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1 Introduction

Online video games of various flavor have been played competitively for almost three
decades. Real-time strategy, first-person shooter, multiplayer online battle arena and
driving games have captivated their audiences for decades. Popular competitive
online video games, such as Counter-Strike, Fortnite, Dota 2 and Starcraft 2 are
being played competitively by professional players. These games are starting to
move to the forefront of research in deep reinforcement learning, a form of machine
learning in which an agent must learn by trial and error an optimal behaviour by

interacting with its environment combined with deep neural networks.

DeepBlue [CHJHO02| defeated the grandmaster of chess in late the 1990’s and Al-
phaGo [SHM*16] defeated best Go player in the world in 2010’s. Further, AlphaZero
[SHST18] improved upon AlphaGo to such an extent that it managed to defeat the
best players in Chess, Go and Shogi, and did so with just self-play — without re-
quiring any prior knowledge like DeepBlue and AlphaGo did. These results proved
that classical two player adversarial games with fully visible game state and lim-
ited amount of moves to be made are ’solved’ with deep reinforcement learning

techniques.

This brings us to the new frontier: competitive online video games. They offer a
new challenge with games taking tens of thousands of moves with dozens of different
game pieces and games being played in real time with partially observable varying
environments. These games may even include more than two players competing and
cooperating simultaneously, creating a challenging multi-agent environment. These
games are an incredible challenge to play even for the best professional human
players. Competitive online video games as an reinforcement learning environment
have also one particularly tempting upside: they offer a ready environment to test

the performance of the Al solutions by a steady stream of human competitors.

There have been attempts to ’solve’ or at least offer a semi-competitive Al with
reinforcement learning techniques throughout the 2000’s and 2010’s, but these have
failed to provide any sort of competition to good players, let alone to best the pro-
fessional players. This has been until the rise of deep learning techniques which
use artificial neural networks with several connected layers. Combining deep net-
works with reinforcement learning has led to encouraging results in several different
categories of competitive online video games. AlphaStar [VBC*19], a deep reinforce-

ment learning Al agent for real-time strategy game of Starcraft2, managed to reach
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Grandmaster rank, the highest rank in the online ranked ladder of the game. Ope-
nAlFive [OB*19| managed to defeat the best professional human team in a restricted
version of Dota 2, a multiplayer battle-arena game. FTW agent [JCD*19a] was able
to reach level of strong human player in a capture the flag gameplay in first person
shooter game QQuake3. These results in older first person shooter game could be en-
couraging in an attempt to solve much more rich environments like Counter-Strike
and Fortnite. During the writing of this thesis, there were also results published
in a driving game of Gran Turismo [FSK*20]. Results in these rich and complex
online video game environments could also serve as a stepping stone to even harder

real-life environments like robotics and computer vision citevoulodimos2018deep.

The aim of this thesis is to provide an overview of the concepts of reinforcement
learning, deep networks and deep reinforcement learning. Then, to overview the
challenges of competitive online video games as a partially observable reinforcement
learning environment and then look into how new techniques have recently per-
formed recently in these games. Second and third chapter aim to introduce the
concepts of reinforcement learning and deep networks with some theoretical exam-
ples. The fourth chapter overviews how the combination of these techniques, the
deep reinforcement learning, was applied and how the Al agents performed in the
challenging environments of competitive online video games of Starcraft 2, Dota 2
and Quake 3. Finally, the fifth last chapter contains a discussion on these results
with their pros and cons and what these results mean today and what they could

mean in the future. Chapter 6 concludes this thesis.

2 Reinforcement learning

Reinforcement learning [KLM96, SB18| is a form of machine learning in which an
agent must learn by trial and error an optimal behaviour by interacting with its
environment. An agent starts interacting with the environment with an arbitrary
policy for choosing actions. On each step of interaction, the agent receives an input
of some indication of the state of the environment. Then the agent chooses an action
to perform to generate output and change the state of the environment. The agent
then receives rewards (positive reinforcement) when the actions lead to successful
performance and penalty (negative reinforcement) when its actions lead to unwanted
results. As the agent explores its environment, its performance changes from nearly

random to nearly deterministic as it finds routes to high rewards and learns to avoid
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actions that result in punishment. In the long run, agent should choose its actions
to maximize its received reinforcement. This is called optimal policy and it can be

found by trial and error, guided by a wide variety of different algorithms.

Figure 1: The standard reinforcement learning model.l is the input function of the
agent that it uses to perceive the state s of the environment 7. R is its reinforcement
model from which agent receives scalar reinforcement r after each action a according
to the new, perceived, state s of the environment 7. B is its "brain” that contains
its policy 7w, which maps agents actions a to states s of environment 7. Aim of
the agent is to maximize received reinforcement over time, this is done by so called

‘optimal policy’, which is learned by trial-and-error by acting in the environment.

One of the biggest problems in reinforcement learning is that the reinforcement-
learning agent must explicitly explore its environment. The problem lies in the
question: To which extend should the agent exploit its knowledge and to which
extend should it explore? Should the agent choose the best known action always or
should it sometimes choose an action, which is less explored but seems worse at this
time? This problem is often referred to as exploration/exploitation trade-off and is

discussed in more detail in chapter 2.2.

Reward assignment if another important concept in reinforcement learning. Agent
learns by receiving a scalar reinforcement signal after each time step when it performs
an action in its environment. A positive reinforcement signal, a reward, is received
upon performing an action that moves the state of the environment closer to a
desired outcome and negative reinforcement signal, a punishment, is received upon
undesired behaviour. Agent evaluates its behaviour at each state for each action by
these reinforcement signals. Over time, agent learns to optimize its actions in a trial-

and-error fashion, learning to maximize its reward. In the reward assignment lies
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another big problem of reinforcement learning: How to reward or punish the agent
for its performance when the results of it’s actions can be seen only after a long
time period? Should agent be given single reward at the end of the learning epoch
and propagate this reward back in time? This rewarding scheme is called delayed
reinforcement. Or should agent be rewarded after each action at each time step if
it moved towards its goal? This is called immediate reinforcement. Depending on
the reinforcement learning problem one of these might work better or a mixture of
both. [SB18, KLM96|.

Figure 2: A simple reinforcement learning problem example known as the Maze20.
This is a simple discrete world where an agent can move from one square to a square
next to it to any direction as its actions. Agent can’t move through walls denoted by
thick lines and if it attempts to do so, it fails and stays put. Environment consists
of the numbered square. The agent starts at a random position and it must find
shortest path to the square marked with a circle. To ensure agent tries to find the
shortest path we give agent reinforcement of -1 for each move and reinforcement
of 100 for reaching the goal. This ensures agent to try to minimize steps taken,
because each move gives it penalty. At each time step agent tries to move from one
square in the maze to another and receives this new square (or the same if it tried
to move against a wall) and reinforcement of -1 (or 100 if it reached the goal) as
input. Agents policy is a mapping of a movement to a certain direction from each
square in the maze. An optimal policy is the policy that maximizes the received
reinforcement signal, which is the shortest path to the goal. At the beginning of the
learning period agent starts exploring the maze at random, it knows not where the
goal is or if it can move through walls. In time, it will learn to act in the environment

and the shortest path by trial and error through many learning periods.

Over the last three decades there have been many applications of reinforcement
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learning in classical board games. An example of applying reinforcement learning for
games, an algorithm called temporal difference learning[Sut88| has been successfully
applied to solving the classic game of Backgammon with TD-Gammon|Tes95] in the
mid 90’s . Later in the late 90’s IBM’s deep blue chess playing computer defeated
reigning chess world champion Gary Gasparov for the first time ever [CHJHO02|.
For decades, game of Go still remained elusive for computers to play at human,
let alone super human level, due to its computational complexity and depth. After
the advent of deep learning techniques and increased computational capacity, new
strides for classic games have been made. In 2016 even the GO was mastered by
AlphaGO[SHM™16] and the best human GO player was defeatead. Two years later,
a general deep learning algorithm called AlphaZero, plays Go, Chess and Shogi at
superhuman level [SHS*18]. Now, researchers look to apply these now techniques

for solving competitive video games where new challenges can be found.

2.1 Markov decision process

In a single agent reinforcement learning the process can be formulated as an Markov
decision process (MDP) [KLMO96, SB18|. MDP is formally defined as a tuple <
S, A, T,R,~ >, where S is finite and discrete state space and A is the finite discrete
action set for the agent. T : S x A — [](S) is the state transition function which
maps each state s € S and the action a € A of the agent to the next state. State
transition function may be stochastic and define a probability distribution over the
state space S. R; : S x A — R is the reward function for the agent and 0 <~ <1

is the discount factor for future rewards.

The aim of the agent is to maximize the sum of its expected gained reinforcement

over time. The maximized reinforcement is given by the optimal policy:

T (s) = argmax(r(s,a) +7 Y _ p(s,a,s)V*(s), (1)
¢ s'esS
where p(s, a, ') is state transition probability . Policy can be described as a mapping

of states to actions that give the maximal long term reward.

2.2 Value function and solving optimal policy

Agents optimal policy 7* can be solved from optimal value function [KLM96, SB18|:
V*(s) = max (R(s, a)+73 T(sa. s'>v*(s')) Vs € S, 2)

s'eS
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From the value function we can see that the value of the state s is immediate reward
plus the next state’s value reduced by a factor of 7. From this we can solve for the
optimal policy 7 by choosing to perform action a in state s, which maximises the
value of the optimal value function V* in state s. Then, the optimal policy 7*

is in fact a greedy policy where actions are chosen by the optimal value function.

[KLCO8].

Optimal value function can be solved algorithmically with value iteration [KLM96].
It performs iterative improvement to value function setup with arbitrary values. It
tries to get as close to optimal value function as possible and stops [KLM96|. It
has been shown that value iteration algorithm converges to correct optimal value
function values [Bel66]. There is no guarantee as to how many iterations are needed
for the convergence to optimal value function, which can be costly on the process-
ing time. However, greedy policy performed from the value iteration algorithm is

optimal long before value iteration algorithm has converged [KL.M96].

Another way of solving optimal policy is policy iteration algorithm. It works by
directly interacting with the policy. It starts with a arbitrary policy and improves

it iteratively, until optimal policy is achieved [KLM96].

Both algorithms are exact algorithms that solve exactly for the optimal policy. The
problem with these methods, along with other methods, is computational intensity.
These algorithms need vast memory space to store all the state, action pairs along
with the massive state space. Usually, some problem specific methods are needed to
manage the computational and memory requirements to achieve successful results.
This limits the universal applicability of these methods [KLM96].

An example of value function is Q-function. In Q-learning [WD92| the agent executes
action a in the current state s, then receives an immediate reward r and the next
state s’ The current estimated Q-value can then be updated with the following
equation:

Quar(5:@) = (1= a)Qu(s, @) + aglr + 7 max Qu(s', o), 3

where k is the current time step, 0 < ap < 1 is the learning rate and 0 < v <1
is the decaying factor. Learning rate controls how much the new experiences affect
the agent. Decaying factor decreases the impact of future rewards gained from this
state. Only the value for the current state and action are ever updated, other states
remain unchanged. If the state-action pairs are updated an infinite number of times,
that is £ — oo, and decaying factor is a, — 0. For Q-values the following is true:
V*(s) = maxa@*(s;a) [KLM96|. Then, @y converges to the optimal policy with



probability of 1 [WD92].

As mentioned in chapter 2.1, exploration/exploitation trade-off dilemma is one of the
biggest problems in reinforcement learning. How long should agent try to explore
its environment more to learn a better policy for choosing actions and when to
exploit its current known best policy to try to maximize its reward? To answer
the exploration/exploitation trade-off dilemma, the agent may choose its action
according to different action selection strategies. One such strategy is to choose
action a in state s according to the greedy policy, where the action that leads to
greatest reward is chosen. Or € — greedy policy, where the action that leads to the
greatest reward is chosen with probability of € and a random action with probability
of 1 —e.

One popular biased action selection strategy is Boltzmann exploration [KLM96]. In
state s an action is selected according to the following probability:

Q(s,a)
e T

= aGa’ (4)

2.6 T

where T is the temperature parameter. T is selected in such way that the exploration

p(a)

is at first almost completely random and 7' decays so that in the end actions are

To

L where Ty is a constant

chosen greedily. This can be achieved by choosing T" =
and b is the number of actions finished by the agent.

2.3 Partially observable environments

In many real-world environments and in video games, it will not be possible for
the agent to have perfect and complete perception of the state of the environment.
This can happen, for example, in a real-time strategy game (rts) when a fog of war
covers the map, obscuring visibility of enemy units. Unfortunately, for many of the
reinforcement learning algorithms, complete observability is necessary. Further, in
video games state space of the vast three dimensional environments might not be
finite. In such cases, state space must be discretized and made finite or there can be
no guarantee of finding optimal policy. Still, reinforcement learning has been used

successfully in many real-world applications [SB18].

Partially observable Markov decision process (POMDP) is an extension MDP. Key
difference for reinforcement learning in POMDP is learning additional model pa-
rameters. T is the probability of moving from state s to s, O is the probability

distribution for observations, and R = (s, a, s’) is the reward function, where now,
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due to uncertainty, must also be considered the state s’ agent ended up in by per-
forming action a in state s. In POMDP the agent does not know exactly in which
state it is so it must maintain belief state, which is a probability distribution over
the states in S. It is updated after each action a € A according to the received
observation o € O about the next state ' € S. Optimal policy 7 can then be
solved by value iteration algorithms. Another simpler way is to return POMDP
back to MDP and using reinforcement learning methods for MDP. This is done by
using most likely belief state b as the true state s. This solution works well, it the
state s can be separated form other states in S with high probability. The greater
the uncertainty about the state s is, the closer distribution of belief state b is to a
uniform distribution and the worse this solution works [KLM96, SB18|.

