheva, Combining pattern classifiers: Methods and algorithms. John Wiley
& Sons, 2014.

[47] A. Dainotti, A. Pescapé, and C. Sansone, “Early classification of network traf-
fic through multi-classification”, in Traffic Monitoring and Analysis, Springer
Berlin Heidelberg, 2011, pp. 122–135. DOI: 10.1007/978-3-642-20305-3_11.
[Online]. Available: https://doi.org/10.1007%2F978-3-642-20305-3_11.

[48] G. Aceto, D. Ciuonzo, A. Montieri, and A. Pescapé, “Multi-classification ap-
proaches for classifying mobile app traffic”, Journal of Network and Computer
Applications, vol. 103, pp. 131–145, 2018. DOI: 10.1016/j.jnca.2017.11.007.
[Online]. Available: https://doi.org/10.1016%2Fj.jnca.2017.11.007.

[49] P. Foremski, C. Callegari, and M. Pagano, “Waterfall: Rapid identification of
IP flows using cascade classification”, in Computer Networks, Springer Interna-
tional Publishing, 2014, pp. 14–23. DOI: 10.1007/978- 3- 319- 07941- 7_2.
[Online]. Available: https://doi.org/10.1007%2F978-3-319-07941-7_2.

[50] W. de Donato, A. Pescapè, and A. Dainotti, “Traffic identification engine: An
open platform for traffic classification”, IEEE Network, vol. 28, no. 2, pp. 56–64,
2014. DOI: 10.1109/MNET.2014.6786614. [Online]. Available: https://doi.
org/10.1109/MNET.2014.6786614.

http://dx.doi.org/10.1109/glocom.2008.ecp.475
https://doi.org/10.1109%2Fglocom.2008.ecp.475
https://doi.org/10.1109%2Fglocom.2008.ecp.475
http://dx.doi.org/10.1109/icct.2010.5689126
https://doi.org/10.1109%2Ficct.2010.5689126
http://www.caida.org/home/
http://dx.doi.org/10.1145/1982185.1982290
http://dx.doi.org/10.1145/1982185.1982290
https://doi.org/10.1145%2F1982185.1982290
http://dx.doi.org/10.1145/1925861.1925865
https://doi.org/10.1145%2F1925861.1925865
https://doi.org/10.1145%2F1925861.1925865
http://dx.doi.org/10.1109/mnet.2014.6786614
https://doi.org/10.1109%2Fmnet.2014.6786614
https://doi.org/10.1109%2Fmnet.2014.6786614
http://www.universidad.edu.uy/
https://www.brescia.edu/
https://www.tcpdump.org/
https://www.freebsd.org/cgi/man.cgi?query=bpf
http://dx.doi.org/10.1007/978-3-642-20305-3_11
https://doi.org/10.1007%2F978-3-642-20305-3_11
http://dx.doi.org/10.1016/j.jnca.2017.11.007
https://doi.org/10.1016%2Fj.jnca.2017.11.007
http://dx.doi.org/10.1007/978-3-319-07941-7_2
https://doi.org/10.1007%2F978-3-319-07941-7_2
http://dx.doi.org/10.1109/MNET.2014.6786614
https://doi.org/10.1109/MNET.2014.6786614
https://doi.org/10.1109/MNET.2014.6786614

BIBLIOGRAPHY 49

[51] Coralreef software suite, http://www.caida.org/tools/measurement/coralreef/,
(Accessed on 07/24/2019).

[52] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H. Witten,
“The WEKA data mining software”, ACM SIGKDD Explorations Newsletter,
vol. 11, no. 1, p. 10, 2009. DOI: 10.1145/1656274.1656278. [Online]. Avail-
able: https://doi.org/10.1145%2F1656274.1656278.

[53] V. Carela-Español, T. Bujlow, and P. Barlet-Ros, “Is our ground-truth for traffic
classification reliable?”, in Passive and Active Measurement, Springer Interna-
tional Publishing, 2014, pp. 98–108. DOI: 10.1007/978-3-319-04918-2_10.
[Online]. Available: https://doi.org/10.1007%2F978-3-319-04918-2_10.

[54] S. Valenti, D. Rossi, A. Dainotti, A. Pescapè, A. Finamore, and M. Mellia, “Re-
viewing traffic classification”, in Data Traffic Monitoring and Analysis, Springer
Berlin Heidelberg, 2013, pp. 123–147. DOI: 10.1007/978-3-642-36784-7_6.
[Online]. Available: https://doi.org/10.1007%2F978-3-642-36784-7_6.

