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GRAPHICAL ABSTRACT 

 

ABSTRACT 

The temperature dependence of biological rates at different scales (from individual enzymes, to 

isolated organisms, to ecosystem processes such as soil respiration and photosynthesis) is the 

subject of much historical and contemporary research. The precise relationship between the 

temperature dependence of enzyme rates and those at larger scales is not well understood. We have 

developed macromolecular rate theory (MMRT) to describe the temperature dependence of 

biological processes at all scales. Here we formalize the scaling relationship by investigating 

MMRT at both the molecular scale (constituent enzymes) and for growth of the parent organism. 

We demonstrate that the inflection point (Tinf) for the temperature dependence of individual 

metabolic enzymes coincides with the optimal growth temperature for the parent organism, and 

we rationalize this concordance in terms of the necessity for linearly correlated rates for metabolic 

enzymes over fluctuating environmental temperatures to maintain homeostasis. Indeed, Tinf is 

likely to be under strong selection pressure to maintain coordinated rates across environmental 

temperature ranges. At temperatures where rates become uncorrelated, we postulate a regulatory 

catastrophe and organism growth rates precipitously decline at temperatures where this occurs. We 

show that the curvature in the plots of the natural log of the rate versus temperature for individual 
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enzymes determines the curvature for the metabolic process overall and the curvature for the 

temperature dependence of the growth of the organism. We have called this “the inflection point 

hypothesis” and this hypothesis suggests many avenues of investigation in the future including 

avenues for engineering organisms’ thermal tolerance. 

 

TEXT  

Introduction 

Biological processes at different scales display a temperature optima (Topt) – the temperature at 

which the given process is at a maximum. For example, individual enzymes display temperature 

optima such that enzyme-catalyzed reaction rates drop sharply at temperatures above Topt.
1-2 

Similarly, individual organism growth rates show a well-defined Topt value above which rates 

precipitously decline.1, 3. Ecosystem rates such as leaf respiration, photosynthesis, and microbial 

processes display temperature optima.4-6 An obvious and much studied question concerns the 

degree to which the temperature dependence for these various processes are related and many 

authors have sought relationships between enzyme Topt and organism/ecosystem Topt values. The 

simplest model which is widely used is the “master enzyme” model that postulates a single 

metabolic enzyme whose denaturation above a particular temperature dominates the metabolism 

of its parent organism and whose Topt coincides with the Topt for growth of the parent organism.3 

Models of increasing sophistication have been proposed using, for example, proteome wide 

analysis of thermal unfolding7, and genome scale metabolic modelling.8 Recently, machine 

learning and Bayesian analysis has been brought to bear on this question.9 Cell membrane 

composition is also an important feature of organismal thermotolerance.10  



 4 

We have recently developed macromolecular rate theory (MMRT) to model the temperature 

dependence of enzyme-catalyzed reaction rates and we have also noted that this model accurately 

describes the temperature-dependence of organism growth rates and ecosystem rates.1, 4-5 MMRT 

invokes an activation heat capacity (∆𝐶p
‡
) that arises from the difference in heat capacity between 

the enzyme-substrate complex (ES) and the enzyme-transition state complex (E-TS) along the 

reaction coordinate. The activation heat capacity is a consequence of an enzyme preferentially 

stabilizing the transition state for the reaction when compared to the substrate (i.e. 

Kd,TS << Kd,substrate). The activation heat capacity determines the “curvature” seen in a ln(rate) 

versus T plot and also determines the value of Topt without the need to invoke enzyme denaturation. 

Furthermore, the curvature seen for most biological processes from growth rates1, to microbial 

processes5 and leaf respiration4 is well explained with MMRT. However, this raises a further 

question about the relationship between the curvature and Topt for individual enzymes and that for 

organism growth and potentially for rates at increasing scales.  

Here, we investigate the relationship between the temperature dependence of individual enzymes 

and that for a metabolic pathway and organism growth using the first six enzymes of the glycolysis 

pathway individually, together in vitro, and in vivo. We show that despite individual rates varying 

by three orders of magnitude, and the enzymes having widely distributed Tm values,7 the curvature 

of the temperature dependence for individual enzyme rates all contribute to the curvature of the 

parent metabolic pathway, and the curvature of the organism growth rate. We propose “the 

inflection point hypothesis” whereby evolutionary processes place the inflection points for 

individual enzymes at a common temperature, thus linearly correlating enzyme rates over 

temperature changes close to the average environmental temperature for the organism. We also 

conclude that the precipitous decline in organism growth rates at high temperatures are the result 
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of the loss of correlation between metabolic enzyme rates leading to a regulatory catastrophe for 

the organism with the buildup of toxic intermediates and dysregulation of critical metabolic 

processes.  