Formally, we can define partially observable Markov decision process (POMDP) as
a tuple < S, A, T, R,Q,0,~v >, where S is finite and discrete state space and A is
the finite discrete action set for the agent. T': S x A — [](S) is the state transition
function which maps each state s € S and the action a € A of the agent to the
next state. State transition function may be stochastic and defines a probability
distribution over the state space S. R; : S x A X S — R is the reward function
for the agent and Q = {o1,09,...,0;,...} is the space of observations received from
the environment. O(o|s’,a) is probability distribution for the observations, where
s’ € S is the state where agent moved after performing action a € A and o €
is the observation agent received of its new state s’. And finally, 0 < v < 1 is the

discount factor for futere rewards.

Here we can see that the addition of POMDP to MDP is that the observation agent
receives after change of state is uncertain. And because the agent has uncertainty
about the state it arrives in, this model need some other way to represent agents
state instead of a single state s. A good candidate is belief state b, which is a
probability distribution over all the possible states s € S. b(s) is probability that
the environment is in state s. It is usually not accurate enough to represent the
most probable state as the state agent is at, but also represent the amount of un-
certainty there is about the state. The closer the distribution of states is to uniform
distribution, the greater the uncertainty of the state is. On the other hand, if the
probability mass is distributed mostly to just one state the certainty of the state
is high. POMDP can be returned to MDP, when we assume that observation o
represents arrival at state s’ and probability of observation is O(o|s’,a) = 1. Then
we assume that the belief state always represents the true state of the environment

and the observation as having perfect information.
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Belief state is agents internal belief about the state of the environment. The envi-
ronment is always at certain state, but the agents belief of the state can be different.
Agent acts in the environment by performing actions and changing the state of the
environment. After this agent always receives observation of the environment and
updates its belief state. The longer the agent acts in the environment and by using
history from previous observation (eg. RNN or LSTM discussed in chapter 3) the
agents belief state becomes more accurate. Belief state can be updated easily, for

example, by using Bayes’ Theorem P(A|B) = %.

Learning solutions in POMDP are divided in two categories: solutions with memory
and solutions without memory. Learning in POMDP without memory is usually
very inefficient and are shown that learning the optimal policy without memory
in POMDP is an NP-difficult problem [Hau00]. In solutions with memory, agents
can learn a better understanding of their environment instead of trying to ’guess’
according to uncertain observations. If same kind of observations are made in dif-
ferent states, it can prove a difficult learning environment. Best solution is to keep
a complete history for the agent, since it gives the best possibility to figure out the
agents true state in the environment surrounded by uncertain information. How-
ever, keeping track of agents complete history can prove impossible due to memory
restrictions and solutions to compact it are usually needed. Simplest solution is to
limit memory to a number of most recent states, but such heuristic method has no
guarantee of convergence to an optimal policy. A better way to utilize memory is
to use artificial neural networks. They can be used to efficiently propagate in time,
even to the start of the learning process. They are introduced in chapter 3 Deep

Learning.

Because solving optimal policy in POMDP without memory has proven to be NP-
difficult problem, so the only solution appears to be to approximation algorithms.
There have been proposed multiple heuristic approaches. But for a long time, these
approximate algorithms are too inefficient, they often fail to find the optimal policy
or take too long time to converge. Biggest issue to widespread application reinforce-
ment learning techniques to POMDP environments, like real-world applications and
complex video games, is the computational complexity. Deep recurrent neural net-
works, overviewed in chapter 3 of this thesis, provide the memory needed for these
algorithms to function properly in POMDP. This combined with reinforcement learn-
ing and added computational power have proven to provide much needed assistance

to these issues.
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2.4 Solving optimal policy in partially observable environ-

ments

Usually it is easiest to solve reinforcement learning problems in POMDP model
free fashion, which means that we try not to learn the individual parameters of
the environment but rather try to just learn the optimal policy in the environment.
Unlike MDP, in POMDP the number of belief states is continuous, so the exact
algorithms cannot converge to optimal policy. Limiting timescale for belief states,
on the other hand, has proven to be a PSPACE-difficult problem. However, there
are approximate algorithms that can produce good results with reasonable time and

space requirements [SB18].

Optimal policy can be solved with optimal value function like in MDP. Optimal

value function is defined as follows [Hau00|:

V*(b) = max { S R(s,a)b(s) +7 > Y O(ols', a)V*(r(b,o, a>>}, (5)

acA
ses 0€0 s’'eS

where next belief state is ¥’ on

V(s)=r1(b,0,a)(s)=0 Z O(ols', a)b(s"). (6)

s'es
B is the normalizing constant so that 0 < b'(s) < 1.

The difference in optimal value function between MPD and POMDP is that now
we must iterate over all the possible observations o € O we can have when moving
from state s € S to s’ € S with action a € A. State has been replaced by the belief
state b. The number of belief states is infinite, which makes optimal value function
computationally impossible to exactly solve, but it can be approximated. One way
to approximate it is to present value function by parts of convex linear function

ay(s) [Hau00]. Convex linear value function for time ¢ is:

Vi(b) = max b(s)ay(s), (7)

where b and «; are |S| dimensional vectors and I'; is finite set of linear vectors «.
The number of these linear vectors grow exponentially in time. This makes exact
solutions for problems with large state and observation spaces computationally very

expensive.

Another way to approximate optimal value function is to use value iteration al-
gorithm and statistical sampling to discretize belief state [Thr00, SB18|. Then, a
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balance between computational intensity and sample size must be struck, so that
neither speed nor accuracy suffers too much. Statistical sampling methods need a
large enough sample size to be accurate. Approximate value iteration algorithms
are less exact, but less computationally intensive as convex linear functions, so they
are capable of solving more complex problems. But even value iteration algorithms

have lacked the ability to tackle the most complicated learning tasks.

Monte Carlo method is an effective way of statistically sampling belief states and
solving reinforcement learning problems in POMDP, when the problem is episodic
in nature |[Thr00, JSJ95]. When using model-free methods we do not have the
knowledge of properties of the environment or specifically the transition probabilities
between states p(s,a,s’). We would need to learn all the information by exploring
the environment. Monte Carlo method works instead by updating values directly
to an arbitrary policy 7 for selecting actions. It runs a full learning episodes (or
simulations) from start to finish. After each episode, rewards are propagated back
in time to each state visited. Value for an action at a state is updated with received
discounted reward that is weighed with the times this state has been visited. From
this we can construct a greedy policy by selecting actions to perform with the highest
value of value function at each state. For Monte Carlo method, there is no guarantee
of convergence to optimal policy, but it has good convergence properties, when a
large enough number of episodes can be run for each time step. Monte Carlo methods
are simple to use and have been shown to work well in many episodic problems, like
classic games and video games. They however, suffer from high variance and each

episode must be fully completed.

2.5 Multi-agent reinforcement learning

Many competitive online video games are an example of a problem where multi-agent
reinforcement learning can be used. Multi-agent reinforcement learning is split into
competitive, cooperative and semi-cooperative tasks. Video games are usually either
semi-cooperative, where some agents are teammates and other agents opponents
or fully competitive, where one agent competes against another agent. The key
objective in semi-cooperative games is for the agents to learn to work together
to defeat their opponent. Semi-cooperative games require extensive cooperation
between friendly agents. Some tasks become much easier with cooperation, for
example defeating an opposing agent with superior numbers or coordinating base

defence and offensive between multiple agents. A real-world example and widely
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researched topic on semi-cooperative multi-agent reinforcement learning is robot

soccer. [SSKO05, KRST19|

The theory of MDP is central in most reinforcement learning techniques. In MDP
it is assumed that the agents environment is stationary and therefore it cannot
contain other learning agents|Lit94|. The actions of other agents in multi-agent
environments make the environment no longer stationary. In the multi-agent case,
the policies of all the agents for selecting actions play a crucial role in convergence

to a joint policy.

Cooperative learning tasks can be split into two categories: centralized learning and
distributed (or concurrent) learning. In team learning there exists only one learning
process, a master agent, and the other agents are slaves of the master. Centralized
learning can be reduced to single-agent learning case, but it also suffers from an
exponential state and actions space in the number of agents. Since the learner
needs to keep track of each agents states and actions and learn a joint policy of
optimal actions for each agent. In distributed learning there are as many learning
processes as there are agents. Fach agent is learning individually and there may
even not be a centralized joint optimal policy. Or the optimal joint policy can be

constructed from the individual agents optimal policies.

Concurrent, or distributed, learning is often more feasible for video games or real-
world applications since it suffers less from the curse of dimensionality than central-
ized learning. The problem is that the guarantee of convergence to optimal policy
is lost. This kind of learning task with multiple agents can be investigated from
a game theoretic viewpoint as a Markov game (or stochastic game). This extends
Markov decision process (MDP) to the multi-agent case. An important concept
here is a Nash equilibrium, which is useful tool for reasoning with multiple agents

optimal policies in an environment. These concepts are explained in chapter 2.6.

Same challenges present in single agent case apply: the exploitation-exploration
trade-off and the curse of dimensionality. In the multi-agent case new challenges
arise in specifying the learning goal, the need for coordination between agents and
the non-stationary nature of the learning environment. With multi-agent systems,
the problem complexity easily arises, even with simple problems. Multiple agents
and stochastic environment add complexity but also widen the spectre of emergent
behaviours within the agents. This makes it harder to predict the outcome of the
learning process and makes the learned solution less smooth. Even small changes in

an agent’s behaviour could result in radical changes in the emergent behaviour.
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Assigning appropriate delayed reinforcement is problematic in a single agent en-
vironment. It is even more problematic in a multi-agent environment due to the
interactions between other agents. How to reward agents if they do well as a team?
There are multiple schemes for rewarding and punishing in multi-agent environment.
Simplest reward scheme is global rewards, where whenever an agent receives reward
or punishment, each other agent receives equal reward or punishment. Global re-
wards might not scale to complex tasks which require more tailored rewards for
agent’s specific actions. In some tasks with concurrent agents it may be difficult
to calculate global rewards. Another extreme is to reward and punish each agent
individually based on its own behaviour without any shared reinforcement. Lo-
cal rewards discourages laziness, which may occur with global rewards, but it also

discourages cooperation and greedy individual behaviours may emerge.

Which credit assignment scheme to use depends on the task. In tasks where special-
ization is not necessary, such as foraging, local rewards work better. While in other
tasks, where specialization is mandatory, such as robot soccer, global schemes might
work better. Global and local rewards can be combined to find a balance between
them. Agent receives full local reward, but each other agent receives a smaller global
reward. Another way of rewarding agents is to punish non-cooperation and reward
cooperation instead of progress in the task. In this way, agents eventually learn
to coordinate their actions [GM10|. One way of giving direct rewards in a multi-
agent environment is progress estimator. It could result in good learning behaviour
[Mat97|. Instead of rewarding agents when they successfully complete a task (drop
what they have collected home), progress estimator is used to measure if the current
behaviour is moving the agent towards doing something useful. This allows stop-
ping the current behaviour if that behaviour does not progress the agent towards
the goal well enough. Various other rewarding schemes, like vicarious reinforcement,
social reinforcement, and observational reinforcement, have also been suggested for

improving multi-agent learning behaviour [PL05, Mat94].

2.6 Game theory

Game theory is study of mathematical models of strategic interaction with rational
decision-makers [VNM47, Myel3]. Game theoretic problems are numerous, but
classical ones include two-player zero-zum game and prisoner dilemma. Key concept
for each game theoretic game is finding mixed-strategy equilibrium, where each

player is using a strategy which is best for them against each other player. It
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has many applications in social science, logic and computer science. Game theory
is exceptionally well suited for reasoning about multi-agent systems (or multiple
players in the game theoretic setting). Markov games (or stochastic games) are and
extension of game theory to MDPs [Lit94|. In concurrent multi-agent learning we
can use this extended MDP. Markov games gives us a framework which can be used
to provide theoretical results to the multi-agent problem. Markov game (MG) can
be formally defined as a tuple: < S, Ay, ..., Ay, T, R1..Ry,y >, where S is finite and
discrete state space and Aq, ..., A, are the finite discrete action sets of individual
agents. T : S X Ay X ... x A, — [](S) is the state transition function which
maps each state and one action from each agent to the next state. State transition
function may be stochastic and define a probability distribution over the state space
S. R;: S xA; x...A, — Ris the reward function for agent and 0 < v < 1 is the

discount factor for futere rewards

In MG’s learning agents try to maximize the sum of their joint expected rewards.
The main difference between MDP and MG is that unlike in MDP, in MG the joint
actions of the agents determine the next state. After choosing their actions the
environment transitions to the next state. Each agent receives rewards according to
their reward functions and they observe the next state in the partially observable

case.

2.6.1 Nash Equilibrium

An important concept in Markov games is Nash equilibrium [NT50, Myel3]. Tt is
a game theoretic concept involving two or more players, in which each player is

assumed to:

e Do their best to maximize their expected payoff in the game.
e Play flawlessly.

e Have sufficient intelligence to deduce the solution to the game.
e Know the equilibrium of each player.

e Believe that deviation from their own strategy does not cause deviation by

other players.

e There is common knowledge that each player know these conditions, they know

each other player knows these conditions and that they all must meet these
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conditions.

If these are true, no player can benefit from changing its strategy in an attempt to
gain benefit. If each player keeps their chosen strategies, this collective set of strate-
gies and the corresponding rewards of those strategies form the Nash equilibrium.
Nash equilibrium forms a joint policy of all single agents policies, where no agent in
the environment has any incentive to change away from the equilibrium assuming
that each of the agents are using their optimal policies. As agents have no control
over other agents’ policies, changing their own policy could lead to some other agent
exploiting their policy for personal advantage. Many concurrent multi-agents try to
converge to Nash equilibrium, since it always exists, even if it may not correspond
to the optimal team behaviour. In cooperative tasks with global reward function,
where each agent gains the same reward, Nash equilibrium is the globally optimal

equilibrium.

