
Towards Agile Yet Regulatory-Compliant Development of Medical Software

Vlad Stirbu
CompliancePal

Tampere, Finland
vlad.stirbu@compliancepal.eu

Tommi Mikkonen
University of Helsinki

Helsinki, Finland
tommi.mikkonen@helsinki.fi

Abstract—As digital transformation is taking place in more and
more industries, the role of software increases and the skills
required to develop software trigger a ripple effect. Entire
industries, where regulations and government standards play
an important role, like health care, have used long development
cycles that relied on detailed planning. Agile software develop-
ment proved that it can deliver results that satisfy customers
needs faster than traditional waterfall methodologies. The ap-
parent conflict between fast delivery cycles and lack of detailed
planning have lead to situations where the use of agile became
synonymous with lack of documentation and poor quality. In
this paper we propose new approaches that demonstrate that
appropriate use of agile practices brings benefits to compliance
activities too.

1. Introduction

Digital transformation is a phenomenon in which digital
technology is integrated in all areas of a business. The
result is that a business engaged on this path becomes
a software business, which fundamentally changes how it
operates and delivers values to its customers. The transfor-
mation is typically accompanied by a cultural change that
requires the organization to challenge status quo through
experimentation and getting familiar with failure.

Digital transformation poses a significant challenge for
businesses operating in heavy regulated environments such
as health care. The agility enabled by modern software
development methodologies, open source software, and the
increasing use of cloud infrastructure capabilities is at an ap-
parent conflict with the practices that are used to implement
the regulatory frameworks, optimized for the old world.

This paper explores new practices and cultural shifts that
enable organizations developing medical device software to
reconcile the high velocity of agile methodologies with the
mandatory regulations in the field. The background of the
paper is two-fold. On one hand it is based on review of
regulations and earlier work partially reported in [1], and in
the other hand, the paper contains realizations from practical
software engineering in industrial setting.

The paper is structured as follows. Section 2 introduces
modern software developments and practices that enable
high velocity delivery of features. Section 3 provides an

overview of regulatory landscape relevant for medical device
software development. Section 4 describes the proposals,
followed by the experimental results in Section 5. Conclud-
ing remarks are presented in Section 6.

2. Modern software development practices

In this section we explore agile software development
and development operations (DevOps), the two main prac-
tices that enable software development organizations to de-
liver functionalities for their customers at high speed.

Agile software development [2] is a lightweight ap-
proach of developing software, where the requirements and
the solution evolve through collaboration between the de-
velopment team and the beneficiary of the solution. The
development team is typically cross-functional and self-
organizing. The development team starts with an initial plan
and design that evolves through a rapid cycle of releases and
continuous improvement. The approach promotes flexible
response to change over strictly following plans, and it
has been sometimes misinterpreted as a series of ad-hoc
decisions rather than a disciplined engineering methodology.
In this paper, we build on the disciplined interpretation of
agile software development.

Scrum [3] is one of the most commonly used agile
framework for software development. The methodology de-
fines two special roles within the development team: the
product owner that represents the voice of the stakeholders
and customers, and the scrum master that facilitates the
scrum and is responsible with removing impediments that
can hamper the ability of the team to deliver on their
goals. The development team works in small time-boxed
increments called sprints and takes work items from an
ordered list of product requirements called product backlog.
Each sprint is bounded by a planning and review session.
During the sprint, the team holds daily scrum sessions to
evaluate progress and identify impediments.

DevOps [4] combines practices and tools with cultural
philosophies that increases the ability of an organization to
deliver applications at high velocity. The DevOps practices
and culture are aligned with and complement agile software
development practices by integrating, testing and deploying
applications at a rapid pace. For example, monitoring in
real-time the behavior of the applications in production



and acting if not performing within the desired quality
parameters, creates a fast feedback loop.

The capabilities of modern infrastructures exposed via
application programming interfaces (APIs) are leveraged
into a set of tools that allow a high level of automation
throughout the life-cycle of the application. The use of soft-
ware development practices for handling the infrastructure,
such as version control, allows the changes to be handled in
a standard and controlled way, resulting in repeatable and
consistent deployments that can be easily rolled back.