Theoretical framework 

In enzyme characterizations, Topt (the temperature of maximum activity, dk/dT = 0; Figure 1) is 

commonly reported as a measure of thermal adaptation, but how relevant is Topt in the context of 

an organisms’ environment? Enzyme Topt’s show a general relationship to growth temperature, 

with Topt values increasing for enzymes from psychrophiles through to thermophiles.11 However, 

enzymatic Topt values are consistently higher than environmental and optimum growth 

temperatures. This disparity is especially evident for psychrophilic enzymes.12-14 

 

Figure 1. The temperature dependence of enzyme rates (green), along with the first (red) and 

second (blue) derivatives. Topt (dk/dT = 0) and Tinf (d
2k/dT2 = 0) are illustrated as vertical dashed 

lines at the point where the first and second derivative cross zero respectively. The second 

derivative has been scaled by a factor of four for clarity.  
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Under “the inflection point hypothesis”, we propose that enzymatic Topt is not an evolutionarily 

selected parameter. Indeed, as Topt is generally above viable growth temperatures, there can be no 

obvious selective pressure on Topt. Instead, we propose that Tinf, the temperature of the lower 

inflection point of an enzyme’s thermal response curve (d2k/dT2 = 0; Figure 1), is the evolutionarily 

relevant parameter in enzyme adaptation to temperature. The inflection point is the steepest point 

of an enzyme thermal response curve, about which rates are approximately linear (d2k/dT2 = 0 

implies zero “curvature” at this point). The relative rates of multiple enzymes with aligned Tinf 

values are robust to changes in temperature about the Tinf due to the collinearity of the enzyme 

rates across these temperatures. Thus by aligning Tinf at the average environmental temperature, 

metabolism has an intrinsic homeostasis over increases and decreases in temperature over short 

time scales as relative rates through each enzyme scale equally, maintaining relative ratios of 

metabolic intermediates. In contrast, for other temperature zones of the curves, small changes in 

temperature result in divergent rate responses of enzymes. We propose that Tinf alignment has 

significance for the temperature response of growth rates, where the loss of coordination at high 

temperatures is evident in precipitous declines in growth rates.     

 

Methods 

Cloning, protein expression and purification  

Expression systems for the enzymes glucokinase (GK; EC 2.7.1.2), phosphoglucose isomerase 

(PGI; EC 5.3.1.9), phosphofructokinase I (PFK; EC 2.7.1.11), fructose bisphosphate aldolase II 

(FBPA; EC 4.1.2.13), triosephosphate isomerase (TPI; EC 5.3.1.1) and glyceraldehyde phosphate 

dehydrogenase (GAPD; EC 1.2.1.12) from Escherichia coli BL21 Gold (DE3) were cloned into 
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pPROEX HtB in E. coli DH5α. Protein expression was induced in mid-exponential phase with 

1 mM IPTG at 37 °C either in LB media overnight (GK, PFK, FBPA, and TPI), or in LB with 

2 g.L-1 glucose over four hours (PGI, and GAPD). Proteins were purified by immobilized metal 

ion affinity chromatography in 50 mM HEPES, pH 7.4, 150 mM NaCl over a 20 mM.ml-1 

imidazole gradient (20-1000 mM), followed by gel filtration chromatography (50 mM HEPES, 

pH 7.4, 150 mM NaCl). 