[55] A. Dainotti, F. Gargiulo, L. I. Kuncheva, A. Pescapè, and C. Sansone, “Iden-
tification of traffic flows hiding behind TCP port 80”, in Proceedings of IEEE
International Conference on Communications, ICC 2010, Cape Town, South Africa,
23-27 May 2010, 2010, pp. 1–6. DOI: 10.1109/ICC.2010.5502266. [Online].
Available: https://doi.org/10.1109/ICC.2010.5502266.

[56] V. Carela-Español, P. Barlet-Ros, A. Cabellos-Aparicio, and J. Solé-Pareta, “Anal-
ysis of the impact of sampling on NetFlow traffic classification”, Computer Net-
works, vol. 55, no. 5, pp. 1083–1099, 2011. DOI: 10.1016/j.comnet.2010.11.
002. [Online]. Available: https://doi.org/10.1016%2Fj.comnet.2010.11.
002.

[57] Y. Wang and S.-Z. Yu, “Machine learned real-time traffic classifiers”, in 2008
Second International Symposium on Intelligent Information Technology Application,
IEEE, 2008. DOI: 10.1109/iita.2008.536. [Online]. Available: https://doi.
org/10.1109%2Fiita.2008.536.

[58] T. Fawcett, “An introduction to ROC analysis”, Pattern Recognition Letters, vol.
27, no. 8, pp. 861–874, 2006. DOI: 10.1016/j.patrec.2005.10.010. [Online].
Available: https://doi.org/10.1016%2Fj.patrec.2005.10.010.

[59] J. Woodbridge, H. S. Anderson, A. Ahuja, and D. Grant, “Predicting domain
generation algorithms with long short-term memory networks”, ArXiv preprint
arXiv:1611.00791, 2016.

[60] S. E. Gómez, B. C. Martínez, A. J. Sánchez-Esguevillas, and L. H. Callejo, “En-
semble network traffic classification: Algorithm comparison and novel ensem-
ble scheme proposal”, Computer Networks, vol. 127, pp. 68–80, 2017. DOI: 10.
1016/j.comnet.2017.07.018. [Online]. Available: https://doi.org/10.
1016%2Fj.comnet.2017.07.018.

[61] H. Jung, “Cisco visual networking index: Global mobile data traffic forecast
update 2010–2015”, Technical report, Cisco Systems Inc, Tech. Rep., 2011.

[62] Mobile app usage - statistics & facts | statista, https://www.statista.com/
topics/1002/mobile-app-usage/, (Accessed on 08/07/2019).

[63] D. Ciuonzo, W. D. Donato, A. Pescapè, G. Aceto, and A. Montieri, “A system
for reliable and scalable ground truth generation and traffic classification of
mobile apps encrypted traffic”, 2017. DOI: 10.13140/RG.2.2.16118.29765.
[Online]. Available: http://rgdoi.net/10.13140/RG.2.2.16118.29765.

http://www.caida.org/tools/measurement/coralreef/
http://dx.doi.org/10.1145/1656274.1656278
https://doi.org/10.1145%2F1656274.1656278
http://dx.doi.org/10.1007/978-3-319-04918-2_10
https://doi.org/10.1007%2F978-3-319-04918-2_10
http://dx.doi.org/10.1007/978-3-642-36784-7_6
https://doi.org/10.1007%2F978-3-642-36784-7_6
http://dx.doi.org/10.1109/ICC.2010.5502266
https://doi.org/10.1109/ICC.2010.5502266
http://dx.doi.org/10.1016/j.comnet.2010.11.002
http://dx.doi.org/10.1016/j.comnet.2010.11.002
https://doi.org/10.1016%2Fj.comnet.2010.11.002
https://doi.org/10.1016%2Fj.comnet.2010.11.002
http://dx.doi.org/10.1109/iita.2008.536
https://doi.org/10.1109%2Fiita.2008.536
https://doi.org/10.1109%2Fiita.2008.536
http://dx.doi.org/10.1016/j.patrec.2005.10.010
https://doi.org/10.1016%2Fj.patrec.2005.10.010
http://dx.doi.org/10.1016/j.comnet.2017.07.018
http://dx.doi.org/10.1016/j.comnet.2017.07.018
https://doi.org/10.1016%2Fj.comnet.2017.07.018
https://doi.org/10.1016%2Fj.comnet.2017.07.018
https://www.statista.com/topics/1002/mobile-app-usage/
https://www.statista.com/topics/1002/mobile-app-usage/
http://dx.doi.org/10.13140/RG.2.2.16118.29765
http://rgdoi.net/10.13140/RG.2.2.16118.29765

50 BIBLIOGRAPHY

[64] Ui/application exerciser monkey | android developers, https://developer.android.
com/studio/test/monkey, (Accessed on 07/24/2019).

