View metadata, citation and similar papers at core.ac.uk

brought to you by .{ CORE

provided by Helsingin yliopiston digitaalinen arkisto

Embedding Web Apps in Mixed Reality

Antti Peuhkurinen
Varjo
Helsinki, Finland
Email: antti.peuhkurinen @varjo.com

Abstract—Increase in processing capabilities, network con-
nectivity, and other technical advances have enabled new ways
to consume digital content. These include technologies such as
virtual, mixed, and augmented reality, where new display type
and multiple new input technologies are emerging. However, these
systems are usually designed such that there is only the pre-
installed main application, leaving the true application paradigm
— analogous to desktop applications or mobile apps where the
paradigms are well-established — inside the virtual reality still
undefined. In this paper, we propose that web technologies form
a potential dominant design that can be used to enrich mixed
reality in a non-invasive fashion. More precisely, we go through
the current technologies and open our thinking with examples
from possible needs for the web application paradigm to work
well with the virtual reality.

Keywords—Web, Applications, Mixed Reality, Digital Twin,
Programmable World

I. INTRODUCTION

In the context of cyber-physical system (CPS), physical
world actions are intimately linked with those appearing in
cyber space. The digital twins paradigm [1] — where the same
entity exists in the physical and in the digital world, available
in a Virtual Reality (VR) environment — is a promising way
to create applications to such setup, where the whole world
becomes programmable [2]. The feasibility of such an ap-
proach is demonstrated for instance by Google Physical Web,
an open approach to enable quick and seamless interactions
with physical objects and locations [3].

Obviously, depending on the nature of objects and the role
they play on applications, their features and characteristics may
vary. Furthermore, when building applications that mix and
match their properties — in analogy to web mashup applications
[4] — their access rights may be different. However blending
them in a mixed reality as independent applications introduces
common characteristics such as modularity and security that
must be considered at a generic level [5].

In this paper, we study how already existing web technolo-
gies can be used in application development in the context of
digital twins forming a mixed reality environment. The paper
builds on our earlier work on application composition in 3D
context, mixed reality, and web applications [6], [7], [8]. The
fundamental goal is to demonstrate how web applications can
live inside a mixed reality context as full-fledged applications,
representing physical items.

The rest of this paper is structured as follows. In Section 2,
we present background technologies that can be readily used
when realizing the above vision. In Section 3, we describe

Tommi Mikkonen
University of Helsinki
Helsinki, Finland
Email: tommi.mikkonen @helsinki.fi

new technologies related to mapping physical objects to virtual
worlds that we have prototyped when creating the technical
artifacts presented later on in the paper. In Section 4, we create
a concept design from the software system. In Section 5, we
present a proof-of-concept implementation that demonstrates
the proposed approach. In Section 6, we draw some final
conclusions.

II. BACKGROUND

In the following, we introduce the background of this paper.
First, we consider physical systems that are needed for mixed
reality, and then, we place the focus on mixed reality systems
and web technologies we use as the implementation technique.

A. Physical System

In most of the urban areas, infrastructure for connectivity
is commonplace. In addition, the devices which are mobile
can access this infra wirelessly and can know their world
pose (location and orientation). In Figure 1 we have different
hardware that makes the connected and co-operating system
possible as a whole. User’s body area can have a smart phone,
desktop, smart watch and similar devices that can communicate
with each other. There is a separate group of hardware that
makes possible the connectivity, like WiFi stations and opera-
tor networks. In addition, all of these devices are supported by
the servers to provide data storage and processing capabilities.
Techniques familiar from so-called liquid software [9] could be
used to move the physical execution to more suitable location
to optimize network lag and other resource load, for example
between servers, IoT or user devices.

B. Mixed Reality and Web Technologies

Web applications have several advantages in comparison to
their native counterparts when considering embedding them in
a virtual world. Their execution model supports the inclusion
of several applications inside the same host application in a
fashion that is light-weight and scalable. More precisely, we
exploit the following features:

Web application paradigm is a full featured application
paradigm. This includes programming paradigm, installation
and removal of the application when loading and unloading
pages, and the application life cycle and the process isolation
from the operating system when application is executed.