Kinetic characterizations  

Enzyme assays were performed in 50 mM HEPES, pH 7.4 (intercellular pH of E. coli)15, 

150 mM NaCl, 10 mM MgCl2, and 2.5 mM (NH4)2SO4 in a Heλios γ spectrophotometer (Thermo 

Fisher Scientific) coupled to single cell peltier temperature control. Temperature profiles for each 

enzyme were performed at saturating substrate conditions, as determined by Michaelis Menten 

characterizations at 37 and 44-45 °C (Supplementary Figure S1). Reaction components were 

brought to temperature prior to reaction initiation by the addition of enzyme. Initial rates of 

reaction were measured over ten seconds to reduce possible confounding effects from 

denaturation, especially at high temperatures. Reactions were monitored continuously at 340 nm 

following the production of NAD(P)H. Specifically, GK was characterized in a coupled reaction 

with glucose-6-phosphate dehydrogenase to produce NADPH.16 PGI was assayed in reverse, 

forming glucose-6-phospahte to allow detection coupled to glucose-6-phosphate dehydrogenase.17 

PFK was assayed in a coupled reaction with FBPA and GAPD for continuous detection of NADH 

production.18 FBPA 19 and TPI 20 reactions were coupled to the reduction of NAD+ by GAPD, 

while GAPD activity was measured directly by product NADH formation.21 For full 

characterisation component details, see Supplementary Table S1.  
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The pathway was assayed at saturating concentrations of ligands NAD+, ATP, and Pi. Starting 

substrate, glucose or glucose-6-phosphate, was added at saturating concentrations for GK and PGI 

respectively, and the reaction followed at 340 nm by the production of NADH by GAPD at the 

pathway endpoint (full assay details in Supplementary Table S1).  

Temperature profiles for both individual enzymes and pathways were fit with equation 1 in 

GraphPad Prism (GraphPad Software, La Jolla California USA, www.graphpad.com), where 𝑘B 

is the Boltzmann constant, h is Planck’s constant, R is the ideal gas constant, T is temperature in 

Kelvin, 𝛥𝐻𝑇
‡

0
 and 𝛥𝑆𝑇

‡

0
 are the enthalpy and entropy change over the reaction at the reference 

temperature (T0), respectively. The reference temperature was set at four degrees below the 

temperature at which maximum rates were measured, consistent with the literature.5 Topt and Tinf 

were calculated via equations 2 and 3 respectively from best fit values determined in equation 1: 

   ln(𝑘) = ln (
𝑘B𝑇

ℎ
) −

[∆𝐻𝑇0
‡ +∆𝐶p

‡(𝑇−𝑇0)]

𝑅𝑇
  

              +
[∆𝑆𝑇0

‡ +∆𝐶p
‡ln(

𝑇

𝑇0
)]

𝑅
                            (1) 

𝑇opt =  
𝛥𝐻𝑇0

‡ −𝛥𝐶𝑝
‡ .𝑇0

−𝛥𝐶𝑝
‡−𝑅

 ~ 𝑇0 −
𝛥𝐻𝑇0

‡

𝛥𝐶𝑝
‡                (2) 

𝑇inf =  
𝛥𝐻𝑇0

‡ −𝛥𝐶𝑝
‡ .𝑇0

−𝛥𝐶𝑝
‡+√−𝛥𝐶𝑝

‡ .𝑅

                                 (3) 

Pathway modelling 

To further investigate the metabolic pathway, reaction rates were modelled in two ways from 

the measured kcat variation with temperature (Figure 2) and experimental enzyme concentrations 
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(Supplementary Table S1). First, the theoretical pathway rate at each temperature (ktot) was 

calculated via equation 4, where overall pathway rates are dependent on the inverse turnover time 

of each enzymatic step (
1

𝑘1
 etc.):  

1

𝑘𝑡𝑜𝑡
=

1

𝑘1
+

1

𝑘2 
+ ⋯ 

1

𝑘𝑛
                                  (4) 

Secondly, to account for changing component concentrations and the effect of sub-saturating 

substrates, the pathway was also modelled using CellML22 to incorporate enzyme Michaelis 

Menten behavior. Binding constants at 37 °C and variation in kcat with temperature were taken 

from experimental determinations (Supplementary Figure S1 and Figure 2 respectively). Due to 

the short experimental assay period favoring the forward reaction, enzymes with reversible 

reactions (except TPI) were simplified to allow the forward reaction only. Due to the fast and 

reversible nature of TPI at the pathway branch point, the triose pool components 

(dihydroxyacetone phosphate and glyceraldehyde-3-phosphate) were modelled via an equilibrium 

constant, consistent with treatment in the literature.23 Substrate concentrations were set to model 

the experimental system set up (Supplementary Table S1). The model is available online at the 

