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A B S T R A C T   

Like most tissues, intestine shows multiple alterations during aging. While the main function of nutrient ab
sorption is relatively well maintained, capacity of the intestine to respond to abrupt changes or damage declines 
with age. The reduction in renewal and regeneration capacity results from alterations in the stem cells that renew 
the epithelium, and in the complex interactions stem cells have with their microenvironment, or the Niche. This 
review highlights recent evidence on age-associated changes in the intestinal stem cell function, and focuses on 
stem cell extrinsic mechanisms. Strategies targeting niche interactions have already shown promise in alleviating 
problems associated with intestinal aging in animal models, and may provide means to protect the elderly for 
example from chemotherapy induced gastrointestinal side-effects.   

1. Introduction 

Gastrointestinal tract (GI tract) is responsible for our ability to har
vest external resources. It forms a tube where functions of break-up, 
absorption, and waste disposal occur as food and liquids pass through 
esophagus, stomach, small intestine, colon and rectum. GI tract also 
hosts large quantities of microbes that exist by virtue of generous 
availability of nutrients, but also contributes to processing of food in to 
metabolites that are necessary for the host. Together with the microbial 
flora, the harsh acidic conditions required to dissolve food in the 
stomach, and the mechanic abrasion resulting from peristaltic passage of 
material impose a special challenge to the main function of the intestine. 
Intestine must at the same time provide a robust protective barrier, 
while allowing effective extraction of nutrients and water from the 
luminal content. The majority of nutrient absorption occurs in the small 
intestine, where combination of effective absorption and protection is 
achieved by a single layer of epithelial cells that is so rapidly renewed 
that damage has little time to accumulate. Consequently, most of the 
small intestinal epithelium is turned over in approximately 5 days. The 
cells responsible for this life-long rapid renewal are intestinal stem cells. 
However, for stem cells to accurately conduct their tissue renewing 
function, they are nurtured, protected, and guided by their microenvi
ronment – also called the stem cell Niche. Consequently, the life-long 
maintenance of intestinal function is subject to age-induced changes in 
both stem cells and their niche. Stem cell intrinsic changes are reviewed 

in depth by Jasper (2020) in this special issue. Here, we focus on how the 
stem cell niche impacts tissue functions and renewal during aging. 

2. Aging associated changes in intestinal function 

Aging is associated with a multitude of alterations in the intestine. 
Loss of proper absorptive function by intestinal epithelium can quickly 
result in malnutrition and cachexia, which can be particularly harmful 
for elderly and frail individuals (reviewed in (Drozdowski and Thomson, 
2006; Gariballa and Sinclair, 1998)). Early reports provided evidence for 
reduced absorptive capacity in the elderly (Feibusch and Holt, 1982), 
and reports on decreased epithelial surface area suggested a possible 
mechanism (Warren et al., 1978). More recent studies indicate specific 
defects in absorption of lipids (Woudstra et al., 2004) and glucose 
(Drozdowski et al., 2003; He et al., 2020). Surprisingly effects of aging 
on intestinal amino acid/peptide uptake has not been systematically 
studied in humans, but old mice are less capable to adapt uptake to a diet 
high in protein (Ferraris and Vinnakota, 1993). Moreover, adaptive re
sponses to alterations in food availability are blunted during aging at 
least in mice (Gebert et al., 2020). However, other studies on elderly 
humans contradict the findings on reduced absorption (D’Souza, 2007; 
Dumic et al., 2019; Lipski et al., 1992; Remond et al., 2015). Moreover, 
studies on GI tract motility indicate that aging does not directly impact 
the transit time of food in the small intestine (Anuras and Sutherland, 
1984; Madsen and Graff, 2004; Sarosiek et al., 2010). Taken together, 
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the extent to which absorptive decline may contribute to the common 
malnourishment and cachexia of the elderly remains unclear. 

