

Article

Subscriber access provided by UNIVERSITY OF HELSINKI | University of Helsinki Libraries

Rapid and direct preparation of lignin nanoparticles from alkaline pulping liquor by mild ultrasonication

Melissa B. Agustin, Paavo A. Penttilä, Maarit Lahtinen, and Kirsi S. Mikkonen

ACS Sustainable Chem. Eng., Just Accepted Manuscript • DOI: 10.1021/ acssuschemeng.9b05445 • Publication Date (Web): 13 Nov 2019

Downloaded from pubs.acs.org on November 20, 2019

Just Accepted

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.

is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036

Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

1 2		
3 4		
5 6 7 8 9	1	Rapid and direct preparation of lignin
10 11 12 13 14 15 16	2	nanoparticles from alkaline pulping liquor by
17 18 19 20 21 22 23	3	mild ultrasonication
24 25 26 27 28 29	4	Melissa B. Agustin ^{+*} , Paavo A. Penttilä [‡] , Maarit Lahtinen [†] , Kirsi S. Mikkonen ^{†,§*}
30 31 32 33	5	[†] Department of Food and Nutrition, P.O. Box 66 (Agnes Sjöbergin katu 2), FI-00014
34 35 36 37	6	University of Helsinki, Finland
38 39 40 41	7	[‡] Department of Bioproducts and Biosystems, P.O. Box 16300, FI-00076 Aalto
42 43 44 45	8	University, Finland
46 47 48 49	9	[§] Helsinki Institute of Sustainability Science (HELSUS), P.O. Box 65, FI-00014 University
50 51 52 53	10	of Helsinki, Finland
54 55 56 57 58	11	*Corresponding authors:
59 60		ACS Paragon Plus Environment

1 2		
3 4	12	Email: <u>kirsi.s.mikkonen@helsinki.fi</u>
5 6 7	13	Email: melissa.agustin@helsinki.fi
8 9 10 11	14	
12 13 14 15	15	KEYWORDS: Lignin nanoparticle, ultrasonication, acid precipitation, alkaline pulping
16 17 18 19	16	liquor, emulsion, BLN lignin
20 21 22 23	17	ABSTRACT. The production of lignin nanoparticles (LNPs) has opened new routes to
24 25 26	18	utilization of lignin in advanced applications. The existing challenge, however, is to
27 28 29 30	19	develop a production method that can easily be adapted on an industrial scale. In this
31 32 33	20	study, we demonstrated a green and rapid method of preparing LNPs directly from a
34 35 36 37	21	sulfur-free alkaline pulping liquor by combining acid-precipitation and ultrasonication. The
38 39 40	22	combined method produced spherical LNPs, with hierarchical nanostructure and highly
41 42 43 44	23	negative surface charge, within only 5-min of sonication. The mild, rapid sonication was
45 46 47	24	achieved by sonicating directly without prior drying the acid-precipitated and dialyzed
48 49 50 51	25	lignin. Optimization of the method revealed the potential for minimizing acid consumption,
52 53 54 55	26	shortening the dialysis time, and processing directly the alkaline liquor with as much as
56 57 58		2
59 60		ACS Paragon Plus Environment

1	
2 3 4	27
5 6	
7	28
8 9	
10 11	29
12	
13 14	30
15 16	
17	31
18 19	0.
20 21	32
22	02
23 24	
25 26	33
27 28	34
29	0.
30 31	
32 33	35
34	
35 36	36
37 38	
39	37
40 41	
42 43	38
44 45	
46	39
47 48	
49 50	40
51	
52 53	41
54 55	
56	
57 58	
59 60	

27	20 wt% lignin. The isolated LNPs were stable during storage for 180 days, at a pH range
28	of 4–7 and in a dispersing medium below 0.1 M NaCI. The LNPs also displayed excellent
29	emulsifying properties, stabilizing oil-in-water emulsions. Thus, this simple and energy-
30	efficient method opens a sustainable, straightforward and scalable route to production of
31	solvent-free LNPs, with high potential as interface stabilizers of multi-phase systems in
32	the food and medical industries.
33	
34	INTRODUCTION
35	Lignin, with its highly irregular polyphenolic structure, is the most abundant natural
36	aromatic polymer on Earth. ¹ Representing 15–40% of the dry weight of lignocellulosics, ²
37	lignin is one of the major by-products in the pulp and paper industries, with an estimated
38	global production of 50 million tons per year. ^{3,4} Lignin production is expected to
39	continuously increase as the demand for second-generation biofuel, i.e. biofuels from
40	nonfood sources, is realized. In the USA alone, the mandate to produce 79 billion liters
41	of second-generation biofuels by 2022 translates into the production of 62 million tons of
	3

ACS Sustainable Chemistry & Engineering

53 54 55 56 57 58 59 60
00

	42	lignin, with the assumption that the sourced biomass constitutes about 28% lignin and a
	43	biofuel yield of 355 L ton ⁻¹ of dry biomass. ⁵ In addition, the emerging green technologies
0 1 2	44	in utilizing bio-based materials, especially cellulose from wood, signal that more lignin is
3 4 5 6 7 8	45	yet to be produced when such technologies are adapted on an industrial scale. Despite
	46	wide availability, lignin is still considered as an undervalued material, since most of it is
9 0 1 2	47	only burned for energy recovery in the pulping process. ² This limitation has been
2 3 4 5	48	attributed to the heterogeneous structure and properties of lignin, which vary with the
6 7 8 9	49	source and method of isolation. ⁶ However, lignin's complex structure provides it with
0 1 2	50	unique properties, including antimicrobial, antioxidant, UV-blocking, and emulsifying
3 4 5 6	51	properties. ^{6,7} These unique properties, coupled with attributes typical for bio-based
7 8 9	52	materials, such as being renewable, sustainable, biodegradable, and abundant, make
0 1 2 3	53	lignin a promising material for advanced and sophisticated applications.
3 4 5 6	54	Exhaustive efforts in recent years have resulted in development of technologies that
7 8 9	55	provide high-value applications for use of lignin. Some notable applications, which are
0 1 2 3	56	summarized in various reviews, 6-10 include using lignin as binders, adsorbents,
2 3 4 5 6	57	precursors for carbon-fiber production, adhesives, emulsifiers, or as engineering
7 8 9 0		4 ACS Paragon Plus Environment

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32 33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
55 54	
54 55	
55 56	
57	
58	
59	
60	

58	materials in the development of smart composites. Recently, the conversion of lignin into
59	nanoscale particles has become increasingly recognized. The formation of LNPs enables
60	lignin, which is typically insoluble in water, to form a colloidal dispersion in aqueous
61	systems, ⁷ which is attractive from the industrial point of view. The formation of
62	nanostructured lignin also allows better control of morphology and structure, enabling the
63	produced LNPs to blend well in various host matrices. ¹⁰ LNPs, similar to other materials
64	in nanoscale form, exhibit chemical and physical interactions, mainly governed by their
65	surface properties. ¹¹
66	Several methods for preparing LNPs from various types of lignin have been reported
67	but only few attempts were made for large scale LNP production. ^{12,13} The feasibility for
68	scaling up was hindered because most of the current laboratory-scale methods are
69	energy-intensive, consume considerable number of reagents, and produce only a very
70	dilute LNP suspension. ¹² Thus, a method that can easily be scaled up to industrial level
71	is still an ongoing quest.
72	Among the various methods of LNP preparation, acid precipitation, solvent-shifting, and
73	disintegration by mechanical treatment have become increasingly favored. Acid
	5

ACS Sustainable Chemistry & Engineering

Page 6 of 54

74 precipitation, which was first reported by Frangville et al., ¹⁴ involves the gradual addition	n
75 of an acid to a solution of lignin in aqueous alkali or in ethylene glycol ¹⁵ . Solvent-shiftir	ıg
76 involves dissolving lignin in an organic solvent such as tetrahydrofuran (THF), ¹⁶⁻	18
77 dimethyl-sulfoxide (DMSO), ¹⁹ and dioxane ²⁰ . It is then followed by the gradu	al
78 introduction of an antisolvent, which is often water, enabling the self-assembly of LNPs.	16
79 Mechanical treatment, such as high-shear homogenization ^{21,22} or ultrasonication, ²³⁻	25
80 applies force to disintegrate to nanoscale level the lignin usually dispersed in water.	
81 Ultrasonication, when used as a method for LNP preparation, offers the advantage	of
82 simplicity and eliminates the use of toxic organic solvents. In this method, ultrasour	ıd
83 waves (20 kHz to 10 MHz) are applied to a medium, causing the formation of microscop	ic
84 bubbles that generate heat and pressure when they collapse during the process calle	ed
85 cavitation. ²⁶ The generated pressure is powerful enough to disintegrate lignin particles	to
86 nanoscale level; however, very low initial lignin concentrations (< 1 wt%) and at least	1
87 h of sonication were used in previous reports. ^{23–25} Long sonication times can result	in
88 extensive oxidation, producing radicals that can initiate radical-induced polymerizatio	n.
89 Phenolic hydroxyl (OH) groups in lignin can form phenoxy radicals during sonication ar	nd
ACS Paragon Plus Environment	6

9
9
9
9
9
9
9
9
9
9
10
10
10
10
10

90	may induce crosslinking reactions. ²⁷ Thus, to avoid radical-induced polymerization,
91	shortening the sonication time is necessary. This could be reached without necessarily
92	increasing the intensity of the applied ultrasound waves by changing the properties of the
93	starting lignin material. In contrast to previous reports in which the starting lignin material
94	was dried before sonication, here we used a never-dried lignin material produced directly
95	from alkaline pulping liquor (APL) by acid precipitation. Our hypothesis is that drying
96	greatly changes the surface properties of the lignin, inducing agglomeration and making
97	lignin recalcitrant to mechanical disintegration. We propose here a high-yield method to
98	recover and subsequently disintegrate to nanoparticles the lignin dissolved in APL. This
99	method is a combination of two conventional LNP preparation methods: acid-precipitation
100	and ultrasonication. The mild ultrasonication is achieved by directly disintegrating without
101	prior drying the acid-precipitated lignin, thereby making the overall process energy
102	efficient, rapid, straightforward, and highly scalable. Thus, this solvent-free method,
103	coupled with the utilization of a sulfur-free BLN (from the initials of the inventor's names)
104	pulping liquor, which was used for the first time in LNP preparation, paved the way toward

1 2		
3 4 5	105	production of green odor-free LNPs that exhibited excellent emulsifying properties when
6 7 8	106	used as stabilizers of oil-in-water emulsions.
9 10 11 12	107	
13 14 15	108	EXPERIMENTAL SECTION
16 17 18 19 20	109	Materials
21 22 23 24	110	The APL, with approximately 20 wt% lignin from birch (<i>Betula</i> L.), was provided by CH-
24 25 26 27	111	Bioforce Oy (Espoo, Finland). It is a sulfur-free pulping liquor produced through a novel
28 29 30	112	biomass fractionation method known as the BLN process, ²⁸ which enables the isolation
31 32 33 34	113	of lignin of high purity. A detailed chemical characterization of the acid-precipitated lignin
35 36 37	114	obtained from this APL is available elsewhere. ²⁹ Reagent-grade hydrochloric acid (HCI),
38 39 40 41	115	nitric acid (HNO ₃), and sulfuric acid (H ₂ SO ₄) were purchased from Merck (Darmstadt,
42 43 44	116	Germany). The nuclear magnetic resonance (NMR) solvent d_6 -DMSO was purchased
45 46 47 48	117	from Eurisotop (Saint-Aubin, France). Rapeseed oil (Keiju, Bunge Finland Ltd, Raisio,
49 50 51	118	Finland) for emulsion preparation was purchased from a local supermarket.
52 53	119	
54 55 56	120	Lignin nanoparticle preparation
57 58		
59 60		8 ACS Paragon Plus Environment