2.6.2 Cooperative Markov Game Example

A simple example of fully cooperative two player Markov game is the climbing game
|[CB98]. The climbing game (Table 1) represents a problem where miscoordination is
highly penalized, there is single optimal joint action and safe actions that may steer
agents away from optimal joint action. This makes the climbing game a simple yet
challenging problem for learning coordination. In the climbing game it is difficult
for both agents to converge to this single optimal joint action, because of the high
penalty involved in miscoordination. This may lead both agents to avoid that action,
even if by coordinating their actions they could reach high reward. If one agent
chooses action a and another agent action b they receive penalty of -30. This could
lead to both agents avoid those actions, which would be detrimental to the learning
process. By choosing action ¢ is not punished for either agent, which could lead
both agents to play it safe by choosing action c¢. However, if both agents would

choose action a they would both gain higher reward of 11.

a b |c
al|l 11 [-301]0
bl -30| 7 |6
c| O 0 |5

Table 1: Two player climbing game.
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A modification of the climbing game is a stochastic climbing game (Table 2), where
all joint action selections are linked with two rewards, each gained with probability
of 0.5. The average of these rewards is the same as in the original climbing game
(Table 1). In the stochastic version of the climbing game, the maximum reward,
which is gained with actions (b,b), is not associated with the optimal action, which

is actions (a,a).

a b ¢

a | 10/12 | 5/-65 | 8/-8
5/-65 | 14/0 | 12/0
cl|l 5/-5 | 5/-5 |10/0

Table 2: Two player stochastic climbing game with equal 50% probabilities.

3 Deep learning

Deep learning is a family of machine learning techniques based on artificial neural
networks.[Niel5, GBC16| Teaching these artificial neural networks may be done with
supervised, semi-supervised or unsupervised learning techniques.[GBC16| Artificial
neural networks have an inspiration from biology: neurons and their connection in
a brain.[GBC16| Deep part comes from usage of multiple layers of neurons in these

artificial neural networks.

Deep learning and deep networks have a long history. Back in 1967, first deep mul-
tilayer feedforward perceptrons|IL67| were introduced. Deep networks were popular
in the 70’s but after that waned in popularity due to their inability to solve more
complex and less well defined problems. In the 90’s, deep networks started to re-
gain popularity due to their ability to solve more complex problems. This is due to
the increase in computational power and the availability of larger and more complex
data sets. In the 2010s, the advent of graphical processing unit (GPU) powered deep
learning further increased the computational power to start a new deep learning revo-
lution. Now, it is a critical component in many computational tasks. For example, it
has found success in areas of computer vision| VDDP18|, speech recognition| DHK13]

and natural language processing| YHPC18].

In an example of image recognition, the raw input to the network may be the pixels

of the image. The first layer could abstract pixels and output edges to the next
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mputs output

Figure 3: An example of a neural network (also called multilayer perceptron). Input
flows through the network from left to right. The first layer of neurons take the
input to the network. They process and output a weighed input to the next level of
neurons, which, in turn, output their weighed input to a single neuron which gives
the output of this neural network. This way, each layer can make more complex
and abstract decisions than the previous one. (Image taken from "Neural Networks
and Deep Learning", Chapter 1: Using neural nets to recognize handwritten digits,

taken in 24.08.2020 [Niel5|.

layer. Second layer could in turn encode the arrangement of these edges, third layer
could already recognize features from the image, like eye or nose. The fourth layer

could then recognize that the image is of a face.

3.1 Artificial neural networks

Artificial neural network (ANN) is a collection of nodes, called neurons and con-
nections, called edges, between neurons. They get their inspiration from biology
of brain: neurons and synapses connecting them. Edges between neurons transmit
signals, which are typically real numbers. Neurons and edges have typically weights
and biases associated with them. Weights increase or decrease the strength of the
connections. Each neuron takes as an input a weighed sum of its signal and adds
bias to that result. This is called activation of the neuron. Neuron then calculates
(a non-linear) function to produce an output signal to the next layer of neurons.
Neurons usually have a threshold over which to pass its output signal. There are
typically multiple layers of neurons with connections between layers. FEach layer
may perform a different non-linear transformation function to its signal. First layer

is called input layer and the last layer which produces the output of the network
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is called output layer. Layers in the middle of the network are called hidden layers
and there may be multiple hidden layers in the network. Signals travel through the
entire network from input layer to output layer, each layer applying its non-linear

transformation function on the way.

In feedforward neural networks, input flows from left to right, input to output.
There are no backward connections. In recurrent neural networks feedback loops
are possible, but they have not been as popular due to learning algorithms for them
being less powerful. They, however better mimic how the brain works. ANN’s can
have many hidden layers, each layer having different type of neurons. They can be
fully (each neuron connecting to every neuron on next layer), or sparsely connected

(some connections are missing).

hidden layers

output layer

input layer -«

Figure 4: An example of a fully connected feedforward neural network with six
neurons in input layer and two hidden layers and an output layer of single neuron.
Arrows denote the direction for the signal. Each neuron in the hidden layer is con-
nected to each neuron in the next hidden layer. Image taken from "Neural Networks
and Deep Learning", Chapter 1: Using neural nets to recognize handwritten digits,
taken in 24.08.2020 [Niel5|.

Learning is done by adjusting weights and biases of the network, which can be
automated by learning algorithms as we will see later. Essentially, ANN’s can be

used to approximate any function, which make them ideally suitable for machine
learning tasks [GBC16].
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3.1.1 Neurons

Artificial neural network learns by adjusting the weights and biases of its neurons.
Neuron takes a vector of its inputs x = (1, 29, ..., x,) and adjusts it by its weight
w = (wy, ws, ..., w,) and finally subtracts or adds a bias b. Bias can be thought as
a term that dictates how easy or difficult it is to get the neuron to activate, that
is to have a value over certain treshold (usually zero) depending on the activation
function. Suppose that z = w-x+b is the input to the neuron and f is the activation
function of the neuron. Activation of the neuron is then f(z) = a. Weights and

input can be real valued or vector valued.

d1 -9

-2

Lo

Figure 5: An example of a neuron in artificial neural network. This neuron takes two
inputs x; and x,. It has weight equal to -2 and bias of 3. The input to its activation
function is therefore —2x; — 225+ 3. (Image taken from "Neural Networks and Deep
Learning", Chapter 1: Using neural nets to recognize handwritten digits, taken in
24.08.2020 |Niel5|.)

Neurons activation then happens in its activation function which outputs its result to
connected neurons. There are many different types of activation functions that can
be used in neurons [GBC16]. Sigmoid and rectified linear unit are some of the more
common types of activation functions for neurons. Sigmoid has been historically the

most used neuron activation function. It is defined as

flz) =+ +16_Z, (8)

where z = w-x+b. When z is very large, Sigmoid function is close to 1 and when z

is very small sigmoid function is close to 0. As can be seen in the plot, it resembles
a smoothed out version of a step function. Sigmoid does suffer from the problem
of vanishing gradient for very large or very negative input values. In these cases,
output of the sigmoid saturates, making gradient in these regions very close to zero.
This causes major slowdown or even a full halt in learning. RELU, introduced later,
handles this much better. Also, sigmoids may suffer from zig-zag behaviour when

updating weights with gradient updates due to its non-centered nature.
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Rectified linear unit (RELU) is defined as:
f(2) = max(0, 2), (9)

RELUs have found more use in recent times. Previously, there have been reluctance
to use them due to the point of non-continuity at zero. Practice has however shown,
that this is not an issue, since RELU is continuous almost everywhere [GBC16| (a

property of measure theory [Hall3|, out of scope of this thesis).

RELU solves many of the issues of sigmoids with large positive numbers. Gradient
is always positive, large and consistent when neuron is active and gradient is always
zero when output is zero or negative, meaning when the neuron is not active. This
has some useful and unfortunate properties for gradient based learning algorithms.
RELU cannot learn with gradient based methods on samples when their activation
is zero. If learning rate is not set carefully, many of RELU neurons in network
die and stop learning altogether. There are more advanced versions of RELU like
leaky RELU [MHN13| and PRELU[HZRS15|, which have their own advantages and

disadvantages.
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3.1.2 Convolutional neural networks

Convolutional neural networks [LBD "89] or CNN use specialized architecture, which
is well suited for image recognition tasks. This architecture allow fast training of
deep, many layer networks. Today, they are the most used type of neural network

in image recognition tasks.

CNN uses three basic ideas: local receptive fields, shared weights and pooling. In
local receptive fields, an area of the input image, for example 5x5 pixels, will be
connected to one neuron in the first layer. Next local receptive field will be shifted
by a stride length of one or more pixels up or right. This way, each local receptive
field will be overlapping. Then, each neuron of these neurons connected to their
respective overlapping local receptive fields will share their weights and biases. The
shared weights and biases are said to define a kernel or a filter. The idea behind this
is that each neuron in one layer would detect the same feature from the image, like
an edge. Because image recognition requires multiple features, the first hidden layer
would then contain multiple of these so called feature maps. Convolutional layer
gets its name from convolution operation which is involved in the input activation

of the feature maps.

In addition to convolutional layers constructed from these hidden maps, CNNs use
pooling layers. They are located immediately after the convolutional layers and their
task is to simplify the information from them. It takes a certain region of neurons
from previous layer and condenses them to a single neuron. One of the simplest

pooling methods is maz-pooling which simply takes the maximum activation from
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these neurons. This pooling is done for each feature map in the convolutional layer
separately. The intuition for this layer is to check if certain feature was found in the

region of the image.

More detailed description of CNNs can be found in "Deep Learning" by Goodfellow
et al [GBC16] or "Neural Networks and Deep Learning" by Nielsen [Niel5].

28 x 28 3w 24 w24

| 3w 12 % 12

[11

;

|
oooo%§oooo

Figure 6: An example of convolutional neural network. Here, 28x28 pixel image
is extracted to three 24x24 feature maps using 5x5 pixel local receptive fields with
stride length of one. These are then pooled with 2x2 regions resulting in 3x12x12
neurons in the hidden layer. Every layer is then connected to 10 output neurons.
(Image taken from "Neural Networks and Deep Learning", chapter 6: Deep Learn-
ing, taken in 24.08.2020 [Niel5].)

3.1.3 Recurrent neural networks

Recurrent neural networks [RHWS86] or RNNs are a specialized type of artificial
neural network suited for processing sequential data, such as handwriting or speech.
RNNs have an internal state-space to process variable length sequences as input.
This state-space can be a state vector, graph or another neural network. There are
many ways to construct an RNN and as with other neural networks, they too, benefit
from depth and width of the network as well as depth and width of its memory state.
One way to construct an RNN is a network that produces output a each time step and
has recurrent connections between the neurons of each successive layer. Different
types of activation functions in the recurrent connections between hidden layers
result can be used. Internal memory of RNNs to allow it to propagate effectively
backwards in time, even to the start of the learning process. However, they have
difficulty learning long-term memory, because backward propagating signals decay

exponentially in time. This results in vanishing gradient problem discussed in earlier
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chapters and to some extend exploding gradient problem.

More detailed description of RNNs can be found in "Deep Learning" by Goodfellow
et al [GBC16|.

Unfold l l I!

C-:> H Hhm b -
@ @ @

Figure 7: An example for a one-unit RNN: x is the input state, h is
the hidden state and o is the output state. U,V,W are the network
weights. Left is a compressed form and right is unfolded form. (Taken from
https://en.wikipedia.org/wiki/Recurrent neural network on 19.10.2020)

3.1.4 Long short-term memory recurrent neural network

Vanishing gradient problems of RNNs can be alleviated using Long Short-Term
Memory (LSTM) [HS97|. It does however suffer from the exploding gradient as
RNNs do. LSTM is a specialized RNN that can learn long term dependencies from
arbitrarily long time periods. As with RNNs, they can be constructed with a variety
of different architectures. A basic idea is to have a cell, which is the memory unit
of LSTM. Then, there are three gates (input, output and a forget gate) that control
the flow of information in the LSTM. Some architectures may not have some of these
gates or have even more of them. Cell is tasked in keeping track of the dependencies
between the elements of the sequential input sequence. Input gate controls the
extent to which new values flow into the cell. Forget gates controls the extent to
which a value remains in the cell. Output gate controls to which extent each of
those values stored in the cell is used in the computation of the output activation

function of a neuron in the LSTM network.

More information on LSTMs can be found in "Deep Learning" by Goodfellow et al
[GBC16].
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output

self-loop

input input gate forget gate output gate

Figure 8: Architecture of a memory cell in LSTM network. Cells are connected
recurrently to each other, replacing the regular hidden units in RNNs. Self recurrent
connection represents feedback with a delay of one time step and weight controlled
by forget gate. Input and output gate units close and open the access to and off the

cell. Image taken from book "Deep Learning" page 405 by Goodfellow et al.

3.2 Training deep networks

The goal of the neural network is to accept an input x and produce an output 7.
Information flows through the network. This is called forward propagation. During
training, network is fed training samples, and forward propagation continues until
it produces a desired cost (or objective) of C(#) (sometimes J(6), where 6 is the pa-
rameter vector of the network containing weights w and biases b. Backpropagation or
backprop for short, allows information from cost function to then flow back through
the network in order to compute a gradient. Backpropagation does compute gradi-
ent in simple and computationally inexpensive way. Then, another algorithm called
stochastic gradient descent can be used to perform learning from this gradient. In
learning algorithms such as stochastic gradient descent, we often require gradient of
the cost function V,C'(0) in respect to the parameters of the network. If we want to

learn the weights and biases of the network, we require partial derivatives V,,C(w)
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and V,C(b). The aim of the gradient descent is to minimize the cost function C(6).

3.2.1 Cost function

Aim of the cost function C(z,y) is to compute a single scalar cost or loss. Using
this scalar cost we can determine how close our networks output Ey) is to the actual
desired output of y for an input of x. When our network is doing a good job at

estimating the output we expect our cost function C'(z,y) = 0.

It is important to choose the right type of cost function for the problem at hand.
There are several types of cost functions. One of the simplest is the quadratic cost
function |Niel5|:

Clry) = 5= 3 llye) = FH)IP, (10)

where f¥(z) is the activation function of the last layer of the network for an input

of x, L is the number of layers in the network.