Even though the absorptive capacity may withstand aging relatively 
well due to its large functional reserve (Firth and Prather, 2002), the 
thin intestinal epithelium must also create a robust barrier for large 
quantities of microbes. Indicating that the intestinal barrier deteriorates 
with age (reviewed in (Man et al., 2014)), rate of gastrointestinal in
fections increases with age (Duncan and Flint, 2013). The barrier can be 
compromised by multiple mechanisms. Proteins of tight junctions are 
reduced in the gut of old rats (Ren et al., 2014) suggesting that changes 
in the physical cell-to-cell adherence can contribute to microbial entry. 
On the other hand, genes involved with mucus production and the 
thickness of the protective mucus layer is reduced in old mice (Gebert 
et al., 2020; Sovran et al., 2019), possibly promoting access of microbes. 
While the intestinal “leakiness” to solutes is not increased (Saltzman 
et al., 1995; Valentini et al., 2014), bacterial entry and inflammation in 
both colon and small intestine is indeed increased with age (Sovran 
et al., 2019; Elderman et al., 2017; Steele et al., 2014). Moreover, aging 
may be associated with excessive production of proinflammatory cyto
kines (Steegenga et al., 2012), particularly in the distal ileum (Gebert 
et al., 2020; Man et al., 2015). Intestinal epithelium also continuously 
monitors the intestinal content and secretes antimicrobial peptides 
capable of influencing the microbiome composition (Ayabe et al., 2000). 
In fact, the reported absorptive dysfunction is likely to in part reflect the 
bacterial over growth associated with aging (Holt, 2001, Riordan et al., 
1997). Aging is also associated with microbial dysbiosis that can induce 
permeability and induce inflammation (Thevaranjan et al., 2017), and 
aging linked complications such as insulin resistance, and the overall 
frailty are associated with alterations in the microbiome (Claesson et al., 
2012; De Bandt et al., 2011). Interestingly, number of cells that produce 
antimicrobial peptides such as defensins and cryptdins – called Paneth 
cells – is increased in old intestines (Gebert et al., 2020; Moorefield et al., 
2017; Nalapareddy et al., 2017; Pentinmikko et al., 2019), but whether 
this indicates impairment of Paneth cell function with age or possibly a 
secondary adaptation to the altered microbiome is not known. 

The compromised ability to isolate microbes, the resulting inflam
mation, and the higher incidence of ulceration (Lewis, 2000) in the 
elderly requires robust epithelial repair and regeneration. Moreover, 
pathogen induced gastroenteritis and diarrhoea can acutely and criti
cally challenge the repair capacity of old and frail individuals (Majowicz 
et al., 2010; Marshall and Bruggink, 2011; Tate et al., 2012). Finally, 
intestinal epithelium proliferates actively, making it particularly dam
age prone to common chemotherapeutic agents and radiation. Even 
though intestinal lining has impressive renewal capacity due to its stem 
cells, the ability to repair severe damage is reduced with age. Potten was 
the first to show unequivocally that upon irradiation 6–7 month old 
mice recover quicker than 28–30 month old mice (Martin et al., 1998). 
In the elderly humans the decline in intestinal regenerative capacity 
reduces their tolerance of chemotherapeutic and radiation therapy 
(Margalit et al., 2011), impacts dosing during cancer treatments (Chang 
et al., 2017; Browner, 2020), and although old patients would benefit 
from chemotherapy they are less likely to be administered due to risk of 
comorbidities (Karaca et al., 2018; Kim et al., 2016). 

Taken together, both protective and regenerative function of intes
tine declines with age with clinically relevant consequences. 

3. Intestinal stem cells 

Intestinal stem cells are the subject of many excellent reviews 
(Barker, 2014; Beumer and Clevers, 2016; Gehart and Clevers, 2019) 
and this issue has a dedicated review on their aging related changes by 
Jasper (2020). We describe stem cells here only briefly and in the 
context of their niche. 

Throughout the small intestine, epithelium is compartmentalized to 
food absorbing finger like protrusions, villi, and invaginations called 
crypts of Lieberkühn. New cells are constantly made by actively cycling 

intestinal stem cells (ISCs) that are marked by expression of Leucine-rich 
repeat-containing G-protein coupled receptor 5 (Lgr5) (Barker et al., 
2007), and located at the bottom of crypts. By dividing approximately 
once a day, Lgr5+ cells produce progenitors named transit-amplifying 
(TA) cells. TA cells proliferate few times to expand the cell pool before 
differentiating and exiting the crypt. In the small intestine, ISCs are 
wedged between specialized secretory cells, Paneth cells, that are 
post-mitotic and have both immune and niche functions (see 4.1). In 
addition to multiple rapidly dividing Lgr5+ cells in each crypt, a less 
abundant and slower cycling cell type is present in the crypts above the 
crypt bottom that is filled with Paneth cells and ISCs. These cells are 
often named +4 cells due to their location in crypts, and they express 
various markers associated with stemness (Hopx, Tert, Bmi1, Lrig1) 
(Spit et al., 2018). Experimental data indicates, that these more quies
cent cells are able to regenerate the intestine upon dramatic loss of 
actively cycling ISCs (Buczacki et al., 2013; Metcalfe et al., 2014; Tian 
et al., 2011; Barriga et al., 2017). 

3.1. Epithelial cell plasticity 

Interestingly, more differentiated cells within the crypt are also able 
to compensate for the loss of ISCs. Dll1+ secretory precursor cell, Paneth 
cells, and Alpi+ enterocyte precursors have all been shown to replenish 
the ISC pool and reconstitute the differentiated epithelium if ISCs are 
lost (Roth et al., 2012; Tetteh et al., 2016; van Es et al., 2012). 
Permissive chromatin state in the crypt cells likely underlines the plas
ticity of these progenitor cells (Kim et al., 2014). As epigenetic alter
ations are seen in other aged tissues (Zhang et al., 2020), changes in the 
chromatin state of intestinal precursors could potentially impact intes
tinal plasticity and repair with age. 

