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ABSTRACT 

The role of human factors in crash causation is a central theme in traffic 
psychology. Human factors are often roughly categorized into cognitive 
errors and a tendency to break rules. In data analysis, these psychological 
properties are treated as measurable, continuous quantities, quite alike 
weight, length and temperature. Their existence is inferred based on 
covariation among individual traffic behaviors, which for their part function 
as measurements of the level of these properties: for instance, driving under 
the influence of alcohol and speeding are thought to reflect the tendency to 
break traffic rules.  

The thesis examines joint variation among traffic behaviors and compares 
two competing explanations for the phenomenon: 1) The latent variable view 
of errors and violations, according to which covariation among traffic 
behaviors is explained by latent, unobservable psychological properties that 
cause variation in them and 2) The network view, according to which traffic 
behaviors interact directly with one another, which makes it unnecessary to 
posit unobservable psychological properties as explanations of behavior.  

Within traffic psychology, questions such as these are usually not 
explicitly raised; rather, latent variable models are used as the default tool in 
data analysis. This practice entails certain assumptions, such as that of the 
latent variable models measuring the same unobservable properties in the 
same way across groups of respondents. Moreover, more fundamental 
questions, such as the theoretical status of latent variables in terms of realist 
vs. constructionist commitments and the nature of the relationship between 
latent and observed variables are seldom considered. The present thesis 
addresses these issues. 

Studies I and II examine a central property of latent variable models of 
driver behavior: whether the same psychological properties can be measured 
in the same way across different subgroups of drivers that are defined based 
on age, sex and nationality. Both studies utilize rigorous latent variable 
measurement equivalence analyses. Study I concludes that if the latent 
variable view is adopted, patterns of covariation among self-reported traffic 
behaviors are sufficiently different across subgroups of Finnish respondents 
formed based on age and gender that the latent variables may well be specific 
to the group in question. Study II reaches a similar conclusion concerning 
social behavior (breaking rules in traffic) based on a comparison of young 
Finnish and Irish drivers. On the other hand, it shows that cognitive errors 
can more readily be interpreted as being related to similar – but not identical 
– latent variables across countries.  

Study III assumes a novel point of view, and examines interactions among 
individual traffic behaviors using psychological network models. This shifts 
the focus from abstract psychological properties to potentially causal 
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relationships between traffic behaviors: drivers who are more likely to exceed 
speed limits are also more likely to end up driving close to another vehicle, 
for instance. In other words, edges in the network models are interpreted as 
causal hypotheses. Study III also presents Poisson regression models that 
predict crashes from self-reported traffic behaviors instead of latent 
variables. This enables various self-reported traffic behaviors to have 
differential associations with crashes, which is intuitively plausible as, for 
instance, the violations range from driving under the influence of alcohol to 
honking at others. The models are built and tested in independent sets of 
data, making it possible to avoid overfitting the predictive models to data at 
hand. This procedure, together with selecting variables based on regularized 
regression, is argued to have useful properties in predicting crashes in traffic 
psychology.  

As a whole, the thesis presents two new interpretations for the 
relationship between individual traffic behaviors and the psychological 
properties investigated within traffic psychology. First, the psychological 
properties may reduce to nametags for behaviors that co-occur in certain 
kinds of contexts and have no causal power of their own. Second, they may 
prove to be emergent properties arising from the interaction among the 
behaviors. These alternatives are discussed together with an intermediate 
view that combines the latent variable view and the network view. The thesis, 
then, positions itself as a part of recent psychometric discussion in which 
psychological properties are seen as being formed through the interaction of 
different behaviors, thoughts and emotions without necessarily treating 
psychological properties as unidimensional, measurable quantities. 
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1 INTRODUCTION 

This thesis presents three studies on the psychological properties – such as 
the tendency to commit violations or proneness to cognitive errors – that 
are frequently taken to underlie unsafe traffic behavior within traffic 
psychology. It is motivated by two questions: 1) whether these properties are 
measurable and 2) whether individual self-reported traffic behaviors can be 
thought of as measurements of them. Specifically, it asks the psychometric 
question of whether these properties can be measured in the same way across 
subgroups of drivers using self-report instruments. It answers largely in the 
negative and argues that this is because individual traffic behaviors are 
determined by multiple psychological properties instead of being reducible to 
a small number of very general ones. It then builds on an alternative view of 
psychometrics – known as network psychometrics (Borsboom, 2017; 
Epskamp, 2017) – that focuses on the interplay of traffic behaviors instead of 
treating them as measurements of a small number of underlying general 
psychological properties. The network perspective enables viewing the 
psychological properties as emerging as a consequence of this interplay 
rather than explaining it by functioning as latent causes. On the other hand, 
under the network view, the psychological properties can also be viewed as 
classificatory categories (i.e. nametags). In addition to discussing the 
relationship between psychological properties and observable behaviors, the 
thesis also utilizes methods of statistical learning theory to build a predictive 
model of accidents based on individual traffic behaviors. This is done because 
it is plausible that the different driving behaviors that are commonly treated 
as measurements of the same psychological property have differential 
relationships with crash risk. 

Traffic psychology is a practical enterprise. Much research in the field is 
motivated by an interest in traffic safety, and the success of safety-oriented 
research judged by its ability to produce effective interventions. This is 
especially true of research into human errors and violations in traffic, which 
are seen as important determinants of crashes. Because of this, it is of central 
importance to understand the nature of human errors and violations: are 
there different kinds of errors and violations? What causes them? Are they 
measurable, unidimensional phenomena?  