Since in most cases our parametric model defines a probability distribution p(y|x; ),
we can use the principle of maximum likelihood. A more useful cost function is then
defined by the cross-entropy between the training data x and model §’s prediction
y. |GBC16]

C(z,y) = —Eay~piaa 108 Pmoder (y|x) (11)

3.2.2 Backpropagation algorithm

The aim of the backpropagation algorithm is to compute the partial derivatives of
the cost function C' in respect to its weights and biases: g—g and %—g. When written
in vector form the gradients V,C(x,y) and V,C(z,y). [Niel5, GBC16]

Essentially, backprop uses the chain rule of calculus to compute the expression for
the derivative of the cost function as a product of partial derivatives between layers
— from left to right. Given cost function C, L the number of, layers in the network,
biases b’ for layer [, weight matrix between layers [ — 1 and [ is W' = (w!,), input
x and output y. Then, the weighed input of a layer [ is 2!, the output activation
function of that layer is f' and activation output of layer [ is f! = a’. Then going

backwards from output layer to input layer, the cost functions is:

Cla, fAWEFTI W = D)2 (W ))). (12)
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The derivative of the loss function is given by the chain rule evaluated at each node

in the network for the input x:

dC da* dzt  da' 02!

— . ——. 1
dat dzt da™—1 " dz' Ox (13)
This can be written with weight matrices W of the network as:
dC L\l pL—1yyprL-1 1yl
W WEL(f YW (14)

Gradient is then the transpose of the derivative of the output of the network in

terms of the input z :

VC, = (WHT(fY WHT(f2)..(WHT(f1)V,4eC. (15)

Backpropagation essentially consists of evaluating this expression from left to right,
computing gradient at each layer on the way. We can now define §' as a gradient
of the input values at layer [ of the network. It can be thought of a s a measure of

‘error’ at level [. &' is a vector with elements equal to nodes at level [ of the network.

0" = (WO (F) (WD (WE) T (f5) Ve C. (16)

51 can be easily calculated recursively as 6'~1 = (fI71)'(WHT§. Now, we can
calculate the gradient for the biases in layer [ as V,C' = §' and weights as V1 C' =

a1t

3.2.3 Stochastic gradient descent

We would like our network to be as efficient as possible, that is to minimize the cost
function C. To do that we need to learn the weights and biases that minimize it. We
can do that using stochastic gradient descent or sgd for short [Niel5, GBC16]. Sgd
works by selecting m random mini-batches Xi, Xo, ..., Xy € X from the training
set instead of using the full training set as in gradient descent. Provided that there

are enough mini batches, we can estimate the gradient using mini-batches:

Z;n:1 VCXJ‘

2 ) 1
- vC (17)
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If we let n be our learning rate, we can now update the weights W and biases B of

our network by applying stochastic gradient descent update rule:

wh— Wt — % > VwiCx, (18)
J

b= b — % > VyCy, (19)
J

Essentially, in gradient descent, we try to minimize our cost function by adjusting
the weights and biases of the network. Gradient for the weights and biases at each
step point towards a minimum of the cost function. We then take tiny steps towards
this point at each epoch. In sgd we go through one mini batch of the training sample
in one epoch, then move to the next one. Training sample is scaled with the number
of training samples in total, but sometimes it may be omitted, since it is already
scaled with the learning rate 1. The sgd gradient is not exact, but it points to
the general direction of the gradient, which is what we care about. Sgd is usually
much more efficient and faster than regular gradient descent, since we are only using
partial samples of the training, but using enough training samples the estimate is

‘good enough’ in practice even if it would not converge to the exact gradient.

Gradient descent, and also stochastic gradient descent, may suffer from exploding
gradient or vanishing gradient. This is when, during numerical computation. num-
bers are close to zero or too large. Then gradient explodes to infinity or vanishes
to zero during multiplication in backprop when moving from end of the network to-
wards the beginning of the network. This may cause neurons earlier in the network
to stop learning completely, adversely affecting the performance of the network as

whole. RELUs suffer less from vanishing gradient as do long short-term memory

(LSTM) RNNs. [GBC16]

3.3 Challenges of deep networks

Deep networks are a powerful tool in modern machine learning, but they do suffer
from certain issues. Learning algorithms for deep networks are, even with every bit
of optimization, computationally complex. They grow exponentially in time when
the width and depth of network increases. Deep networks usually need to be hand
crafted for the specific task. Usually this means carefully selecting types of neurons
for each layer (and their activation functions), selecting best possible cost function

and fine tuning learning parameters.
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Training sets need to be selected and crafted carefully for the task at hand. When
training sets, network and parameters are not well tuned, owverfitting may occur.
This is when the network learns its training data and noise contained in that data
so well, that it can no longer generalize on new data. Regularization techniques
such as weight decay or L2-regularization may also be used to combat vanishing
and exploding gradient. Increasing or performing transformations to training data

to increase its size may also help against overfitting [Niel5, GBC16].

Underfitting may also occur, when the network fails to model the task at hand
properly and will therefore have a poor performance. Underfitting usually occurs
when the network is too simple for the problem at hand (it has too few layers or
too few neurons per layer) or the layer types in the network are not suitable for the
task.

3.4 Deep reinforcement learning in POMDP

Deep reinforcement learning aims to introduce the concepts of deep networks to
reinforcement learning. Now, the aim is to train a deep artificial neural network,
typically, a recurrent neural network or convolutional neural network, instead of a

policy. This allows reinforcement learning to scale to a level previously unattainable
[ADBB17].

Policy gradient methods are fundamental in success of recent deep reinforcement
learning applications, but they do come with their issues. With supervised learning
we can easily implement cost function for our network and run gradient descent
on expecting results with fine tuning of parameters. Reinforcement learning case
is not as simple. Moving parts in the algorithms are hard to debug and require
substantially more time to fine tune. In reinforcement learning, the algorithms are
usually also even more computationally complex making it harder to scale them for

larger problems.

A simple solution for solving an optimal policy in partially observable environments
would be to apply tried and tested Q-learning|WD92| algorithm to deep networks.
Deep Q-networks (DQN)[MKS*15] have shown to be very capable in 2-dimensional
Atari games. As most modern online video games are partially observable, it would
make sense to apply this in POMDP. Regular DQN method would fail, since par-
tial observability and long time dependencies require memory. Future game states

and rewards depend on more than the current game state. In POMDP we can
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use deep recurrent Q-network (DRQN) [HS17]. This approach leverages the ad-
vantage of deep networks by combining DQN with LSTM[HS97| neural network.
It has been demonstrated that LSTM networks can solve POMDPs when trained
with policy gradient [WFPS07| methods and Q-learning[WD92] can be expanded
to solving POMDPs with LSTM networks with DQRN. Both methods along with
actor-critic[KT00] model and a novel proximal policy optimization (PPO)[SWD*17|
approach offer new tools for RL in POMDP.

These new techniques allow deep reinforcement learning algorithms, for example,
to directly learn from the pixels on the screen. This has lead to promising results
for deep reinforcement learning in 2-dimensional Atari games [MKS*13| and as we
will see in chapter 4, in much more complicated 3-dimensional multi-player online
video games. These results, while already promising, are only a stepping stone in
applications to real-world deep reinforcement learning tasks [ADBB17]|. In addition
to video games, there are applications to robotics, computer vision, health care,

finance, transportation etc. [Lil§|

3.4.1 Deep recurrent Q-network

Even in 2-dimensional Atari games, let alone modern online video games, there
are far too many unique states and actions for vanilla Q-learning|l WD92] to handle.
Instead, in DQN, a model is used to approximate Q-values. This is done with a deep
neural network parametrized by its weights W and biases B denoted as 6. Q-values
are estimated online by querying output nodes of the network given a input state s.
This is denoted by Q(s,alf), where parameters are same as in regular Q-learning.
Instead of updating Q-value directly, the parameters 6 of the network are updated

to minimize a loss function:

L(s, alfy) = (r +ymax Q(s',d/|0:) — Q(s, alf;))? (20)

To maintain learning stability three different techniques are used. Experiences e¢; =
(8¢, ag, ¢, Se41) are recorded into replay memory D and then sampled uniformly at
training time. Secondly, a separate target network Q provides update targets to
main network @), decoupling feedback resulting from the network generating its own
targets. Q is identical to main network (), except its parameters 6~ are updated to

match 6 every 10000 iterations. Finally, to compensate for the lack of fixed training
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set, a adaptive learning rate method is used to maintain per-parameter learning rate
« according to the history of gradient updates to that parameter. At each training
iteration ¢, an experience e; = (Sy, ag, 1y, s; + 1) is sampled uniformly from the replay
memory D. [HS17]

The loss of the network is determined as follow:

L1(91> = E(St,at,rt,StJrl)ND[(yi - Q(St7 Qi 61))2] (22)

A

where y; = 7 + ymaxy Q(si41,a’;07) is the update target given by the target
network Q. [HS17|
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image of the game screen of an Atari game. The resulting activations are processed
through time by an LSTM layer. LSTM outputs become Q-Values after passing
through a fully-connected layer. Convolutional filters are depicted by rectangular
sub-boxes with pointed tops. (Image and example taken from "Deep Recurrent
Q-Learning for Partially Observable MDPs" by Hausknecht and Stone, page 3)
[HS17].)

A vanilla Q-learning has no way of deciphering the current state in POMDP. In prac-

tice, estimating Q-value from observation can be arbitrarily bad, since Q(o,ald) #
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Q(s,alf). Adding recurrency to Q-learning allows it to better estimate actual Q-
values from observations so that Q(o, alf) ~ Q(s, a|f). This can be done by replacing
the first fully connected layer of the network by a LSTM layer (Figure 9).

3.4.2 Actor-critic model

Actor-critic methods are TD-methods that have a separate memory
structure to explicitly represent the policy independent of the value func-
tion. The policy structure is known as the actor, because it is used to
select actions, and the estimated value function is known as the critic,
because it criticizes the actions made by the actor. Learning is always
on-policy: the critic must learn about and critique whatever policy is
currently being followed by the actor. The critique takes the form of a
TD error. This scalar signal is the sole output of the critic and drives all
learning in both actor and critic. Actor-critic methods are the natural
extension of the idea of reinforcement comparison methods to TD learn-
ing and to the full reinforcement learning problem. Typically, the critic
is a state-value function. After each action selection, the critic evaluates
the new state to determine whether things have gone better or worse
than expected. [SB1§|

The objective of reinforcement learning is to find a policy 7 parametrized by 6 that
maximizes the cumulative future discounted reward. We can define the objective

function for policy gradient as:

T
J(0) = E[Z Tey1|mo), (23)

t=0
where t is the current time step, 7" is the terminal time step and r;,; is the reward
gained when performing action a; at state s; at timestep ¢t. This is a maximiza-
tion problem so we optimize the policy by taking gradient descent with the partial
derivative of the objective function with respect to policy parameters 6. This results

n:

VoJ(0) = E[> _ Voylogm(ar]s,)Gyl, (24)

t=0
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where G; = ZtT,:t 41 Ty- But, as discussed earlier, vanilla policy gradient method
would run into serious issues in POMDP. To solve policy in POMDP we need some
kind of memory. One way to improve policy gradient is by introducing a baseline,

making cumulative reward smaller and to make gradient smaller and more stable:

T

Vo J(0) = E[Z Vo logme(as:)(Gy — b(sy))], (25)

t=0

This baseline can take various values, which leads us to actor-critic methods[KT00].
In actor-critic the ’critic’ Gy — b(s;) estimates the value function and the ’actor’
log g (a;|s;) updates policy distribution in the direction suggested by the ’critic’,
for example with policy gradients. We get () actor-critic when the ’critic’ is Gy —
b(st) = Qu(si,ar), where Q is Q-value parametrized by neural network w. Or
advantage actor-critic when Gy — b(s;) = A(s¢, ar) = Qu(St, ar) — Vy(st), where A is
called advantage value and () as previously. Using value function V' as the baseline
function we subtract Q-value with the V-value. This means how much better it
is to take a specific action compared to to the average action at that state. From
the Bellman optimality equation|Bel66| we get Q:(st, ar) = E[rii1 + vV (s¢41)] and
therefore A(s;, a;) = 11 1+7Ve(Si41) — Vi (8¢), where value function V' is parametrised

by a neural network v.

3.4.3 Proximal policy optimization

A novel approach for policy gradient methods in POMDP’s is Proximal Policy Op-
timization (PPO) [SWD*17]. It is a variant of advantage actor-critic[KT00]. It uses
a slightly different approach to vanilla policy gradient methods and tries to address
issues with fine tuning and complexity. PPO tries to compute an update at each
time step to the cost function while ensuring the deviation from the previous update
is small. PPO adds a constraint that can be optimized with first-order optimizer like
gradient descent. This constraint can be broken at some intervals without interfer-
ing with the results in a long run. It can be shown that both the constrained policy
and the actual policy can be optimized to the same optimal policy. A way to apply
PPO is to use various clipping strategies, like clipped objective function [SWD*17|.
Importance sampling is a general technique from statistics for estimating properties
of a particular distribution by only using samples generated from another distribu-
tion. With this idea, we can evaluate a new policy from samples collected from old

policies. But, over time, difference between older policies and our actual policy get
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larger, so we need to update our sampled policy to our current policy from time to
time. Advantage function is the difference between expected rewards for the new
policy at the state minus a baseline value of the current state. Baseline can be for
example, the average reward between actions at that state. We can then construct
a objective function that clips the estimated advantage function if it steers away too
much from the old policy. If the probability between the new and the old policy fall
outside the range of (1 —¢,1 + €) the advantage function will be clipped.

For proximal policy optimization with clipping or PPO-clip policy update rule at

time step k is:

0k+1 = arg m;xx Es,awm;k [L(S7 a, 9k7 0)]7 (26)

by taking multiple steps of sgd with mini-batches, where L is given by:

mo(als)
7o, (als)

ATy, (8, CL), ChmM) 1 — €, 14+ 6))A7T9k (3’ a)7 (27)

L(s,a,0,0) = min( o (als)
k

where 7y (a|s) is the policy we want to optimize, 7y, (als) is the policy used to collect

samples and A™ (s, a) is the advantage function.