1 2	
3 4 5	1
6 7 8 9	1
10 11 12	1
13 14 15	1
16 17 18 19	1
20 21 22	1
23 24 25 26	1
27 28 29	1
30 31 32 33	1
34 35 36	1
37 38 39 40	1
40 41 42 43	1
44 45	1
46 47 48	1
49 50 51 52	1
53 54	
55 56 57 58	1
50	

3 4 5	121	The LNPs were prepared by a combined acid precipitation and mild ultrasonication
6 7 8 9	122	method. In all, 100 g of 3.5 wt% lignin solution, which was prepared from the APL by
10 11 12	123	dilution in deionized water, was stirred vigorously, followed by rapid addition of 100 mL of
13 14 15	124	0.25 M acid (HCl, HNO ₃ , or H_2SO_4). The resulting mixture, which had a pH of about 2,
16 17 18 19	125	was centrifuged for 7 min at 8000 rpm to remove most of the salts and acids, and the
20 21 22	126	residue was collected and diluted with water to maintain the initial concentration. The
23 24 25 26	127	mixture was then dialyzed against 5 L of distilled water, using Spectra/Por 1 (6-8 kDa
27 28 29	128	molecular-weight cutoff) for 3 days, replacing the water at least six times. The final pH of
30 31 32 33	129	the suspension only reached about 4 after dialysis. The dialyzed mixture (80 g) was kept
34 35 36	130	in an ice bath, sonicated using a Branson digital sonicator at a frequency of 20 kHz and
37 38 39 40	131	80% oscillation amplitude (100 W). A 5-mL sample was collected after 2 min, and the
40 41 42 43	132	sonication was continued for a total of 5 min.
44 45	133	
46 47 48 49	134	Hydrodynamic diameter and ζ -potential measurement
50 51 52	135	The hydrodynamic diameter (D _H) and ζ -potential of the isolated LNPs were determined
53 54 55 56	136	by the dynamic light scattering (DLS) technique using a Zetasizer Nano-ZS Zen 3600
57 58		
59 60		9 ACS Paragon Plus Environment

1 2		
3 4 5	137	(Malvern Instruments Ltd., Worcestershire, UK) equipped with a laser (4 mW, 632.8 nm)
6 7 8 9	138	and backscatter detection at 173° to eliminate the effect of multiple scattering. The
10 11 12	139	optimum concentration was determined by serial dilution of a stock solution containing 40
13 14 15 16	140	mg mL ⁻¹ LNPs. The dilutions showed no significant differences and a concentration of 4
17 18 19	141	mg mL ⁻¹ was chosen in the following measurements. At least three measurements with
20 21 22 23	142	12–15 runs per measurement were performed for each sample. For the ζ -potential, a
23 24 25 26	143	folded capillary cell at 25 $^\circ$ C and an applied electric field of 40 V were used. LNP
27 28 29 30	144	suspensions (4 mg mL ⁻¹) with a pH of about 5 were prepared by dilution with deionized
31 32 33	145	water. The electrophoretic mobility data obtained from the measurement were converted
34 35 36 37	146	to the ζ -potential using the Smoluchowski model. At least five measurements involving
38 39 40	147	10–15 runs per measurement were performed for each sample. All data were processed
41 42 43 44	148	using the built-in DTS software (DTS Software, LLC.; Raleigh, NC, USA)
45 46 47	149 150	Chemical structure characterization
48 49 50 51		
52 53 54		
55 56 57 58		
59 60		10 ACS Paragon Plus Environment

1 2 3		
3 4 5	151	The chemical structure of the acid-precipitated lignin before and after sonication was
6 7 8 9	152	characterized by acquiring the Fourier-transform infrared (FTIR) spectra and the two-
10 11 12	153	dimensional (2D) heteronuclear single-quantum coherence (HSQC) 2D NMR spectra.
13 14 15 16	154	The FTIR spectra were recorded using a SpectrumOne (PerkinElmer, Turku, Finland),
17 18 19	155	equipped with a universal attenuated total reflectance accessory. A background scan was
20 21 22 23	156	performed before the sample, which was scanned 16 times at a resolution of 4 cm ⁻¹ . The
23 24 25 26	157	spectra were recorded between 4000 and 600 cm ⁻¹ and the baseline corrected using the
27 28 29	158	built-in software.
30 31 32 33	159	For the NMR analysis, performed at 27 $^\circ\text{C},$ the samples (20 mg) were dissolved in d $_6\text{-}$
34 35 36	160	DMSO (0.7 mL). The spectra were acquired using a Bruker Avance 850 MHz III high-
37 38 39 40	161	definition spectrometer equipped with a cryoprobe (Bruker Corp., MA, USA). The
41 42 43	162	experiments were performed using the pulse program hsqcedetgpsisp.2, and the
44 45 46 47	163	following parameters: size of the FID 2048, pulse width 7.8 μ s, number of dummy scans
48 49 50	164	32, and number of scans 16. The spectral widths used were 12 ppm in the ¹ H dimension
51 52 53 54	165	and 220 ppm in the ¹³ C dimension.
55 56 57	166	
58 59 60		11 ACS Paragon Plus Environment

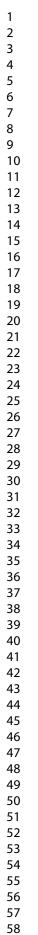
167	Atomic force microscopy
-----	-------------------------

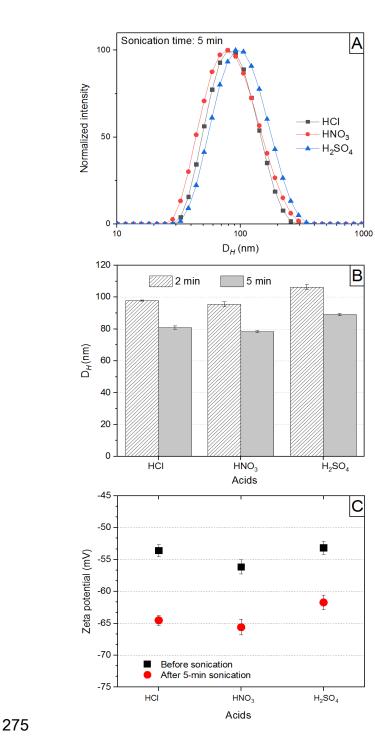
1 2 3 4 5 6	167	Atomic force microscopy
7 8 9	168	The morphology of the synthesized LNPs was characterized using the Veeco
10 11 12 13	169	Multimode V (Veeco Instruments Inc., Santa Barbara, CA, USA) atomic force microscope
14 15 16	170	(AFM). The sample was prepared by dropping a dilute aqueous suspension of LNPs onto
17 18 19 20	171	a freshly cleaved mica plate and drying in air. The imaging was performed under ambient
21 22 23	172	conditions using Si probes (Bruker Corp., CA, USA) with a nominal tip radius of 8 nm, a
24 25 26 27	173	nominal spring constant of 3 N m ⁻¹ , and a resonant frequency of 75 kHz. The images were
28 29 30	174	recorded in tapping mode, and basic image plane leveling was applied to remove artifacts
31 32 33 34	175	caused by sample tilt.
35 36	176	
37 38 39	177	Small-angle x-ray scattering
40 41 42 43	178	Small-angle x-ray scattering (SAXS) experiments were carried out on beamline B21 at
44 45 46 47	179	the Diamond Light Source, equipped with a high-throughput, small-volume liquid-handling
48 49 50	180	robot (BioSAXS; Arinax Scientific Instrumentation, MAATEL SAS, Moirans, France) and
51 52 53 54	181	an Eiger detector (Dectris AG, Baden-Daettwil, Switzerland). The x-ray wavelength was
54 55 56 57	182	0.947 Å and the sample-to-detector distance 2.7 m. A 50-µL volume of HCI-precipitated
58 59 60		12 ACS Paragon Plus Environment

LNP with approximate concentrations of 1 mg mL⁻¹ and 10 mg mL⁻¹ in water were injected in a glass capillary, and the SAXS data were collected as a series of 20 frames with 2-s exposure times while the sample flowed through the capillary. The initial data reduction, including transmission correction, azimuthal integration, and scaling to absolute intensity against a water sample, was performed automatically with Data Analysis WorkbeNch (http://dawnsci.org/). (DAWN) software while **SAXSutilities** software (http://www.saxsutilities.eu/) was used for subsequent frame averaging, water-background subtraction, and rebinning. The SAXS intensities were fitted with the unified exponential/power-law model,³⁰ with two levels of structural hierarchy (N = 2): $I(q) = \sum_{i=1}^{N} G_{i} e^{\left(-\frac{q^{2}R_{g,i}}{3}\right)} + B_{i} e^{\left(-\frac{q^{2}R_{g,(i+1)}}{3}\right)} \left(\frac{\left[erf\left(qR_{g,i}/\sqrt{6}\right)\right]^{3}}{q}\right)^{P_{i}} + C$ (1)In the model of Eq. 1, each level of structural hierarchy contributes to the scattering in the form of a Guinier function (term with coefficient G_i) at low q and a power law (term with coefficient P_i at high q. The radius of gyration $R_{a,i}$ describes the dimensions of the structural elements of level *i* and corresponds to radius $R = \sqrt{5/3}R_a$ in the case of a solid

1 2		
3 4 5	198	sphere. The power-law exponent P_i describes the aggregation state of subunits with
6 7 8 9	199	radius of gyration $R_{g,(i+1)}$, with higher values of P_i indicating denser packing. A manually
10 11 12	200	adjusted constant background (C) was included in the fits when necessary. Fitting was
13 14 15 16	201	done using the Differential Evolution Adaptive Metropolis (DREAM) algorithm in SasView
17 18 19	202	4.2 software, ³¹ and the reported error estimates for the fitting parameters were based on
20 21 22 23	203	those given by the software.
24 25	204	
25 26 27 28	205	Stability test
29 30 31 32	206	The stability of the LNPs was assessed by monitoring the changes in $D_{\mathcal{H}}$ and ζ -potential
33 34 35 36	207	during storage, and with variation in the pH and ionic strength of the dispersing medium.
37 38 39	208	For the storage test, stock LNP suspensions (40 mg mL ⁻¹) were kept in a cold room for 6
40 41 42 43	209	months. A small volume of the sample was drawn from the stock solution at each time
44 45 46	210	interval and diluted 10-fold for the analysis of D_{H} . The stability of the HCI-precipitated LNP
47 48 49 50	211	against variation in pH and ionic strength of the dispersing medium was tested by
51 52 53 54 55 56	212	determining the D_H of the LNP dispersed in solutions with differing pH or ionic strength.
57 58		A A
59 60		14 ACS Paragon Plus Environment

