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BACKGROUND: Immune repertoire sequencing of the
T-cell receptor can identify clonotypes that have
expanded as a result of antigen recognition or hemato-
logical malignancies. However, current sequencing
protocols display limitations with nonuniform amplifi-
cation and polymerase-induced errors during sequenc-
ing. Here, we developed a sequencing method that
overcame these issues and applied it to cd T cells, a cell
type that plays a unique role in immunity, autoimmu-
nity, homeostasis of intestine, skin, adipose tissue, and
cancer biology.

METHODS: The ultrasensitive immune repertoire
sequencing method used PCR-introduced unique mo-
lecular identifiers. We constructed a 32-panel assay that
captured the full diversity of the recombined T-cell
receptor delta loci in cd T cells. The protocol was
validated on synthetic reference molecules and blood
samples of healthy individuals.

RESULTS: The 32-panel assay displayed wide dynamic
range, high reproducibility, and analytical sensitivity
with single-nucleotide resolution. The method corrected
for sequencing-depended quantification bias and
polymerase-induced errors and could be applied to both
enriched and nonenriched cells. Healthy donors dis-
played oligoclonal expansion of cd T cells and similar
frequencies of clonotypes were detected in both enrich-
ment and nonenriched samples.

CONCLUSIONS: Ultrasensitive immune repertoire se-
quencing strategy enables quantification of individual
and specific clonotypes in a background that can be
applied to clinical as well as basic application areas.

Our approach is simple, flexible, and can easily be
implemented in any molecular laboratory.

Introduction

T and B lymphocytes undergo clonal expansion upon
activation. The monitoring of clonality has immense
importance in the diagnosis and follow-up of hemato-
logical diseases (1–3) and is a fundamental tool for the
understanding of antigen specificity in immunity to
infections, cancer, and in autoimmunity. Today, a com-
prehensive assessment of clonality is feasible using next-
generation sequencing (NGS)-based approaches (3, 4).
Clinically, there is a need for improved methodological
specificity and sensitivity to determine the immune rep-
ertoire, for example, to detect acute lymphoblastic leu-
kemia and to monitor minimal residual disease (1, 5).
Moreover, in studies of immune disorders, such as auto-
immunity and tumor immunity, improved immune
repertoire analysis will facilitate the identification of in-
volved immune cells.

T cells are divided into two major subtypes based
on their antigen receptor, the ab and cd T cells. The
gene loci encoding the c and d chains of the cd T-cell
receptor (TCR) display fewer gene segments for recom-
bination, but the potential repertoire of cd T cells is
larger than that of ab T cells, due to possible usage of
two D-segments in the TCRd chain. Despite intense re-
search, only a few ligands and their recognition by the
cd TCR are known (6, 7). Thus, there is a need for im-
proved understanding of factors that drives cd T-cell ac-
tivation and clonal expansion.
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The immune repertoire can be determined by se-
quencing the third complementary determining region
(CDR3), by targeted amplification of either DNA (8) or
mRNA (4, 9). A challenge when analyzing cell clonality
with these standard NGS-based approaches is that the
exact number and size of clones cannot be determined
due to uneven amplification, and further that clono-
types with similar sequences cannot be reliably distin-
guished from sequence errors introduced during library
construction and sequencing (2). Several methods have
been developed to overcome these limitations, including
the use of synthetic spiked molecules to correct for
quantification biases (10) and bioinformatical
approaches to reduce PCR-induced errors (11).

Another strategy to correct for sequencing errors
and to quantify molecules is ultrasensitive sequencing
using unique molecular identifiers (UMIs) (12). To
date, UMIs have mostly been applied to mRNA when
profiling the immune receptor repertoire of B and T
cells to remove PCR duplicates and improving sequence
accuracy (12, 13). However, analysis of clonal size based
on mRNA has the disadvantage that the number of
transcripts per cell is not constant (14–16). The reverse
transcription efficiency is also variable between sequen-
ces (17) and 100 to 1000 times more prone to errors
than high fidelity DNA polymerases (18–20).
Therefore, to enable quantitative clonality analysis,
DNA is preferred over mRNA.