[65] Dd-wrt, https://dd-wrt.com/, (Accessed on 07/24/2019).

[66] Tcpdump/libpcap public repository, https://www.tcpdump.org/, (Accessed on
07/24/2019).

[67] The gnu netcat – official homepage, http://netcat.sourceforge.net/, (Ac-
cessed on 07/24/2019).

[68] Free android market data, history, ranking | 2011 - 2019, https://www.androidrank.
org/, (Accessed on 07/24/2019).

[69] Rfc 5246 - the transport layer security (tls) protocol version 1.2, https://tools.
ietf.org/html/rfc5246, (Accessed on 08/23/2019).

[70] A. Razaghpanah, A. A. Niaki, N. Vallina-Rodriguez, S. Sundaresan, J. Amann,
and P. Gill, “Studying TLS usage in android apps”, in Proceedings of the 13th
International Conference on emerging Networking EXperiments and Technologies -
CoNEXT 17, ACM Press, 2017. DOI: 10 . 1145 / 3143361 . 3143400. [Online].
Available: https://doi.org/10.1145/3143361.3143400.

[71] Rfc 6101 - the secure sockets layer (ssl) protocol version 3.0, https://tools.ietf.
org/html/rfc6101, (Accessed on 08/23/2019).

[72] Qualys ssl labs - projects / user agent capabilities: Android 6.0, https : / / www .
ssllabs.com/ssltest/viewClient.htmlname=Android&version=6.0&key=
129, (Accessed on 08/23/2019).

[73] N. Vallina-Rodriguez Et al., “Tracking the trackers: towards understanding
the mobile advertising and tracking ecosystem”, in Proc. DAT Workshop, 2016.

[74] A. Razaghpanah, R. Nithyanand, N. Vallina-Rodriguez, S. Sundaresan, M. All-
man, C. Kreibich, and P. Gill, “Apps, trackers, privacy, and regulators: A global
study of the mobile tracking ecosystem”, in Proceedings 2018 Network and Dis-
tributed System Security Symposium, Internet Society, 2018. DOI: 10 . 14722 /
ndss.2018.23353. [Online]. Available: https://doi.org/10.14722%2Fndss.
2018.23353.

[75] ICSI, Lumen privacy monitor, https://play.google.com/store/apps/details?
id=edu.berkeley.icsi.haystack, 2016.

[76] P. Richter, F. Wohlfart, N. Vallina-Rodriguez, M. Allman, R. Bush, A. Feld-
mann, C. Kreibich, N. Weaver, and V. Paxson, “A multi-perspective analysis
of carrier-grade NAT deployment”, in Proceedings of the 2016 ACM on Internet
Measurement Conference - IMC 16, ACM Press, 2016. DOI: 10.1145/2987443.
2987474. [Online]. Available: https://doi.org/10.1145%2F2987443.2987474.

[77] A. Lutu, M. Bagnulo, A. Dhamdhere, and K. C. Claffy, “NAT revelio: Detecting
NAT444 in the ISP”, in Passive and Active Measurement, Springer International
Publishing, 2016, pp. 149–161. DOI: 10.1007/978-3-319-30505-9_12. [On-
line]. Available: https://doi.org/10.1007%2F978-3-319-30505-9_12.

[78] Cdnfinder by cdnplanet, https://www.cdnplanet.com/tools/cdnfinder/.

[79] Cross-platform webpagetest agent, https : / / github . com / WPO - Foundation /
wptagent, 2017.

[80] McAfee, Trusted source, http://www.trustedsource.org/.