The remarkable plasticity of crypt cells highlights two features of the 
ISC environment. First, the surrounding niche likely induces the dedif
ferentiation of cells that can occupy the niche location after ISCs are lost. 
Second, cellular architecture, chessboard pattern of ISCs and Paneth 
cells, is restored via communication between the ISCs and other cells of 
the crypt. As this self-organizing ability involves ISCs, they can in a way 
be considered as an active part of their own niche. Whether aging affects 
the self-organizing capability of crypt cells is not directly tested, but 
stem cells in old crypts rearrange slower after cell loss (Choi et al., 
2018). Moreover, the imbalanced ratio of Paneth and ISCs at the base of 
old crypts (see 4.1) suggests that intercellular interactions are altered 
during aging. 

3.2. Differentiation of aged ISCs 

Once ISC progeny exit the crypt bottom they begin to differentiate 
towards one of the epithelial cell lineages. Three major cell signalling 
pathways, Wnt, Notch, and MAPK, are able to dictate the lineage 
commitment of the differentiating ISCs (Basak et al., 2017; Yin et al., 
2014) (reviewed in (Gehart and Clevers, 2019)). While high activity in 
all three maintains ISC fate, reduction in Notch results to initiation of 
secretory cell program (Sancho et al., 2015). In Notch low cells, 
high-Wnt and low-MAPK promotes Paneth cells, and low-Wnt drives 
Goblet and Enteroendocrine cell differentiation. MAPK activity dictates 
between the Goblet and Enteroendocrine lineages. 

Several reports have indicated changes in the cellular composition of 
intestinal epithelium of aged mice (Gebert et al., 2020; Moorefield et al., 
2017; Nalapareddy et al., 2017; Pentinmikko et al., 2019; Igarashi et al., 
2019; Mihaylova et al., 2018). Increased number of secretory cell line
age has been reported in aged mouse and human tissues. Nalapareddy 
and colleagues reported increased number of Paneth and Goblet cells in 
the old mouse intestine (Nalapareddy et al., 2017). Igarashi and col
leagues noted increase in Goblet and Enteroendocrine lineages and 
reduced number of ISCs (Igarashi et al., 2019), while Gebert and col
leagues reported reduced Goblet cells in the distal ileum (Gebert et al., 
2020) and Sovran and Eldermann reported reduced Goblet cell numbers 
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in the colon (Sovran et al., 2019; Elderman et al., 2017) suggesting re
gion specific phenotypes of intestinal aging. Moreover, Mihaylova and 
colleagues reported reduction in ISCs but unaltered frequencies of 
Goblet and Enteroendocrine cells in crypts (Mihaylova et al., 2018). 
Moreover, they observed increased number of Paneth cells. Pentinmikko 
and colleagues recently noted a reduction in ISC number that was 
accompanied by increase in the number of Paneth cells (Pentinmikko 
et al., 2019). On the contrary, Moorefield and colleagues reported 
increased number of ISCs and Paneth cells in crypts of old mice 
(Moorefield et al., 2017). Discrepancies between these reports can 
reflect the differences in mouse lines, environmental factors of the 
housing facility, the age of analysed animals, as well as location of the 
analysed area. Gebert and colleagues conducted a comprehensive pro
teomic analysis of 12 small intestinal regions and discovered clearly 
region specific aging patterns (Gebert et al., 2020). Regional phenotypes 
of the aged intestinal epithelium extend also to villus morphology as 
villous blunting is reported in the jejunal region (He et al., 2020) while 
increased length is observed in the distal small intestine (Gebert et al., 
2020). However, old epithelium seems to have an overall bias to pro
duce more secretory cells (Fig. 1). The increased number of Paneth cells 
is one of the most consistent changes in the intestinal crypt, and also 
observed in human tissue (Pentinmikko et al., 2019). While the func
tional outcome of secretory lineage bias is not known, it might impact 
the absorption capacity as discussed above. Given the plasticity of 
differentiated cells upon acute loss of ISCs, changes in differentiation 
may potentially also influence tissue regeneration. 

4. Intestinal stem cell niche 

The large number of actively cycling ISCs are tightly controlled by 
the surrounding microenvironment, the stem cell niche. Niche in the 
small intestine provides protection from the harsh luminal environment 
of the gut and supplies ISCs with growth factors necessary for mainte
nance of stemness. The niche is not just a passive safe harbour for stem 
cells, but can guide stem cell behaviour remarkably dynamically. 
However, the role of niche in age-related functional decline has only 
recently been addressed. We discuss the age-associated alterations 
separately for various components of the intestinal niche. 