1 2		
3 4 5	213	Solutions with various pH were prepared by adjusting the pH with aqueous HCI or NaOH.
6 7 8 9	214	Aqueous NaCl solutions (0.1 M -1 M) were used to vary the ionic strength.
9 10 11	215	
12 13 14 15	216	Optimization
16 17 18	217	The method was optimized by monitoring the $D_{\mathcal{H}}$ and $\zeta\text{-potential}$ while varying the
19 20 21 22	218	concentration of the acid, the initial concentration of lignin in the suspension, and
23 24 25	219	precipitation pH. For the variation in acid concentration and initial lignin concentration, the
26 27 28 29	220	same procedure as in the preparation with different acids was used. The only difference
30 31 32	221	was that the volume of acid solution needed to precipitate the lignin to pH 2 varied when
33 34 35	222	different concentrations of acids were used or when the initial lignin concentration was
36 37 38 39	223	varied. To determine the optimum pH for precipitation, sequential pH precipitation was
40 41 42	224	performed. A lignin solution (7 wt%, 200 g) prepared from the APL was fractionated
43 44 45 46	225	sequentially at pH 6, 4, and 2 by adding 0.25 M HCI. All the residues obtained from the
47 48 49	226	various pH values were redispersed in deionized water, dialyzed for 2 days, and then
50 51 52 53	227	sonicated to produce LNPs. A known weight of the LNP suspension was also freeze-dried
54 55 56	228	to determine the fractional yield at each pH.
57 58 59 60		15 ACS Paragon Plus Environment


1 2		
3 4	229	
5 6	230	
7 8	231	Emulsion preparation and characterization
9 10 11 12 13	232	Four formulations of oil-in-water emulsion with 10 wt% rapeseed oil and varying
14 15 16	233	amounts of LNPs (0.15, 0.30, 0.45, and 0.60 wt%) were prepared. A coarse emulsion
17 18 19 20	234	was initially prepared by mixing for 2 min at 22,000 rpm the mixture (oil, water and LNPs)
21 22 23	235	using an UltraTurrax (T-18 basic; IKA, Staufen, Germany). The coarse emulsion was then
24 25 26 27	236	passed four times through a high-pressure homogenizer (Microfluidizer 110Y;
28 29 30	237	Microfluidics, Westwood, MA, USA) at a pressure of 88 bar to obtain finer droplet size.
31 32 33 34	238	The morphology of the emulsion droplets was characterized using an optical
35 36 37	239	microscope (AxioScope A1; Carl Zeiss Inc., Oberkochen, Germany) equipped with a built-
38 39 40 41	240	in camera, within 1 h after the preparation. The stability of the emulsion was monitored
42 43 44	241	using a Turbiscan LAB stability analyzer (Formulaction SA, Toulouse, France), equipped
45 46 47 48	242	with an optical reading head that scans the entire height of the sample at 40- μ m intervals.
49 50 51 52	243	All measurements were done at 25 $^\circ$ C by scanning three times a turbiscan vial containing
53 54 55 56		
57 58		
59 60		16 ACS Paragon Plus Environment


1 2		
3 4 5	244	20-mL of emulsion. The first measurement was performed within 1 day of the preparation,
6 7 8 9	245	and succeeding measurements were done once per day.
10 11 12 13	246	RESULTS AND DISCUSSION
14 15 16 17	247	Effect of acid type
18 19 20 21	248	The type of acid can influence the final properties of the lignin recovered from APL by
22 23 24	249	acid precipitation ²¹ . Regardless of the type of acid, the size distribution of all LNPs was
25 26 27 28	250	monodisperse, yielding a single peak in the size distribution chromatogram and had an
29 30 31	251	averaged polydispersity index of 0.20 (Figure 1a). HCl and HNO_3 produced LNPs with an
32 33 34 35	252	average D_H of about 96 nm after only 2 min of sonication (Figure 1b). The average D_H
36 37 38	253	further decreased to about 80 nm when the sonication time was increased to 5 min. $\rm H_2SO_4$
39 40 41	254	showed slightly higher $D_{\mathcal{H}}$ than HCI and HNO ₃ , but still yielded nanoparticles with less
42 43 44 45	255	than 100-nm diameter after 5 min of sonication. The process also afforded high yield,
46 47 48	256	enabling a final LNP suspension with more than 3 wt% lignin. The percentage yield of
49 50 51 52 53 54 55	257	LNPs, calculated from the amount of LNPs recovered after freeze-drying with respect to
56 57 58 59		17
60		ACS Paragon Plus Environment

2 3 4	
4 5 6	
7 8 9	
10	
11 12 13 14 15 16	
17	
18 19 20	
21 22 23	
24 25 26	
27 28	
29 30 31 32 33	
34	
35 36 37	
38 39 40	
41 42 43	
44 45 46	
47 48 49	
50 51	
52 53 54	
55 56 57	
58 59	

1

258 the initial amount of lignin in the solution before precipitation, ranged from 86% to 93%, 259 with HCl giving the highest yield. 260 Varying the types of acid resulted in similar values of the ζ -potential of the lignin before 261 sonication and of the subsequent LNPs after sonication (Figure 1c). The average ζ -262 potential of the isolated LNPs was about -63 mV and was similar to that of LNPs 263 synthesized from softwood kraft lignin by solvent-shifting method.¹⁶ The highly negative 264 surface charge of lignin has been attributed to abundant phenolic groups and to adsorbed 265 OH groups, typical for hydrophobic molecules in contact with water.^{14,16} This highly 266 negative surface charge contributes to the stabilization of particles in colloidal suspension 267 by creating sufficient electric double-layer repulsion. The ζ -potential values, however, 268 became more negative after ultrasonic treatment. This finding suggests that 269 ultrasonication can induce changes in the surface charge of lignin, possibly by exposing 270 to the surface carboxyl or phenolic groups that were initially inside of the lignin 271 aggregates. The increase in the absolute ζ -potential stabilized the resulting LNP 272 suspension, which did not exhibit particle sedimentation similar to the unsonicated lignin 273 suspension during storage.

Figure 1. Effect of acid type on the intensity-based hydrodynamic diameter (D_H) distribution (a), average D_H (b), and average zeta potential (c) of lignin nanoparticles prepared from alkaline pulping liquor by the combined acid precipitation and

2 3 4 5	279	ultrasonication method. The error bars represent ± standard deviations of at least three
6 7 8 9	280	measurements.
10 11 12 13	281	Characterization
14 15 16 17	282	The isolated LNPs were further characterized for their chemical characteristics,
18 19 20 21	283	morphology in the dry state, and nanostructure in aqueous systems. All the results
22 23 24	284	presented in Figure 2 pertain to the LNPs produced by HCl precipitation at pH 2 and with
25 26 27	285	5-min sonication time. The results for the LNPs isolated from HNO_3 and H_2SO_4
28 29 30 31	286	precipitation, when available, are provided in the supplementary information.
32 33 34	287	The chemical characteristics of the acid-precipitated lignin and the subsequent LNPs
35 36 37 38	288	produced from them were investigated using FTIR and 2D HSQC NMR.
39 40 41	289	All FTIR spectra (Figures 2a and S1) showed absorption bands typical for lignin (Table
42 43 44 45	290	S1). No significant changes, such as increase in intensities or shifting of absorption peak
46 47 48	291	to different frequencies, were observed after ultrasonication. The phenolic and aliphatic
49 50 51 52	292	hydroxyl groups gave the broad absorption band from 3100–3600 cm ⁻¹ . The sharpening
53 54 55	293	of this absorption band towards high frequency was not observed, which is in contrast to
56 57 58 59		20
60		ACS Paragon Plus Environment

Page 21 of 54

1 2 3 4 5	294
6 7 8	29
9 10 11 12	29
13 14 15	29
16 17 18 19	298
20 21 22	299
23 24 25 26	30
20 27 28 29	30 ⁻
30 31 32	302
33 34 35 36	303
37 38 39	304
40 41 42 43	30
44 45 46	30
47 48 49 50	30
50 51 52 53	308
54 55 56 57	309
57 58 59 60	

- 3 1 5	294	the findings of Garcia-Gonzalez et al ²⁴ . According to them, ultrasonication induced partial
5 7 8	295	oxidation to lignin resulting in an increase in OH groups that form intramolecular hydrogen
) 0 1 2	296	bonds. The 5-min we used compared to the 6-h sonication time used by Garcia-Gonzalez
3 4 5	297	et al ²⁴ is possibly mild enough not to cause oxidations. A sharp signal at 1640 cm ⁻¹
6 7 8 9	298	attributed to carbonyl stretching vibrations of intramolecularly hydrogen-bonded
20 21 22	299	carboxylic acids ²⁴ was also not detected, which further confirmed that the mild
23 24 25 26	300	ultrasonication did not cause oxidation. The strong peak at 1109 cm ⁻¹ , which can be due
27 28 29	301	to C-O deformation in methoxyl groups, did not show significant decrease in intensity
80 81 82	302	after ultrasonication. Yin et al ²⁵ applied 1-h sonication to a slightly alkaline suspension of
83 84 85 86	303	lignin and reported a decrease in the absorption intensity at 1105 cm ⁻¹ due to potential
87 88 89	304	cleavage of C–O bonds. Overall, the FTIR spectra revealed no significant change in the
10 11 12 13	305	structure of the lignin before and after mild ultrasonication.
14 15 16	306	The unchanged chemical structure was further confirmed using 2D HSQC NMR
17 18 19 50	307	analysis of acid-precipitated lignin and LNPs. The spectra of both samples were identical
51 52 53	308	confirming the result of FTIR analysis, which showed that mild ultrasonication did not
54 55 56 57	309	induce chemical modifications of lignin. Furthermore, the obtained HSQC spectra were
57 58 59		ACS Paradon Plus Environment

ACS Sustainable Chemistry & Engineering

nearly identical compared to the previously published HSQC spectrum of BLN lignin ²⁹.

