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Abstract 

Climate change is triggering adaptation by people and wildlife. The speed and magnitude of 

these responses may disrupt ecological equilibria and potentially cause further biodiversity 

losses, but this has rarely been studied. Species inhabiting human-dominated landscapes 

may be particularly negatively affected by human adaptations to climate change. This could 

be, for example, the case of ground-nesting farmland birds, a group of highly vulnerable 

species that may be impacted by shifts in the timing of mechanical farming operations in 

response to climate change. Here we aim to explore whether trends in phenology of breeding 

ground-nesting birds differ from those of farming practices, and whether differences lead to 

the emergence of phenological mistiming with detrimental consequences to the birds. To 

achieve our objective, we ran linear mixed effects models using a 38-year dataset on onset of 

farming practices (i.e. sowing dates) and laying date of two endangered ground-nesting 

farmland birds (Northern lapwing and Eurasian curlew) in Finland. We found that timing of 

farming practices advanced slower than birds nesting phenology, with birds progressively 

starting nesting before fields are sown. These nests are at high risk of destruction from 

incoming sowing operations. The results highlight the importance of considering human 

adaptation responses, in addition to those of wildlife, for implementing species conservation in 

managed landscapes under climate change. 
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1. Introduction 

The global climate is warming at such an accelerating rate that climate change is nowadays 

considered an imminent rather than a future threat to biodiversity and human societies (IPCC, 

2013, Pacifici et al., 2017). Impacts of climate change have now been widely documented 

across a vast spectrum of ecosystems and ecological processes (Scheffers et al., 2016). 

These impacts span far beyond the well-established shifts in species abundance, distribution 

and phenology (Scheffers et al., 2016). The reshuffling of species within communities, as a 

result of the above mentioned climate-induced effects, has the potential to trigger the 

emergence of novel community interactions. A major role within these novel community 

interactions will be played by humans and the way they respond and adapt to changing 
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climatic conditions (IPCC, 2013, Watson, 2014). Despite their profound impact on the Earths 

ecosystems, humans, and their adaptation to climate change, have been largely ignored in 

most of the literature on climate change effects on the environment (Watson, 2014). 

Understanding human responses to climate change is crucial for defining effective mitigation 

measures necessary to preserve biodiversity (Pacifici et al., 2017, Watson, 2014). Essentially, 

there is a strong need to expand our research focus from the direct impacts that climate 

change will have on particular species and also incorporate the impacts of changing human 

pressures in response to climate change. Such an holistic approach is particularly important 

for understanding climate change impacts on species that are heavily reliant on man-

managed landscapes, such as farmlands (De Snoo et al., 2013). 

In cultivated landscapes, farmers, as well as wildlife, may show adaptation responses to 

climate change. Farmers may advance spring time practices such as soil preparation and 

sowing, as well as introduce novel crops for cultivation (Bock et al., 2013, Peltonen-Sainio 

and Jauhiainen, 2014, Peltonen-Sainio et al., 2015), while birds, for example, may advance 

the onset of breeding (Both et al., 2004, Kluen et al., 2017). Rates of spring phenological 

shifts have been documented to vary between species and regions, and according to the 

trophic level (Both et al., 2009, Thackeray et al., 2010). The differential shift between various 

components of the food chain may lead to phenological mismatches (e.g. between timing of 

breeding and timing of peak availability of the main food base; Visser and Both, 2005, Visser 

et al., 2004), and may result in population declines (Both et al., 2006). The ecological 

consequences of possible differential phenological shifts driven by climate change have so far 

been mainly investigated within predator-prey type of systems (Visser and Both, 2005, Visser 

et al., 2006, Visser et al., 1998). However, species dependent on man-managed landscapes 

are typically highly vulnerable to anthropogenic activities (Arlettaz et al., 2010, Grüebler et al., 

2012, Santangeli et al., 2015). Within these systems, various pressures and factors may 

trigger differential adaptation responses of wildlife and humans to climate change. This may 

lead to mistiming, with potentially severe ecological consequences to wildlife. So far, potential 

phenological mistiming induced by climate change within a human-wildlife system has been 

largely neglected (but see e.g. Kleijn et al., 2010). 