4.1. Epithelial niche 

ISCs reside at the bottom of the crypts, intermingled between 
specialized secretory cells that participate in their maintenance (Roth
enberg et al., 2012; Sasaki et al., 2016; Sato et al., 2011). These are 
called Paneth cells in the small intestine, whereas in the colon Deep 
Crypt Secretory (DCS) cells possess similar niche function (Rothenberg 
et al., 2012; Sasaki et al., 2016). The intimate contacts between Paneth 
and ISCs allows efficient signalling between these cells. Paneth cells are 
known to produce Wnt3, Dll4 and Egf to maintain stem cell capacity in 
ISCs (Sato et al., 2011). In addition, Paneth cells actively create part of 
the metabolic niche by secreting lactate that is used by the ISCs 
(Rodriguez-Colman et al., 2017). Interestingly, increased number of 
Paneth cells in old mice and humans have been reported by several 
laboratories (Moorefield et al., 2017; Nalapareddy et al., 2017; Pentin
mikko et al., 2019; Mihaylova et al., 2018). Simultaneously, majority of 
these reports highlight reduced or equal number of ISCs, insinuating that 
the niche function of aged Paneth cells is compromised (Fig. 1). 

Organoid culture technology (Sato et al., 2011; Sato et al., 2009) has 
proven its usefulness in assessing the regenerative capacity of intestinal 
epithelium. Isolated crypts derived from old mice and healthy human 
donors, show reduced capability to grow organoids (Nalapareddy et al., 
2017; Pentinmikko et al., 2019). As functional crypts contain both ISCs 
and their epithelial niche, generation of organoids from isolated ISCs 
and Paneth cells provides an assay to dissect their respective roles in the 
aging phenotype (Pentinmikko et al., 2019). Such coculture assays have 
illuminated that the function of both cell types is reduced with age. 
Strikingly, even young ISCs show reduced organoid forming capacity 
when cultured together with the old Paneth cells, suggesting alterations 
in signals emanating from the old Paneth cells (Pentinmikko et al., 
2019). Notably, reduction in the crucial Wnt pathway activity has been 
indicated to underlie the reduced regenerative capacity of old epithe
lium. Nalapareddy and colleagues detected reduced Wnt signature in 
aged ISCs (Nalapareddy et al., 2017). Utilizing in vitro organoid cul
tures, they were able to show that supplementation of excess Wnt li
gands improved regenerative capacity of old epithelium. Moreover, 
their analysis indicated reduced Wnt3 expression in the epithelial niche. 
Pentinmikko and colleagues found no change in Paneth cell Wnt 
expression, but identified a novel niche factor, secreted Wnt inhibitor 
Notum, to be produced at higher level in old Paneth cells (Pentinmikko 

Fig. 1. Age-associated changes in the small in
testinal stem cell niche. Intestinal stem cells 
(ISC, dark green) are maintained by their niche 
composed of multiple cell types and acellular 
components. In old individuals, stem cell niche 
undergoes alterations that reduce the regener
ative capacity of intestinal epithelium. Propor
tion of secretory cell types, such as Paneth cells 
(red), increase with age. Decrease in Wnt 
signaling activity due to production of Wnt in
hibitor Notum and reduced amount of Wnt li
gands affects ISC function. Changes in the 
microbial content of the gut lumen as well as 
cytokine profile in the microenvironment likely 
contribute to altered behavior of ISCs. Me
chanical properties and signaling of the enteric 
nervous system in the tissue changes, that likely 
alters the functionality of the epithelium. 
Wheter the number or function of stromal 
trophocytes and pericryptal telocytes is altered 
is not known (For interpretation of the refer
ences to colour in this figure legend, the reader 
is referred to the web version of this article.).   
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et al., 2019). Importantly, inhibition of Notum activity with a small 
molecule ABC99 was able to improve intestinal regeneration of old 
animals when treated with chemotherapy agent 5-Fluorouracil. 

Expression of Notum is regulated by the activity of canonical Wnt- 
signalling, placing it to a negative feedback loop (Kakugawa et al., 
2015). However, Wnt-activity is reduced in the old niche (Nalapareddy 
et al., 2017) suggesting alternative ways of Notum regulation in old 
Paneth cells. In old animals, Paneth cells experience high mTORC1 ac
tivity which alleviates Ppara mediated inhibition of Notum (Pentin
mikko et al., 2019). Therefore, activity of the key nutrient sensor 
mTORC1 in the niche, can attenuate ISC function in the old intestine. 
Correspondingly, reduction in nutrient intake promotes the ISC sup
porting function of Paneth cells via mTORC1 inhibition (Yilmaz et al., 
2012). While the lifespan extending Caloric Restriction (CR) increased 
self-renewal of ISCs via Paneth cells in a paracrine fashion, the dietary 
effects in young animals were mediated by an ectoenzyme Bst-1 instead 
of reduction in Notum - whose expression in young tissue is anyway 
minimal. Similarly, knockout of Bst-1 in young Paneths did not reca
pitulate the whole aging phenotype (Pentinmikko et al., 2019; Yilmaz 
et al., 2012). Therefore, low (CR) and high (Aging) activity of mTORC1 
guides Paneth cells to enhance or attenuate ISC function via paracrine 
mediators Bst-1 and Notum respectively. Whether dietary interventions 
promote regeneration via Notum regulation in the aging niche is not yet 
addressed. Moreover, whether the metabolic niche function of Paneth 
cells via lactate production is changed during lifespan extending dietary 
restrictions or aging remains to be studied. 