Page 22 of 54

1 2	
3 4 5	310
6 7 8	311
9 10 11 12	312
13 14 15	313
16 17 18 19	314
20 21 22	315
23 24 25 26	316
27 28 29	317
30 31 32 33	318
34 35 36	319
37 38 39	320
40 41 42 43	321
44 45 46	322
47 48 49 50	323
51 52 53	324
54 55 56 57	325
58 59	

1

311 The 2D HSQC NMR spectrum of LNPs is provided in Figure S2. 312 The morphology of the isolated LNPs in the dry state (Figures 2b and S3) was 313 investigated using AFM. Due to agglomeration during drying, it was not possible to 314 measure individually the dimensions of the particles. Nevertheless, the results clearly showed that the isolated LNPs were generally spherical, with lateral and vertical 315 316 dimensions not exceeding 100 nm. 317 SAXS was used to determine the outer dimensions and inner structure of the LNPs in aqueous suspension at two different concentrations (1 mg mL⁻¹ and 10 mg mL⁻¹). The 318 319 SAXS intensities of the samples (Figure 2c) showed clear indications of structural 320 hierarchy, with shoulder features located slightly below $q = 0.01 \text{ Å}^{-1}$ and approx. q = 0.05321 Å⁻¹, and power-law scattering in between. The intensities were therefore fitted with the 322 unified exponential/power-law model of Eq. 1 (solid lines in Figure 2c, different 323 contributions of the terms shown in Figure S4), which yields information on the 324 dimensions and packing density at each level of structural hierarchy in mass fractal

60

Based on the fitting results (Table S2), the samples consisted of mass fractal

aggregates of smaller subunits. The radius of gyration of the aggregates or clusters, as

determined from the intensity around the first shoulder (level i = 1), was 23–27 nm ($R_{a,1}$)

in Table S2). Under the assumption of spherical particles, this would translate into a

diameter of about 60-70 nm, which is in excellent agreement with the hydrodynamic

radius determined with DLS (~80 nm). The power-law exponent of level i = 1 (P_1 in Table

S2) was approx. 2.5, indicating that the space inside of the aggregates was not fully filled

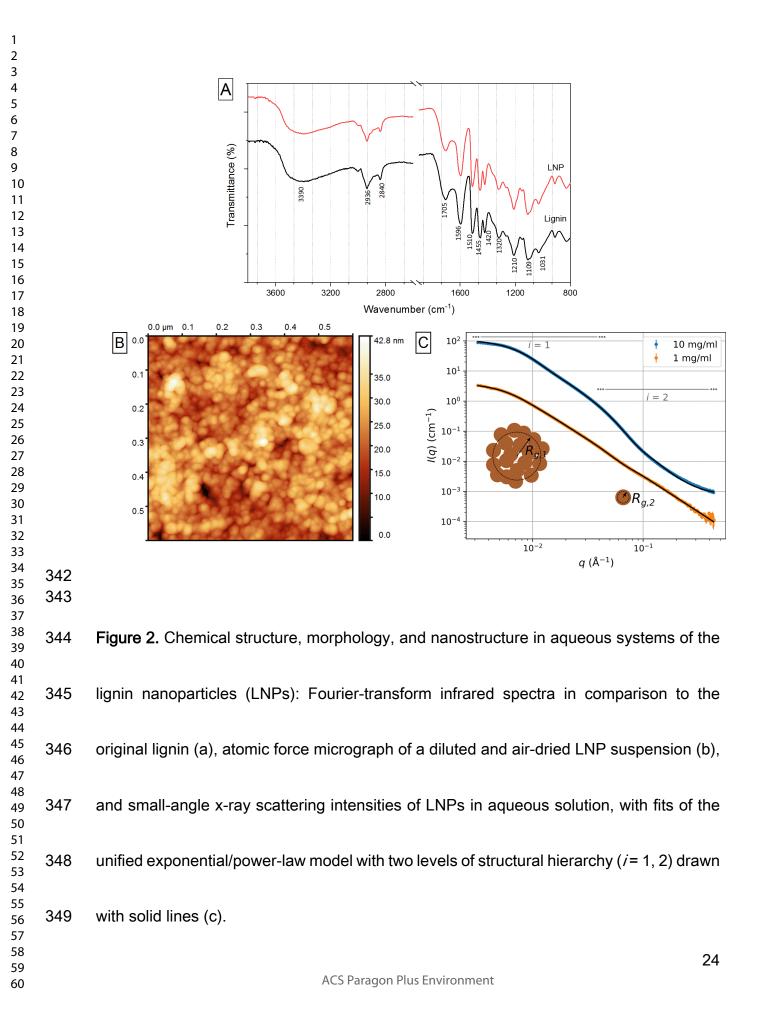
with solid material. This is in contrast to previous SAXS results for dry lignin³² and LNPs

in water,³³ which showed power-law exponents close to 4 arising from compact particles

with smooth surfaces. The dimensions of the subunits forming the aggregates in the

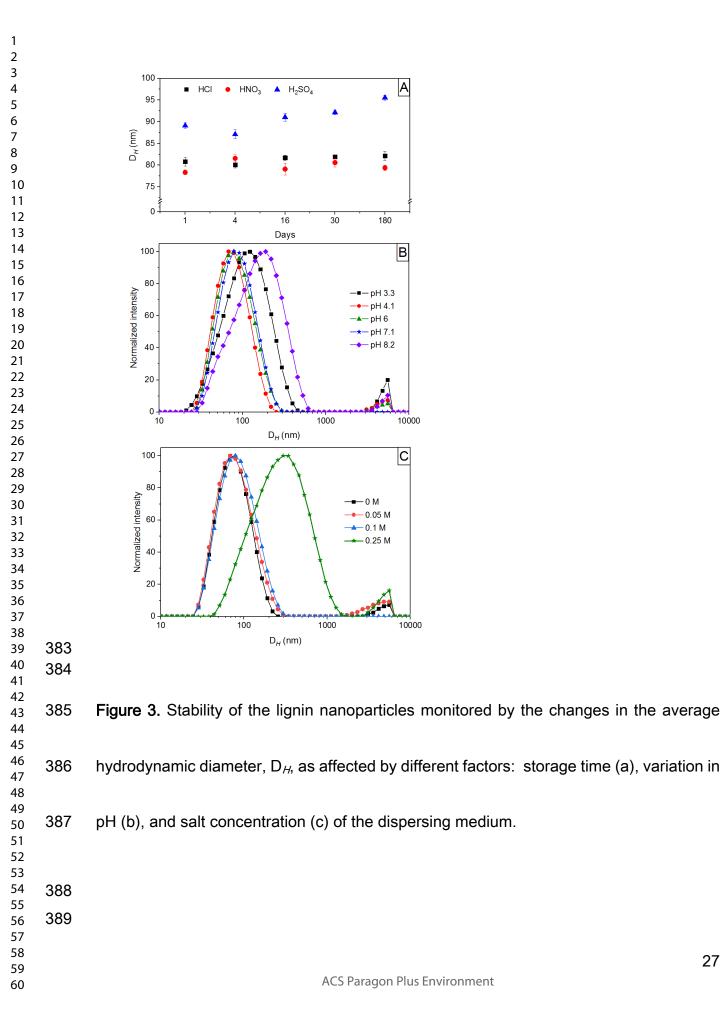
current samples was deduced from the second shoulder feature of the SAXS intensities

(*i* = 2), yielding a radius of gyration between 4.2 nm and 5.0 nm ($R_{q,2}$ in Table S2) and


sphere diameter of 11–13 nm. The power-law exponent of this level (P_2 in Table S2)

probably describes the inner structure of the clustering subunits, and its values were in

line with rather compact particles or collapsed polymer chains.


2 3 4 5	326
6 7 8 9	327
9 10 11 12	328
13 14 15	329
16 17 18 19	330
20 21 22	331
23 24 25 26	332
27 28 29	333
30 31 32 33	334
33 34 35 36	335
37 38 39	336
40 41 42 43	337
44 45 46	338
47 48 49 50	339
51 52 53	340
54 55 56 57	341
58 59 60	

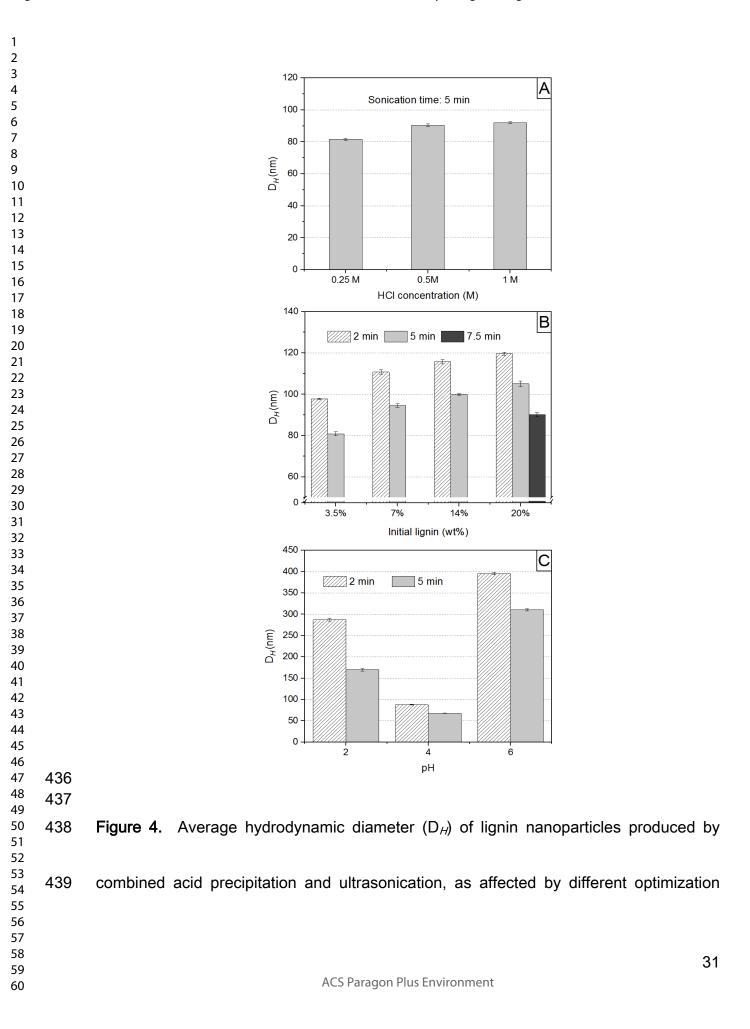
ACS Paragon	Plus	Environment

1		
2 3 4	350	
	350 351	
5 6 7	352	
8		
9 10	353 254	
11 12	354 255	
13	355	
14 15	356	Stability
16 17		
18 19	357	The stability of the LNPs over time and with changes in the properties of the dispersing
20 21		
22 23	358	medium is an important property that defines the suitable applications of LNPs.
24 25		
26	359	The D_H of the HCI- and HNO ₃ -precipitated LNPs remained the same during storage for
27 28		
29 30	360	180 days (Figure 3a) while that precipitated by H_2SO_4 showed an increasing trend with
31		
32 33	361	time. The highly negative charge on the surface of the particles probably prevented
34 35		
36 37	362	agglomeration, leading to a stable LNP suspension. The particle size of the isolated LNPs
38		
39 40	363	was pH-dependent (Figure 3b). Agglomeration occurred at pH 2 resulting in the
41 42		
43	364	sedimentation of particles, which is not suitable for DLS measurement. The D_H increased
44 45		
46 47	365	but the distribution was still monomodal at pH 3.3. The increase in D _H at pH 3.3 could be
48		
49 50	366	attributed to agglomeration induced by intermolecular hydrogen bonding between
51 52		
53	367	particles when the carboxyl groups were protonated, ³⁴ which also led to the decrease in
54 55		
56 57		
58 59		25
60		ACS Paragon Plus Environment