Interfacing host system resources is needed by the ap-
plications for more powerful applications. Various interfacing
capabilities including both user interfaces, such as abstracted
access to display, sound and input systems, file system, as

https://core.ac.uk/display/343133497?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2
o
[+
3
oy
73
=
2
7]

ammTToE. operator
Body network
Area (X0)

i P9 device(s) L | Wii(s) (Xw)|
| o || a
E 1‘._ ;| beacon(s) | !

Server(s)

S)

IoT
device(s)
- (Xiot)

Fig. 1. Physical System

well as access to device specific interfaces. The latter may be
offered only in a controlled fashion.

Application programming where flexible user interfaces
can be created easily calls for a domain-specific, easy-to-use
declarative language, such as HTML and CSS, together with
techniques that support adaptation, similarly to responsive web
design [10]. To create business logic a scripting language like
JavaScript is needed. Usage of declarative language easies
creation of mixed reality application. In case of really custom
applications more native programming languages can be used
to achieve wanted features and performance. In addition, for
mixed reality 3D graphical assets open formats like Collada
[11] can be used.

Mixed reality computing devices, such as Microsoft
Hololens [12] or Magic Leap One [13], are currently bulky, but
they are already stand-alone systems, and they can be used to
run web applications. However, for simplicity in our research
we have used desktop machines and mobile phones to mimic
the future mixed reality hardware and its capabilities.

III. EXTENDING PHYSICAL WORLD TO VIRTUAL
REALITY

Additional technologies are need to create a fully pro-
grammable world, where objects would have their digital
twins. Furthermore, some of the mixed reality smart objects
can be fully virtual and also these virtual objects need similar
technologies. In short term, many of these technologies will
most likely emerge inside a silo owned by a single vendor, and
it will take time before the technologies are mature enough to
form a single new “Internet of mixed reality”. In addition,
some new technologies are needed. Next, we address some of
the enabling new technologies.

A. World 3D Map Database

To identify and track places and objects easily, a lot of pre-
processed tracking data is needed on servers. Data related to
certain location, like point cloud of image features and labeled
objects, could be obtained from the servers to help on the
identification and tracking. This data could be collected by the
network nodes, by user devices, glasses, cars, and phones, for
instance. Maintaining real-time world map data requires that

World 3D Map

O
Not Accessible
Datasets

Accessible
Datasets

User

Fig. 2. World 3D Map Dataset Access

moving objects can send updates regarding their changes, or
that they can be tracked by the system and updates in their
status are sent back to the map. Privacy and security of the
data must be kept in mind when creating the 3D map from the
tracked data.

Figure 2 demonstrates how the world map for each user
is formed from accessible dataset, although also other datasets
exists that user cannot access. For example, public space most
likely is seen by all users, but private spaces, like tracked
insides of user’s facilities, are seen only by the user. Different
user accounts might be also available for different spaces —
for instance home and work accounts might differ, and they
might also be user specific. Furthermore, private tracking data
could also be shared between user accounts and this needs
permission management.

B. Digital Twins from Physical Objects

Automated pose tracking of digital twins is needed to
place the virtual visuals of the object in accordance to the
real world position [14]. Mixed reality device needs to get
information from the pose of the object, including the object’s
world location and orientation. This is particularly crucial
for moving objects. The object may obtain this information
independently by itself, for example using network, beacons,
GPS information, or its internal magnetometer, accelerometer,
gyroscope, and air pressure sensors. The object can request
other nearby smart objects, like the smart glasses, to provide
information regarding its pose, or to could be tracked by
system automatically and this information could be transmitted
to become a part of the tracked object itself. This digital
information world poses information created by the devices,
and the world tracking and mapping data could be updated
constantly to the world 3d map. This would make it to
be a real-time representation of the world, including meta
information like the digital twins at the end.

If multiple separate systems exist, there is a possibility to
have multiple digital twins from the same physical object. This
can happen for example if multiple vendors are creating their
own systems for digital twin application paradigm.

Today, digital twin as a term is used mostly to the object
that are already smart. However, the term itself can cover any
object found from the real world. Next, we create categories
which could be used to group any of the real world objects.
Figure 3 describes four different categories for digital twin
objects. In next subsections we describe these categories.