This can be simplified to:

L(5,,00,0) = min( 244 amo (5 0 g(0, 47 (5, ), (25)
7, (als)
where
(I1+eA A>0
9(0, A) = (29)
(1—e)A A<O
When advantage A is positive:
mo(als)

L(s,a,0,0) = min( (1+€))A™%(s,a), (30)

. (als)’
then the objective increases if the action becomes more likely, that is mg(als) in-
creases. min puts a limit to how much the objective can increase. When 7my(als) >
(1 4+ €)mg, (als), the minimum kicks in and the equation hits a ceiling of (1 +
€)A™ (s,a). Then, the new policy does not benefit from going further from the
old policy.
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When advantage A is negative:

mo(als)

L(s,a,0,0) = max(m (als)
k

(1= €))A™x (s, a), (31)
then the objective increases if the action becomes more likely, that is my(als) de-
creases. max puts a limit to how much the objective can increase. When my(a|s) <
(1 — €)my, (als), the maximum kicks in and the equation hits a ceiling of (1 —
€)A™ (s,a). Then, the new policy does not benefit from going further from the
old policy. Clipping serves as a regularizer by removing incentives to dramatically

change the policy.

4 Deep reinforcement learning in online video games

Recent progress in areas of computer vision|VDDP18|, speech recognition| DHK13]
and natural language processing [YHPC18]| has allowed the resurgence of deep learn-
ing, which provides a powerful toolkit for non-linear function approximation of neu-
ral networks. These techniques have proven successful in three dimensional simula-

tions, robotics [SBS*18| and even in video games as we see in later chapters.

One Al milestone is to exceed human capabilities in complex online video games like
Starcraft 2 or Defence of the Ancients (Dota2). As previously the goal was exceeding
human performance in classical games like Go or Chess. Complex nature of the video
games could model the messiness, uncertainty and continuous nature of the real
world with multiple simultaneous agents learning to cooperate and compete against
each other. Advancements in video game Al could lead to general applications in

real world.

Recently, AlphaGo [SHM*16] and AlphaZero [SHS™ 18| have demonstrated how deep
reinforcement learning techniques can be used for the system to achieve super-human
performance in classic fully observable adversary two player games of Go, Chess
and Shogi. AlphaZero learns entirely from self-play, but its predecessor AlphaGo
used replays from human players to kick-start the learning. The style of play and
strategies developed by Alphazero agent are uncanny and could alter how humans
approach these games in future. AlphaStar[VBC*19| demonstrates how seeding the
learning progress with supervised learning techniques using replays of human play,
like in AlphaGo, can help achieve playing performance of top-tier human players

also in an complex online video game. OpenAl five [OB*19] and DeepMind FTW
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[JCD*19a| show the power of self-play in modern games, although game’s in these

scenarios were restricted in complexity.

Deep reinforcement learning techniques are ideally suited for complex three dimen-

sional online video games due to the following reasons:

1. They offer rich stream of input, ideal for deep neural networks.
2. They have a clear measures for success, ideal for reinforcement learning.

3. They can be simulated and run on a large scale, ideal for deep reinforcement

learning.

4. They are very difficult and complex even for human play, providing an inter-

esting field of research.

5. They are run everywhere with the same parameters, making comparisons be-

tween solutions easy.

6. They have a vast pool of players all over the world, even professional players.

This makes it easy to benchmark Al agents against skilled human players.

4.1 General challenges of video game AI

In comparison to classical games of GO and Chess, online video games are much more
complex. Games of GO generally end before 150 moves and games of Chess typically
end in 40 moves with every move being strategically significant. The average number
of available actions at each state in chess is 35; in Go, 250. Chess board is represented
by 70 enumeration values, 8x8 game board and 6 piece types. Game of Go is
represented by 400 enumeration values of 19x19 board and two piece types. In
classic games, game pieces mostly have only one action they may perform in several
different directions. Action pool in video games on the other hand consists of dozens

of different actions and with each agent having their own set of actions.

As the state-space is continuous in a video games, some form of abstraction is
needed. Even if locations of the agents would be abstracted to discrete locations,
the state-space would still be huge in addition to other things agent needs to keep
track of. To deal with the size and complexity of the state-pace, it can be abstracted
to conditions. Action-space can be abstracted to hard-coded behaviours, which then

contain the set low-level actions for that behaviour. Such an abstraction scheme
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is highly dependent on the expert knowledge of the task and needs to be applied
beforehand for each task separately. This abstraction scheme simplifies the learning
task to finding an optimal policy of a mapping of conditions to behaviours. Other
agents can be abstracted as a number of agents assigned to each task (or behaviour)
or action, instead of keeping track of each agent individually. Example of a low-level
action would be a game piece or unit moving to a another location. A behaviour
could be for example to gather resources. This would consist of several low-level
actions, such as multiple move actions to a location of a mine, a mining action, then

again multiple move actions back to home base to deposit mined resources.

Partial observability also poses a new and difficult issue. Some parts of the game
map may be shrouded by fog-of-war and be not visible to all agents. Recurrent
neural networks, or other variants, can be used to address partial observability
with their internal memory structure. Multi-agent environment also poses its own
difficulties. Real-time strategy games are often played with two players like Go or
Chess, but multiplayer battle arena games and first person shooter games may have
ten or more players in the same game cooperating with other players and competing

against others.

In video games it may often be easy to assign global rewards in semi-cooperative
multi-agent environments due to the rules of the game: If the game was won or
lost. Internal game scoreboard may also provide a clear way to assign rewards. This
particularly is useful for games in which agents need to specialize, for example in
multiplayer online battle arena games. On the other hand reward assignment solely
for loss or win over long time periods may prove difficult resulting in too sparse
reward structure. Games may take tens of thousands of actions with very long time
dependencies. Rewards need to be accurately assigned even over long periods of

time then and propagated properly in time.

Typically Al in games has been done with scripted behaviours, path-finding algo-
rithms and hard-coded rules [Mill9]. This approach works well enough in most
single-player games but even then, often AI needs to be given unfair advantages.
This does not work at all in competitive online video games where the objective is
to match and to win against the best professional players. Here, deep reinforcement
learning techniques come into play. Before the rise of popularity of deep learning
in the last two decades, reinforcement learning techniques were not even close to be
successful in video games. Next sections take a closer look at modern approaches in

competitive game Al
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4.2 Defence of the Ancients 2

Defence of the Ancients 2 (Dota2)[Val] is a complex and popular online video game
which has been played alongside it’s first instalment for more than 15 years. It is a
multiplayer online battle arena (moba) game which is played by two teams of five
players. It’s being played competitively in many professional leagues all over the
world, being one of the most lucrative eports games alongside with its rival League
of Legends (LoL). LoL being more simple of these two trying to capture more casual
audience without requiring in-depth knowledge of the game. Objective of Dota2 is
to destroy a structure defended by opposing team known as the ancient. Game is
played in real time on a three dimensional map viewed from an isometric perspective.
Each player plays a character chosen in a pregame draft process from a pool of over
100 different characters with different abilities. These characters are also known as
heroes are split into two different classes 'core’ and ’support’. Core heroes typically
start weak and develop into powerful heroes by gaining experience or new equipment
and are able to ’carry’ team to victory. Support heroes typically lack ability to
directly deal with opposing heroes but provide crucial support to core heroes. Each
hero have four distinct abilities and more powerful ones are unlocked during the
game as heroes gain experience to level up and gold by defeating opposing heroes,
buildings and creeps. Each ability has a cool-down period so timing of abilities
is crucial. Heroes also have powerful 'ultimate’ ability with very long cool down.
When a hero is defeated it is removed from the game until re-spawn timer counts to
zero. In addition to heroes becoming more powerful via leveling up through gained

experience they may purchase items with gold.

The two opposing teams known as 'Radiant’” and "Dire’ occupy heavily fortified bases
on the opposing corners of the map divided by a river. These bases are connected by
three paths referred as ’lanes’. Lanes are defended by turrets that shoot opposing
heroes and creeps on sight. Lanes also spawn creeps who move in predetermined
paths along the lanes attacking opposing heroes, creeps and buildings on sight.
There are also camps of neutral creeps in 'jungles’ between lanes on both sides of
the map. Act of defeating creeps for gold to purchase equipment is referred as
'farming’. There spawns a powerful neutral creep named 'Roshan’ at the center of
the map from time to time. If heroes manage to defeat it, they gain powerful items
which the may use to swing the tide of the game. Each time 'Roshan’ re-spawns
it becomes more powerful. Temporary power-ups called 'runes’ provide short term

bonuses and spawn at the map every two minutes.
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Figure 10: Two heroes from the Radiant (green) and Dire (red) are battling it out
on a lane. Few creeps are also present on the battlefield. Bar on the lower end of the
screen shows how many actions one hero can use. On the lower left is the minimap
which shows the scale of the map where the gameplay takes place. On the upper
side of the screen, all 10 heroes from both teams, present in the game are shown.The
UI conveys a vast amount of information to the player. Taken from Dota 2 official
site at https://www.dota2.com/play/ on 28.10.2020.
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Dota2 is known for its steep learning curve and complexity. Games of Dota2 can
last up to 45 minutes with each player making over 20,000 moves during the game.
Moves at any given time can have minimal impact in the game or be game break-
ing moves and these moves can have long term consequences. Units, buildings and
heroes can see the map around them. Rest is hidden by a fog of war constrain-
ing information available to partially observable. Players must plan their strategy
based on incomplete information while trying to gather information on what op-
posing team is up to. Each hero can take dozens of possible actions against other
heroes, creeps, buildings and ground. Not every action is valid at any given time.
Roughly 1000 different actions are available for each hero at any give time. Dota
2 is played on a large continuous map containing 10 heroes on two teams, dozens
of buildings, dozens of other units and various other game features such as trees
runes etc. The state of Dota 2 can be expressed by roughly 20,000 floating point
numbers. In summary, a game of Dota 2 is a game of long term planning on high-
dimensional continuous partially observable environment with actions drawn from

high-dimensional continuous action space.

In 2019 a team of bots using deep learning Al called OpenAl Five |[OB*19| has
been shown the capability to defeat even the best professional team twice in a row
in a live match. Supplementary material for the OpenAl five containing gameplay
videos can be found on the blog post for the OpenAl five[Opel8|. Open Al was able
to achieve this in a year after losing under similar circumstances in 2018. The only
major change from 2018 to 2019 was addition of 8 times more training computation,
leading to about 250 years of simulated experience per day per. This was meant
utilizing thousands of GPUs for months. In the end, OpenAl achieved a 99.4%
win rate against human opponents on the internet over 7000 games. This was done
in a restricted version of the game. Hero pool was limited to 17 heroes of 117 in
total, two items were banned alongside summons, creatures which heroes may call
for their aid and no scanning. OpenAl Five’s heroes were also given invulnerable,
scripted couriers to carry items for them into the front lines. Addition of five couriers
led to criticism that the games played unlike real Dota2 games and also led to the
'signature’ aggressive playing style of OpenAl Five. It was able to keep pushing
while receiving healing items from couriers in states of game where heroes normally
would have to retreat. Reaction time of OpenAl Five was restricted to 200ms to
match that of professional players and not to give it unfair advantage in reflexes

when micromanaging battles. [OB*19]

Policy of OpenAl Five agents was constructed as a function from a history of obser-
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vations to a probability distribution over actions. This was then parametrized to a
159 million parameter single-layer 4096 unit LSTM recurrent neural network|HS97].
This neural network emits actions as action heads, which have a semantic meaning
as a game actions. This helps to address partial observability of the game. Games
are played repeatedly with current observation being passed at each time step to
sample an action from the distribution. Same observations are shared with each
hero, since they share the same visibility in game. Observations are not received
from the pixels of the screen but from approximate data arrays. Even though some
of the game states are partially observable, OpenAl Five was able to learn to deduct
some of them based on other states. For example, it could learn to avoid area attacks
it could not see based on health being lost. [OB*19]

Tied Weights
3 Flattened - L Value
4 Observation ) | |’ Function
Observation / \ LSTM o
Processing ) ) |
A ||| Hero _| N Action
Embedding Heads

Figure 11: Simplified version of Open Al five architecture. The complex multi-array
observation space of more than 15,000 total action values has a tree structure. A
full game state has various attributes such as global continuous data and a set of
allied heroes and each allied hero in turn has a set of abilities, a set of modifiers,
etc. This is processed into a single vector and passed through 4096-unit LTSM.
Each node in the tree is processed according to its data type. For example for
spatial data, the data within each cell is concatenated and then applied to a 2 layer
convolutional network. Then the outputs of that LSTM are projected to produce
outputs using linear projections. Each of the five heroes are controlled by a replica
of this architecture with nearly identical inputs (each hero shares their visibility)
but each with their own hidden states. Number of actions available to a hero during
a game varied between 8,000 to 80,000 from a total action space of 1, 837,080
dimensions. Taken from "Dota 2 with Large Scale Deep Reinforcement Learning"
page 4. [OB*19]

Task was to find a policy, which could defeat professional human players, with self-
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play. The policy was trained with Proximal Policy Optimization (PPO) algorithm
[SWD*17| with clipping on a massive scale. Generalized Advantage Estimation
(GAE) [SML*18], an advantage based variance reduction technique, was used to
stabilize and accelerate learning. OpenAl Five learned entirely from self-play start-
ing from random parameters and not using replays of humans playing. Experience
from the self-play was collected to experience buffers located at a central GPU pool
asynchronously. From these experience buffers mini-batches were sampled randomly
to compute gradients at each of these optimizer GPUs. Gradients are then averaged
across the pool and then applied to the parameters of the LSTM network. To pre-
vent collapse of strategies and to avoid development of easily exploitable strategies,
self play is 80% of the time against its current iteration and 20% of time against
its former self. Pre game-drafting portion of the game could have used different
reinforcement learning framework altogether, since it differs from the game itself.
But, instead MinMax-algorithm was used from the win percentage estimates with
certain teams against certain teams. When an opponent chooses a hero, the Al then

chooses its hero to maximize its win percentage to opponents expected worst case
selection. [OBT19]