Taken together, Paneth cells compose the main part of epithelial 
niche for ISCs and their function is altered with age. This attenuates the 
regenerative capacity of the tissue. Whether the decreased Wnt-activity 
in old ISCs contributes to organismal aging and to related complications 
in other organs is yet unresolved. However, low Wnt activity may 
contribute to tumor initiation, as shown in mouse model of intestinal 
adenomas (Huels et al., 2018). 

The role of other epithelial cell types in the maintenance of ISCs or as 
reserve stem cells upon acute damage in old intestine (see above) is not 
known. Hormone producing Enteroendocrine cells are capable of long- 
distance signalling and also respond to nutritional status of the animal 
(Gribble and Reimann, 2019). Moreover, upon experimental loss of 
Paneh cells, Tuft cells together with Enteroendocrine cells highjack the 
niche function of Paneth cells and are able to support functional ISCs 
(van Es et al., 2019). Therefore, also other epithelial cells can regulate 
ISCs, and may contribute to intestinal aging. 

4.2. Subepithelial mesenchymal cells 

While Paneth and DCS cells are an important source of Notch ligands 
regulating ISCs number and differentiation, subepithelial stromal cells 
provide substantial amounts of other stem cell regulating niche factors. 
Mesenchymal cells that closely envelope the crypt epithelium are 
particularly relevant in this regard, and generate for example the dif
ferentiation regulating gradient of bone morphogenetic protein (BMP) 
-signaling (McCarthy et al., 2020) by localized secretion of BMP-ligands 
(He et al., 2004) and their antagonists, such as Gremlin1 (Fig. 1) 
(McCarthy et al., 2020; Kosinski et al., 2007). Recently, multiple marker 
genes were shown to identify subsets within these pericryptal cells, and 
to demonstrate the critical role they have in maintaining ISCs by pro
duction of Wnt-ligands (Degirmenci et al., 2018; Greicius et al., 2018; 
Shoshkes-Carmel et al., 2018). Moreover, these cells produce R-spon
dins, the ligands of Lgr-family receptors, which enhance Wnt-signals in 
the ISCs (de Lau et al., 2014) and maintain self-renewal (Yan et al., 
2017). Whether composition of these important mesenchymal cells in 
the niche changes with age is not known. Suggesting that epithelial 
aging is not due to changes in pericryptal fibroblasts, Nalapareddy and 
colleagues did not observe changes in expression of Wnt2b - the main 
canonical Wnt-ligand produced by the stroma (Nalapareddy et al., 2017; 
Farin et al., 2012). Instead, they noted reduction in the mesenchymal 

production of Wnt3 in old the intestine, but majority of Wnt3 is pro
duced by Paneth cells suggesting that stromal Wnt3 has only modest 
impact on epithelial growth (Gregorieff et al., 2005). Interestingly, the 
lifespan extending inhibitor of mTORC1, Rapamycin, improved ISC and 
Paneth cell function in old animals, and altered the expression of stro
mally produced Wnt-ligands (Pentinmikko et al., 2019). Whether this 
underlines some of the anti-aging effects of systemic mTORC1 inhibition 
remains to be studied. 

Senescent, damaged but viable and irreversibly post-mitotic, cells 
accumulate with age (Gorgoulis et al., 2019). These cells often display 
the so-called Senescence Associated Secretory Phenotype (SASP), asso
ciated with secretion of a plethora of proinflammatory and growth 
regulating factors (see 4.4). Such signals produced in the stem cell niche 
could dramatically impact tissue renewal. While eradication of senes
cent cells by ‘senolytic’ agents has emerged as one of the most promising 
strategies to rejuvenate tissue stem cell function (Chang et al., 2016), 
relatively little is known on impact of senescent cells in the intestine. 
Cell culture experiments suggest, that stromal SASP can influence colon 
cancer growth, possibly contributing to increased tumor incidence 
among the elderly (Guo et al., 2019). However, whether the number of 
SASP cells increases in the old ISC niche is not well understood. While 
number of β-galactosidase (β-gal) positive cells, a proxy for senescence, 
was not increased in the aged crypts (He et al., 2020), the analyzed mice 
were only 16 months of age and focus was on β-gal positive cells of the 
epithelium. Even if ISC senescence is not involved with intestinal aging, 
potency of SASP cells warrants detailed studies on their potential 
accumulation in the pericryptal mesenchymal niche. 