No Digital Twin Object. No Digital Twin Object is an
object that cannot be recognized or tracked as an individual
object. System is not able to recognize the unique instance
or type of the object. Systems does not practically recognize
this object as unique object; object seen to be part of a bigger

Category: Marked

Object

Markerless
Object

No Digital
Twin Object

Digital Twin
Object

Diiggital twin
strength

Fig. 3. Digital Twin Categories

object recognized or object cannot be strongly identified as a
unique instance of some real world object.

Markerless Object. A markerless object can be identified
as an individual object and can be tracked even if is not having
any system friendly tag. Examples of such objects include
objects that have been built before the Internet of mixed reality.
System can recognize the unique object, or the object type, and
add information to the object.

Marked Object. A marked object is an object that can be
identified as a individual object and can be tracked from marker
easily. Marker can be for example an electronic beacon or a
visual tag made for the digital twin system purposes. Marked
objects can be said to be Internet of mixed reality friendly.

Digital Twin Object. A digital twin object is connected to
the system as an unique instance. For example, runs operating
system, has sensors to interface with outside world, connected
to web itself. It can have also a capability to host and run the
digital twin software. These objects are capable themselves to
actively update their own world pose to the system by using
own sensors or actively requesting other nearby devices to
track the object pose.

C. Mixed Reality Application Types

Application types that can be associated with mixed reality
can take various forms. Some of the applications live in
user space or are used as tools which have no real world
associations and some of the applications are blending with
the real world more. From the digital twin perspective, the
mixed reality applications can be divided to two categories —
the ones that are clearly based on digital twins and the ones
that are not. Next, we describe these two categories.

Digital Twin Mixed Reality Applications. Digital Twin
applications are extending the real world object. One special
case also from a digital twin mixed reality application would
be a virtual digital twin application. This term could be used
for applications that exist visually in mixed reality in certain
world location, and could also move while being tracked by
the system, but do not have further resemblance in the real
world. This kind of applications could be called as pure virtual
digital twins. Their only physical world feature is that they are
visualized in certain world location. This means that multiple
users could still share the same instance of the virtual object.

Non Digital Twin Mixed Reality Applications. Normal
applications could be considered to be not a copy of any
real world’s physical object or physical location. They can be
attached to physical object or location or they are visualizing
the types of objects from physical world. A sample non-digital
twin application is an application that lives in user space
floating next to user or is opened and closed anywhere by

user, for example a desktop office application, or a shopping
application that can show real world object types. It is also
possible that the real physical digital twin object is associated
with visualizations and associations that are not the same as
the digital twin tracked in the real world.

D. Mixed Reality Application Paradigm

Since mixed reality is a somewhat new concept, it is only
natural that many of the traditional computing concepts are
still unrefined. In particular, this concerns paradigms that the
applications must assume in the context of mixed reality. In
the following, we address the key concerns associated with
this task.

Multiple Simultaneously Visible Applications. When
multiple different objects from different sources are showing
their visuals to the user, there is a need for a secure and stable
way of showing all of them simultaneously to the user. Also
new input methods are needed. Some possibilities for this are
for example eye-tracking, tracking of hands, voice, or separate
hand hold controllers. Also, there is a problem how to manage
multiple mixed reality 3D applications. Current browsers use
commonly tabs to manage web applications. In mixed reality,
many of the applications are visually blending with the real
world. This needs special consideration when mixed reality
application paradigm is defined. This problem we looked at in
our earlier research. [8]

Visualization. Current web application graphics technolo-
gies lack de-facto declarative 3D layout routines, animations,
asset formats and their loading. The current WebGL standard
makes it possible to have 3D content easily on a website but it
does not define high level declarative 3D user interface creation
like HTML and CSS. This means that there is a need for new
declarative programming paradigm for the mixed reality web
applications.

Applications in World Location. To have mixed reality
applications shown, there is a need to get the set of appli-
cations in current world location. This means first, that the
device should know it’s world position, and second, current
world location’s application list and their runtimes should be
accessible. The user device visualizing the digital twins or
some co-operating device nearby can also help to identify the
digital twins in user nearby space. Especially this is needed
for the moving objects that have their digital twin visualized
to the user.