2 3 4 5	368	ζ -potential (-30 mV). At pH 4.1–7.1, the LNPs remained stable and showed similar size
6 7 8	369	distribution. The D _H again increased at pH 8.8, even without a significant change in ζ -
9 10 11 12	370	potential. This increase in particle size at alkaline pH can be ascribed to polyelectrolyte
13 14 15	371	swelling, due to breaking of intramolecular hydrogen bonds and dissociation of ionizable
16 17 18 19	372	functional groups.35 At pH higher than 10, dissolution occurred, as indicated by the
20 21 22	373	darkening of the suspension. The isolated LNPs appeared stable at a pH range of $4-7$.
23 24 25 26	374	The LNPs were also highly affected by the change in ionic strength of the dispersing
27 28 29	375	medium (Figure 3c). At NaCI concentrations up to 0.1 M, the size distribution remained
30 31 32 33	376	the same. However, at 0.25 M NaCl and higher, agglomeration occurred and the ζ -
34 35 36	377	potential also decreased to -10 mV. The increase in ionic strength possibly compressed
37 38 39 40	378	the electric double-layer and decreased the repulsive forces between particles, leading
41 42 43	379	to agglomeration.44 These types of LNP, whose stability is dependent on pH or ionic
44 45 46 47	380	strength, have found applications in controlled drug delivery systems that release drugs
48 49 50	381	upon changes in pH or ionic strength of the surrounding medium. ¹¹
51 52 53 54	382	
55 56 57		
58 59 60		ACS Paragon Plus Environment

Optimization

Optimization of the method was carried out to investigate the effects of different preparation conditions on the properties of LNPs. Among HNO₃ and HCl, both of which yielded similar sizes of LNPs, HCI was chosen for further optimization because it provided the highest yield of LNPs among the acids. The D_H increased with the molar concentration of HCl, but still remained within the nanoscale range (Figure 4a). Diluting the lignin concentration in the APL, with 0.25 M HCl used for precipitation, decreased the D_H (Figure 4b). A similar observation was also reported previously¹⁶ in the self-assembly formation of LNPs in THF by dialysis against water. There, a higher initial lignin concentration allowed a greater amount of lignin to participate in the growth of nanoparticles via the nucleation mechanism. Also in our case, the formation of large aggregates during precipitation was favored when the final concentration of lignin, relative to the combined volume of the alkaline liguor and acid solution, increased. These large lignin aggregates, when subjected to similar ultrasonic conditions, eventually produced large LNPs. Interestingly, for LNPs obtained directly from


the APL without dilution, i.e. with 20 wt% lignin, an increase in sonication time to 7.5 min

already yielded D_H of less than 100 nm. Thus, with proper optimization of the sonication

1 2	
2 3 4 5	405
6 7 8 9	406
9 10 11 12	407
13 14 15	408
16 17 18 19	409
20 21 22	410
23 24 25 26	411
27 28 29	412
30 31 32 33	413
34 35 36	414
37 38 39 40	415
41 42 43	416
44 45 46 47	417
48 49 50	418
51 52 53 54	419
55 56 57	420
58 59 60	

07	parameters, LNPs can be prepared directly from the APL, enabling LNP suspensions with
08	much higher concentrations than those reported from previous studies ^{14,16,23–25} .
09	Sequential pH precipitation was performed to fractionate the LNPs at pH 6, 4, and 2 to
10	identify the optimum pH for precipitation. The fractional yields at pH 6, 4, and 2 were 3%,
11	95%, and 2%, respectively. Moreover, only the fraction at pH 4 showed particles in the
12	nanoscale range (Figure 4c). The pH 6 fraction showed the largest particle size, possibly
13	because as the acid was added, large particles precipitated first. The pH 2 fraction also
14	yielded lignin particles with D $_{H}$ of more than 100 nm and with the lowest ζ -potential (-43
15	mV), which must have induced agglomeration.
16	The findings that most of the lignin in the APL can be precipitated at pH 4 highlighted
17	the potential for reducing acid consumption and shortening the dialysis time. Thus, further
18	optimization was carried out to make the process easy to upscale in industry. First, direct
19	pH 4 precipitation, with lower amounts of acid and shorter dialysis times than direct pH 2
20	precipitation, was performed. Results showed that the size distribution was unimodal and
	ACS Paragon Plus Environment

2 3 4 5	421	the average D_H was 75 (± 3) nm, similar to those from direct pH 2 precipitation. To
6 7 8	422	determine if we could completely eliminate dialysis, the suspension from direct pH 4
9 10 11 12	423	precipitation was sonicated after decanting the acidic supernatant from centrifugation.
13 14 15	424	The particles from three separate trials were larger and less stable than those obtained
16 17 18 19	425	with dialysis. The results within the replicated trials were also not reproducible, having in
20 21 22	426	one instance monodispersed LNPs with D_H less than 100 nm. These irreproducible
23 24 25 26	427	results could be attributed to the difficulty in removing to the same extent the residual
27 28 29	428	salts and acids only by centrifugation and decantation. These residual salts and acids
30 31 32 33	429	could have altered the ionic strength and pH of the LNP suspension, whose stability was
34 35 36	430	affected by changes in the ionic strength and pH of the dispersing medium. Nevertheless,
37 38 39 40	431	the optimization revealed that sufficient removal of residual salts and acids by
41 42 43	432	centrifugation and decantation, which probably occurred in one of the trials, would enable
44 45 46 47	433	also other options than dialysis. Other methods, such as ultrafiltration, could be more
48 49 50	434	feasible on an industrial scale than dialysis.
51 52 53 54	435	
55 56 57		
58 59 60		30 ACS Paragon Plus Environment

2 3 4 5	440	parameters: concentration of hydrochloric acid (HCI) (a), initial lignin concentration (b),
6 7 8	441	and sequential pH precipitation (c). The error bars represent ± standard deviations of at
9 10 11 12	442	least three measurements.
13 14 15 16 17	443	Comparison with dried lignin
18 19 20 21	444	The results clearly indicate the relative ease in producing LNPs directly from the APL
22 23 24	445	without the use of organic solvents or extensive mechanical disintegration procedures.
25 26 27 28	446	The mild ultrasonication was achieved by eliminating the drying step, which potentially
29 30 31	447	rendered lignin resistant to mechanical disintegration. To further demonstrate the effect
32 33 34	448	of drying, we dried and sonicated the same acid-precipitated lignin, following the
35 36 37 38	449	sonication conditions we used with the never-dried lignin. Even at a concentration of only
39 40 41	450	2 wt%, no LNPs were formed after 90 min of sonication. The particles showed a bimodal
42 43 44 45	451	distribution with two peaks of approx. 200 and 600 nm (Figure S5). Clearly, drying
46 47 48	452	induced chemical, physical, or structural changes in the lignin, making it more difficult to
49 50 51 52	453	disintegrate into nanoparticles. Possibly, in the wet state after acid precipitation and
53 54 55	454	dialysis, the agglomerated lignin, apart from lignin-lignin interactions (H-bonding, Van der
56 57 58 59		ACS Paragon Plus Environment
60		Acor aragon has chylionment

1 2	
2 3 4 5	4
6 7 8	4
9 10 11 12	4
13 14 15	4
16 17 18 19	4
20 21 22	4
23 24 25 26	4
27 28 29	4
30 31 32 33	4
34 35 36	4
37 38 39 40	4
40 41 42 43	4
44 45 46 47	4
47 48 49 50	4
51 52 53	4
54 55 56 57	4
58 59	

2 3 4 5	455	Waals, π - π), ³⁶ maintains its interaction with water. This interaction with water may have
6 7 8	456	resulted in the trapping of water molecules within the aggregates, forming swollen
9 10 11 12	457	precipitates. During drying, the lignin-water interaction, as we would expect, is removed
13 14 15 16	458	as the water molecules evaporate. The removal of water possibly caused the lignin
17 18 19	459	aggregates to collapse and form rigid, compact lignin particles, which are more difficult to
20 21 22 23	460	disintegrate than a swollen precipitate.
24 25 26	461	This concept of producing nanomaterials by mechanical disintegration from a never-
27 28 29	462	dried bio-based material has also been demonstrated in the preparation of nanofibrillated
30 31 32 33	463	cellulose.37,38 The reason was the phenomenon called 'hornification', which is the
34 35 36	464	irreversible aggregation of cellulose microfibrils brought about by the formation of H-
37 38 39 40	465	bonds, creating fixed domains that are not easily accessible by water. ³⁹ Although the
41 42 43	466	effect of drying on the properties of lignin is not as well studied as in cellulose, we
44 45 46 47	467	demonstrated that the preparation of LNPs is easily achieved from a lignin that was not
48 49 50	468	dried before ultrasonication.
51 52 53 54	469	This simple method, without using hazardous organic solvents and in a relatively short
55 56 57 58	470	period, already achieved LNP suspensions with an average concentration of 3 wt%.
59		

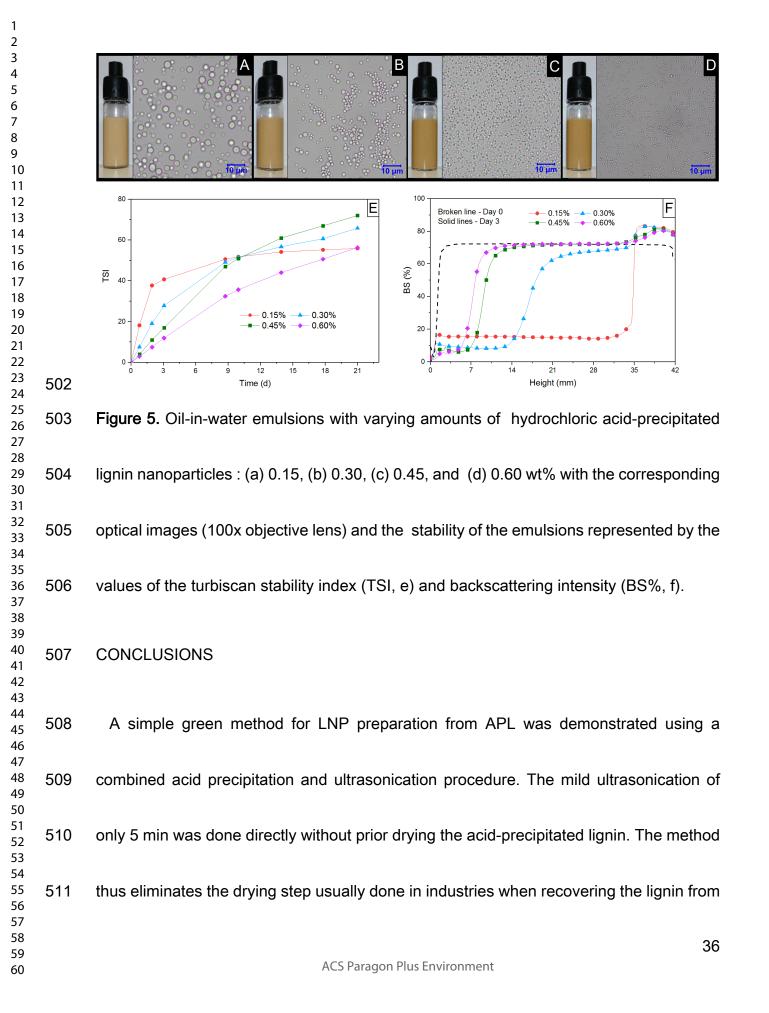
$\begin{array}{c}1\\2\\3\\4\\5\\6\\7\\8\\9\\10\\11\\2\\13\\14\\15\\16\\17\\18\\9\\20\\22\\3\\4\\25\\26\\27\\28\\29\\0\\31\\2\\33\\4\\5\\5\\6\\7\\8\\9\\0\\41\\42\\4\\4\\45\\46\\7\\8\end{array}$	
42 43 44 45 46 47	