Agile software development and DevOps create an envi-
ronment in which experimentation can thrive [5]. By having
the mundane tasks of testing, integrating, packaging and
deploying automated, the teams can focus their attention
on bringing new features to the customers faster. Anyone
in the team can perform these operations as needed without
required additional expertise.

3. Medical device software regulations

The regulations covering medical device software fall
into two broad categories: information handling and safety.
The regulations related to information handling are Health
Insurance Portability and Accountability Act (HIPAA) [7]
in Unites States and General Data Protection Regulation
(GDPR) [6] in the European Union. HIPAA is a medical
sector regulation that defines what constitutes protected
health information, its use and disclosure when several
health providers are involved in the care process. GDPR is
a generic data privacy framework that defines how personal
information is collected and used. To comply with HIPAA
and GDPR regulatory frameworks, a service provider that
implements part of the functionality using software must
establish procedures for handling the relevant information.
These procedures typically get materialized into technical
requirements, which have to be implemented in software, or
standard operating procedures, which have to be followed
by the stuff that interacts with the protected information.
The regulations extend to business associates that process
or handle protected information, which have to comply
themselves.

The safety of medical devices or services is regulated
in Unites States by the Food and Drug Administration
(FDA) and Medical Device Directive in European Union.
International Organization for Standardization (ISO) and
International Electrotechnical Commission (IEC) have de-
veloped harmonized standards that contain guidance on the
processes and requirements that must be followed when
developing software so that relevant regulatory authorities
accept medical products in the respective markets.

For example, ISO 13485 [9] specifies the requirements
for a quality management system that allows an organization
to demonstrate its ability to provide medical devices and re-
lated services that consistently meet customer and applicable
regulatory requirements. Further, ISO 14971 [10] specifies
the processes that a manufacturer has to follow to identify
the hazards associated with medical devices, to estimate
and evaluate the associated risks, to control these risks, and

to monitor the effectiveness of these controls. Lastly, IEC
62304 [8] defines the life cycle requirements that must be
followed by an organization where software is embedded
or is an integral part of the final medical device. The
requirements are envisioned as a set of processes, activities
and tasks that establish a common framework for medical
device software life cycle processes.

4. Medical device software goes agile

Although the processes, activities and tasks defined in
the IEC 62304 are specific in what they have to accomplish,
the standard is not opinionated on how they are actually
implemented. This situation leaves a high degree of freedom
for affected organizations to select the software development
methodologies best suited for their needs, such as waterfall,
agile, or hybrid. The implementation is relatively straight
forward for traditional waterfall software development as
the upfront detailed planning can incorporate all the steps re-
quired. The implementation is more complicated for modern
software development practices that incorporate agile and
DevOps methodologies. There, the objective is on delivering
customer features at high velocity while maintaining the
organization ability to react to changes at reduced costs.
As the plans are detailed and revised regularly based on
the learnings found during the implementation and releases
to the customers, there is an increased possibility for rifts
to appear between the compliance activities and the actual
realities of the software implementation.

We propose an approach in which the risk management,
requirements traceability and verification is embedded in the
development team and becomes integral part of the software
development process. Their needs become essentially first
class needs, and appropriate tools must be developed for
handling compliance tasks.

4.1. Risk management

IEC 62304 defines three threat classes that convey in-
formation about the level of harm that the recipient of the
medical device that includes software can experience if used
according to the intended use specified by the manufacturer:
A does not result in any injuries, B can lead to non-serious
injury and C can lead to serious injury or death.

To evaluate in which category the software fits, the prod-
uct is decomposed into software systems that are composed
of integrated collections of software items. The items can be
decomposed further into software units. The manufacturer
decides on granularity of items and units. The risk classifi-
cation is by default inherited from the parent component and
can be changed by performing risk analysis at component
level. If following the risk analysis a child component is
classified with a higher risk than its parent, the classification
of the parent components are elevated recursively up to the
software system.

In agile teams that do not have dedicated compliance
expertise, the risk classification steps are performed tradi-
tionally by compliance consultants before a major product



release or a certification process starts. The risk analysis
is conducted on a snapshot of the code base, a situation
that leads to a feature freeze as no new functionality can
be merged till the assessment is completed. This leads to
friction with the development team.