E. Digital Twin Runtime Hardware

To run the digital twin software there is a need for
physical hardware that executes it. Currently, most of the
real world objects don’t contain a hardware of capable of
running the mixed reality software. This means that most
of the calculations need to be done by other objects if they
are wanted to be having digital twins. For example, when
user wears mixed reality glasses the device is tracking the
environment and recognizing objects from it. The recognized
object optionally has its application instance running on the
server, or application is installed and run at the local device.

'

;

User
User -
Device Executed Applications
Software [Application <local> | [Application <hosteds |
¥
‘ Display Server ‘ Application Manager
¥ ¥ (applications in current world location)
‘ Graphics ‘ ‘ Inputs |
-) Digital Twin Installed
Tracking Applications
‘ Device World Pose ‘
Hand . . Tracking and Mapping
GPU| Display| Tracking| | Y©'°® | Beacond |wifi| | MoPie || gpg | |
Network
I ¥ Cameras
Pointers| |Keyboard
Cloud/MEC
Software World Application Hosted
3D Map Providers Applications
(MEC/server)

Fig. 4. Target Software Architecture

IV. TARGET MIXED REALITY SOFTWARE SYSTEM

To make the mixed reality applications run correctly, there
is a need for new software technologies. Figure 4 introduces
the architecture of the target mixed reality software system.
Next we describe the architecture.

The device world pose, the device orientation, location in
the real world, and tracking of the real world plays a key role in
the mixed reality software. This is because if we do not know
how the physical objects and the user device is related to each
other it is impossible to visualize virtual objects embedded
to real world for the user. Furthermore, there can also be new
digital twins or physical changes in the space that user’s device
and the system is unaware from. This mean that there is a
need to do digital twin tracking and mapping of the space
constantly by using all possible sensors. At known location we
get current location’s applications information from application
providers. User might been also placing applications to the
current location. Some of the user placed applications might
be only visible to the user. Eventually we know the applications
which are hinted by the world 3D map, suggested by the
applications providers, and have been placed by the user to
the space. This means that we know the applications to be run
in current user’s world pose.

To execute the current world pose applications we need
to first either download them for the local execution or trigger
host machines to execute them. Some of the applications could
be already locally installed. The locally missing applications
are fetched from their needed parts to the local device. Some of
the applications might be based on runtime that is a separate
package coming from application provider and some of the
applications might be a complete package that can run on the
system independently. In addition, the some of the applications
might run themselves in a hosted mode where majority of
the application business logic is running outside of the user’s
device. This kind of applications are especially in our interest
because their nature resembles how the web works now on
desktop and mobile platforms.

The running applications are visualized at the end for the
user. We used our earlier shared scene idea in this research for
efficient multi-application visualization [8] which is especially
suitable for declarative visualizations.

V. IMPLEMENTATION

In our example implementation we focused to test the
feasibility of a mixed reality web applications run on a separate
host machine and how they could be programmed to work
together. User device receives the 3D visuals of the application
and user is able to give input back to the application. In
programming view applications have an overlay where their
outputs and inputs are visible to the user. Example implemen-
tation setup is illustrated in Figure 5. We used laptops to mimic
the user device and the host machine. The application host
servers and the programming server are run at the same host
machine. For the connection we used WiFi. Display server
draws the visuals from the application. The programming
manager can show the application’s inputs and outputs for
the programming view in addition to other logical elements
and connections added by the user. Programming manager
also creates the connections informing related applications and
connection server. Connection server runs the programmed
logic when getting input. Application instances can give input
to connection server and connection server can give input to
related applications.

For the Display Server part and for the connection over
the WiFi we have implemented a novel prototype system by
extending Ubuntu 16.04 operating system. In addition to the
native C++ interfaces we have enabled usage of JavaScript
programming language on the application side for easy cre-
ation of mixed reality 3D applications. The applications can
be also made declaratively with JSON where both layout and
logic can be described.