UMIs can be added to DNA by either ligation- or
PCR-based approaches (21, 22). Recently, Chovanec
et al. reported a ligation-based approach for immuno-
globulin repertoire sequencing (23). Ligation-based
UMI approaches require that target DNA be captured
before the analysis. Another limitation is that molecules
are lost due to limited ligation efficiency (24). In com-
parison, PCR-based UMI approaches are experimentally
simpler and potentially also more sensitive, since they
do not suffer from ineffective capture and ligation steps.
Ligation-based UMI approaches were first developed be-
cause it is challenging to introduce UMIs in PCR pri-
mers due to a massive formation of nonspecific PCR
products caused by the random nucleotide sequence of
UMIs. This problem is solved by methods that either
shield the UMI in secondary structures (25) or by an ex-
tra purification step enriching DNA with incorporated
UMIs (21). However, no PCR-based UMI approach is
currently available for immune repertoire profiling.

Here, we developed an ultrasensitive immune rep-
ertoire sequencing approach, sequencing the rearranged
T-cell receptor delta (TRD) locus in cd T cells. To mini-
mize the formation of nonspecific PCR products, we
used the concept of SiMSen-Seq (26) that protects the
UMI inside a hairpin loop that opens and closes its sec-
ondary structure in a temperature-dependent manner.

Material and Methods

PRIMER DESIGN AND ASSAY VALIDATION

To capture the full diversity of the T-cell receptor d rep-
ertoire, we designed target-specific primers for all 8 vari-
able (TRDV) and 4 joining (TRDJ) genes associated
with the TRD locus in the International immunogenet-
ics information system gene database (27) (Fig. 1A).
Primers were designed using National Center for
Biotechnology Information’s tool Primer-Blast (28) as
described (25). Forward primers targeted the down-
stream part of the TRDV genes, and the reverse primer
targeted the downstream part of the TRDJ genes
(Fig. 1B). Primers were designed to bind the nonrear-
ranged parts of each segment amplifying the CDR3
region (Table 1). Each assay was validated using quanti-
tative PCR and fragment analysis to ensure high effi-
ciency (90% to 110%) and analytical specificity,
respectively. Full details on assay validation of target
specific primers by using synthetic reference material
can be found in Supplemental Material and Method.

LIBRARY CONSTRUCTION AND SEQUENCING

DNA were barcoded in a 10 mL reaction, containing
0.2 U Phusion Hot start II DNA polymerase, 1x
Phusion High-Fidelity Buffer (both #F549S, Thermo
Fisher Scientific), 0.2 mM dNTP (#D7295, Sigma-
Aldrich), 0.5 M L-carnitine inner salt (#C0158, Sigma-
Aldrich), 40 nM of each barcode primer (polyacrylamide
gel electrophoresis purified, Integrated DNA
Technologies) (Table 1) and target DNA. The following
temperature program was used on a T100 Thermal cy-
cler (Bio-Rad Laboratories): 98 �C for 30 sec, 3 cycles of
amplification (98 �C for 10 sec, 62 �C for 6 min, 72 �C
for 30 sec, all ramping rates were 4 �C/sec), and 65 �C
for 15 min and 95 �C for 15 min. Twenty microliters of
45 ng/lL Streptomyces griseus protease (#P5147, Sigma-
Aldrich) dissolved in 10 mM Tris, 1 mM EDTA-buffer
(pH 8.0, #AM9849, Thermo Fisher) was added to each
well at the start of the 15 min incubation step at 65 �C
to degrade the polymerase, reducing the formation of
nonspecific PCR products. Illumina adapters were
added in a second PCR step. Ten microliters of bar-
coded PCR product was amplified in a 40 lL reaction
containing, 1x Q5 Hot Start High-Fidelity Master Mix
(#M0494, New England BioLabs) and 400 nM of each
Illumina Adaptor index primer (desalted, Sigma-
Aldrich, Supplemental Table 1) using the following
thermal program on a T100 Thermal cycler; 98 �C for
3 min, 30 to 40 cycles of amplification (98 �C for
10 sec, 80 �C for 1 sec, 72 �C for 30 sec, 76 �C for
30 sec, all ramping rate of 0.2 �C/sec). Final reaction
concentrations are shown for each PCR. A quality con-
trol to quantify the amount of barcoded DNA using
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Fig. 1. Illustration of d T-cell receptor repertoire sequencing. a) Schematic overview of the unrearranged TRD locus, arrows show
transcription direction. b) SiMSen-Seq consists of two rounds of PCR. In the first barcoding PCR, target primers bind to the V and
J genes, generating specific PCR products with UMIs and flanked adapter sequences. In the second adapter PCR, barcoded DNA
is amplified with Illumina adapter primers. c) The experimental workflow for VDJ-sequencing. d) Design of synthetic reference
molecules used for assay validation.