CellML Model Repository (models.cellml.org/cellml) 

E. coli growth rates  

E. coli BL21 (DE3) growth rates were measured in M9 minimal media24 containing either 

0.4 % (w/v) glucose or glucose-6-phosphate as the sole carbon source. Cultures were inoculated 

1 in 100 from stationary phase cultures grown in M9 glucose. Growth rates were calculated by 

measuring backscatter via a Cell Growth Quantifier (aquila biolabs, Baesweiler, Germany) using 

25 ml growth medium in 250 ml flasks with shaking at 200 rpm.   
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Results and discussion  

Enzyme adaptation to environmental temperature   

For the six enzymes from the glycolytic pathway of E. coli characterized here using MMRT, it 

is evident that Topt values are not only consistently greater than optimal growth temperature (37 °C, 

310.15 K), but highly variable between enzymes. Characterized Topt values range from nine to 

29 degrees above the optimal growth temperature (average 328.2 K, standard deviation 7.1 K; 

Figure 2). There is however a close correlation between optimal growth temperature and the lower 

inflection point for the enzyme MMRT curve (Tinf; Figures 2 and 3). For the six enzymes studied, 

Tinf values have an average value of 310.3 ± 3.2 K, clustering around the optimum growth 

temperature of 310.15 K (Figure 3). From this concordance, we argue that Tinf presents a more 

informative parameter for linking in vitro enzyme characterizations to bacterial growth 

temperatures (when compared to Topt), and is an association which warrants investigation in further 

species.25   
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Figure 2. Temperature-rate data for the first six enzymes of the glycolytic pathway from E. coli. 

Data shown are the initial rates of reaction (at saturating substrate), fitted to equation 1. Data are 

given as the mean; error bars, where visible, represent the SD of three replicates (with the 

exception of T = 328-338 K for GAPD, as single measures). ∆𝐶p
‡
 values are in kJ.mol-1.K-1 ± SE. 

Topt and Tinf values are calculated from equations 2 and 3 respectively. Data for GK and FBPA 

exhibit non-random deviations from equation 1, and these data are better fit using a temperature 

dependent ∆𝐶p
‡
 (dotted lines, F test p-value 0.0028 and < 0.0001 respectively, see Supplementary 

for further details). For simplicity of modelling, temperature independent MMRT (equation 1) 

was used subsequently in all cases.      
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If temperature rate profiles for enzymes shift over evolutionary time to place Tinf at the 

environmental temperature, this suggests that there exists a selection pressure on Tinf. We propose 

that fixing Tinf at the average environmental temperature (37 °C for E. coli) serves as a mechanism 

for tightly coordinating the relative rates of enzyme activity across cellular metabolism over short 

time-scale fluctuations in environmental temperature. Enzymes do not evolve in isolation, but as 

components of metabolic networks and within a framework of regulatory controls, to modulate 

activity both within and between pathways, in the context of environmental conditions.26-27 

Metabolic networks have been found to enact high levels of intrinsic self-regulation, where 

feedback regulation and effector systems rapidly and passively adjust enzyme activities, as 

opposed to active hierarchical control from transcriptional, translational and post-translational 

modifications.28 The metabolic-wide alignment of Tinf values to the environmental temperature 

functions as a further means of instantaneous intrinsic metabolic coordination, allowing passive 

synchronization of enzyme activities over short time-scale fluctuations in environmental 

temperature. This coordination is due to the linearly correlated rates of different enzymes about 

the inflection point (Figure 3). By coordinating Tinf values at the average environmental 

temperature, relative rates through each enzyme in the pathway scale equally over both increases 

and decreases in temperature, maintaining the ratios of metabolic intermediates (i.e. homeostasis).  



 13 

  

Figure 3. Relative temperature profiles of glycolytic enzymes from E. coli. The fit of equation 1 

to the data (Figure 2) is shown for each enzyme. Inflection points for each enzyme are indicated 

as circles; the temperature span of Tinf values is shaded in yellow. By comparison, the range of 

Topt values is shaded in grey. The optimum growth temperature of E. coli (37 °C) is indicated 

with a dotted line. 