Farmland landscapes represent an ideal opportunity to explore potential phenological 

mistiming between anthropogenic activities and wildlife under climate change. Farmland 

biodiversity has a long history of adaptation to man-managed landscapes in Europe (Pain and 

Pienkowski, 1997), but over the past few decades has been severely impacted by the 

intensification of agricultural practices (Sanderson et al., 2016, Jiguet et al., 2016). 

Specifically, the mechanization of agriculture often leads to the destruction of nests of ground-

nesting species, which are now severely declining (Bas et al., 2009, Grüebler et al., 2012, 

Pain and Pienkowski, 1997, Santangeli et al., 2014, Santangeli et al., 2015). The degree of 

this impact may vary, but may be exacerbated due to growing phenological mistiming 

between bird reproduction and farming practices as a result of climate change. For example, 
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the above mentioned mistiming may result in ground-nesting birds starting to lay eggs on yet 

unsown arable fields in Northern Europe. Consequently, these nests would be at high risk of 

destruction when the fields are sown. It is thus relevant to simultaneously understand how 

farmers and birds are responding to climate change in order to foresee potential impacts of 

climate change and develop effective solutions. This is particularly important at high latitudes 

where climate is changing most rapidly and, e.g., systematic earlier sowings have already 

taken place when compared to 1970s and 1980s (Peltonen-Sainio and Jauhiainen, 2014). 

In this study we make use of a 38 year (1974–2011) wide-scale dataset of ringing data of two 

ground-nesting farmland birds in combination with information on timing of farming practices 

for the same region and period. We examine whether trends in phenology of breeding birds 

differ from those of farming practices, and if there is a mismatch between these two that could 

result in detrimental impacts for the two farmland birds which are already threatened in 

Europe (BirdLife International, 2015). We also explore the impacts of different weather 

parameters (temperature and precipitation during late winter to spring time) on timing of 

sowings and phenology of breeding birds. Finally, we discuss the implications of the findings, 

and how these span far beyond the species and region studied here. 

2. Materials and methods 

2.1. Study species and study landscape 

We use as study species two farmland birds of conservation concern in the European Union 

owing to their recent population declines, the lapwing Vanellus vanellus and the curlew 

Numenius arquata. Both species are threatened by the intensification of agricultural systems 

in recent decades, particularly the mechanization of practices that increased nest destruction 

on arable fields. The two species breed across large regions of Finland and are heavily reliant 

on arable fields for nesting (Fig. S1). Reliance on arable fields has dramatically increased 

over the past four decades, with over 70% of curlew nests and 90% of lapwing nests found on 

arable land during the period 2000–2011 (see Fig. S1). This is most likely the result of an 

expansion of the arable areas, which became progressively more available to the two species 

at the expense of grassland (i.e. within a farmland intensification process), and a reduction in 

hedgerows. 

The two bird species were selected because of their breeding biology and distribution which 

match our research purpose. Specifically, they are both ground-nesting species that are 

known to be impacted by mechanical sowing of arable fields in early spring at high latitudes 

(http://datazone.birdlife.org/home). In northern Europe, mechanical spring sowing broadly 

coincides with the period when lapwings and curlews start laying eggs (Kluen et al., 2017, 

Peltonen-Sainio and Jauhiainen, 2014). Consequently, if eggs are laid on yet unsown fields in 

spring, they are at very high risk of being destroyed by the incoming mechanical sowing. In 

Finland, a large proportion of lapwing and curlew nests are placed on arable land, including 

on barley fields. Lapwings and curlews typically make one single breeding attempt per year, 
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but replacement clutches are possible when the first nesting attempt fails at an early stage 

(Grant et al., 1999). Hence, their breeding biology makes these species much more 

vulnerable to specific farming practices compared to species that breed multiple times during 

the breeding season. Over the past few decades, populations of lapwing and curlew have 

been found to progressively advance their onset of breeding as a result of climate change in 

Finland (Kluen et al., 2017). Similarly, farmers have also adjusted to climate change by 

advancing farming practices, such as the date of cereal sowing in spring (Peltonen-Sainio and 

Jauhiainen, 2014). In Finland, 51% of the utilized agricultural area is used for cereal 

cultivation, mostly spring barley (22%) and oat (16%), whereas fodder grasslands cover 25% 

of the total utilized agricultural land, and much less (3%) is covered by pasture (Niemi and 

Ahlstedt, 2011). Based on the above, it is interesting and relevant to investigate potential 

effects of weather parameters in determining the onset of the two species breeding in early 

spring, as well as the onset of farming practices, such as sowing, which take place in the 

same period as the birds start breeding and may thus cause nesting failure. 