Table 1. Primer sequence information.

Primer name Target specific sequence 50->30 Strand Starta Stopa

Target V-region forward primer

TRDV1 GCGAAATCCGTCGCCTTAAC Forward 22096543 22096562

TRDV2 ACTTGCACCATCAGAGAGAGATG Forward 22422991 22423013

TRDV3 TCCAGTAAGGACTGAAGACAGTG Reverse 22469085 22469063

TRDV4/TRAV14 CCAGAAGGCAAGAAAATCCGC Forward 21924565 21924585

TRDV5/TRAV29 CTTAAACAAAAGTGCCAAGCACC Forward 22163785 22163807

TRDV6/TRAV23 GCAGTTCTCATCGCATATCATGG Forward 22086894 22086916

TRDV7/TRAV36 AGACCGGAGACTCGGCCAT Forward 22227216 22227234

TRDV8/TRAV38-2 GGGGATGCCGCGATGTAT Forward 22281712 22281729

Target J-region reverse primers

TRDJ1 CACAGTCACACGGGTTCCTT Reverse 22450132 22450113

TRDJ2 CGATGAGTTGTGTTCCCTTTCCAA Reverse 22456733 22456710

TRDJ3 AGTTTGATGCCAGTTCCGAAA Reverse 22459142 22459122

TRDJ4 GTTGTACCTCCAGATAGGTTCCT Reverse 22455293 22455271

Barcode forward primer

50-GGACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNNNNNNNNNATGGGAAAGAGTGTCC-V-region forward
primer-30

Barcode reverse primer

50-GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT-J-region reverse primer-30

aNucleotide position from GRCh38/hg38, chromosome 14 (40).

1230 Clinical Chemistry 66:9 (2020)

D
ow

nloaded from
 https://academ

ic.oup.com
/clinchem

/article/66/9/1228/5894686 by guest on 10 N
ovem

ber 2020



qPCR was preformed and described in the
Supplemental Material and Methods.

Libraries were purified using the Agencourt
AMPure XP system (#A63881, Beckman Coulter),
according to the manufacturer’s instructions with a bead
to sample ratio of 1:1. Library quality and quantification
were assessed on a Fragment Analyzer using the HS
NGS Fragment kit (#DNF-474, Agilent) and analyzed
using the PROsize software version 3.0 (Agilent),
according to the manufacturer’s instructions.

Final quantification of library pool was performed
by qPCR using NEBNext Library Quant Kit (#E7630,
New England Biolabs), according to manufacturer’s
instructions. Sequencing was performed on a Miniseq
using midi output reagent kit with 20% added Phix
control v3 (#FC-420-1004 and #FC-110-3001,
Illumina) and 1 pM library. We performed 150 cycles
of paired-end sequencing.

DATA ANALYSIS

Sequencing data were processed using the molecular
identifier guided error correction (MIGEC) pipeline,
version 1.2.9, using only paired-end reads and overlap-
max-offset set to 100 (12). In summary, UMIs were
extracted from raw sequencing reads. Data were then
grouped according to their UMIs and assembled to
consensus reads with applied error correction. In the
nomenclature used here, all reads amplified with the
same UMI sequence form a UMI family, and all UMI
families with identical TRD sequence add up to a clono-
type. Post-processing was performed using modified
scripts from VDJtools, version 1.2.1 (30) and TcR
R programming package, version v2.2.4.1 (31). More
information on data analysis can be found in
Supplemental Material and Methods.

DATA AVAILABILITY

All sequencing data can be found in the Sequence
Read Archive database with the accession number
PRJNA596380. Processed data, information about fig-
ure generation and details about specific analysis are
available at Mendeley data (32).