[81] OpenDNS, domain tagging, https://domain.opendns.com.

https://developer.android.com/studio/test/monkey
https://developer.android.com/studio/test/monkey
https://dd-wrt.com/
https://www.tcpdump.org/
http://netcat.sourceforge.net/
https://www.androidrank.org/
https://www.androidrank.org/
https://tools.ietf.org/html/rfc5246
https://tools.ietf.org/html/rfc5246
http://dx.doi.org/10.1145/3143361.3143400
https://doi.org/10.1145/3143361.3143400
https://tools.ietf.org/html/rfc6101
https://tools.ietf.org/html/rfc6101
https://www.ssllabs.com/ssltest/viewClient.html name=Android&version=6.0&key=129
https://www.ssllabs.com/ssltest/viewClient.html name=Android&version=6.0&key=129
https://www.ssllabs.com/ssltest/viewClient.html name=Android&version=6.0&key=129
http://dx.doi.org/10.14722/ndss.2018.23353
http://dx.doi.org/10.14722/ndss.2018.23353
https://doi.org/10.14722%2Fndss.2018.23353
https://doi.org/10.14722%2Fndss.2018.23353
https://play.google.com/store/apps/details?id=edu.berkeley.icsi.haystack
https://play.google.com/store/apps/details?id=edu.berkeley.icsi.haystack
http://dx.doi.org/10.1145/2987443.2987474
http://dx.doi.org/10.1145/2987443.2987474
https://doi.org/10.1145%2F2987443.2987474
http://dx.doi.org/10.1007/978-3-319-30505-9_12
https://doi.org/10.1007%2F978-3-319-30505-9_12
https://www.cdnplanet.com/tools/cdnfinder/
https://github.com/WPO-Foundation/wptagent
https://github.com/WPO-Foundation/wptagent
http://www.trustedsource.org/
https://domain.opendns.com

BIBLIOGRAPHY 51

[82] Censys.io, https://www.censys.io/, 2017.

[83] Cdn mapping, https://github.com/Hossein-Doroud/cdn-detector/blob/
master/cdnDetector.py, 2017.

[84] A. Razaghpanah, N. Vallina-Rodriguez, S. Sundaresan, C. Kreibich, P. Gill, M.
Allman, and V. Paxson, “Haystack: A multi-purpose mobile vantage point in
user space”, ArXiv preprint arXiv:1510.01419v3, 2016.

[85] P. Foremski, C. Callegari, and M. Pagano, “DNS-class: Immediate classification
of IP flows using DNS”, International Journal of Network Management, vol. 24,
no. 4, pp. 272–288, 2014. DOI: 10.1002/nem.1864. [Online]. Available: https:
//doi.org/10.1002%2Fnem.1864.

[86] Z. Liu, R. Wang, M. Tao, and X. Cai, “A class-oriented feature selection ap-
proach for multi-class imbalanced network traffic datasets based on local and
global metrics fusion”, Neurocomputing, vol. 168, pp. 365–381, Nov. 2015. DOI:
10.1016/j.neucom.2015.05.089. [Online]. Available: https://doi.org/10.
1016/j.neucom.2015.05.089.

[87] J. Halpern and C. Pignataro, “Service function chaining (sfc) architecture”,
RFC Editor, RFC 7665, 2015. DOI: 10 . 17487 / rfc7665. [Online]. Available:
https://doi.org/10.17487%2Frfc7665.

[88] E. Datsika, A. Antonopoulos, N. Zorba, and C. Verikoukis, “Software defined
network service chaining for OTT service providers in 5g networks”, IEEE
Communications Magazine, vol. 55, no. 11, pp. 124–131, 2017. DOI: 10.1109/
mcom.2017.1700108. [Online]. Available: https://doi.org/10.1109%2Fmcom.
2017.1700108.

[89] P. Quinn, U. Elzur, and C. Pignataro, “Network service header (nsh)”, RFC
Editor, RFC 8300, 2018. DOI: 10.17487/rfc8300. [Online]. Available: https:
//doi.org/10.17487%2Frfc8300.

[90] Intrusion detection system - wikipedia, https : / / en . wikipedia . org / wiki /
Intrusion_detection_system, (Accessed on 08/09/2019).

[91] A. S. Desai and D. P. Gaikwad, “Real time hybrid intrusion detection system
using signature matching algorithm and fuzzy-GA”, in 2016 IEEE International
Conference on Advances in Electronics, Communication and Computer Technology
(ICAECCT), IEEE, 2016. DOI: 10 . 1109 / icaecct . 2016 . 7942601. [Online].
Available: https://doi.org/10.1109%2Ficaecct.2016.7942601.

[92] Snort - network intrusion detection & prevention system, https://www.snort.
org/, (Accessed on 08/09/2019).