Mixed Reality Device Wifi Host Machine
(Laptop) (Laptop)
Mixed Reality Server
Input | Display Input | Mixed Reality
= | Server = Web Application
- -
- Graphics - Graphics)
User
Programming:)
P Application Programming:
Programming: ;
ViSL?alsn'ln utgs Output/input Connection
P! Connections Receive/Transmit
Programming: Programming:
Programming Connection
"
Programming: Server
Connection,

Logic Element

Fig. 5. Physical View of the Example Implementation

Alarm set
07:30 AM

Fig. 6. Digital Twin of an Alarm Clock Visualizing Itself

&y

Fig. 7. Real Object next to Virtual 3D Object Visualized by Mixed Reality
Application

A. Application Examples

An example digital twin is shown in Figure 6. The alarm
application adds additional visualization of the alarm time and
control to unset the current alarm set.

A pure virtual application is shown in Figure 7. In this
example the calculator application visualizing a calculator does
not have it’s real world counterpart and thus it can be called to
be pure virtual digital twin. Multiple users could see the same
instance of the application running at the same time.

An example from a programming view enabling pro-
grammable world is shown in Figure 8. In this view each
digital twin application is visualizing a logical element having
inputs and outputs. The alarm clock’s digital twin has an
“alarm” output for alarm event. The coffee machine has a
“brew coffee” input. In Figure 9 the user has connected the
“alarm” output to the “brew coffee” input. In addition to
the applications ready logical elements or elements having
scripting language can be added to the programming view.
These elements also contain inputs and outputs. This enables

Fig. 8. Digital Twin Programming View

_C brew coffee
(2 cup
medium grind)

status:
water:

Fig. 9. Connected Digital Twins

creation of complex logic having multiple digital twins.

B. Example Single File JavaScript Application

To create a 3D layout we enabled creation of the appli-
cation’s visual scene graph using JavaScript. The interface
makes possible to create, update and remove the scene graph
nodes. This can be used to create user interface layout and
relationships between the resources. Creation of basic 3D
shapes used in visualization can be done by describing them
with text. Triangulated data can be used to create more
complex shapes. For material creation text can be also used to
describe basic material features like color or reflection factor
by describing them by text. In addition, image files can be used
in materials to texture the shapes. The location, rotation, and
scale of the shape can be controlled using the transformation.
Transformation is relative to the parent node enabling user

interface elements layout. Transformation can be described
easily by text. In addition, event callbacks can be added to
the nodes to make the application react to the user input or
system events. Other components like animation or physics
can be easily added to this programming paradigm.

Next, we have a short example JavaScipt source code
creating an application. This application creates its visual scene
having a single cube that changes its color when being pressed
by the user. The client’s main loop acts as the event handling
loop for this application.

// example.js

// Init client with application volume size (wxhxd).
var client = new Client (2, 2, 2);

// Callback function.
var myCallback = "function pressed() \
{ client.updateMaterial(l, \"color: blue\")\; }";

// Init scene.

// Create a node under root node. Root node id is 0.
client.updateNode (1, 0);

// Create a cube mesh with size 2 x 2 x 2 to node 1
client.updateMesh(l, "cube: 2, 2, 2");

// Set node material to be diffuse color red

client.updateMaterial (1, "color: red");
// Set node location to origo
client.updateTransformation(l, "location: 0, 0, O");

// Set "pressed" signal callback function
client.updatePressedCallback (1, myCallback);
// Flush scene udpates to screen
client.updateScene();

// Enter mainloop. Blocks here and receives events.
client.mainloop();

As described in Figure 5, when we run the above source
code, we have the JavaScript being run by our native mixed
reality platform at the host machine using V8 JavaScript engine
[15]. The native platform then connects the client created to the
user device’s application manager. The application’s visuals are
sent to the user device. Then the Display Server at user device
renders the visible mixed reality applications to the user. User
inputs to the application are sent to the host machine where
application logic can react to them.

C. Example Application Loading Scene from JSON File

In addition to JavaScript the application can be also imple-
mented by using JSON file format. This is a declarative way
of describing the application’s visual layout and internal logic.
}BSGIOOIXIV’ we list the corresponding above JavaScript example in

// example.json

{

"volume": [2, 2, 2 1,
"myCallback": "function pressed() \
{ client.updateMaterial (1, \"color: blue\")\; }"
"node": {
"id": 1",
"mesh": "cube: 2, 2, 2"
"material": "color: red",
"transformation": "location: 0, 0, 0",
"pressedCallback": "myCallback"

VI. CONCLUSION

In this paper, we propose a mixed reality application
paradigm enriched with digital twins and programmable world.