Reward function was constructed with team members prior knowledge of the game,
what players use to track how well they are playing: net worth, kill /death ratio, etc.
This reward is then post-processed by subtracting the average reward of opposing
team from it to prevent agents from finding positive-sum reward situations in games.
it contained signals like characters dying or resources being collected. To address
the extremely long time dependencies of Dota2 in which games can take tens of
thousands of actions, the learning agent is trained to maximize the exponentially
decayed sum of future rewards %, where v exponential decay factor and 7" is game
time corresponding to each time step. In the later runs, it was weighted such that
rewards were valued at half-life of about 5 minutes. This allowed rewards to be
accurately assigned even over long time periods and maximize actions up to 6-12
minutes into the future. To address the rising power level of heroes during game,
a simple renormalization is used, multiplying all rewards other than the win/loss
reward by a factor which decays exponentially over the course of the game. Each
reward p; earned a time 7T since the game began, is scaled with p; « 0.67/10mns
OpenAl Five did not contain explicit channel for communication between heroes
neural networks, but instead during learning period had a hyperparameter called
"team spirit’ 7, ranging from 0 to 1. It measures how much hero shares of its reward

with other heroes. This results in final reward function for hero r; = (1 —7)p; + 77,
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where p is the mean of p. This controls how much hero should put weight on teams
average reward functions instead of just its own reward function, 0 meaning every
hero for themselves and 1 meaning equal split of rewards, ; = p. In between, reward
is interpolated. Ideally, training should optimize for 7 = 1 to maximize the teams
reward. After training period, value of team spirit is set to maximize team effort.
Each hero is also assigned randomly a subset of lanes to play in at the beginning of

each game. It is penalized for straying away from them too long. [OB™19]

As the training period of 10 months progressed the environment changed for several
reasons: as the team experimented, they learned more and adjusted the architec-
ture, over time more of the game mechanics were added, and from time to time,
games publisher released new versions of the game. These changes would have each
time typically resulted in making adjustments and restarting the learning progress
form scratch. In long training period this would have meant loss of months of data.
Instead they performed ’a surgery’, a collection of tools, to perform offline trans-
formation to the old learned policy to make it compatible in the new environment.
In the simplest case, when the environment, action or observation space did not
change, the new policy simply implements the same function as the old. These
surgeries allowed the learning to continue throughout the process without loss in

training performance [OB*19].

Even given the restrictions to the base game of Dota2, OpenAl Five has hundreds of
items, dozens of buildings, abilities, unit types and a lot of game mechanics to learn.
Exploring such a vast combinatorial space efficiently poses a problem. Learning from
self play, gives OpenAl Five a natural approach to exploration. In the first games,
it just wanders aimlessly around the map, like a toddler walking for the first time.
After several hours of training basic game concepts such as ’laning’, farming’ and
fighting over the middle ground start to emerge. Several days into training, basic
strategies, like rotating around the map to gain advantage on a single lane, start to
emerge. As the training goes on, more and more advanced strategies, such as pushing
advantage as a team of five heroes, are being learned. Good reward management

also helped in the exploration.

The agents were trained solely on self-play with all agents controlled by the Al
and playing against other Al agents. They were able to transfer their learning to
controlling a subset of heroes in cooperation with human players which presents
a compelling vision of human-Al interaction. It was evaluated by the professional

players that OpenAl Five was weak at ’last hitting’, a technique where a fatal blow
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is given, against opponents and creeps, being at a level with average Dota2 player.
But, its objective prioritization matched that of common strategies of professional
teams. OpenAl Five was able to sacrifice short term goals such as farming in favor
of long term goals such as strategic map control, which leads to the belief that it is

indeed able to optimize over long time horizons. [OB*19|

4.3 Starcraft 2

Starcraft 2[Bli] is the most popular and complex online real-time-strategy (rts) game
designed to challenge human players across the world. It has been played along
with its original title for more than 20 years. It is one of the most popular and
difficult competitive online video games and a relevant artificial intelligence challenge
target due to its raw complexity and multi-agent challenges. Previously, strongest
Al agents have simplified aspects of the game, used superhuman capabilities or
employed hand-crafted systems to challenge human players. Still, they have not
come close to matching the skill level of top human players in the game even in
the first edition of the game [OSUT13|. Learning environment of SC2LE has been
created to expose Starcraft 2 as a research environment [VEBT17]. This has been

done in cooperation with the game’s developer Blizzard interactive.

A competitive game of Starcraft 2 is played through point and click interface from
birds eye view on three dimensional world between two players battling on varying
maps shrouded by fog of war hiding crucial information. These maps contain various
elements such as ramps, choke points and resources to gather. Players play as one
of three factions available in the game. These three factions, "Terrans’, "Protoss’
and 'Zerg’, each posses different units, buildings and technologies to mix up in a
strategy to defeat your opponent. Each player starts the game with one worker unit
and a base structure. Worker unit is used to gather resources (crystals and gas) and
to build more advanced buildings, which in turn allow building of more units and
technologies. Players must carefully craft their strategy on micro level, controlling
each individual unit, and on macro level, the economy on whole. Careful balance
must be found between investing in buildings, technologies, on the amount of workers
harvesting resources and between units of war. This must be adjusted on the fly
so that the chosen strategy is not easily countered by the opponent. Generally, as
most rts games, games are split between early game expansion and economy phase
and mid- to lategame battle phase. Although, some players may favor early game

rush, where the idea is to attack other player before they are ready to defend itself.
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Starcraft 2 poses an immense challenge on Al research. Players must take actions
continually as the game progresses in real-time, unlike in classic games, like chess,
where players take alternative moves in subsequent turns. Action space in Starcraft
2 is very large. Hundreds of different units and buildings in the players faction must
be controlled at once in real-time, resulting in a huge combinatorial space of actions.
In addition to this technologies that can be researched in the game can augment
these possible actions. Best human players perform hundreds of actions per minute.
Games take tens of thousands of time steps and players need to perform thousands

of actions in them.

Figure 12: Early game expansion of Zerg in game of Starcarft. FEarly game
consist of gathering resources (crystals and gas) with builder/gatherer units
as fast as possible to have as strong economy as possible. Then, the pri-
ority is to start building structures and to expand military to defend against
early rush attacks or to start them against opponent. Picture taken from
https://en.wikipedia.org/wiki/StarCraft II: Wings of Liberty on 27.10.2020.

In game theory aspect Starcraft, 2 is a game of rock-paper-scissors where there is no
single strategy that is the best. Al training process needs to continually explore and
adapt its strategic knowledge. Game of Starcraft 2 is a game of imperfect information
unlike a game of chess where each player can see the complete game state. Crucial

information to form a winning strategy is hidden by the fog of war shrouding the map
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and active scouting to lift the fog of war and to discover this hidden information is of
paramount importance. Cause and effect in game of Starcraft 2 is not instantaneous
and actions taken in the early game can take a long time to pay off. Games can take
up to an hour to complete, nut are usually over in less when one side has gained an

substantial advantage that the other side cannot anymore overcome.

Figure 13: Mid and late game battle of Protoss against Terrans sees powerful units
brought to battle against each other to destroy enemy bases and to defend own
bases. This phase sees a lot of micro level maneuvering from professional players
to gain upper hand in the battle. These battles often may mean the difference
between victory and defeat. Picture taken from https://starcraft2.com/en-us/media
on 27.10.2020.

Alphastar [VEB'17, VBCT19] is the first artificial intelligence program to defeat
some of the top professional players. Supplementary material for the Alphastar con-
taining gameplay videos can be found on the blog post for the Alphastar [VBC™].
Alphastar’s behaviour is generated by a deep LSTM[HS97| neural network capable
of handling partial observability is used that takes input from the isometric view
of the game camera and inputs series of actions within the game. General purpose
machine-learning techniques were used in Alphastar. To address the vast action
space Alphastar use a recurrent pointer network [VEJ15] and an auto-regressive
policy[MIJD17]. Auto-regressive policy is a history dependent policy that produces
action samples according to stationary autoregressive stochastic process. Since Al-
phastar could in theory, input actions at a super-human rate, its actions per minute

or APM for short, were limited to lower then what is recorded for best human play-
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ers. This constraint was approved by professional players. Surprisingly, this limit
allowed Alphastar to spend more time in refining macro strategies instead of micro

level managing and led to better results overall. [VBC*19]

The policy of Alphastar is a mapping my(ay|s;, z) of previous observations s; = o014,
actions aq.;_1 and strategy statistics z to a probability distribution over actions a; for
the current time step t. Policy 7y is implemented with LSTM deep neural network,
which maintains memory between time steps. The observations o, are encoded
into vector representations, combined and processed by the LSTM network. The
actions a; are sampled with auto-regression|MIJD17|, conditioned to the output of
the LSTM and observation encoders. This is a architecture using the state of the
art advances in deep learning. Alphastar’s network has 139 million weights in total,

but 55 million are used at once during inference. [VBCT 19|

Alphastar’s artificial neural network was first trained by a multi-agent supervised
learning algorithm from a dataset of 971,000 anonymous recorded games played by
the top 22% of human players. One policy is trained for each of the three races. From
each replay, strategy statistic z is extracted, which encodes build order of buildings,
units, upgrades etc. To train the policy, at each step the the current observations
and output a probability distribution over each action argument is input. For these
arguments, Kullack-Leiber (KL) divergence is computed between human actions and
the policy’s output. Then Adam-optimizer|KB17] and L? regularization is applied.
The policy is then further fine tuned by only using winning replays which improved
win-rate against built-in bot from 87% to 96%. [VBC'19|

This training strategy allowed Alphastar to learn basic micro- and macro- strate-
gies used by human players. Then, to further make Alphastar stronger, these agents
taught from human replays were then used to seed a multi-agent reinforcement learn-
ing algorithm. Multi-agent environment required asynchronous off-policy learning
[SB18] for policy updates. During reinforcement learning, the policy is updated by
V-trace[ESM™ 18| with clipped importance sampling, an off-policy actor-critic[KT00]
RL algorithm similiar to advantage actor-critic] MBM™ 16|, and the value estimates

are updated using TD(\)[Sut88| (Temporal difference) learning. [VBC™19
p g TD(M)| p g

t=s+n

In the actor-critic model of Alphastar, the actor generates a trajectory (x, az, ¢);—s

following a policy m. Then, a n-step V-trace for (V' (s;)) can be defined and the value

approximation at state s is:
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h+n—1 t—1
ve=V(sn)+ > Y Je)av, (32)
th i=h

where 0,V = pi(ry + YV (x441) — V(s1)) is temporal difference algorithm (or similiar
value function update rule) for V, and p; = min(p, %) and ¢; = min(, :EZZI:;)

are truncated importance sampling weights such that p > ¢. [ESMT18|

In addition to the V-trace policy update, a novel upgoing policy update (UPGO)
rule based on self-imitation learning|OGSL18| algorithm is used, which updates the

policy parameters in the direction of:
pt(G? — Vo(st,2)) Vo log mg(as| s, 2) (33)

re + Gt if Q(Siq1, 41, 2) > Vo(Si41, 2
;tU t t+1 (t-',-l t+1 ) (t+1 ) ( )

re + Vo(St41,2)  otherwise

mo(at|st,?) )
wor(at]st,z)’

is the clipped importance ratio and my is the policy that generated the trajectory

is an upgoing return, Q(s;, a, z) is an action-value estimate, p; = min(

in the actor. Similarly to imitation learning, the idea is to update the policy from
partial trajectories with better-than-expected returns by bootstrapping when the
behaviour policy takes a worse-than-expected action. With the difficulty of approx-
imating Q(s¢, at, 2) in vast action space of Starcraft 2, action values are estimated
with one-step target Q(s;, as, 2) = ri + Va(si41,2). The overall loss is a weighed
sum of policy and value function losses, corresponding to the win-loss reward r;, the
pseudo-rewards from human data, KL divergence loss with respect to the supervised
policy and the standard entropy regularization loss. Overall loss is optimized with
Adam|KB17|. Compared to typical value function, in which agent values how good
it is to be at a certain state, advantage function in actor-critic captures how much
better certain action is compared to other actions at a given state. Self-imitation
learning further improves on actor-critic and its variant PPO[SWD™17] in this in-
stance. Prior reinforcement learning approaches to updating weights were found

ineffective due to massive action space of Starcraft2. [VBCT19|

In the reinforcement learning framework, terminal reward r; is given from (—1,0, 1)
according to lose, tie, or win, at the end of the game without any discount. Following
the actor-critic model, a value function Vjy(s, 2) is trained to predict r; and to train
the policy my(ss,as,2). Starcraft 2 poses a complex domain with sparse reward

structure as a RL-problem to exploration. Human data is therefore used to guide
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in the exploration and to preserve strategic diversity throughout learning period.
First, policy is initialized to the supervised learning policy and continually minimize
the KL divergence between supervised policy and current policy. Second, the main
agents are trained with pseudo-rewards to follow a strategy z randomly sampled
from human replay data. These pseudo-rewards measure the edit distance between
sampled and executed build orders, and the Hamming distance between sampled
and executed cumulative statistics. Human data was found critical in domain of

Starcraft 2 to achieve good performance with reinforcement learning. [VBC'19|

A league was then created to match agents against each other, just like human
players would play ranked ladder games against each other. Each agent learned from
games played against each other. Matchmaking used three different strategies. First
group, the main agents used prioritized fictitious self-play |[Bro51], a mechanism that
utilizes mixture of probabilities proportionally to the win rate against other agents.
This mixture converges to Nash equilibrium in two-player zero sum games. This
encourages playing against opponents of about equal level and opponents that are
problematic. Second group, the exploiters only were matched against main agents
to encourage them to address their weaknesses. Third and last group were the
league exploiters tasked to find the weaknesses of the entire league. They were
match-maked similarly to main against but not against main exploiters. Main and
league exploiters were reinitialized from time to time, but main agents remained in
the league the whole time. Leagues consisted of one main agent of each race, one
main exploiter of each race and two league exploiters of each race. Over time the

performance of main agents increased and the performance of exploiters decreased

[VBC*19).