2.2. Phenological data 

We used nestling ringing data available from 1974 to 2011 across the breeding range of 

curlew and lapwing within Finland. The data have been collected by volunteer bird ringers 

with a valid ringing license and following standard protocols for bird handling and ringing. As 

both species are precocial, nestlings were mainly ringed at or close to their nest at the age of 

one to two days old. We excluded all ringing data on older chicks because it was not possible 

to accurately determine their age and, consequently, the hatching and laying date. The 

database used here is collated and handled by the ringing centre of the Finnish Museum of 

Natural History. Overall, a total of 1507 ringing data from curlew chicks, and 1493 from 

lapwing chicks were available from across the 38 years of study (1974–2011). We calculated 

the day of the year (DOY) for each available observation (hatching date DOY of a clutch), and 

subtracted from these the number of incubation days of each species in order to derive the 

DOY value for laying date. In doing so, we used available published information on average 

incubation period for each of the two species that would be closest to the breeding landscape 

conditions of our study region; i.e. 27 days incubation period for the lapwing (Larsen et al., 

2003), and 29.5 for the curlew (Grant et al., 1999). 

In spring, lapwings and curlews approach Finland from a south westerly direction on their 

migration from the wintering grounds (Saurola et al., 2013). Hence, birds breeding in the 

south-western regions of the country travel a shorter way, and arrive earlier than birds 

breeding in more northern areas. To account for this spatial pattern, we identified the center 

of migration flyway (see Fig. 1) based on available ringing data (Saurola et al., 2013) and 

defined three circular bands, each of 200 km width, with center on the migration point (Fig. 1). 

These three bands, while somewhat artificial, cover the majority of the two species range in 

Finland and allow a time series to be derived for each band while taking into account spatial 

patterns in the data. Next, from all the observations available within each band and year, we 
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derived an average value of DOY specific to each year and band separately for the lapwing 

and the curlew. This design resulted in three time series per species, one for each of the 

three bands. However, these time series were not complete for each band, with 19, zero (i.e. 

complete series) and 10 missing years for the curlew data, and with four, six and five missing 

years for the lapwing data (from the SW to the NE bands respectively). Missing years were 

mostly concentrated in the two outer bands and towards the central period of the time series, 

when ringing effort was lower than average (see Table S1). We used the derived average 

DOY per species and by year and band in the following models (see below). 

 

 

Fig. 1. The distribution of the ringing data (empty circles) for the curlew and the lapwing 

across south and central Finland (northern Europe). The white dot towards the bottom left of 

the figure denotes the main migration bottleneck from where the two bird species arrive in 

spring and that was used as the center point to delineate the three circular bands of 200 km 

width (marked in the figures from white to light and dark gray shading). Triangles depict points 

where the barley sowing phenology was interpolated. 

 

 

Next, we used modelled sowing dates for spring barley available throughout the same time 

period and region as the bird data (Fig. 1). Sowing dates were modelled from long term crop 

trial locations across Finland by considering both environmental and genetic effects (see 

Peltonen-Sainio and Jauhiainen, 2014 for more details on the crop phenology data). These 

trials were based on data in which the set of locations varied from year to year. In addition, 

typical cultivar was included into the trial program for two to five years. Because of the 
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imbalance of sample sizes and high variation in the set of cultivars in each trial, the model 

took into account differences between trial materials. In addition, environmental effects were 

separated into two components: latitude and distance to coastline of the Baltic Sea. Both 

have an effect on sowing date, with the magnitude of the effect varying from year to year 

(Peltonen-Sainio and Jauhiainen, 2014). Here we used sowing date of barley as it is the most 

common crop across the cultivated areas of Finland. However, sowing dates of other crops, 

such as oat and wheat, were very similar (within one or 2 days) to those of barley (Peltonen-

Sainio and Jauhiainen, 2014). Similar as for the bird data, we derived a DOY for each sowing 

date location and then averaged all the sowing DOY within each year and band so as to 

match the average DOY of the birds time series. These modelled sowing dates closely 

resemble the real sowing time in Finland (Peltonen-Sainio and Jauhiainen, 2014). 