Results

DEVELOPMENT OF A SEQUENCING APPROACH TARGETING

THE d-CHAIN IN cd T CELLS USING UNIQUE MOLECULAR

IDENTIFIERS

To develop an ultrasensitive sequencing approach of
the rearranged TRD locus in cd T cells (Fig. 1A), we
applied targeted sequencing using UMIs. Target
primers were designed for 8 TRDV genes and 4 TRDJ
genes (Table 1). The 12 nucleotides long UMI was in-
corporated between the target primer and the adapter

sequence. The method consisted of 2 rounds of PCR.
In the first PCR step, all target DNA was barcoded in
3 cycles of amplification. In the second PCR, the
barcoded DNA was amplified with Illumina adapter pri-
mers (Figs 1, B and C and Supplemental Table 1).

To validate the efficiency of each target primer
combination, we used 32 synthetic gBlock DNA mole-
cules containing the target gene segment of each primer
combination (Fig. 1D and Supplemental Table 2). All
target primer pairs showed 90% to 110% PCR effi-
ciency using quantitative PCR (qPCR) (Supplemental
Table 3). The analytical specificity of all combinations
was also tested on 20 ng of genomic DNA from breast
cancer cell line T47D that had the TRD locus in germ-
line configuration. None of the primer pair combina-
tions produced any specific PCR products using
Fragment Analyzer analysis (data not shown).

Next, we tested the same target primers, but with
hairpin protected UMI added (Fig. 1B). We analyzed
the formation of barcoded PCR-products of each primer
pair combination by qPCR, followed by melting curve
analysis using a standard curve, ranging from 10 000 to
16 molecules with 5-fold dilution steps. Quantitative
PCR analysis showed that the dynamic range of all
assays spanned the entire range, and the melting curve
analysis indicated that specific PCR products were
formed (Supplemental Fig. 1, A and B). The presence of
correct library size was also validated by Fragment
Analyzer analysis (Supplemental Fig. 1C). At lower
DNA concentrations, the amount of nonspecific PCR
products increased, but specific PCR products were still
generated.

VALIDATION OF A SIMPLE, ROBUST AND FAST SEQUENCING

PROTOCOL TARGETING THE TRD GENES

To determine amplification efficiency, sensitivity, and
reproducibility of the final 32-plex assay targeting TRD
gene rearrangements, we performed standard curves of
synthetic gBlock molecules, ranging from 2 � 107 to 20
molecules per target sequence. To test the overall PCR
efficiency and dynamic range of the 32-plex assay, we
first performed barcoding PCR and then quantified the
barcoded PCR product with qPCR using the Illumina
adapter primers. The overall PCR efficiency for the
32-plex assay was 101% (Fig. 2A). Next, we sequenced
the libraries generated from 2000, 200, and 20 synthetic
reference DNA standard molecules to evaluate the per-
formance of each primer pair combination (Fig. 2B).
The sequencing efficiency ranged between 98% and
117% for all assays (Supplemental Table 4). Because
different TRDV and TRDJ genes share sequence homol-
ogy, we tested for off-target amplification. Synthetic
gBlock DNA standards were matched by its unique
template specific sequence to the primer that amplified
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respective molecule (Supplemental Fig. 2). All TRDV pri-
mers showed high specificity where only 7 out of 175 103
(0.004%) barcoded families were amplified by the wrong
TRDV target primer. For the TRDJ primers, the corre-
sponding number was 705 out of 175 961 (0.4%)
barcoded families, which was expected due to higher
sequence similarity between J genes compared to V genes.

To further determine the analytical sensitivity to
detect rare TRD clones, we generated pools of synthetic
gBlock standards where we sequenced 10 standard
molecules per assay for 16 assays (160 molecules in to-
tal) in a background of 1000 standard molecules per as-
say for the remaining 16 individual assays (16 000
molecules in total). Hence, the analytical sensitivity of
each primer pair combination was tested at a ratio of
1:1616 (�0.06%). We quantified the pools of synthetic
gBlock molecules by qPCR (Supplemental Fig. 3) and
then by sequencing (Fig. 2C). Sequencing data showed
that 1000, as well as 10 molecules, were reproducibly
detected for all assays. Some variations between the
assays may be explained by dilution artifacts as observed
by qPCR (Supplemental Fig. 3).