This league process allowed agents to constantly learn against the best learned
strategies while constantly exploring the vast strategic space of Starcraft 2. When
new strategies emerged from adding new agents to the league, some were refinement
of old strategies and some were counter-strategies to popular strategies in the league.
Early in the league cheesy, but easy to counter, strategies were favored, but these
were later discarded as training progressed. To encourage diversity in training,
each agent was given a learning objective. This objective could be to defeat a
single strategy, or to prefer a specific unit, etc. This helped the main agents grow
stronger when they were exposed to cheesy strategies or strategies to exploit their
weaknesses. Typical weakness of self-play is forgetting: agents forget strategies
needed to perform well against strategies encountered further back in timeline in

favor of performing well against strategies encountered more recently. Or they may



49

run into a cycle of moving between few known strategies and newer really improving.
This was mitigated by letting agents in the league also play against former versions
of themselves. The idea of the league is to produce a single strong agent, not to

maximize the reward of every agent [VBC*19].

During training of 44 days on 32 third generation tensor processing units, each
AlphaStar main agent playing the league received equal of 200 years of real-time
Starcraft 2 playing experience. The final AlphaStar agent consisted of Nash distri-
bution of the mixture of strategies discovered in the league. This single agent could
be run real-time on a single modern desktop GPU. Alphastar was then finally tested
at the Battle.net official matchmaking system. In the final results, Alphastar ranked
at grandmaster level and in the top 0.02 percentile of human players in the ranking.
Grandmaster is the highest tier of ranked ladder. Professional players defeated by
the Alphastar commented that playing against it felt like not playing against su-
perhuman opponent. It was strong at some aspects of the game and weak in some
and they felt it was not undefeatable. Alphastar played with skill and reflexes of
professional player, but with a unusual strategy and style entirely of it’s own. Like
previously seen with AlphaGo’s gameplay, AlphaStar was able to develop playing
style and strategies previously unexplored by human players. This could lead to
human players increasing in skill and adapting new strategies to their gameplay.
[VBC*19|

4.4 Quake 3 Arena

Historically, the most popular type of online video games is the first person shooter
games. They provide a complex multi-agent environment where agents need to learn
to interact with their opponents and cooperate with their teammates. Challenges lie
in learning team play, strategy, tactics and hand-eye coordination. Learning actions
needs to be done from raw-pixel input stream and actions produced through virtual
controller to constrain Al agents reaction times to similar level of professional human

players.

Counter Strike is one of the most popular first person online shooter games, played
competitively for more than 20 years. Counter Strike is classical two team game
where one team plays terrorist trying to plant a bomb at one of two sites at a
three dimensional varying map. Other team plays counter-terrorist tasked with
preventing planting of the bomb and defeating terrorist. Newer and very popular

category of these competitive first person shooter video games are so called ’battle



20

royale’ games where last man standing wins in a vast game map that gets smaller
over time. Most popular games in this category are Fortnite and Player Unknown’s
Battleground. Counter Strike is the most watcher friendly competitive online video
game of first person shooter games providing exciting, gripping, edge-of-your-seat

type of watching experience.

However, there are as of yet no available deep learning solutions for these com-
plex modern online first person shooter games. Advancements in deep learning
during last decade, especially in the area of computer vision and the ability to
develop learning algorithms from the pixel input on the screen has led to success
in 2-dimensional Atari games [MKS*13|. This has lead to research in pseudo 3-
dimensional precursor of all first person shooter games from the early 90’s: the
Doom. [KWR*16, LC17] Results in Doom are promising, deep recurrent Q-learning
framework for POMDP’s|LC17| presented was able to train agents to outperform
ingame bots and human players in a deathmatch scenario and to be able to keep up
the same performance in new maps not present during training [LC17]. In death-
match gameplay, each player plays against each other player trying to score as many

kills as possible.

Recently, advancements have been made in a slightly more modern 3-dimensional
game, classic capture the flag gameplay in modified version of Quake 3 Arena [ID],
which has laid foundation for many modern competitive online first person shooter
video games. Quake 3 Arena, along its successors, still has an alive professional
scene. In Quake 3 Arena capture the flag (CTF) game mode players have a flag at
their bases. Both teams have a symmetrical objective of capturing enemy flag and
safely carrying it to their own base while defending their own flag. Team with most
captured flags after five minutes wins the game. Conflicts when encountering other
team’s members are sorted out with various types of firearms. Rules of CTF are

simple but the gameplay is complex.

AT agent dubbed ’for the win’ (FTW) [JCD*19a] demonstrated ability to play at
high competitive level at a multi-player first person online video game of modified
Quake 3. Supplementary material for the FTW containing gameplay videos can
be found on the blog post for the FTW[JCD*19b|. It become much stronger than
baseline AI bots and strong human players. Gameplay against professional human
players was not conducted. To level the playing field with human players, FTW uses
the same visual information that is available to human players. Learning was done

from raw RGB pixel input stream and actions issued through a virtual controller.
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Humans have very slow sensory input to biomotoric response compared to Al agent
and this needed to be leveled to not give Al agents a superhuman advantage that
humans could not match. Agents actions were delayed by 267ms witch is comparable
to average human players. Maps were randomized for each match to avoid agents
memorizing map layouts and forcing them to learn more general and robust methods
of play in variety of team compositions. Professional human players will memorize
maps and practice the nuances of each map and adopt different strategies for each
map. However, main strategic concepts remain the same. Each agent has its own
reward signal which allows it to generate its own goal. This can be for example to

capture enemy flag or defend own flag.

Figure 14: FTW agent from a red team chasing blue teams flag carrier, trying to tag
them, in a game of capture the flag in a simplified version of Quake 3. Taken from
"FTW blog post" at https://deepmind.com/blog/article/capture-the-flag-science on
28.10.2020. [Opel§|

Agent’s policy 7 is parametrized by the multi-timescale recurrent neural network
with external memory [GWR™16|. This is constructed by two LSTM[HS97]| recur-
rent neural networks with different timescales: for fast and slow timescales with a
shared memory module. This allows agent to react to immediate game events while
executing a long term strategy or game plan. Input z; is drawn from the same

pixel input on the screen as human players at each time step t. Actions a; ~ 7 are



52

generated conditionally on a stochastic latent variable, whose distribution is modu-
lated by slowly evolving prior process. These actions are then simulated with virtual
gamepad. The resulting model constructs a temporally hierarchical representation
space in a novel way to promote the use of memory and temporally coherent action

sequemnces.

For ad hoc teams, a agent should try to optimize their policy 7y for maximizing the

probability of winning for their team 7, my, ..., Tx_;:
2

n—1

P(mo’s team wins|w, (mn)n=0) = E,(r,yn-1[70, 71, ..., TN KWINATN ooy Tn-1], (35)

where N is the total number of players in the game and xwin* is winning operator
which returns 1 if the team on left wins and 0 if the team on the right wins. Ties
are resolved randomly. w ~ 2 represents specific map instance generated randomly.
Giving rewards only at the end would result in too sparse reward function. Rewards
are instead given accordingly to r, = w(p;), according to points agent receives on the
game’s scoreboard, giving a dense internal reward function [SLBS10]. This allows
agents to learn a transformation w such that the policy optimization on the internal
rewards r; for the win. Hence the name ’for the win’ or FTW agent. [JCD"19a|

Agents are trained from scratch to cooperate and compete in a completely unknown
environment. Rather than training a single agent, in FTW a population of 30
different agents are trained by playing with each other to provide diversity. Their
levels are estimated by calculating ELO scores used in Chess and various other
games and then matched against and as teammates agents of similiar level with
stochastic match-making scheme[JCD*19a]. Thousands of CTF games are played
simultaneously in parallel. This population of agents is also used to meta-optimize
the internal rewards and hyperparameters of the RL process itself. This results in

two tier RL problem[JCD*19a]:

T
Jinner(ﬁp|wp) = ]Etwmp(ﬂ),wNQ]EaNﬂ [Z Vth(Pm t)] va cm (36)
t=0
Jouter(Wp, @,|T) = Etwmp(ﬂ)7WNQP(7T;V7¢7S team wins|w, 7T§”’¢) (37)
7T;)N’¢ = optimize,,(Jinner, W-) (38)

The inner problem is to maximize each agents future discounted internal rewards,

which is solved by reinforcement learning in POMDP, since agents do not have
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(a) FTW Agent Architecture

Winning
signal

Internal
reward

Action

Game points p i o

N Policy

Slow RNMN
e -

Sampled
latent
variable

Fast RNN

I ' Observation x; i

Figure 15: Simplified version of the FTW agents architecture. This shows how the

/
'

@ -

agents processes its temporal sequence of observations on two different time scales,
faster at the bottom, slower at the top. A stochastic vector-valued latent variable
is sampled at the fast time scale from distribution ¢); based on observations x;.
The policy 7; (action distribution) is sampled conditional on the latent variable at
each time step t. The latent variable is regularised by the slow moving prior P,
which helps capture long-range temporal correlations and promotes memory. The
network parameters are updated using reinforcement learning based on the agent’s
own internal reward signal 7, , which is obtained from a learnt transformation w of
game points p;. w is optimised for winning probability through population based
training, another level of training performed at yet a slower time scale than RL.
Image taken from FTW blog site at https://deepmind.com/blog/article/capture-
the-flag-science on 28.10.2020. [JCD*19b|
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full information of the environment available at each time step. Each agent should
then maximize their expected cumulative y-discounted reward Eq (. <) [R;] under a
policy conditioned by the agents cumulative history of observations, where R; =
Z;‘:;é v*r, k. Due to the ambiguity of the true state given by observation in
POMDP, P(s;|x<;) represents the current state as a random variable, such that
the value fuction V; = Ex(jx_)[R] = >, P(s[x<t)Er(js)[R]. Using Kullback-Leiber
divergence, where policy Q is regularized against a prior policy P with a latent
variable z;. z; models the dependency on past observations and this leads to an

objective function:

Equic) 1] — Drr[Q(z:| CY)| [P (2| CY)], (39)

where P(z,|C?) is prior distribution on z;, Q(z|C}) is variational posterior distri-
butions on z; and Dgy, is the Kullback-Leiber divergence. The sets of conditioning
variables C? and C} determine the structure of the probabilistic model of the agent,
and can be used to equip model with various representational priors. The condi-
tioning variables C? and C} are chosen such that forward planning and memory are
promoted.[JCD*19al

The hierarchical LSTM’s fast timescale generates a hidden state h{ at every time
step t, whereas the slow timescale produces an updated hidden state h! = hrLﬁ |
every 7 timesteps. Output of the fast LSTM is used as the variational posterior
Q(z|P(2¢), Z<t, X<ty <y, 7<) = N (uf, 37), where mean pf and covariance X of the
normal distribution are parametrised by the linear transformation (uf,logof) =
fo(h}). At each time step a sample z; ~ N (uf,>]) is taken. The slow timescale
LSTM output is used for the prior of P(2[z<, ¢}, X<r|t], cr 2], T<r 1)) = N (@t 30,
where mean u} and covariance Y} of the normal distribution are parametrised by
the linear transformation (uf,logo}) = f,(hY).[JCD*19a]

The fast timescale core of LSTM takes as an input the observation (of the pixels
from the screen) that has been decoded by a convolutional neural network, u; =
CNN(x;), the previous action a;_1, previous reward r,_i, the prior parameters p
and of, and the previous sample of the variational posterior z; ; ~ N (uf 1,31 ).
The slow timescale core of LSTM takes in the fast core’s hidden state as an input,

resulting in recurrent neural network with dynamics of:

hg = gp(ut, At—1,T¢—1, hfsg? hgfla Mfzip Zt—l) (40)
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gp,(hf [, h? ) ift modT=0

hf _ p( t—1 t 1) (41)
h? 4] otherwise,

where g, and g, are fast and slow timescale LSTM cores. Stochastic policy, value

function, and pixel control signals are obtained from z; using further non-linear

transformations. This gives the gradient update rule of:

V(E, ~o[—L(2i, x4)]
- DKL[@(Zt\P(Zt),th,thaagt,Tgt)HP(Zt\ZgrgpXgﬂgaagﬂ;pTgTLgJ)])a (42)

where Cf = P(z;), z<¢, X<t, a<y, 7<t, C} = Zer|t]sXap|t] Oar|t];Tar| L] and £ repre-
sents the objective function composed of terms for multi-step policy gradient and
value function optimization, as well as pixel control and reward prediction auxilary
tasks. This objective function and gradient update rule tries to capture the idea
that slow LSTM core generates a prior on z, which predicts the evolution of z for
the subsequent 7 time steps, while fast LSTM core generates a variational posterior
on z that incorporates in new observations, but adheres to the predictions made by
the prior. z must be chosen as a useful representation for maximising reward and
auxiliary task performance. This architecture could be expanded to more than two

layers, but in this task it was noted to make little difference. [JCD'19a)

The outer meta-optimization process on the other hand requires population based
training|JDOT17] (PBT) to optimize hyperparameters ¢ of the agent, learning rate,
slow LSTM time scale 7, the weight of Dy term and the entropy cost. This
evolutionary process allows a model selection by replacing under-performing agents
(under 70% win probability) with mutated versions of themselves and with copies
of other the agents. This joint optimization of the agents policy with RL and the
optimization of the RL procedure towards a higher level goal proved to be effective.