The significance of Tinf  

The observed alignment of Tinf at the environmental temperature immediately raises the question 

as to why Tinf is aligned at this temperature rather than Topt? First, coordinating Tinf values demands 

less precise alignment of temperature profiles than the coordination of Topt. Due to the 

approximately linear relationship between rate and temperature about the inflection point (d2k/dT2 

= 0), Tinf values do not need to be precisely matched to preserve relative rates over temperature 

variations. By comparison, if rates were to be coordinated about Topt (where curvature is at a 

maximum, Figure 1), stricter alignment is necessary to achieve rate coordination between enzymes 

due to the steep declines in rate either side of Topt.    
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In addition, if Topt were lowered to match environmental temperatures, this would have 

consequences for enzyme kinetics and temperature sensitivity. There is a defined relationship 

between Topt and ∆𝐶p
‡  where decreases in Topt can only be achieved via more negative ∆𝐶p

‡
 values.1 

The first consequence of this is the “psychrophilic trap”, whereby increasingly negative ∆𝐶p
‡
 values 

impose increasing curvature and much greater temperature sensitivity.29 Thus, shifting Topt down 

to the environmental temperature also steepens curvature about Topt, incurring a higher penalty of 

rate reductions with changes to lower temperatures. The molecular strategies of decreasing ∆𝐶p
‡
 

(as evident in psychrophilic enzymes)30 involve increases in the heat capacity (Cp) for the enzyme-

substrate complex (more flexible) and/or decreases in Cp of the enzyme transition state species 

(more rigid).29 Our hypothesis is that fixing of Tinf instead of Topt achieves two things: one, linearly 

correlated rates for multiple metabolic enzymes over small fluctuations in temperature, and two, 

escaping the detrimental consequences of greater curvature (temperature sensitivity) incurred by 

lowering Topt.   

The temperature dependence of growth rates 

Enzyme kinetic parameters are often considered in isolation, yet this misses vital information 

pertaining to function within a metabolic context.31 To investigate how the different temperature 

profiles of the characterized glycolytic enzymes contribute to the temperature dependence of a 

metabolic pathway, the six enzymes were characterized as a pathway in a one-pot reaction (Figure 

4A). Pathway reaction rates measured the rate of production of 1,3-bisphosphoglycerate from 

glucose, dependent on six enzymatic steps.   
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Figure 4. The temperature dependence of the glycolytic pathway. (A) Enzymes and 

substrates/products of the characterized pathway. (B) Experimental determination of the 

temperature dependence of a five- and six-step pathway. Data are presented as single points, with 

the 95 % confidence interval of fitting indicated by shading. Pathway rates were detected by the 

formation of NADH from glucose-6-phosphate and glucose, respectively. For the six-step 

pathway, data is separated based on a temporal delay in the enzyme mixture equilibration time 
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(blue and green) which resulted in an increased rate over time. These data are fitted as one data 

set (turquoise). (C) and (D) Modelling of the pathway rates without and with incorporation of 

substrate limitations, respectively. R2 values for modelled data are 1.00 in all cases. (E) Fit 

parameters for experimental and modelled data. ∆𝐶p
‡
 values are in kJ.mol-1.K-1; the standard error 

of fitting for the last significant figure is given in brackets. Topt and Tinf values were calculated 

from equations 2 and 3 respectively. 

 

The temperature dependence of the one-pot reaction of six pathway enzymes has an observed 

curvature (∆𝐶p,obs
‡  ) of -4 ± 1 kJ.mol-1.K-1. Pathway data (Figure 4B) are color coded into two 

replicates differing only in the period over which enzymes were combined prior to the assay (on 

the scale of hours). Intriguingly, rates increased with increasing incubation time suggesting that 

some form of coordination is occurring over longer time periods. This would be consistent with 

the formation of supercomplexes, as has been observed previously with glycolytic enzymes.32 

However, this is purely speculative at this juncture and is the subject of ongoing investigations. 

Nonetheless, faster rates in the latter collected data set confirm no system degradation occurred 

over the experimental time frame and that the observed curvature is reproducible.  