To mitigate these situations, we propose an approach in
which the risk assessment is performed continuously as the
software is developed. The development team should include
compliance expertise and the risk assessments are performed
in small increments as soon as new risks are identified.
To avoid overloading the compliance aware team members,
the process is facilitated by DevOps tooling that identifies
common risks (a process further detailed in Section 4.3). The
tools are typically run on every code commit and deviations
are brought to the attention of responsible parties.

Another aspect emergent from having the development
team and compliance separated is that the two teams use sep-
arate tooling which reduces the visibility of the compliance
activities to the development team. We propose to handle
the risk management files using the same requirements
management tool used by the development team, each file
being a assigned a corresponding issue. The approach has
further benefits as the risks can be linked with the risks
controls implemented in software from the product backlog,
which aids traceability.

4.2. Traceability and verification

Traceability refers to the ability of tracking requirements
implementation as they are decomposed into product re-
quirements, system requirements, and finally into software
requirements. Verification refers to the ability to verify the
actual implementation state of the mentioned requirements.

JIRA1, a tool commonly used to manage requirements,
has the ability to manage links between requirements. Sim-
ilarly, Jenkins2 has the ability to identify corresponding
JIRA issues with jobs results. Together with Git, these tools
commonly used by organizations practicing agile software
development, are the enablers for realizing traceability and
verification. However, although these tools can be connected
together via web-based application programming interfaces
(APIs), setting them for this purpose is not straightforward
nor obvious, particularly for users not familiar with the
regulatory frameworks.

The situation can be improved with specialized tools
that configure the issue trackers, source version control and
continuous integration and deployment to implement stan-
dardized workflows for traceability and verification. When
DevOps practices are in use, the source version control
covers also the software configuration management and in-
frastructure changes, either in public clouds or on premises.

4.3. Compliance checks on code commits

During typical software development, the number of
code changes merged into the common code base is several

1. https://www.atlassian.com/software/jira
2. https://jenkins.io

git 
commit

Developer

webhook 
notification 

view commit 
status

GitHub commit 
status

problems 

view 
problems 

CompliancePal 
(GitHub App) 

creates compliance 
related issues

Compliance Officer

Compliance 
problems 
(Slack) 

Figure 1. Experimental environment workflows.

orders of magnitude larger than the number of software re-
quirements. This situation makes harder for the compliance
designated personnel to verify that no new risks have been
introduced during the software development.

One common risk is that developers use 3rd party
software that is not developed according to IEC 62304
practices, known in this context as software of unknown
provenance (SOUP). These kind of risks can be mitigated
by having compliance checks performed automatically on
each code commit or on merge requests. If new risks are
identified, corresponding issues are opened automatically
and the incidents are investigated as soon as possible by
relevant people. Performing as many checks as possible
immediately reduces the friction between the developers
and compliance managers, eliminating the need to perform
compliance investigations before major milestones can be
achieved; all deviations and corrective actions are performed
close to the time they occur.

5. Experimental results

Bridging the medical device software development and
agile practices is a long term endeavor that should be
accomplished, in truly agile spirit, in a sequence of small
increments. For this reason, among the three points de-
scribed in the previous section, we have decided to explore
how the compliance checks on code commits is a valuable
practice that enhances the visibility of compliance among
the development team, and enable a feedback loop that
allows the compliance officers to perform risk analysis as
potential issues occur.

The experimental setup, depicted in Figure 1, mirrors the
daily routine of an agile development team practicing the
scrum methodology. Among the agile team we emphasize
two roles relevant for the experiment: the developer and the
compliance officer. The team works on a project that de-
velops software using JavaScript programing language. The
code produced by the team is managed using a Git repository
hosted on GitHub3. GitHub built-in issues functionality is
used for requirements tracking. The compliance checks are
performed by our service that extends the standard GitHub
workflows using the Apps4 integration methodology. Possi-
ble compliance problems are brought to the attention of the
team via dedicated chat room hosted in Slack5.