Finally, we obtained weather data from the Finnish Meteorological Institute on monthly 

temperature and precipitation (months from February to May; interpolated at the 10 km 

resolution) covering the same period and spatial extent as the data described above. Again, 

we derived the average monthly temperature and precipitation for each month from February 

to May and within each year and band. Weather conditions during this period are the most 

critical in determining the timing of farming practices (Peltonen-Sainio and Jauhiainen, 2014) 

and bird phenology (Kluen et al., 2017). 

2.3. Statistical analyses 

We ran three separate Linear Mixed Models (LME), one for the phenology of lapwing, one for 

the phenology of the curlew, and a third one for the sowing phenology. Each model had the 

same structure, which included DOY (for lapwing, curlew or sowing within each year and 

band) as the response. The set of predictors included monthly temperature and precipitation 

for the months from February to May (eight in total) and year, included as a continuous 

variable. Band identity (from one to three; see Fig. 1) was integrated as a random effect, to 

account for pseudo-replication due to multiple observations within each band over the study 

period (see above). Prior to analyses, we centered all predictors to their mean, to ease 

comparison of effect size between them. We also checked for collinearity among the 

predictors, but no issues were identified (i.e. all pairwise correlations < 0.5). No outliers were 

identified in the dataset. We then used a multimodel inference approach as detailed by 

Burnham and Anderson (2002). We first computed all possible model combinations using all 

predictors (see above). Models were ranked using the Akaike Information Criterion (AIC). 

Next, we selected the 95% best ranked set of models based on their Akaike weights and 

performed model averaging on this set. In doing so, the estimated coefficients and standard 

errors of each predictor were derived from the weighted average of the coefficients across the 

selected set of models weighted by the relative Akaike weight of the model (using the 

package MuMin; Bartoń, 2016). We manually checked all the confidence sets of models. 

These included less than half of all the total model combinations, with most of the models 

within each set including five predictors. We validated the models by inspecting the residuals 
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for unexplained patterns and for temporal autocorrelation using the autocorrelation function, 

but no residual temporal autocorrelation was detected (see Supporting material Fig. S2). The 

total sample size available, after excluding years and bands with no data, was 85 sample 

units (data for each band and year) for the curlew model, 99 for the lapwing model (see also 

Table S1), and 114 for the sowing phenology model. 

Finally, we restructured the database in order to explicitly test for the interaction between 

trends in timing of sowing of barley with those in phenology of lapwing or curlew. To do so, we 

combined all phenology data into a single variable (named DOY), and created a categorical 

variable (arbitrarily named “species”, with three classes, i.e. barley, lapwing, curlew) indicating 

whether the DOY referred to timing of barely sowing, lapwing phenology or curlew phenology 

in each year and band. Year was also present as a continuous variable. We then ran two 

separate models, one including only data on barley and lapwing phenology (sample 

size = 213 units, i.e. phenology by year, band and “species”) and one with only data on barley 

and curlew phenology (sample size = 199). In each of the two models, DOY was the 

response variable, and an interaction between “species” (barley vs lapwing or barley vs 

curlew; as categorical) and year (continuous) was tested. Each of these models had the same 

random structure as those described above. Analyses were performed in R 3.3.2 (R Core 

Development Team, 2015). 

3. Results 

We provide evidence that both the birds breeding phenology and the timing of sowings have 

significantly advanced over the 38 years study period (Fig. 2, Table 1). However, the 

magnitude of the advance in phenology was different between farming practices and birds. 

We show that both lapwing and curlew laying dates have advanced five times faster 

compared to the advance in sowing dates (Fig. 2; statistics for the interaction term between 

sowing and lapwing phenology: F1,193 = 25.7, p < 0.001; and interaction between sowing and 

curlew phenology: F1,171 = 25.8, p < 0.001). The mismatch between bird phenology and 

sowing time has been growing over the past two decades, with both lapwing and curlew 

nowadays laying eggs on average 8 days before the sowing date of barley fields in Finland. 