[93] Y. Wang, W. Meng, W. Li, J. Li, W.-X. Liu, and Y. Xiang, “A fog-based privacy-
preserving approach for distributed signature-based intrusion detection”, Jour-
nal of Parallel and Distributed Computing, vol. 122, pp. 26–35, 2018. DOI: 10.
1016/j.jpdc.2018.07.013. [Online]. Available: https://doi.org/10.1016%
2Fj.jpdc.2018.07.013.

[94] A. Ijaz, L. Zhang, M. Grau, A. Mohamed, S. Vural, A. U. Quddus, M. A. Imran,
C. H. Foh, and R. Tafazolli, “Enabling massive IoT in 5g and beyond systems:
PHY radio frame design considerations”, IEEE Access, vol. 4, pp. 3322–3339,
2016. DOI: 10.1109/access.2016.2584178. [Online]. Available: https://doi.
org/10.1109%2Faccess.2016.2584178.

https://www.censys.io/
https://github.com/Hossein-Doroud/cdn-detector/blob/master/cdnDetector.py
https://github.com/Hossein-Doroud/cdn-detector/blob/master/cdnDetector.py
http://dx.doi.org/10.1002/nem.1864
https://doi.org/10.1002%2Fnem.1864
https://doi.org/10.1002%2Fnem.1864
http://dx.doi.org/10.1016/j.neucom.2015.05.089
https://doi.org/10.1016/j.neucom.2015.05.089
https://doi.org/10.1016/j.neucom.2015.05.089
http://dx.doi.org/10.17487/rfc7665
https://doi.org/10.17487%2Frfc7665
http://dx.doi.org/10.1109/mcom.2017.1700108
http://dx.doi.org/10.1109/mcom.2017.1700108
https://doi.org/10.1109%2Fmcom.2017.1700108
https://doi.org/10.1109%2Fmcom.2017.1700108
http://dx.doi.org/10.17487/rfc8300
https://doi.org/10.17487%2Frfc8300
https://doi.org/10.17487%2Frfc8300
https://en.wikipedia.org/wiki/Intrusion_detection_system
https://en.wikipedia.org/wiki/Intrusion_detection_system
http://dx.doi.org/10.1109/icaecct.2016.7942601
https://doi.org/10.1109%2Ficaecct.2016.7942601
https://www.snort.org/
https://www.snort.org/
http://dx.doi.org/10.1016/j.jpdc.2018.07.013
http://dx.doi.org/10.1016/j.jpdc.2018.07.013
https://doi.org/10.1016%2Fj.jpdc.2018.07.013
https://doi.org/10.1016%2Fj.jpdc.2018.07.013
http://dx.doi.org/10.1109/access.2016.2584178
https://doi.org/10.1109%2Faccess.2016.2584178
https://doi.org/10.1109%2Faccess.2016.2584178

52 BIBLIOGRAPHY

[95] D. Mishra and S. De, “Energy harvesting and sustainable m2m communica-
tion in 5g mobile technologies”, in Internet of Things (IoT) in 5G Mobile Technolo-
gies, Springer International Publishing, 2016, pp. 99–125. DOI: 10.1007/978-
3-319-30913-2_6. [Online]. Available: https://doi.org/10.1007%2F978-3-
319-30913-2_6.

http://dx.doi.org/10.1007/978-3-319-30913-2_6
http://dx.doi.org/10.1007/978-3-319-30913-2_6
https://doi.org/10.1007%2F978-3-319-30913-2_6
https://doi.org/10.1007%2F978-3-319-30913-2_6

	Acknowledgements
	Abstract
	Introduction
	Background
	Port-based Approach
	Payload-based Approach
	Statistical-based Approach
	Pros and Cons

	Objective

	The State of the art
	nDPIng
	C4.5
	CoralReef
	Testbed
	Overall Performance

	Chain: A Network Traffic Classifier
	Related Works
	How Chain Works
	Implementation
	Evaluation
	Data and Tools
	Experimental Evaluation
	Experimental Comparison

	Mobile Traffic Classification
	GTEngin: the Ground Truth Builder
	GTEngin Setup

	Mobile Traffic & Chain Performance

	Mobile Ecosystem
	Datasets
	Method
	Leveraging reverse DNS lookups
	Manual Inspection

	Leveraging AS information
	Method Limitations

	CSP Presence on Mobile Apps
	The Study Outcome

	Influence of CSP on NTC Performance
	Filtering out CSP related Flows
	Performance Measurment

	Conclusion and Future Works
	Conclusion
	Future Works

	CSP Footprint
	list of CSP PTR records
	list of CSP Autonomous System

	Bibliography