IMMUNE REPERTOIRE SEQUENCING OF TRD USING ENRICHED

cd T-CELLS

To validate our 32-plex assay on human samples, we an-
alyzed the genomic DNA extracted from cd T-cells
enriched from buffy coats using immunomagnetic cell
separation. Sequencing libraries were constructed from
500, 100, and 25 ng cd T-cell DNA and then se-
quenced. The total number of productive TRD mole-
cules for each combination of rearranged TRD locus
showed a linear correlation with the amount of analyzed
DNA (Fig. 3A). The 500, 100, and 25 ng libraries gen-
erated mean 97.1%, 93.2%, and 76.1% on target reads,
respectively. Non-aligned reads were almost exclusively
generated from primer-dimers (mean 99.8%).

Supplemental Fig. 4A displays the 10 most com-
monly produced clonotypes. One advantage of using
UMIs is that it could correct for amplification biases be-
tween molecules. Supplemental Fig. 4B shows the non-
uniform amplification of different UMI families, which
is agreement with other approaches using UMIs
(21, 26). Several specific UMIs were only observed
once, while some specific UMIs were detected more

Fig. 2. Performance of 32-plex assay targeting TRD sequences. a) Dynamic range of 32-plex assay. Quantitative PCR on barcoded
synthetic gBlock molecules, ranging from 2 � 107̂ to 20 molecules per standard with 10-fold dilution steps. Cycle of quantifica-
tion value (Cq-value) is shown, n¼ 3 b) Individual assay performance. The number of molecules quantified by sequencing using.
2000, 200, and 20 synthetic gBlock molecules per assay. For visualization purpose, all standard curves are normalized by the
mean value of the 2000 synthetic gBlock samples. The standard curve of each assay is shown, n¼ 3. c) Assay sensitivity and re-
producibility. Sequencing of 2 pools (A and B) of synthetic gBlock molecules with approximately 10 molecules for half of the
assays and 1000 molecules for the other half. Synthetic gBlock molecules that were in minority in the first pool were in majority
in the second pool. Mean 6 SD is shown, n¼ 3.
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Fig. 3. Immune repertoire sequencing of cd T cells. a) Number of productive TRD molecules for each assay, versus starting
amount of cd T-cell DNA. The linear correlation of each assay is shown, n¼ 3. b) Correction of molecule quantification using
UMIs. Relative frequencies of clonotypes using raw sequencing reads (y-axis) versus using UMI (x-axis) are shown. Absolut mole-
cule count based on UMI is shown on top x-axis. Data from a representative sample is show. c) Sequencing reproducibility and
sampling ambiguity. Coefficient of variation versus average number of barcode families detected is shown. Data are from
500 ng cd T-cells DNA, n¼ 3. d) Distribution of molecules with different GC-content. e) UMI family size distribution in relation
to different GC-content. 1st and 99th percentile is at 46.0% and 54.4% GC content, respectively. f) Distribution of molecules
with different amplicon length. g) UMI family size distribution in relation to amplicon length, 1st and 99th percentile is at 92
and 156 nucleotides, respectively. Raw sequencing reads were used in c), f) andi).
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than 100 times. This quantitative bias was corrected since
all reads with the same UMI originated from the same
molecule and were collapsed into one molecule.
Figure 3B illustrates the errors when not using UMI. For
example, individual clonotypes with a single UMI some-
times displayed more than 10-fold variability in frequency
when analyzed with raw sequencing reads. Figure 3C
shows the reproducibility when detecting distinct number
of molecules using UMIs. The coefficient of variation in-
creased when detecting rare clonotypes, which agreed
with sampling ambiguity when detecting few molecules.
Furthermore, we detected no correlations between reads
per UMI and amplicon length but a small decrease of
reads per UMI for high GC-content (Fig. 3, D–G), sup-
porting that our quantitative sequencing approach was
largely independent of sequence context.