3. https://github.com
4. https://developer.github.com/apps/
5. https://slack.com



Figure 2. Check progress and state viewed in GitHub user interface.

The software developer workflow consists of developing
new functionality, test it locally, then commit changes to the
local git repository. Following the team practices to merge
completed new functionality to the common code base, the
developer pushes the changes to the remote GitHub shared
repository. GitHub notifies its service integrations upon re-
ceiving new changes. Our service receives the change noti-
fication and performs code analysis to identify new SOUP
components in the new change set. The service updates the
progress of the check using the GitHub Statuses6, an API
that allows third parties to convey progress information via a
harmonized state (e.g. error, failure, pending, or success), a
short description of the status, and a web link where further
information can be obtained. The developer is able to follow
the progress using the familiar GitHub user interface. For
example, Figure 2 contains the depiction of a successful
SOUP check.

If the compliance checks detects new SOUP compo-
nents, the service updated the status on GitHub to failure
and post a new notification in the compliance problems
channel hosted in Slack. The designated compliance officer
receives the notification and starts the investigation by in-
specting the detailed view of the problem presented by the
CompliancePal service. For example, in Figure 3 we can
observe the result of the analysis presented in two sections.
The first section represents as a UML package diagram that
contains highlighted packages that correspond to the newly
identified SOUP components. The second section guides the
compliance officers with the most common actions that can
be taken to address the identified problems. The compliance
officer may decide to open a GitHub issue and assigns the
issue to the relevant GitHub project board from within the
problem detailed page. Once the identified problems have
issues, the compliance officers can proceed with conducting
risk management activities according to agreed team prac-
tices.

6. Conclusions

The sample workflow presented in the experiment proves
that properly designed tooling can bring together agile soft-
ware development and compliance practices. The seamless
integration into development team tools reduces friction,
enabling the developers to focus on software development
activities. The use of familiar DevOps patterns gives them
the confidence that compliance problems are detected and
handled by the responsible team members fast. Similarly,

6. https://developer.github.com/v3/repos/statuses/

Figure 3. Detailed view of SOUP compliance check.

compliance officers are confident that they have up to date
information about the software implementation in their area
of interest. The high level of automation and transparency
builds trust within the team. The tooling assists the team
members to perform to compliance activities only when
needed, making them efficient while maintaining high ve-
locity. As a result, compliance becomes an organization’s
shared goal instead of an impediment.

References

[1] Laukkarinen, T., Kuusinen, K., and Mikkonen, T. DevOps in regulated
software development: case medical devices. In Proceedings of the
39th International Conference on Software Engineering: New Ideas
and Emerging Results Track, pp. 15-18. IEEE Press, 2017.

[2] Cockburn, A. Agile Software Development Addison-Wesley, Boston,
2002.

[3] Schwaber, K., and Beedle, M. Agile software development with Scrum.
Vol. 1. Upper Saddle River: Prentice Hall, 2002.

[4] Debois, P. DevOps: A software revolution in the making. Journal of
Information Technology Management 24, pages 3-39, no. 8, 2011.

[5] Fagerholm, F., Guinea, A.S., Mäenpää, H., and Münch., J. Building
blocks for continuous experimentation. In Proceedings of the 1st
International Workshop on Rapid Continuous Software Engineering,
pp. 26-35. ACM, 2014.

[6] Official Journal of the European Union, Regulation (EU) 2016/679 of
the European Parliament and of the Council of 27 April 2016 on the
protection of natural persons with regard to the processing of personal
data and on the free movement of such data, and repealing Directive
95/46/EC (General Data Protection Regulation), Vol 119, 2016-05-04

[7] Centers for Medicare & Medicaid Services (1996), The Health In-
surance Portability and Accountability Act of 1996 (HIPAA), Online
http://www.cms.hhs.gov/hipaa/. Referred 15.7.2018.

[8] International Electrotechnical Commission, Medical device software -
Software life cycle processes, IEC 62304, 2015-06

[9] International Standards Organization, Medical devices - Quality man-
agement systems - Requirements for regulatory purposes, ISO 13485,
2016-03-01

[10] International Standards Organization, Medical devices - Application
of risk management to medical devices, ISO 14971, 2007-10-01