Furthermore, we show that sowing date of barley is strongly associated with late-winter and 

early spring weather conditions (Table 1). Low temperatures during late winter and early 

spring, and high precipitation during May trigger a significant delay in sowing dates of barley 

(Table 1). Conversely, the association between the two bird species phenology and climatic 

variables was weak, with only a significant impact of April temperatures on lapwing laying 

date (Table 1). Specifically, low temperatures in April were associated with a delay in lapwing 

laying date. 
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Fig. 2. Phenological trends (day of the year, 1 = 1st January) of sowing dates for barley (dark 

gray dots and lines in both panels), and laying date (light gray dots and lines) for the curlew 

and the lapwing (left and right panel). In each panel dots represent the raw bird and barley 

phenological data. Lines represent fitted linear regression models of laying date or barley 

sowing, with year as predictor. The 95% confidence intervals are also shown by the gray 

areas. The results are averages across all three bands shown in Fig. 1. 
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Table 1. Full model averaged results showing the effect of the climatic variables and year on 

the onset of barley sowing date as well as laying date of curlew and lapwing across south and 

central Finland over the period 1974–2011. Results show the coefficients of the fixed effects, 

along with the p-value and relative importance, of each predictor. The response was 

expressed in day of the year (DOY), and year was included as continuous variable aimed at 

depicting time trends in DOY over the study period. P stands for precipitation and T for 

temperature followed by the relative month (Feb, Mar, Apr and May refer to February, March, 

April and May, respectively). 
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4. Discussion 

Here we show that timing of barley sowing has advanced less compared to the onset of 

nesting of lapwings and curlews in Finland. This mismatch, under modern intensive farming 

regimes, is likely to cause widespread negative impacts to the breeding success of these, as 

well as other ground-nesting birds (Kleijn et al., 2010). The detrimental consequences of 

phenological mismatches between farming practices and breeding success have been 

recently shown for ground-nesting birds of agricultural landscapes, e.g. the Montagu's harrier 

Circus pygargus (Santangeli et al., 2014) or the black-tailed godwit Limosa limosa (Kleijn et 

al., 2010). Specifically, we demonstrate that, towards recent decades, an increasing 

proportion of lapwings and curlews in Finland start laying eggs on fields which are yet to be 

sown. This means that incoming mechanical sowing in spring will cause the destruction of an 

increasing proportion of nests in the country. As the phenological gap increases, destruction 

of nests may occur when incubation is already at a very advanced stage, leaving no time for 

the adult birds to produce a replacement clutch. We also provide evidence that farmers rely 

largely on suitable local (i.e. within Finland) climatic conditions (such as temperature and 

precipitation during late winter and spring) for deciding when to start sowings in Finland. For 

example, soil frost and repeated rains are known to delay the onset of sowing (Peltonen-

Sainio and Jauhiainen, 2014). Moreover, farm machinery and soil management systems have 

changed (Kaukoranta and Hakala, 2008), e.g., towards direct drilling (whereby seeds are 

directly placed to the ground of stubble fields without previous soil preparation), and farm size 

has increased during recent decades (Peltonen-Sainio et al., 2017). These are all factors that 

may contribute to a delay in farming operations in spring. Conversely, the link to local climatic 

conditions was weaker for the birds. This is most likely due to the fact that these birds are 

known to adjust the timing of migration largely as a response of broad weather conditions 

across their wintering range, rather than local weather on the breeding grounds (Rainio et al., 

2006, Vähätalo et al., 2004). The fact that temperature in April had a stronger impact on the 

phenology of lapwing as compared to the curlew may relate to the fact that, in this study 

system, lapwings may winter closer to their Finnish breeding grounds than curlews 

(http://datazone.birdlife.org/home). Therefore, at the onset of their breeding season, lapwings 

may be more directly exposed to the climatic conditions present on their breeding grounds, 

and consequently more ready to adjust to them, as compared to curlews. 

We acknowledge that the data used here may have some limitations, such as the fact that 

early failed nests (e.g. during the incubation period) are not included in our ringing database. 