IMMUNE REPERTOIRE SEQUENCING OF TRD IN HEALTHY

DONORS

To characterize individual TRD immune repertoires, we
analyzed cd T-cells, enriched by fluorescence-activated

cell sorting, from peripheral blood mononuclear cells
(PBMC) of 10 healthy individuals. The number of
productive CDR3 sequences detected by sequencing
correlated with the estimated amount of productive
CDR3 cd T-cell molecules loaded (Fig. 4A). The TRD
repertoire diversity was different between the 10 indi-
viduals (Fig. 4B). Donors 1 and 10 displayed no single
clonotype with a frequency above 10%, while donors 3,
4, 6, 7, 8, and 9 were highly oligoclonal, where the
top 5 clonotypes represented more than 50% of all pro-
ductive TRD molecules detected. The distributions
of clonotype sizes are shown in Supplemental Fig. 5.
The observed variation in TRD repertoire diversity of
healthy donors agreed with reported data (33, 34). The
most common TRD rearrangement used among the
different clonotypes was between TRDV2 and TRDJ1
(Supplemental Fig. 6). To validate our genomic ap-
proach at the cellular level, we determined the frequen-
cies of TRDV1 and TRDV2 using FACS (Fig. 4C). The
frequencies detected by FACS correlated significantly
(P< 0.01) with immune repertoire sequencing.

Fig. 4. The immune repertoire of TRD in healthy individuals. a) The number of productive TRD molecules detected by sequenc-
ing compared with the amount of cd T-cell DNA used, assuming 139 productive molecules per nanogram DNA. b) Treemapping
of all clonotypes across 10 healthy individuals. Each square represents a unique clonotype. The area of the square indicates the
clonotype frequency and the color shows which V and J genes was used. c) Comparison of gene usage analyzed by FACS and im-
mune repertoire sequencing (Seq). The usage of TRDV1 and TRDV2 as frequencies are shown. The Spearman’s rank correlation
coefficient is 0.88 (P< 0.01) for TRDV1 and 0.94 (P< 0.01) for TRDV2 when comparing FACS with sequencing.
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IMMUNE REPERTOIRE SEQUENCING USING NON-ENRICHED

CELLS

One major advantage of targeted PCR is that cell
enrichment is potentially not needed. To compare se-
quencing from non-enriched PBMC and enriched cd T
cells, PBMC from a buffy coat were isolated and split
into 2 equal aliquots: one sample was enriched for cd T
cells using negative selection with magnetic beads, while
the other sample was analyzed directly without further
cell enrichment. We sequenced 100 ng DNA of the cd
T-cell enriched sample and 1 lg of the non-enriched
sample. In total, 9925 and 4836 productive TRD mole-
cules were identified in the cd T-cell enriched and the
non-enriched samples, respectively (Fig. 5, A and B).
The clonotype frequencies between non-enriched and
enriched cells correlated linearly (R2 ¼ 0.80). However,
3 outlier clonotypes were identified. These clonotypes
were abundantly expressed in non-enriched cells, while
their relative frequencies in enriched cells were low. A
drawback of analyzing non-enriched cd T cells is that
partially rearranged loci and unproductively rearranged
alleles of TRD in ab T cells may be amplified. Indeed,
the number of out-of-frame sequences was higher in
non-enriched cells (44.5%) compared to enriched cd T
cells (15.6%).

Discussion

The TCR repertoires of cd T cells are the least explored
among B and T lymphocytes. Notably, among all
immune cells investigated, infiltrating cd T cells show
the strongest association with favorable outcome in a
meta-analysis of 25 different malignancies (35, 36).
Here, we developed an ultrasensitive method for im-
mune repertoire sequencing that increases the quantifi-
cation accuracy by multiple order of magnitudes for
low-frequency clones. By utilizing UMIs, we increased
sequence accuracy enabling individual clonotypes to be
reliable detected and quantified in a background of simi-
lar clonotypes (12). We also show that sequence libraries
could be reliably generated from 15 ng enriched cd T
cells DNA and 640 synthetic molecules, equivalent to
4.6 ng enriched cd T cells DNA. Improved quantifica-
tion accuracy was achieved by counting the number
of UMIs, which related to the original number of
DNA molecules and, therefore, the number of cells.
Consequently, PCR-introduced amplification biases were
avoided. Furthermore, current bioinformatics, such as
MIGEC, can also handle PCR-introduced errors in the
UMI, avoiding an overestimation of the clonotype size
(37). The method minimizes sequencing errors by the