2 3 4	471	Concentrations higher than 3 wt% were even achievable if precipitating directly from the
5 6 7	472	APL and with a slight increase in sonication time to 7.5 min. Previous reports of LNP
8 9 10 11	473	preparation, apart from using toxic organic solvents, mostly used relatively low
12 13 14 15	474	concentrations of lignin (often < 1 wt%). ¹¹ Aqueous acid precipitation, which yielded LNPs
16 17 18	475	with an average size of 89 nm, was also reported, ¹⁴ but the initial concentration of lignin
19 20 21 22	476	in the alkaline solution was only 0.05 wt%. Direct ultrasonication ^{23,24} of aqueous lignin
23 24 25 26	477	dispersions prepared from dry lignin also produced LNPs but the sonication times were 1
27 28 29	478	h and 6 h for 0.7 wt% and 1 wt% lignin, respectively. High-shear homogenization of a 5 g
30 31 32 33	479	L-1(~0.5 wt%) aqueous dispersion of an acid-precipitated lignin after freeze-drying
34 35 36	480	required 4 h to produce LNPs. In our case, a very mild ultrasonication procedure was
37 38 39 40	481	sufficient to disintegrate the never-dried lignin precipitate.
41 42 43	482	Emulsifying properties
44 45 46 47	483	Inherent in the amphiphilic characteristic of lignin, the isolated LNPs showed excellent
48 49 50 51	484	emulsifying properties. As shown in Figure 5, oil-in-water emulsions with varying amounts
52 53 54 55	485	of LNPs as emulsifying agents can be produced without additional surfactant. The droplet
55 56 57 58		34
59		34

1	
2 3 4 5	486
6 7 8 9	487
9 10 11 12	488
13 14 15	489
16 17 18 19	490
20 21 22	491
23 24 25 26	492
27 28 29	493
30 31 32 33	494
34 35 36	495
37 38 39 40	496
40 41 42 43	497
44 45 46	498
47 48 49 50	499
51 52 53	500
54 55 56 57	501
58 59	

86 size also decreased and became uniform as the LNP content increased. At 0.60 wt% 37 LNP, droplet sizes of about 1 µm, based on DLS, were produced. 88 The stability of the emulsion over 21 days was also assessed using a turbiscan meter. 39 The backscattered and transmitted lights, which were detected at 45° and 180°, 90 respectively, from the incident light, were used to derive a parameter called the turbiscan stability index (TSI). The higher the value of the TSI, the less stable the emulsion. As 91 92 seen in Figure 5e, the stability of the emulsion increased with increasing concentrations 93 of lignin, and the trend was prominent during the first week after emulsion preparation.

494 Later, the TSI values of the emulsion with 0.15% LNP plateaued, which does not indicate


495 stability but merely the absence of changes in scattered and transmitted radiations due

496 to creaming. As seen in the profile of the backscattering intensity (Figure 5f), creaming

497 already occurred in the emulsion with 0.15% LNP on day 3. This finding highlights the

498 potential use of the isolated LNPs without additional chemical modification as stabilizers

499 of interfaces in multiphase systems for various applications.

51
51
51
51
51
51
51
51
52
52
52
52
52
52
52
52

2 3 4 5	512	the pulp liquor. Eliminating the drying step favorably rendered the acid-precipitated lignin
6 7 8	513	easy to disintegrate by ultrasonication, making the entire process energy-efficient and
9 10 11 12	514	rapid. The combined method afforded the production of stable, highly charged, spherical
13 14 15 16	515	LNPs, with hierarchical nanostructure in aqueous systems. Optimization of the method
17 18 19	516	also showed favorable potential for producing LNPs directly from the APL, i.e. without
20 21 22 23	517	dilution, enabling a concentrated LNP suspension. Furthermore, acid consumption and
24 25 26	518	dialysis time can be minimized by precipitating at pH 4 rather than at pH 2. Sufficient
27 28 29 30	519	removal of residual salts and acids is needed to obtain stable LNPs and reproducible
31 32 33	520	results. The isolated LNPs without additional surfactant can emulsify oil in water and form
34 35 36 27	521	stable emulsions for several days. This method, which does not use hazardous organic
37 38 39 40	522	solvents or intensive ultrasonication, opens a green, sustainable, and highly scalable
41 42 43	523	approach to producing LNPs directly from APL. Finally, the developed method enables
44 45 46 47	524	the production of solvent-free LNPs, which can be further explored for their potential as
48 49 50	525	bio-based interfacial stabilizers in the food and medical industries.
51 52 53 54	526	
55 56 57	527	ASSOCIATED CONTENT
58 59		ACS Dara rep Plus Environment

2		
3 4 5	528	Supporting Information. The following files are available free of charge: FTIR spectra
6 7 8 9	529	and table summarizing band assignments; 2D-HSQC-NMR spectrum of the isolated
9 10 11 12	530	LNPs; AFM micrographs; contributions of different terms in the fits of the unified model to
13 14 15 16	531	the SAXS intensities; fitting results of the unified model to the SAXS intensities; size
17 18 19	532	distribution chromatograms of dried and never-dried lignin after ultrasonication.
20 21 22 23 24	533	AUTHOR INFORMATION
25 26 27 28	534	Author Contributions
29 30 31 32	535	The manuscript was written through contributions of all authors. All authors have given
33 34 35 36	536	approval to the final version of the manuscript. $KSM^{\dagger,\$}$ supervised the work, MBA^\dagger
37 38 39	537	performed all the experiments (except SAXS and HSQC NMR) and wrote the paper, PAP ‡
40 41 42 43	538	and ML^\dagger analyzed, interpreted, and wrote the discussion for the SAXS $$ and HSQC-NMR $$
44 45 46 47	539	data, respectively.
48 49 50 51 52 53 54 55 56	540	Funding Sources
57 58 59 60		38 ACS Paragon Plus Environment

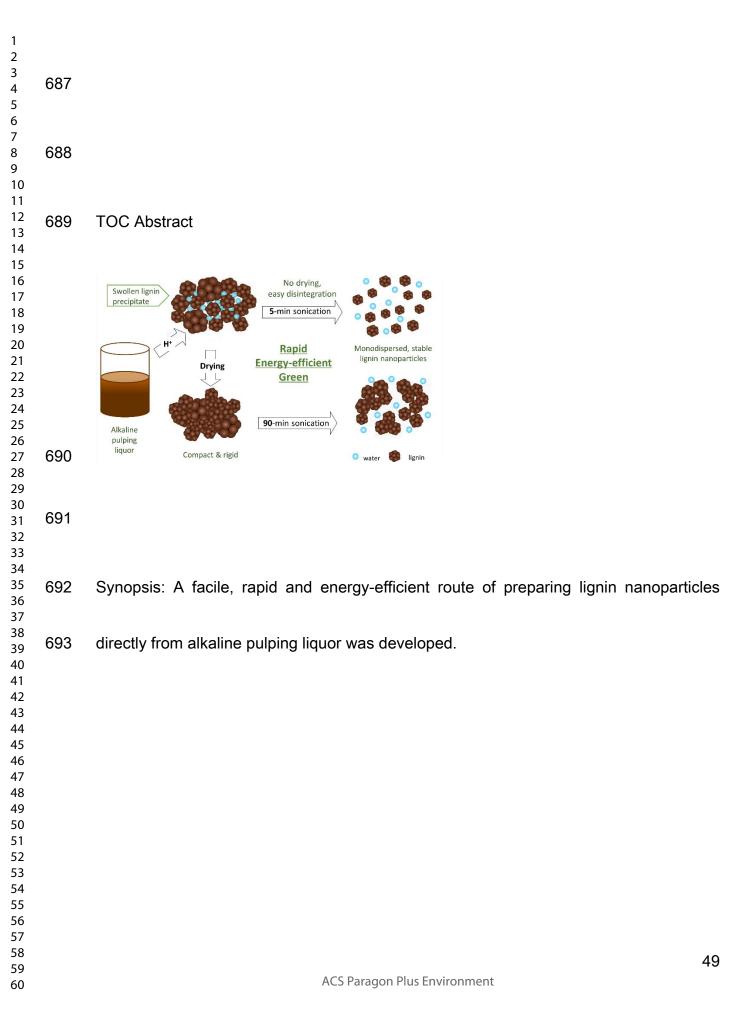
1 2								
3 4 5	541	Faculty of Agriculture and Forestry, University of Helsinki and Academy of Finland,						
6 7 8 9	542	grant no. 315768 (P.A.P.)						
10 11 12 13	543	Notes. The authors declare no conflict of interests.						
14 15 16 17	544	ACKNOWLEDGMENT						
18 19 20 21	545	We acknowledge Miikka Mattinen for his valuable help with imaging using AFM,						
22 23 24 25	546	Mamata Bhattarai for her assistance in the DLS experiment, and Julia Varis for drawing						
26 27 28	547	the TOC abstract. We also thank the NMR core facility supported by the University of						
29 30 31 32	548	Helsinki and Biocenter Finland, the AFM facility at the Department of Chemistry,						
33 34 35	549	University of Helsinki, and CH Bioforce for providing the sample. P.A.P. thanks the						
36 37 38 39	550	Academy of Finland (grant no. 315768) for funding and Dr. Claire Pizzey from Diamond						
40 41 42	551	Light Source for conducting the SAXS measurements.						
43 44 45 46	552							
47 48 49	553	REFERENCES						
50 51 52 53	554	(1) Xu, Z.; Lei, P.; Zhai, R.; Wen, Z.; Jin, M. Recent Advances in Lignin Valorization						
54 55 56	555	with Bacterial Cultures: Microorganisms, Metabolic Pathways, and Bio-Products.						
57 58 59		39						
60		ACS Paragon Plus Environment						