It utilizes the power of RL and evolutionary based methods in large scale system.
[JCD*19a)

To evaluate the agents, a tournament with scripted bots and human players with
first-person shooter experience was conducted. In each match human players, scripted
bots and trained FTW agents were randomly matched up as teammates and oppo-
nents in two player teams. FTW agents were able to achieve much higher perfor-
mance than human players and scripted bots especially in never before seen maps.
Team of two game testers were able to win only 25% of the games against FTW
agent teams. Interestingly, a agent-human team was able to overperform agent-agent

teams. This suggests that agents are able to cooperate with previously unknown
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teammates. In the experiments, it was noted that human players were much more
proficient at 'tagging’ opponents at long range with 17% success rate compared to
FTW agents 0.5%. But at the short range, FTW agents dominated human players
with accuracy of 80% compared to human players 48%. This suggests that FTW
agents learned to utilize their superior short-range accuracy, but even when it was
artificially reduced to the same level as humans, FTW agents retained their superior
win-rate at matches. This means, that it was not the only contributing factor to
their performance and could utilize other features when their accuracy was reduced.
Participants in experiment reported that FTW agents were more team-play ori-
ented than human players. This shows emergent complexity in behaviours of agents
trained without any prior knowledge of the game with reinforcement learning meth-
ods. FTW was particularly effective at executing game actions resulting in scoring
more points, eg. capturing the flag. They averaged a much higher count of capture

the flag and recover the flag actions than strong human players [JCD'19a].

Agents were able to spontaneously learn a rich representation of the game without
being explicitly taught this knowledge by purely RL-based training. This included
concepts such as "I have the flag”, “I am respawning”, “My flag is taken”, “Teammate
has the flag” etc. As the learning period progressed agents knowledge of the game
concepts grew. First, agent learned basics of the game, then navigation, coordi-
nation and tagging skills. Finally, agents started to learn strategies of the game.
Fundamental game concepts such as defending your own flag and capturing enemy
flag are learned during the process. Learned important game behaviours are de-
fending home base, 'camping’ at opponents base, waiting for opponent to appear
with ‘camping’ player team’s flag or opponents flag to reappear after capture, and

following teammates [JCD*19a].

5 Discussion

In recent years, it has been shown that super-human performance in game playing
can be achieved with the combination of reinforcement learning and deep networks:
deep reinforcement learning. This started in the late 90’s when DeepBlue, an Al
agent pre-seeded with knowledge of classic opening moves of chess, beat the best
human player. Then, in 2015 AlphaGo Al agent demonstrated similar performance
in the game of Go with reinforcement learning agent using deep networks and Monte

Carlo method. It was also pre-seeded with replays of human play. Then, just two
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years later a general purpose deep reinforcement learning agent AlphaZero demon-
strated super-human performance in the games of Go, Chess and Shogi. When these
classical two player adversarial full information games were solved, eyes turned to
online video games. These new types of games from the last few decades offer new
challenges: partial observability, multi-agent environments, semi-cooperative game-

play and games taking tens of thousands of actions with long time dependencies.

Progress has been fast and just two years after the AlphaZero, in 2019, competi-
tive professional level performance has been achieved in real-time strategy game of
Starcraft 2 and multiplayer online battle arena game of Dota 2. The results and
approaches of these games differed in key aspects. In an unrestricted game of Star-
craft 2, Al agent called AlphaStar was pre-seeded with replays of strong human
player before self-play against each other in a league. The end result was that the
agent was able to defeat some of the best professional human players. In Dota2, the
game was somewhat restricted, but with just self-play, Al agent called OpenAlFive
was able to defeat the reigning world champion team. Additionally, strong human
performance was achieved in a restricted version of Quake 3 capture the flag game-
play. This was achieved by FTW agent when learning from the pixel input of the
screen and using just self-play. Still, a small step needs to be made to achieve a
super-human performance in these games with a general purpose deep reinforcement

learning algorithm without prior human knowledge in unrestricted gameplay.

Recent open-ended learning systems utilizing reinforcement learning with self-play
and deep networks have achieved impressive results in increasingly dynamic, com-
plex and challenging domains. In game of Starcraft 2 without any limitations, strong
Grandmaster level was reached when combined with supervised learning from hu-
man play as the starting point. With just self-play, in restricted game of Dota 2
professional team of human players was defeated. Results in these games show that
current learning algorithms combined with deep networks may be efficient enough
when run on sufficient scale and with a reasonable, fine tuned, way of exploring. Both
Alphastar and OpenAl Five were able to learn new strategies and playing styles un-
like human play, which showed that like in the case of AlphaGo, these games have
strategies previously unexplored by human players. Alphastar was given replays of
human play as as starting point, but OpenAl Five was not. Still, even OpenAl
Five was able to learn macro-level action chains from micro-level actions with just

self-play.

Starcraft, a popular online video game of its time and the precursor of Starcraft 2,
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has been studied in depth as a research platform for game AI development [OSUT13].
Results show, however, that so far there is no Al agent that would be competitive
even with a strong human player, let alone with the best professional players. Many
of the best Al agents relied on hard-coded strategies. In addition, in many of these
attempts have had to decrease the complexity of this game to make it more feasible
with traditional machine learning techniques. This includes allowing Al agents to
have full visibility, limiting the available amount of units, structures and limiting
the tech three.

To have any chance of developing a feasible Al agent with reinforcement learning, it
was generally long believed that new advances, such as hierarchical neural networks
[BMO03, VOS™17]|, are necessary for managing long time horizons and partial observ-
ability. AlphaStar and OpenAlFive used an LSTM recurrent neural network, FTW
agent used multi-timescale recurrent neural network with external memory. The
types of neural networks that are available today seem to be capable of handling
long time dependencies and partial observability present in these games. One other
leap has been the ability to learn from the pixel output of the screen. FTW agent
was the only to do so, OpenAlFive and AlphaStar used a representation of the game
state as an input. In games of Dota 2 and Starcraft 2 this is very reasonable, but in
first person shooter games it is expected for the Al agent to use the pixel input of
the screen in the same way as human player. Distributed learning framework with
multiple agents learning simultaneously was one key feature in all of the frameworks.
This requires setting up leagues for the agents and to have matchmaking scheme to
match Al agents against each other in best manner possible. This does lead to more
robust agents when they are not learning to play against just the current version of
itself but also speeds up the learning. In FTW, stochastic gradient policy update
was used to find the optimal policy for the agents. In this case, it seemed to per-
form well in a restricted Quake 3 ctf environment. OpenAlIFive opted to use state of
the art PPO, which makes distributed computation, tuning and maintaining of the
learning algorithm much easier. Alphastar on the other hand went one step further
to improve upon PPO in the environment of Starcraft 2 with Self-Imitation learn-
ing. Dota 2 and Starcraft 2 have such vast action spaces and games taking so many
actions that basic stochastic gradient update scheme would not have been feasible,
but PPO or its variants can help manage sampling. The final key to the puzzle of
making deep reinforcement learning feasible in online video games was the introduc-
tion of GPU based computation and the increase in computational resources, since

deep reinforcement learning algorithms are very computationally expensive.



29

Open-ended deep learning techniques used in all of these games may not generalize
or scale well, as the case of Dota 2 shows. Even if these techniques may be applied to
a variety of problems and they work well, this knowledge may not be transferable to
even slightly modified environment. Agent-based games played against professional
players were tested in games where the number of available heroes was limited to
only 18 of 117. Even if deep learning techniques used were able to defeat top human
players in restricted game using substantial amount of computational resources, this
learned knowledge can’t be transferred to using larger subset of heroes, or even the
full hero pool. Instead, adding additional heroes from the original mirror match
of five fixed heroes to a mix of five heroes from a pool of 18 heroes could only be
done at the expense of more computational resources and learning time. Further
increasing hero pool would cost more computational resources and more learning
time, which would at some point, be infeasible. Increasing hero pool to 25 led
to a significant increase in learning time for OpenAl Five showing that mastery
of previous heroes did not help in learning additional heroes. When new patches
were introduced to the game, making adjustments to maps, items, hero stats and
abilities, the previous knowledge from previous version of the game could not be
transferred automatically to the new version. Deep learning techniques indeed are
very constrained to a specific problem in a specific environment with specific input
to output solution using specific parameters and fine tuned attributes to steer the
learning. Additionally, the use of special surgery technique was needed to adjust
agents to a new version of the game. Otherwise, the learning would have needed
to restart from the beginning when a new version of the game was released even if
it made just minor adjustments to how the game is played. This could mean very

poor generalization. [OB*19]

Encouraging results in the restricted version of Quake 3 ctf gameplay sparks hope
that in coming years there could be a possibility to train Al agents in a more
complex and very popular online first person shooter game of Counter Strike or
Fortnite. A game of Counter Strike is closer to Quake ctf than a battle royale game
of Fortnite. A game of Counter Strike would need to have cooperation from five
Al agents trying to defeat another team of five players in a slightly more complex
game of bomb planting and bomb defuse. Results of FTW agents show that two
agent team cooperation works. This could be increased to five players with more
training time and computational resources. FTW agents also were able to learn
core concepts of the gameplay even when they were just learning from the pixel

input from the screen. This gives hope, that in the future, the concepts of more
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complicated first-person shooter games would not remain elusive.

During the late stages of writing of this thesis encouraging results from a driving
simulator of Gran Turismo sport were released [FSK*20|. They managed to achieve
super-human performance in a challenging environment of autonomous high speed
car driving with deep neural networks and reinforcement learning. With just 73
hours of training time on 4 Playstation 4 consoles and one desktop pc. This was
done without any expert human knowledge, without any explicit path finding on the
tracks or any human intervention. The AI agent was able to outperform the best
known human lap time on two different tracks and two different cars. Unfortunately,
there was not enough time to include these results in more detail in this thesis. If
you would like to find out more about this, I encourage you to read paper ’Super-
Human Performance in Gran Turismo Sport Using Deep Reinforcement Learning’
by Fuchs et al [FSK*20].

Both Alphastar and OpenAl five show that deep learning techniques are very re-
source and/or data hungry. Using self-play for learning costs a lot of computational
resources and time. Learning can be sped up using recorded human play to set up
the neural network layers before starting self play. But, this needs a lot of data,
tens of thousands hours of game play from thousands of different players. Results
in games like Starcarft 2 and Dota 2 show that one of the biggest constraints in
these strategic video games still lie in computational resources, where deep learn-
ing techniques are effective. AlphaZero, a general deep learning framework used
about 1900 petaflop/s-days in training compute|AH19] when training to defeat the
best GO player in the world. Sufficient scale in Open Al five was using about 800
petaflop/s-days in training compute [OBT19], which is still significantly less than in
a ’simpler’ game of GO. In AlphaStar, each of the agents in the league was trained
using 32 third-generation tensor processing units over 44 days [OB*19]|. These are
significant uses of computational resources that do not come cheap in money or
natural resources. Case of Gran Turismo on the other hand, shows that results can
be achieved with just 73 hours of training time on 4 Playstation 4 consoles and
one desktop pc in certain environments.[FSKT20] Is it worth it and can we afford
economically and environmentally to use these amounts of computational resources
to solve these kinds of complex problems? Do we still need to do research to find
more inexpensive methods or just wait until we have even more computational power
to solve even more complex problems? It is estimated that AI computational re-
sources double every 3.5 months|AH19|. If we can put our limited resources to use

in improving our lives and our surroundings, maybe it will be worth it.
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Another issue with current deep learning techniques is that it may be incredibly
difficult to fine-tune their hyper parameters to a certain task without any general-
ization to even slightly variant task. This also complicates the reproducibility of
these results and application of them to new environments. It remains to be seen
when we can apply deep learning techniques to real world applications. Computer
vision|[VDDP18] has taken leaps and bounds ahead, self-driving cars|[BTD*16] are
getting ready to the real world, but not yet ready to be fully autonomous. The
general-purpose deep learning algorithm used in Dota 2 has already been success-
fully applied in control of a robotic arm [ABC*20|. Results produced by deep
reinforcement learning techniques cannot be denied, but they do come with their

caveats, at least for now.

6 Conclusion

This thesis briefly introduced the concepts of reinforcement learning, deep networks,
deep reinforcement learning and how to solve reinforcement learning problems in
partially observable environments with deep reinforcement learning by combining
deep networks with reinforcement learning techniques. This included the standard
reinforcement learning model, convolutional network, recurrent neural network and
LTSM network examples of deep neural networks along with stochastic gradient
descent update rule for optimizing networks performance. The appliction of these
deep networks to reinforcement learning leads to various deep reinforcement learning
algorithms capable of handling partially observable environments. DQN, actor-critic

model and PPO were introduced.

After the classical games of Go, Chess and Shogi were solved, new frontier for game
AT research needed to be looked into. Three competitive online video games of
different types (moba, rts, fps), Defence of the Ancients 2 (Dota 2), Starcraft 2,
and Quake 3, were looked into as deep reinforcement learning research platforms.
These games brought to the table new challenges: with vast action and observation
spaces, fast paced gameplay, long term and sparse reward assignment, and partially

observable complex game environments with multiple agents.

The different state of the art deep network architectures and reinforcement learning
algorithms utilizing them were looked into in this thesis and their results in these
three games were impressive. Previously, Al agents could not compete with even

good human players, let alone professional players in video games and they were
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limited to scripted AI’s or given unfair advantages. Three Al agents looked into
shared some features but differed in others, but the principles were fairly close to
each other. FTW agent in Quake 3 utilized a more traditional approach of policy
gradient updates, but also adding a meta-optimization layer with population based
methods. OpenAl Five in Dota 2 opted to use PPO for policy optimization and
Starcraft 2 used a novel UPGO algorithm building upon actor-critic model and V-
trace for policy updates. Each of these utilized a LTSM neural network, highly
useful recurrent neural network for long time dependencies and partially observable
environments. All of these solution also had a league set up to self-play agents
against each other in the learning period with various methods for matchmaking
and evaluating agents performance. A highly competitive level of Al was developed
in Quake 3 and in games of Starcraft 2 and Dota 2, even the best professional players
were defeated. Alphastar used human knowledge to kick-start learning like was done
in AlphaGo, but OpenAl Five and Dota 2 opted to go with straight RL method.

This meant that the games needed to be somewhat restricted in scale.

These results were then discussed with the strengths, limitations and the future
applications of these solutions, and with their computational cost in mind. Success
in this new field was expected to a certain degree, but as to how fast those results
were achieved after the results in classic board games was unexpected. Limitations
and approaches were very understandable, since the environments of video games
are many magnitudes more complex than of classic board games. With the latest
algorithms and architectures, and enough computational power, in the coming years
we might see general purpose deep reinforcement learning system like AlphaZero
was to classic board games to competitive online video games or application in the

real world.
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