However, we are convinced that this does not represent a relevant bias for this study. If the 

yearly proportion of nests that failed has remained constant over the studied period, then this 

would have had no impact on the phenological trends reported here. However, it is possible 

that the proportion of failed nests may have increased towards more recent years, e.g. as a 

result of increased phenological mismatch between birds laying date and sowing operations. 
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This could have been further exacerbated by the growing reliance of the two species on 

arable fields over the past decades (see Fig. S1). If this was the case, it would mean that a 

larger number of early nests during recent years would be missing from our ringing database, 

and late nests from replacement clutches would be overly represented. Including those early 

nests in our analyses would have only made the patterns of advance in lapwing and curlew 

phenology even stronger (as these observations would push the slope of the light gray lines in 

Fig. 2 even more down towards the recent years), eventually strengthening the already clear 

patterns reported here. While we do not have detailed long term information on nest failure 

occurrences and on the causes of them, we can confidently assert that the reported 

phenological mistiming between the birds breeding and sowing operations will cause nest 

destruction. This is because in Finland there are no nationally or regionally organized 

conservation programmes aimed at protecting nests of ground-nesting birds, as it may be the 

case for e.g. France or Spain (Santangeli et al., 2014, Santangeli et al., 2015). Thus, most of 

the nests of lapwing and curlew in Finland are left unprotected. These nests are very well 

concealed on the ground and very difficult to detect by a farmers during sowing operations. 

Therefore, although we do not have data to demonstrate it, it is most likely that nests placed 

on yet unsown fields will be destroyed. 

A large share of scientific effort largely focuses on predicting impacts of future climate 

change, or understanding past impacts in terms of shifts in distribution, abundance and 

phenology (Pacifici et al., 2017, Scheffers et al., 2016). The latter has been typically related to 

emerging mistiming between components of the food chain (Visser et al., 2004). However, in 

order to design and implement effective and long lasting conservation strategies for 

biodiversity, it is crucial that humans, their adaptation responses and consequent impacts, are 

explicitly considered. A recent study found that the threat that climate change poses on birds 

and mammals is greatly underappreciated (Pacifici et al., 2017). Here we provide evidence of 

a largely overlooked threat resulting from the synergistic impact of climate driven mistiming 

between avian reproduction and human activities in a man-managed landscape. The 

implications of these results span far beyond the study system considered here. The 

emergence of mistiming, and possible ecological traps, as a result of differential shifts of 

human activities and species life-history events in response to climate change could be 

widespread. Among others, climate change may cause shifts in timing of land-management 

practices, resource extraction or tourism and recreational activities. All these shifts have 

potential to trigger the emergence of mistiming between anthropogenic activities and 

biodiversity, with the latter most likely being negatively impacted. However, opportunities to 

alleviate the above negative impacts may also emerge as climate will continue to change. For 

example, at high latitudes farmers may progressively replace spring cereals with autumn-

sown crops (IPCC, 2013, Peltonen-Sainio et al., 2009). This could lead to win-win adaptation 

measures for farmers and wildlife, which need to be proactively identified, carefully evaluated 

and eventually supported. 

4.1. Conservation recommendations 
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Our study provides evidence that human responses and adaptations should be more widely 

investigated in light of their potential to create phenological mismatches with biodiversity 

under climate change. To aid effective conservation of ground-nesting farmland species 

under global change, two approaches may be most relevant to conservation practitioners and 

decision makers. On the one hand, nest protection on cultivated land may help to minimize 

impacts of nest destruction in the short term. However, this is often costly and laborious 

(Santangeli et al., 2014, Santangeli et al., 2015). Even when implemented across large 

regions, e.g. with the aid of conservation citizens, nest protection may lead to a conservation 

trap, whereby breeding populations are artificially, i.e. trough nest protection, maintained or 

even increased on costly land-uses, ultimately compromising the long-term financial 

sustainability of the conservation program (Cardador et al., 2015, Torres-Orozco et al., 2016). 

Conversely, a bottom-up landscape approach may hold greater potential for improving the 

conservation status of ground-nesting farmland birds in the long term. To this end, voluntary 

non-monetary or market-based approaches (such as the Agri-environment scheme measures 

of the EU) could represent valuable tools to promote long term sustainable farmland practices 

that would allow the conservation of ground-nesting birds alongside agricultural production 

(De Snoo et al., 2013, Santangeli et al., 2016, Batáry et al., 2011). In practice, each target 

measure is most likely to be highly species and context specific (e.g. autumn sowing could be 

good for lapwing nest survival at high latitudes, but bad for other birds; e.g. Eggers et al., 

2011), which strongly highlights the need for gathering evidence on the effectiveness of 

interventions across a range of conditions. Ultimately, we urge the scientific community to 

scan and test the effectiveness of approaches and interventions in each specific context and 

implement actions before the consequences of large scale nest destruction due to emerging 

mistiming become irreversible. 
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