4.3. Niche resident enteric nerve cells 

The stroma, in to which the epithelium invaginates, also inhabits 
enteric nerve cells that are critical for the intestinal function. Whereas 
myenteric plexus controls the contractions of the two muscle layers and 
peristalsis, submucosal enteric nerves are connected with the epithe
lium, and mediate sensory inputs from the enteroendocrine cells. 
Enteroendocrine cells can detect changes in the nutrient status, pH, and 
even respond to mechanical cues sent by the passing food (reviewed in 
(Gribble and Reimann, 2016; Worthington et al., 2018)). Subsequently, 
enteroendocrine cells stimulate basal nerve ends by secreting neuro
transmitters, for example 5-HT, and initiate a reflex in the submucosal 
plexus that regulates water balance in the lumen, and gut motility via 
the myenteric plexus (Xue et al., 2007). 

The abundance of enteric nerve cells has been reported to decrease 
with age in mouse and rat models as well as in some human studies 
(reviewed in (Saffrey, 2013)). While impact of aging on gut motility is 
debated, reduction in enteric nerves is suggested to participate in the 
functional decline of the aged intestine (Saffrey, 2013; Patel et al., 
2017). Subepithelial enteric nerve cells may also regulate ISC function. 
Puzan and colleagues noticed that coculture of ISCs with enteric nerve 
cells promoted differentiation towards the endocrine lineage (Puzan 
et al., 2018). Moreover, the epithelial barrier function was improved, 
suggesting that reduced nerve innervation in the old intestine could 
contribute to the leakiness of the aged gut (Puzan et al., 2018; Parrish, 
2017). The precise mechanism how enteric nerve cells affect ISC func
tion is not fully clarified. However, ISCs express receptors for neuro
transmitters and upon stimulus may alter their proliferative state (Davis 
et al., 2018). Moreover, ISC function is impaired upon blockade of 
cholinergic signalling from the nerve cells resulting to precocious pro
duction of tuft cells in the niche (Middelhoff et al., 2020). Furthermore, 
enteric glial cells can contribute to the colon cancer growth by secreting 
factors in response to tumour cell produced signals (Vales et al., 2019). 
These results indicate, that enteric nerve cells communicate with the 
epithelial ISCs and niche cells to modify intestinal function (Fig. 1). How 
much aging changes these regulatory circuits and how reduction in 
subepithelial nerves contributes to epithelial aging is not known. 

Interestingly, some reports show that CR may prevent the age- 
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associated reduction in the enteric nerve cells (Saffrey, 2013). CR also 
improves the barrier function in Drosophila intestine (Akagi et al., 2018), 
similarly to the factors produced by the enteric nerve cell (Puzan et al., 
2018). It is therefore possible that some of the beneficial effects of CR for 
the barrier function during aging could be driven via enteric nervous 
system. However, so far evidence from mammals is not consistent with 
this notion. Ma and colleagues reported that CR does not prevent loss of 
barrier function of the old intestine in laboratory rats (Ma et al., 1992), 
whereas Ott and colleagues reported beneficial effects in obese human 
patients (Ott et al., 2017). CR mimetic Rapamycin has been shown to 
improve barrier function in Drosophila intestine suggesting that possible 
CR effects are affecting via mTORC1 (Schinaman et al., 2019). On that 
note, activation of low-energy sensor AMPK with Metformin has shown 
similar effect of barrier function in mouse models and diabetic human 
patients (Deng et al., 2018). In any case, whether CR, or other metabolic 
intervention can improve the barrier function of old epithelium via 
enteric nerve cells is not directly studied, and differences between model 
organisms and humans should be considered for conclusions. 

4.4. Immune cells, inflammation and microbiota of the niche 

As discussed above, the intestinal microbiome, barrier function, and 
prevalence of inflammatory cytokines are altered during aging (Fig. 1). 
Suggesting that the myriad age-associated changes in the microbial 
composition (reviewed in (O’Toole and Jeffery, 2015; Biagi et al., 
2017)) may impact the longevity of the whole organism in multiple 
ways, a mutant screen in a single species (E.coli) already identified 29 
genes whose deletion extends lifespan of their C. elegans hosts (Han 
et al., 2017). However, it remains unclear if the alterations in microbiota 
are a consequence or possibly also a partial cause of aging in mammals. 