Furthermore, we demonstrated how the current web technolo-
gies can be used to as part of the mixed reality application
paradigm, thus gaining many of the benefits of web appli-
cations over their native counterparts [16]. Creating simple
digital twin or other mixed reality applications would be easier
by using declarative and scripting languages which are now
being used to create the current web applications. In addition,
it would be possible to run the mixed reality applications
partially or fully in the cloud like current web applications.

In the process, we learned that the markerless tracking of
the world, recognition and tracking of the physical objects,
and the pre-processed database to help on these tasks plays
a key role to make the system as whole perform adequately.
In addition, we learned that the digital twin paradigm enables
complex user input and programmability to any physical world
object. Furthermore, as expected, digital twins from physical
objects can provide more information that is possible in the
physical world, but also can clutter the user’s view if used in
excessively large numbers.

REFERENCES

[1] E. H. Glaessgen and D. Stargel. The Digital Twin paradigm for future
NASA and US Air Force vehicles. 53rd Struct. Dyn. Mater. Conf. Special
Session: Digital Twin, Honolulu, HI, US, pp. 1-14, 2012.

[2] A. Taivalsaari and T. Mikkonen. A roadmap to the programmable world:
software challenges in the IoT era, IEEE Software, 34(1), pp. 72-80
2017.

[3] Google, Inc. The Physical Web. Available at
https://google.github.io/physical-web/, referenced Jan 2., 2018.

[4] F. Daniel and M Maters. Mashups: Concepts, Models and Architectures.
Springer, 2014.

[5] A. Taivalsaari and T. Mikkonen. Mashups and modularity: Towards
secure and reusable web applications. In 23rd IEEE/ACM International
Conference on Automated Software Engineering: Workshops (ASE
Workshops’08). pp. 25-33. IEEE, 2008.

[6] A. Peuhkurinen, A. Fedorov, and K. Systd. Operating System Compositor
and Hardware Usage to Enhance Graphical Performance in Web Run-
times. In International Conference on Web Engineering, pp. 381-388.
Springer, 2016.

[7]1 A. Peuhkurinen, T. Mikkonen, and M. Terho. Using RDF data as basis for
3D Window management in mobile devices. Procedia Computer Science
5 (2011): 645-652.

[8] A. Peuhkurinen and T. Mikkonen, T. Mixed Reality Application
Paradigm for Multiple Simultaneous 3D Applications. In Proceedings

of 16th International Conference on Mobile and Ubiquitous Multimedia,
Stuttgart, Germany, Nov. 26-29, 2017.

[9] A. Gallidabino, C. Pautasso, V. Ilvonen, T. Mikkonen, K. Systd, J.-P.
Voutilainen, and A. Taivalsaari. ”On the architecture of liquid software:
technology alternatives and design space.” In Proceedings of 2016 13th
Working IEEE/IFIP Conference onSoftware Architecture (WICSA), pp.
122-127. 1IEEE, 2016.

[10] E. Marcotte. Responsive Web Design, A Book Apart, 2011.

[11] Khronos, Collada. Available at https://www.khronos.org/collada/, refer-
enced Jan 21., 2018.

[12] Microsoft Corporation, Hololens. Available at
https://www.microsoft.com/en-us/hololens/, referenced Jan 6., 2018.

[13] Magic Leap, Inc. One. Available at https://www.magicleap.com/, refer-
enced Jan 6., 2018.

[14] R. Azuma. Tracking requirements for augmented reality. Communica-
tions of the ACM, 36(7), pp.50-51, 1993.

[15] Google, Inc. V8. Available at https://developers.google.com/v8/, refer-
enced Jan 31., 2018.

[16] T. Mikkonen and A. Taivalsaari. Apps vs. open web: The battle of the
decade. In Proceedings of the 2nd Workshop on Software Engineering for
Mobile Application Development, pp. 22-26. Santa Monica, CA, USA,
2011.