Emphasis is commonly placed on rate-determining steps as dominating overall rates and 

temperature responses in metabolic processes. For example, models by Corkrey3 incorporate a 

single rate limiting master enzyme restraining rates below Topt, while declines above Topt are 

simplified to denaturation of this key enzyme. If this were the case, we would expect PFK, as the 

rate limiting enzyme across all temperatures to be the main contributor to curvature of pathway 

rates. Contrary to this expectation, the measured pathway curvature is greater than that of PFK 
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(∆𝐶p,obs
‡

 = -4 ± 1 and ∆𝐶p
‡
 = -1.7 ± 0.6 kJ.mol-1.K-1 respectively). This suggests an influence from 

the remaining enzymes with more negative ∆𝐶p
‡
 values in constraining the curvature to a greater 

extent than PFK alone. As the first step of the pathway (GK) is highly temperature dependent (∆𝐶p
‡
 

= -7.2 kJ.mol-1.K-1) compared to the remainder of the enzymes (average ∆𝐶p
‡
 = -2.6 kJ.mol-1.K-1), 

removal of this step allowed experimental investigation of the contributions of a non-rate limiting 

pathway enzyme. Removal of the GK catalyzed step reduces the curvature for the conversion of 

glucose-6-phosphate to 1,3-bisphosphoglycerate, with a measured ∆𝐶p,obs
‡

 

= -2.4 ± 0.3 kJ.mol-1.K-1 (Figure 4B). The measurable effect of the removal of GK, a non-rate 

limiting step, implicates effects from all contributing enzymes on both pathway rates and 

temperature dependence. 

The temperature dependence of the five- and six-enzyme one-pot reactions were further explored 

by modelling the pathway at substrate saturating and substrate limiting concentrations using 

equation 4 and CellML, seperately. Modelling under substrate limiting conditions captured the 

decreasing concentrations of substrate through the pathway to include the effect of enzyme rates 

below kcat. This is significant in capturing the low substrate concentrations in both the in vitro 

pathway, and in cellular metabolism (Supplementary Figure S2). Both approaches correctly model 

the relative differences in temperature dependent curvature of the pathway with and without the 

inclusion of GK (Figure 4C-E). The ability to predict pathway curvature without inclusion of sub-

saturating substrate concentration effects indicates curvature is independent of enzymatic rates less 

than kcat. This agreement between theoretical and experimental approaches for the temperature 

response of metabolic pathways demonstrates that pathway curvature is sensitive to the curvature 
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of all the individual enzymes on the pathway, irrespective whether they constitute the rate-

determining step.      

In vitro pathway rates do not capture the effects of loss of intrinsic coordination at elevated 

temperatures that become a detrimental factor for growth rates, as postulated earlier from the 

observed congruence in Tinf values (Figure 3). Pathway Topt values are similar to that of individual 

enzymes, both of which are greater than ten degrees above the optimal growth temperature of 

E. coli. The detrimental effect of this loss of coordination at elevated temperatures is evident in 

the temperature dependence of E. coli growth, as a sudden sharp decrease in rates above 40 ºC 

(Figure 5A and B). It is significant that the optimal growth temperature for E. coli growth is lower 

than both the optima of the six characterized enzymes and the optima of the one-pot pathway 

reactions. The precipitous decline in growth rate coincides with the upper end of the range of 

enzymatic Tinf values. We hypothesize that the loss of intrinsic coordination of contributing 

enzyme rates (above the Tinf temperature range) leads to a regulatory catastrophe and this is one of 

the dominant factors for the decline in growth rates above 40 ºC. Small increases in temperature 

above Tinf are postulated to induce an array of detrimental consequences for cells, including effects 

such as the buildup and depletion of intermediate chemicals either side of errantly fast or slow 

enzymes, including toxic intermediates.  

The extent of metabolic coordination requires two criteria to be satisfied. The first is that rates 

are colinear with changes in temperature and this is achieved when d2k/dT2 = 0, i.e. the inflection 

point. The second criteria is that the variance in curvature is minimized – that is, the variance in 

d2k/dT2 calculated across the different enzymes is at a minimum (Figure 5C). Notably, variance 

reaches a maximum as temperatures approach enzymatic Topt, a peak which coincides with 
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precipitous decreases in growth rates as the cells’ ability to regulate diverging enzyme rates is 

overwhelmed (Figure 5B).  

 

Figure 5. The temperature dependence of microorganism growth rates. The ranges of Tinf and 

Topt for the glycolytic enzymes are given as shaded tan and grey zones respectively. (A) Scaled 

growth rates for a range of E. coli strains,3 fit with MMRT (blue), in conjunction with a 

(theoretical) “two-state regulatory failure” at high temperatures (green), to give the overall fit (red). 