Regarding the intestinal niche function, the microbiota produces 
multiple metabolites that can influence stem cells (reviewed in (Xing 
et al., 2020)). Among the best studied is butyrate, a short-chain amino 
acid that was originally reported to increase intestinal proliferation 
(Sakata, 1987), but later to specifically inhibit proliferation of intestinal 
stem cells via HDAC inhibition and Foxo3 (Kaiko et al., 2016). Inter
estingly, Kaiko et al. also found that the shape of the colonic crypt po
sitions stem cells “behind” the butyrate consuming differentiated cells, 
suggesting that the anatomy of the gastrointestinal tract - and of the 
stem cell niche - may reflect co-evolution with the microbiota. However, 
considering the inhibitory effect of butyrate on stem cell function, and 
that microbial and dietary alterations result in reduction of butyrate 
levels during aging (Biagi et al., 2010), modulation of butyrate levels as 
the means to increase intestinal health in elderly remains a complicated 
issue. Gallic acid is emerging as another microbially produced metab
olite with potentially striking effects on ISCs. In a model where gastro
intestinal tumors develop from ISCs, gallic acid is responsible for 
blunting the tumor suppressive ability of mutant p53, and thereby im
plicates changes in the microbiome along the gastrointestinal tract as the 
cause for differing tumor incidences in the small and large intestine 
(Kadosh et al., 2020). Suggesting that such mechanism could also in
fluence stem cells during aging, gallic acid boosts tumorigenesis via Wnt 
signalling by preventing p53 from blocking TCF4-chromatin in
teractions (Kadosh et al., 2020). However, further studies are needed to 
illuminate whether alterations in the microbiome contribute to the 
reduction in Wnt-activity and ISC decline with age via gallic acid pro
duction. Finally, lactate produced both by Paneth cells (Rodri
guez-Colman et al., 2017) and by microbiota (Lee et al., 2018) promotes 
ISC self-renewal and divisions. Interestingly microbially produced 
lactate appears to promote also the non-metabolic niche functions of 
Paneth cells and results in increased Wnt-signaling in stem cells (Lee 
et al., 2018). Taken together, as the microbiota has many metabolic 
interactions with the ISCs and other parts of the niche, the complex 
evolution of microbiota during aging is likely to impact stem cell func
tion via multiple mechanisms. Targeting the microbiota by selective 
diets and probiotics may therefore provide low-risk avenues to promote 

intestinal health in the elderly. 
Aging is associated with general increase of inflammatory signature 

in most tissues, and as intestine houses majority of the microbiota, it is 
tempting to speculate how the combination microbial composition, 
barrier function and “inflammaging” are linked, and influence aging of 
the whole organism. Specifically in the small intestine, increase in 
inflammation related proteins is one of the most consistent age-induced 
changes irrespective of the analysed region (Gebert et al., 2020). Sug
gesting causal links between the altered microbiome and the 
age-associated inflammation, transplantation of microbiota from old 
animals increases inflammatory status in young recipient mouse (Fran
sen et al., 2017). Moreover, profiles of cytokines IL-6 and IL-8 in human 
centenarian intestines correlates with their gut microbiota composition 
(Biagi et al., 2010). Furthermore, age-associated accumulation of 
SASP-cell could result to local increase of inflammatory signals. Setting 
off a vicious cycle, cytokines attract additional tissue resident and cir
culatory lymphocytes, but they can also directly affect the ISC function. 
Lindemans and colleagues reported that IL-22 can promote regenerative 
function of ISCs independent of the stromal myofibroblasts or Paneth 
cells (Lindemans et al., 2015). IL-22 is commonly produced by the innate 
lymphoid cells, suggesting that age associated myeloid bias might 
reduce the availability of IL-22 in the old niche (de Haan and Lazare, 
2018; Sonnenberg and Artis, 2015). On the other hand, proin
flammatory cytokines can stimulate differentiation while regulatory 
T-cells are able to repress it (Biton et al., 2018). Despite the strong 
correlations between age associated changes in microbiota, intestinal 
barrier function, and inflammatory cells and cytokines, their causal re
lationships are not fully understood. However, targeting the inflamma
tion in the niche may provide attractive intervention strategies for 
promoting function of old intestine. Whether such result could be ob
tained with senolytics targeting inflammation inducing cells is not yet 
known. 

4.5. Acellular niche 

The systemic environment changes with age dramatically. Blood 
circulating components serve as biomarkers of age, but some of these 
may contribute to local decline in tissue function (Castellano et al., 
2017; Lehallier et al., 2019; Villeda et al., 2011). Heterochronic para
biosis experiments have shown, that young plasma is able to rejuvenate 
functionality of aged stem cells in the muscle and brain (reviewed in 
(Conboy and Rando, 2012)). While not experimentally shown, systemic 
milieu likely affects also the highly vascularized intestinal epithelium. 
Among older humans, circulating glucose levels are higher possibly due 
to reduced function of pancreatic beta-cells (Chia et al., 2018). There
fore, nutrient sensing cells of the epithelium, such as Paneth and 
Enteroendocrine cells, might behave differently in the aged environ
ment. Whether these alterations affect their ISC supporting function is 
not known. 