Fig. 5. Comparison of immune repertoire sequencing of enriched and non-enriched cd T cells from PBMCs. Peripheral
blood mononuclear cells (PBMCs) from one individual were split in half: one sample was enriched for cd T cells, while the
other was analyzed directly without cell enrichment. a) Each point is a unique clonotype, and its frequencies as non-enriched
and enriched are shown. Line shows linear regression. b) Relative frequencies of the 20 most commonly detected clonotypes
in the cd T cell enriched and non-enriched samples, respectively. Amino acid sequence of the CRD3 region for each clonotype
is shown. Non-overlapping (black) is the cumulative frequency of all clonotypes only detected in one of the samples. Non-
shown (gray) is the cumulative frequency of all overlapping clones that are not among the top 20 clonotypes.
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construction of consensus sequences. Compared to ultra-
sensitive detection of allele variants, such as mutation
analysis, immune repertoire sequencing is experimentally
more challenging since the sequences of individual target
DNA molecules are different from each other, including
variable GC-content and length. Allele variant analysis reg-
ularly only includes the detection of 2 different sequences,
often with a single nucleotide variant. Hence, assay optimi-
zation and amplification performance are fundamental for
reliable immune repertoire sequencing. The 32-plex assay
showed a small GC-content bias, but this error was cor-
rected using UMIs as long as the original molecule is
amplified.

True clonal variation is difficult to separate from se-
quencing errors (11, 38). The use of UMIs addressed
this issue, enabling accurate immune repertoire sequenc-
ing. The PCR-introduced UMIs corrected for all DNA
polymerase-induced errors, except errors that occurred
in the first barcoding PCR step (21) and non-polymer-
ase induced errors, such as chemically modified bases
(39). With a PCR-based approach, there is also no need
for target cell enrichment. We showed a linear correla-
tion between the frequencies of clonotypes detected in
enriched and non-enriched samples. Hence, immune
repertoire DNA sequencing approaches without cell
enrichments may be an interesting option, since it is
both simpler and allows more sample types to be ana-
lyzed. Interestingly, we detected 3 clonotypes as outliers
with more than a 10-fold higher frequency in the non-
enriched sample compared to the enriched sample. The
reason for this is unknown and needs to be further in-
vestigated, but one possibility may be that antibodies
used in the depletion cocktail for negative selection also
reacted to and depleted a subset of cd T cells. However,
to determine systematic differences between various
sample types and enrichment techniques need further
experiments.

The approach to add UMI by targeted PCR is both
simpler and more efficient than ligation-based methods.
Sequence libraries can be generated within 4 h, with
limited hands-on time. Another advantage of PCR-
based approaches is the possibility to choose a subset of
target primers for specific applications. For example, in
minimal residual disease in lymphoid malignancies
where the immunoreceptor clonotype is known, and the
detection of other immunoreceptor recombinations is of
limited value, it is possible to monitor relevant clones
longitudinally in a cost-effective manner. However, in
exploratory studies, PCR-based approaches will not de-
tect novel sequences that are not targeted by the primer
sequences used. Here, a more unspecific ligation-based
approach will be more suitable.

Single-cell analysis is another emerging method
that enables detailed profiling of different clonotypes

that may also provide additional information about
transcriptomics, receptor chain pairing, and antigen af-
finity (40). However, single-cell sequencing is experi-
mentally and analytically more labor-intensive and
requires a single-cell suspension that is not always feasi-
ble to generate. Therefore, our approach and single-cell
analysis are complementary to each other. An immune
repertoire sequencing approach can also be combined
with approaches for nonrecombined DNA sequences
targeting somatic mutations (21, 25). Combined im-
mune repertoire and somatic mutation analysis is useful
in both T and B cell malignancies, but also in solid tu-
mor entities. Here, cell-free tumor DNA purified from
the plasma as well as cellular immune cell DNA from
the buffy coat could be analyzed in parallel.

Supplemental Material

Supplemental material is available at Clinical Chemistry
online.
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40. Stubbington MJT, Lönnberg T, Proserpio V, Clare S,
Speak AO, Dougan G, et al T cell fate and clonality infer-
ence from single-cell transcriptomes. Nat Methods
2016;13:329–32.

Ultrasensitive DNA Immune Repertoire Sequencing

Clinical Chemistry 66:9 (2020) 1237

D
ow

nloaded from
 https://academ

ic.oup.com
/clinchem

/article/66/9/1228/5894686 by guest on 10 N
ovem

ber 2020


	tblfn1