The overall fit follows MMRT to 315 K, at which point growth rates rapidly decrease due to a loss 

of metabolic coordination. (B) Growth rates on a log scale to illustrate deviations from MMRT. 

The variance of d2k/dT2 is plotted, showing the congruence between high temperature decreases 

in rate and the peak in reduced metabolic coordination. Inflection points of the individual enzymes 

are given as dots. (C) The second derivative (d2k/dT2) of six glycolytic enzyme rates (colors as in 
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Figure 1 and 2), and the variance of these functions (mauve). Metabolic coordination is inversely 

related to the variance of d2k/dT2. (D) Temperature dependence of E. coli growth on glucose and 

glucose-6-phosphate as the sole carbon source. Individual replicate data is plotted, with the 95 % 

confidence interval of fitting indicated by shading. Data is fit with MMRT (equation 1). As no 

curvature is present in G-6-P data, ∆𝐶p
‡
 is constrained to zero (i.e. an Arrhenius function). 

 

Given the measurable effects observed at the metabolic level for the glycolytic pathway function 

with and without GK, we tested the temperature dependence of E. coli growth rates under the same 

conditions using continuous monitoring over time of biomass concentration by light scattering 

from shake flasks (Figure 5D). We observed significant effects on the temperature dependence of 

growth when G-6-P is provided as the sole carbon source when compared to glucose. Growth on 

G-6-P results in faster growth rates (as predicted by our in vitro models and one-pot reactions) and 

a markedly less curved temperature response compared to growth on glucose. The direction of 

these effects are commensurate with that expected from the metabolic level. However, the extent 

of the reduction in curvature indicates there are effects additional to the chemical elimination of 

GK across the E. coli metabolism.  

Overall, the growth rates of E. coli over the temperature range 288-315 K are well modelled by 

MMRT, where curvature is a function of the combined curvature from contributing metabolic 

enzymes. Curvature over this range (∆𝐶p,obs
‡ =  −5.7 kJ.mol-1.K-1) is commensurate with that seen 

in the glycolytic pathway in vitro reflecting the contributions from all enzymes in the pathway. As 

temperatures extend outside of this range, intrinsic metabolic coordination achieved by aligning 
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Tinf values is lost, resulting in a dysfunctional network, causing catastrophic decreases in growth 

rates.  

 

 

Conclusions  

Enzymes drive organism growth and ecosystem function, and are a critical component to our 

understanding of how organisms and populations respond to temperature. Here, the inflection point 

of six enzyme temperature-rate profiles has been found to closely match the optimal organism 

growth temperature for E. coli, in contrast to the often cited enzymatic Topt. This is consistent with 

previous observations that enzymatic Topt values are consistently higher than environmental and 

optimal growth temperatures, and suggests Tinf as a more important biological parameter than Topt. 

We postulate the “inflection point hypothesis”, whereby the fixing of enzymatic Tinf at the mean 

environmental temperature for the parent organism achieves coordinated relative enzyme rates 

over fluctuating temperatures. This coordination in rates maintains relative enzyme rates and 

metabolic intermediate concentrations over short time scale environmental temperature changes. 

Fixing Tinf reduces the requirement for energy and resource use for active regulatory control of 

enzyme activates, providing a strong selection pressure for evolution.  

In addition, we have shown that the temperature dependent properties of each enzyme in a 

particular pathway influence the temperature dependence of the whole pathway. This is in contrast 

to a rate limiting step dominating the pathway behavior. This bridges the gap between enzyme and 

organism responses to temperature, and we suggest that the observed curvature for the organism, 
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∆𝐶p,obs
‡

, is a function of the ∆𝐶p
‡
 values for the contributing enzymes. Up to the optimal growth 

temperature for an organism, curvature in growth rates is dictated by the average curvature of 

contributing metabolic enzymes, with maximal metabolic coordination and growth rates gained 

over a temperature range about enzymatic Tinf where relative enzyme rates scale equally. Above 

this temperature range where relative rates begin to diverge, a loss of intrinsic metabolic 

coordination causes a regulatory collapse and severely compromised organism growth rates at high 

temperatures.     
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