Composition, topology and mechanical properties of the extracel
lular matrix (ECM) can regulate stem cell function (Bao et al., 2017; 
Engler et al., 2006; McBeath et al., 2004; Swift et al., 2013; Totaro et al., 
2017). In epithelial tissues, specialized layer of ECM called the basement 
membrane forms the mechanical basis for epithelium, but it can also 
regulate cell proliferation and differentiation (Mahoney et al., 2008). If a 
key component of the basement membrane, laminin, is removed, in
testinal epithelium degenerates quickly (Fields et al., 2019). Thus, ECM 
components can affect the ISC function and participate in the formation 
of the niche. 

The undulating topology of intestinal epithelium, crypts and villi, 
increases absorptive surface area and keeps ISCs protected from the 
luminal content. Moreover, the topology guides differentiation during 
intestinal development (Shyer et al., 2015), and due to apical constric
tion, the niche topology in adult intestine is extremely curved (Sumigray 
et al., 2018). Progenitor cells that exit the crypt undergo a dramatic but 
transient morphological change that influences the correct spacing of 
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villi and crypts (Sumigray et al., 2018). How much the curvature at the 
bottom of crypts affects ISC function is not known. However, columnar 
shape of the crypt resident cells leads to separation of the two daughter 
cells after cells division (McKinley et al., 2018), insinuating, that shape 
might participate in the differentiation kinetics mediated by the 
lateral-inhibition machinery (Gehart and Clevers, 2019; Sancho et al., 
2015). 

Whether changes in the ECM composition, mechanical properties or 
tissue topology affect the stem cell behaviour in the aging intestine is 
currently not known. Suggesting that ECM provided adhesion may 
change with age, stem cells rearrange slower in old crypts after laser 
ablation of a single cell (Choi et al., 2018), but this may also reflect stem 
cell intrinsic changes. On a tissue level, mechanical properties of the 
human colon have been reported to change, while some studies do not 
observe differences between the age groups (Christensen et al., 2015; 
Watters et al., 1985). However, inflammation in the human intestine 
increases stiffness (Stewart et al., 2018), suggesting that under some 
age-associated pathological conditions, mechanical properties of the 
tissue are changed. Interestingly, stiffening of the stem cell niche in the 
aging brain has been shown to reduce the function of neural progenitor 
cells (Segel et al., 2019). Therefore, altered mechanical properties in the 
aged ISC niche might change the capacity to regenerate or to produce 
functional tissue via the mechanosensing YAP/TAZ pathway which is 
reported to modulate cellular fate and regenerative capacity of the ISCs 
(Barry et al., 2013; Gregorieff et al., 2015). 

5. Conclusions 

Intestinal function declines with age, which increases infections and 
possibly contributes to malnutrition. Moreover, intestinal regenerative 
capacity declines with age and poses a challenge for common first-line 
cancer therapies. As mucosal health and regenerative responses 
depend on ISC function, age-induced alterations in the stem cell regu
lating niche can dramatically impact intestinal health. 

Recent findings on the epithelial Paneth cells highlight the impact of 
aging niche on tissue function. Inhibition of the age-induced niche factor 
Notum presents a proof of principle for strategies aiming at increasing 
tissue function via niche targeting. However, current knowledge on 
aging of the intestinal niche is limited. The role of stromal myofibro
blasts in homeostasis and regeneration of the young intestine is undis
putable, but whether they contribute to alterations of old intestine is not 
known. Similarly, the niche functions of enteric nerve cells and immune 
cells are subject to ongoing studies, but their role in stem cell biology 
during aging is not yet understood. Providing exciting opportunities, 
removal of senescent cells with senolytics can have system wide bene
ficial effects, but impact on intestine is still unclear. 

Organoid cultures have allowed reductionistic and mechanistic 
studies on the impact of aging on ISCs and their epithelial niche. More 
complex coculture systems with nonepithelial niche cells and tunable 
biophysical properties are necessary to conduct decisive studies on other 
compartments of the niche. Moreover, organoids recapitulate the 
regenerative growth, but in vitro assays addressing homeostatic renewal 
and responses in the intestine are still lacking. 

Systemic signals and the whole-body metabolism change with age 
and may impact stem cells directly or via the niche including the 
microbiota. In the intestine, long term dietary restriction regulates stem 
cells via the niche (Pentinmikko et al., 2019), but acute starvation in
fluences stem cells via intrinsic mechanisms (Mihaylova et al., 2018). It 
is therefore likely that lifestyle factors such as diet and exercise influence 
intestinal health and function via multiple mechanisms. Understanding 
of causal relationships and order of events in intestinal aging will allow 
development of strategies targeting the actual aging process, but already 
now the identified age-associated alterations in niche interactions offer 
opportunities for experimental approaches that rejuvenate intestinal 
stem cells and tissue function. 
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