1 2 3 4	556		<i>Biotechnol. Biofuels</i> 2019 , <i>12</i> (1), 1–19. https://doi.org/10.1186/s13068-019-1376-
5 6 7	557		0.
8 9 10			
10 11 12 13	558	(2)	Ragauskas, A. J.; Beckham, G. T.; Biddy, M. J.; Chandra, R.; Chen, F.; Davis, M.
14 15 16	559		F.; Davison, B. H.; Dixon, R. A.; Gilna, P.; Keller, M.; et al. Lignin Valorization:
17 18 19 20	560		Improving Lignin Processing in the Biorefinery. Science (80). 2014, 344
21 22 23	561		(1246843). https://doi.org/10.1126/science.1246843.
24 25 26 27 28	562	(3)	Bruijnincx, P. C. A.; Rinaldi, R.; Weckhuysen, B. M. Unlocking the Potential of a
28 29 30 31	563		Sleeping Giant: Lignins as Sustainable Raw Materials for Renewable Fuels,
32 33 34 35	564		Chemicals and Materials. <i>Green Chem.</i> 2015 , <i>17</i> (11), 4860–4861.
36 37 38	565		https://doi.org/10.1039/c5gc90055g.
39 40 41 42 43	566	(4)	Nagy, M.; Kosa, M.; Theliander, H.; Ragauskas, A. J. Characterization of CO_2
43 44 45 46	567		Precipitated Kraft Lignin to Promote Its Utilization. Green Chem. 2010, 12(1), 31-
47 48 49 50	568		34. https://doi.org/10.1039/b913602a.
51 52 53 54	569	(5)	Langholtz, M.; Downing, M.; Graham, R.; Baker, F.; Compere, A.; Griffith, W.;
55 56 57	570		Boeman, R.; Keller, M. Lignin-Derived Carbon Fiber as a Co-Product of Refining
58 59 60			40 ACS Paragon Plus Environment

1 2 3 4 5 6	571		Cellulosic Biomass. SAE Int. J. Mater. Manuf. 2014, 7(1), 115–121.
7 8 9	572	(6)	Collins, M. N.; Nechifor, M.; Tanasă, F.; Zănoagă, M.; McLoughlin, A.; Stróżyk, M.
10 11 12 13	573		A.; Culebras, M.; Teacă, C. A. Valorization of Lignin in Polymer and Composite
14 15 16	574		Systems for Advanced Engineering Applications – A Review. Int. J. Biol. Macromol.
17 18 19 20	575		2019 , <i>131</i> , 828–849. https://doi.org/10.1016/j.ijbiomac.2019.03.069.
21 22 23 24	576	(7)	Sipponen, M. H.; Lange, H.; Crestini, C.; Henn, A.; Österberg, M. Lignin for Nano-
25 26 27	577	and N	Aicroscaled Carrier Systems: Applications, Trends and Challenges. ChemSusChem
28 29 30 31 32	578	2019	, <i>12</i> (10), 2039–2054. https://doi.org/DOI:10.1002/cssc.201900480.
33 34 35	579	(8)	Beisl, S.; Friedl, A.; Miltner, A. Lignin from Micro- to Nanosize: Applications. Int. J.
36 37 38 39	580		<i>Mol. Sci.</i> 2017 , <i>18</i> (11), 2367. https://doi.org/10.3390/ijms18112367.
40 41 42 43	581	(9)	Kai, D.; Tan, M. J.; Chee, P. L.; Chua, Y. K.; Yap, Y. L.; Loh, X. J. Towards Lignin-
44 45 46	582		Based Functional Materials in a Sustainable World. Green Chem. 2016, 18 (5),
47 48 49 50 51	583		1175–1200. https://doi.org/10.1039/c5gc02616d.
51 52 53 54 55 56	584	(10)	Figueiredo, P.; Lintinen, K.; Hirvonen, J. T.; Kostiainen, M. A.; Santos, H. A.
57 58 59 60			41 ACS Paragon Plus Environment

1 2			
3 4 5	585		Properties and Chemical Modifications of Lignin: Towards Lignin-Based
6 7 8 9	586		Nanomaterials for Biomedical Applications. Prog. Mater. Sci. 2018, 93, 233–269.
10 11 12 13	587		https://doi.org/10.1016/j.pmatsci.2017.12.001.
14 15 16 17	588	(11)	Beisl, S.; Friedl, A.; Miltner, A. Lignin from Micro- To Nanosize: Production
18 19 20	589		Methods. Int. J. Mol. Sci. 2017, 18 (11), 1244.
21 22 23 24 25	590		https://doi.org/10.3390/ijms18112367.
25 26 27 28	591	(12)	Bangalore Ashok, R. P.; Oinas, P.; Lintinen, K.; Sarwar, G.; Kostiainen, M. A.;
29 30 31	592		Österberg, M. Techno-Economic Assessment for the Large-Scale Production of
32 33 34 35	593		Colloidal Lignin Particles. <i>Green Chem.</i> 2018, 20 (21), 4911–4919.
36 37 38 39	594		https://doi.org/10.1039/c8gc02805b.
40 41 42 43	595	(13)	Abbati De Assis, C.; Greca, L. G.; Ago, M.; Balakshin, M. Y.; Jameel, H.; Gonzalez,
43 44 45 46	596		R.; Rojas, O. J. Techno-Economic Assessment, Scalability, and Applications of
47 48 49	597		Aerosol Lignin Micro- and Nanoparticles. ACS Sustain. Chem. Eng. 2018, 6 (9),
50 51 52 53 54	598		11853–11868. https://doi.org/10.1021/acssuschemeng.8b02151.
55 56 57	599	(14)	Frangville, C.; Rutkevičius, M.; Richter, A. P.; Velev, O. D.; Stoyanov, S. D.;
58 59 60			42 ACS Paragon Plus Environment

1 2 3 4	600		Paunov, V. N. Fabricat	ion of Environm	nentally Biode	egradable Ligni	n Nanoparticles.
5 6 7	601		ChemPhysChem	2012,	13	(18),	4235-4243.
8 9 10	602		https://doi.org/10.1002/		37		
11 12 13 14	002		11000.// doi.org/ 10.1002/	0010.20120000			
15 16 17	603	(15)	Yang, W.; Fortunati, E.	; Gao, D.; Bale	stra, G. M.; (Giovanale, G.; I	He, X.; Torre, L.;
18 19 20	604		Kenny, J. M.; Puglia	a, D. Valoriza	tion of Acio	d Isolated Hiç	gh Yield Lignin
21 22 23	605		Nanoparticles as Inno	ovative Antioxic	dant/Antimicr	obial Organic	Materials. ACS
24 25 26 27	606		Sustain. Chem.	Eng.	2018,	6 (3),	3502–3514.
28 29 30 31	607		https://doi.org/10.1021/	acssuschemen/	g.7b03782.		
32 33 34 35	608	(16)	Lievonen, M.; Valle-D	elgado, J. J.;	Mattinen, M	. L.; Hult, E.	L.; Lintinen, K.;
36 37 38	609		Kostiainen, M. A.; Paar	nanen, A.; Szilva	ay, G. R.; Sei	tälä, H.; Österb	erg, M. A Simple
39 40 41 42	610		Process for Lignin Na	noparticle Prep	aration. <i>Gre</i>	en Chem. 201	6 , <i>18</i> (5), 1416–
43 44 45 46	611		1422. https://doi.org/10).1039/c5gc014	36k.		
47 48 49	612	(17)	Qian, Y.; Deng, Y.; Qiu	, X.; Li, H.; Yang	g, D. Formati	on of Uniform C	Colloidal Spheres
50 51 52 53	613		from Lignin, a Renewa	ble Resource R	ecovered fro	m Pulping Spe	nt Liquor. <i>Green</i>
54 55 56	614		<i>Chem.</i> 2014 , <i>16</i> (4), 21	56–2163. https	://doi.org/10.	1039/c3gc4213	31g.
57 58 59 60				ACS Paragon Plu	us Environment		43

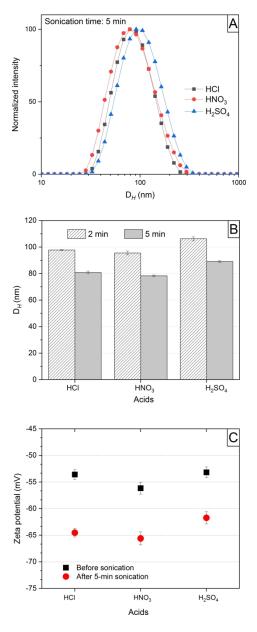
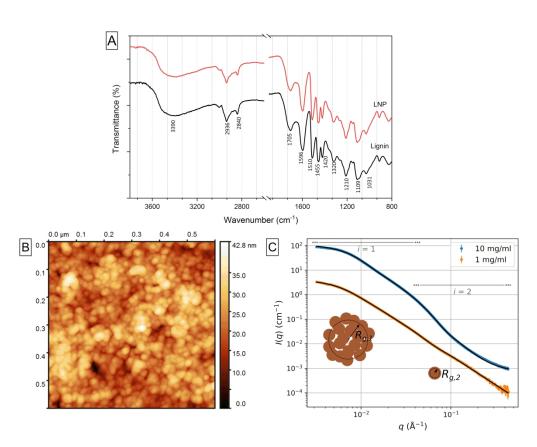
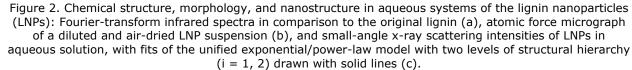

2 3 4 5	615	(18)	Li, H.; Deng, Y.; Liang, J.; Dai, Y.; Liu, B.; Ren, Y.; Qiu, X.; Li, C. Direct Preparation
6 7 8 9	616		of Hollow Nanospheres with Kraft Lignin: A Facile Strategy for Effective Utilization
10 11 12	617		of Biomass Waste. <i>BioResources</i> 2016 , <i>11</i> (2), 3073–3083.
13 14 15 16	618		https://doi.org/10.15376/biores.11.2.3073-3083.
17 18 19 20	619	(19)	Tian, D.; Hu, J.; Bao, J.; Chandra, R. P.; Saddler, J. N.; Lu, C. Lignin Valorization:
21 22 23 24	620		Lignin Nanoparticles as High-Value Bio-Additive for Multifunctional
25 26 27	621		Nanocomposites. <i>Biotechnol. Biofuels</i> 2017 , <i>10</i> (1), 1–11.
28 29 30 31	622		https://doi.org/10.1186/s13068-017-0876-z.
32 33 34 35	623	(20)	Li, H.; Deng, Y.; Wu, H.; Ren, Y.; Qiu, X.; Zheng, D.; Li, C. Self-Assembly of Kraft
36 37 38 39	624		Lignin into Nanospheres in Dioxane-Water Mixtures. Holzforschung 2016, 70 (8),
40 41 42	625		725–731. https://doi.org/10.1515/hf-2015-0238.
43 44 45 46	626	(21)	Nair, S. S.; Sharma, S.; Pu, Y.; Sun, Q.; Pan, S.; Zhu, J. Y.; Deng, Y.; Ragauskas,
47 48 49 50	627		A. J. High Shear Homogenization of Lignin to Nanolignin and Thermal Stability of
51 52 53	628		Nanolignin-Polyvinyl Alcohol Blends. ChemSusChem 2014, 7 (12), 3513-3520.
54 55 56 57	629		https://doi.org/10.1002/cssc.201402314.
58 59 60			44 ACS Paragon Plus Environment

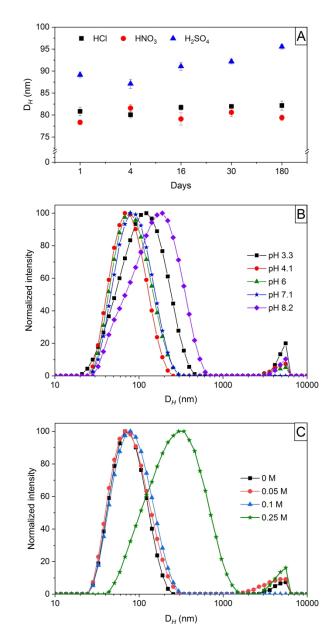
2 3 4 5	630	(22)	Matsakas, L.; Ka	arnaouri, A.; Cwirze	n, A.; Rova, U.; C	hristakopoul	os, P. For	mation
6 7 8 9	631		of Lignin Nanopa	articles by Combini	ng Organosolv Pr	retreatment c	of Birch Bi	omass
10 11 12	632		and Homogen	ization Processe	es. <i>Molecules</i>	2018, <i>2</i> 3	3 (7),	1822.
13 14 15 16	633		https://doi.org/10).3390/molecules23	071822.			
17 18 19 20	634	(23)	Gilca, I. A.; Popa	a, V. I.; Crestini, C.	Obtaining Lignin	Nanoparticle	s by Soni	cation.
21 22 23 24	635		Ultrason.	Sonochem.	2015,	<i>23</i> ,	36	9–375.
25 26 27	636		https://doi.org/10).1016/j.ultsonch.20	14.08.021.			
28 29 30 31	637	(24)	Garcia Gonzalez	z, M. N.; Levi, M.;	Turri, S.; Griffini,	G.; Gonzale	z Garcia,	M. N.;
32 33 34 35	638		Levi, M.; Turri, S	S.; Griffini, G. Lign	in Nanoparticles	by Ultrasonic	cation and	I Their
36 37 38	639		Incorporation in	Waterborne Polym	er Nanocomposite	es. <i>J. Appl. F</i>	Polym. Sci.	2017,
39 40 41 42	640		<i>134</i> (38), 1–10. h	nttps://doi.org/10.10	02/app.45318.			
43 44 45 46	641	(25)	Yin, H.; Liu, L.; V	Vang, X.; Wang, T.	Zhou, Y.; Liu, B.;	; Shan, Y.; W	ang, L.; L	ü, X. A
47 48 49	642		Novel Floccular	nt Prepared by	Lignin Nanoparti	cles-Gelatin	Complex	from
50 51 52 53	643		Switchgrass for	the Capture of S	taphylococcus A	ureus and E	scherichia	a Coli.
54 55 56 57	644		Colloids Surface	es A Physicochem.	Eng. Asp. 2018 , 5	545 (Decembo	er 2017), s	51–59.
58 59 60				ACS Paragor	n Plus Environment			45

2 3 4 5 6	645		https://doi.org/10.1016/j.colsurfa.2018.02.033.
7 8 9 10 11 12 13	646	(26)	Peters, D. Ultrasound in Materials Chemistry. J. Mater. Chem. 1996, 6(10), 1605-
	647		1618.
14 15 16 17	648	(27)	Tortora, M.; Cavalieri, F.; Mosesso, P.; Ciaffardini, F.; Melone, F.; Crestini, C.
18 19 20 21	649		Ultrasound Driven Assembly of Lignin into Microcapsules for Storage and Delivery
22 23 24	650		of Hydrophobic Molecules. <i>Biomacromolecules</i> 2014, 15 (5), 1634–1643.
25 26 27 28	651		https://doi.org/10.1021/bm500015j.
29 30 31 32 33	652	(28)	von Schoultz, S. Method for Extracting Lignin. WO 2015104460, 2016.
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51	653	(29)	Lagerquist, L.; Pranovich, A.; Smeds, A.; von Schoultz, S.; Vähäsalo, L.; Rahkila,
	654		J.; Kilpeläinen, I.; Tamminen, T.; Willför, S.; Eklund, P. Structural Characterization
	655		of Birch Lignin Isolated from a Pressurized Hot Water Extraction and Mild Alkali
	656		Pulped Biorefinery Process. Ind. Crops Prod. 2018, 111, 306–316.
	657		https://doi.org/10.1016/j.indcrop.2017.10.040.
52 53 54 55 56	658	(30)	Beaucage, G. Approximations Leading to a Unified Exponential/Power-Law
57 58 59 60			46 ACS Paragon Plus Environment

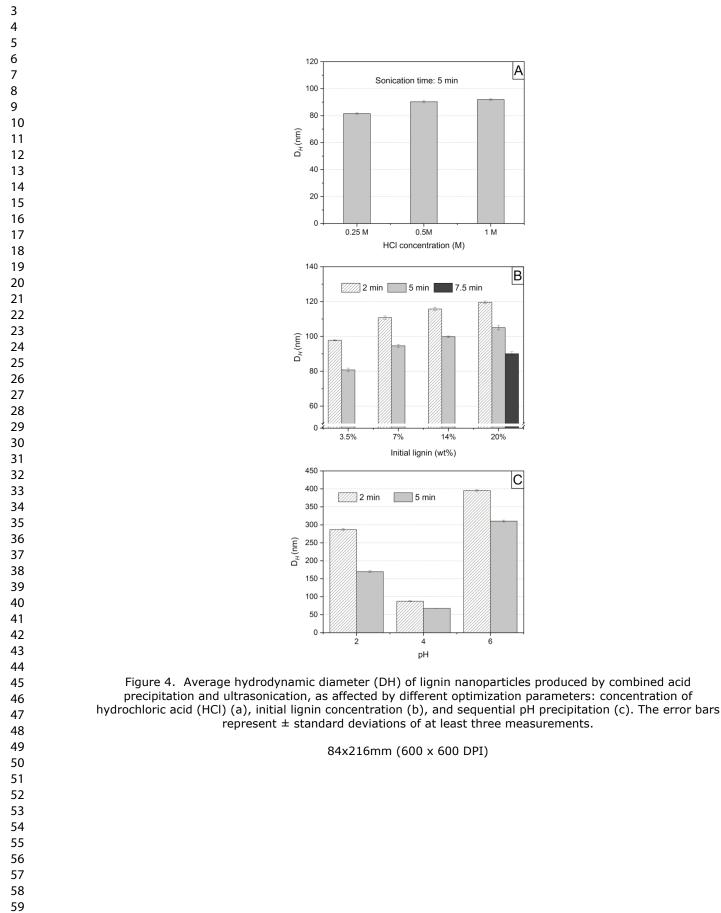
1 2 3			
4 5	659		Approach to Small-Angle Scattering. J. Appl. Crystallogr. 1995, 28 (6), 717–728.
6 7 8 9 10	660		https://doi.org/10.1107/S0021889895005292.
11 12 13	661	(31)	Doucet, M.; Hie, J.; Gervaise, A.; Bouwman, W.; Campbell, K.; Gonzales, M.;
14 15 16 17	662		Heenan, R.; King, S.; Kienzle, P.; Jackson, A.; et al. SasView Version 4.2, 2019.
18 19 20 21	663		https://doi.org/http://doi.org/10.5281/zenodo.1412041.
22 23 24 25	664	(32)	Vainio, U.; Maximova, N.; Hortling, B.; Laine, J.; Stenius, P.; Simola, L. K.; Gravitis,
23 26 27 28	665		J.; Serimaa, R. Morphology of Dry Lignins and Size and Shape of Dissolved Kraft
29 30 31	666		Lignin Particles by X-Ray Scattering. Langmuir 2004, 20 (22), 9736–9744.
32 33 34 35 36	667		https://doi.org/10.1021/la048407v.
37 38 39	668	(33)	Salentinig, S.; Schubert, M. Softwood Lignin Self-Assembly for Nanomaterial
40 41 42 43	669		Design. <i>Biomacromolecules</i> 2017 , <i>18</i> (8), 2649–2653.
44 45 46 47	670		https://doi.org/10.1021/acs.biomac.7b00822.
48 49 50	671	(34)	Lindström, T. The Colloidal Behaviour of Kraft Lignin and Lignosulfonates. Colloid
51 52 53 54 55 56	672		<i>Polym. Sci.</i> 1980 , <i>258</i> , 168–173. https://doi.org/10.1016/0166-6622(86)80087-7.
57 58 59 60			47 ACS Paragon Plus Environment

1 2			
3 4 5	673	(35)	Garver, T. M.; Callaghan, P. T. Hydrodynamics of Kraft Lignins. Macromolecules
6 7 8 9	674		1991 , <i>24</i> (2), 420–430. https://doi.org/10.1021/ma00002a013.
10 11 12 13	675	(36)	Zhao, W.; Xiao, L. P.; Song, G.; Sun, R. C.; He, L.; Singh, S.; Simmons, B. A.;
14 15 16	676		Cheng, G. From Lignin Subunits to Aggregates: Insights into Lignin Solubilization.
17 18 19 20	677		<i>Green Chem.</i> 2017 , <i>19</i> (14), 3272–3281. https://doi.org/10.1039/c7gc00944e.
21 22 23 24	678	(37)	Abe, K.; Iwamoto, S.; Yano, H. Obtaining Cellulose Nanofibers with a Uniform Width
25 26 27	679		of 15nm from Wood. <i>Biomacromolecules</i> 2007, <i>8</i> , 3276–3278.
28 29 30 31	680	(38)	Iwamoto, S.; Nakagaito, A. N.; Yano, H. Nano-Fibrillation of Pulp Fibers for the
32 33 34 35	681		Processing of Transparent Nanocomposites. Appl. Phys. A 2007, 89 (2), 461–466.
36 37 38 39	682		https://doi.org/10.1007/s00339-007-4175-6.
40 41 42	683	(39)	Röder, T.; Sixta, H. Thermal Treatment of Cellulose Pulps and Its Influence to
43 44 45 46	684		Cellulose Reactivity. <i>Lenzinger Berichte</i> 2004, <i>83</i> , 79–83.
47 48 49 50	685		
50 51 52 53			
54 55 56 57	686		
58 59			48 ACS Paragon Plus Environment
60			


Figure 1. Effect of acid type on the intensity-based hydrodynamic diameter (DH) distribution (a), average DH (b), and average zeta potential (c) of lignin nanoparticles prepared from alkaline pulping liquor by the combined acid precipitation and ultrasonication method. The error bars represent ± standard deviations of at least three measurements.

84x215mm (600 x 600 DPI)



177x141mm (600 x 600 DPI)

84x171mm (600 x 600 DPI)

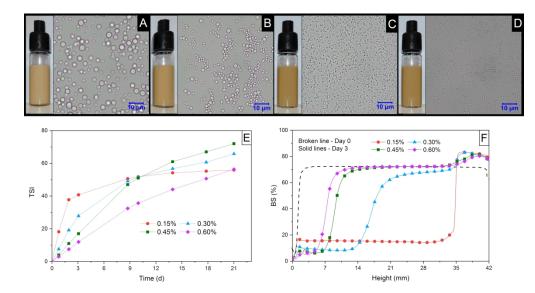


Figure 5. Oil-in-water emulsions with varying amounts of hydrochloric acid-precipitated lignin nanoparticles : 0.15 (a), 0.30 (b), 0.45 (c), and 0.60 (d) wt% with the corresponding optical images (100x objective lens) and the stability of the emulsions represented by the values of the turbiscan stability index (TSI, e) and backscattering intensity (BS%, f).

177x95mm (600 x 600 DPI)