Much current research on the relationships of errors and violations to 
crashes is based on self-report instruments such as the Driver Behavior 
Questionnaire (DBQ; Reason, Manstead, Stradling, Baxter, & Campbell, 
1990). The DBQ is perhaps the most widely used such instrument in traffic 
psychology with the locus classicus publication (Reason et al., 1990) having 
been cited 716 times by the end of the year 2019 according to a search carried 
out in the Web of Science portal. The DBQ is based on a theory in cognitive 
ergonomics, the Generic Error Modeling System (GEMS, Reason, 1990), 
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which describes human errors in safety-critical situations. It differentiates 
skill-based errors (attentional slips and memory-related lapses, also referred 
to as monitoring failures) from problem-solving failures (rule-based 
mistakes and knowledge-based mistakes). Slips are defined as skill-related 
errors in that the persons committing slips have a plan that they intend to 
follow, but fail to do so due to paying either too little or too much attention to 
the task; turning on the windscreen wipers instead of the blinker serves as an 
example. Lapses are otherwise similar to slips, but are related to forgetting 
something along a sequence of actions, such as not remembering to turn in 
an intersection when driving somewhere. Rule-based mistakes are called 
problem-solving errors because they involve a person following a normally 
well-functioning plan that turns out not to work. An example of a rule-based 
mistake would be a person following the rule (in right-hand traffic): “If 
another road user is turning left, overtake them from the right-hand side” 
without realizing that the road is too narrow, which causes the person to 
drive off the road. Knowledge-based mistakes are related to solving 
completely novel problems to which a pre-existing rules cannot be applied; 
an (admittedly slightly far-fetched) example would be a driver hearing weird 
noises from the motor, ignoring them and thinking that it will be fine, 
whereupon the motor catches fire because of lack of oil. The categories are 
not hard-and-fast, as rule-based mistakes have more in common with skill-
based errors than knowledge-based mistakes.  

In addition, Reason (1990) considers violations, deliberate deviations 
from safe practices. While slips, lapses and mistakes are derived from an 
analysis of cognitive processes, violations are characterized using 
interpersonal, social concepts in that they are related to breaching implicit or 
explicit social agreements between people. Most of the time, violations are 
related to trying to achieve a well-intentioned outcome, such as speeding to 
get to work on time, rather than having an outright malicious intention, such 
as sabotaging a car to avenge something to another person. Still, mistakes 
and violations are seen as similar in an important respect: both are types of 
intended actions, whereas slips and lapses are actions that deviate from 
intention. Since the seminal publication (Reason et al., 1990), the DBQ has 
functioned as an operationalization of the central concepts of the GEMS; 
however, the concepts have been characterized in various and partly 
conflicting ways in the DBQ tradition (Table 1).  
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Table 1. (Reproduced with permission from Study I Table 8): classification and 
characteristics of aberrant behaviors in the DBQ research tradition 

 
The traffic-safety aspect of DBQ studies comes in through presenting the 

questionnaire (or, to be specific, some version of it, see section 1.1 below) to a 
group of drivers and correlating the underlying psychological properties, 
operationalized as latent variables, with whether the drivers have been 
involved in an accident or not.  

Depending on the study, these groups of drivers may be a random sample 
of everyone with a driver’s license in a country (e.g. Lajunen, Parker, & 
Summala, 2004; Parker, Reason, Manstead, & Stradling, 1995) or members 
of subgroups of drivers, such as young (Biederman et al., 2012; Roman, 
Poulter, Barker, McKenna, & Rowe, 2015) or old (Parker, McDonald, Rabbitt, 
& Sutcliffe, 2000) drivers, professional drivers (Masla , Anti , Lipovac, Peši , 
& Milutinovi , 2018; Öz, Özkan, & Lajunen, 2010), users of specific vehicles 
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such as motorcycles (Sakashita et al., 2014) etc. Further, accident liabilities 
of different groups of drivers can be compared (for instance, men vs. women, 
drivers of different ages etc.; Parker et al., 1995; Sullman, Stephens, & Taylor, 
2019). Importantly, carrying out such comparisons based on the DBQ 
presupposes that the instrument works in the same way and measures the 
same underlying psychological properties, such as errors and violations, or 
slips, lapses, mistakes and violations, in the groups to be compared. 

Within the factor analytic tradition, the GEMS variables are treated as 
measurable properties similar to, say, intelligence or personality traits. 
Further, they are assumed to possess quantitative structure quite similarly to 
prototypical examples of quantitities such as height, weight and temperature. 
This, in itself, is a remarkably strong assumption and is discussed in some 
detail in Section 4.3. When using the DBQ, the GEMS variables are then 
operationalized as questionnaire items. Ontologically, the latent variables are 
considered stable psychological traits that can be compared across genders, 
age groups, traffic cultures etc. This is evidenced by statements related to the 
nature of the latent variables in the DBQ literature such as  

“As each type of behavior has a distinct psychological underpinning 
(Reason et al., 1990), different interventions are required to reduce 
their frequency and also associated crash risk” 

 (Stephens & Fitzharris, 2016)  

In Study III this approach is called the latent variable view of violations 
and errors and it amounts to assuming that the latent variables can be 
measured (in a technical sense, see Sections 2.3.1. and 2.3.2.) based on  
intercorrelations among self-reported traffic behaviors. The central 
properties of the latent variable view are as follows: 

 
- there exist fundamentally different types of “aberrant behavior” 

that need to be targeted by different types of interventions that 
- have different relationships with the drivers’ accident risk, and 
- these different types of behavior (unintentional errors and 

intentional violations) are not directly observable, but can be 
measured by correlating questionnaire items related to individual 
traffic behaviors and statistically estimating a low-dimensional 
structure of underlying latent variables 
 

The idea is given formal expression by assuming that the observed item 
scores X are composed of true scores and error (X = T + E). The central idea 
is that the variance shared by the observed variables X is due to these latent 
variables. For instance, the question items How often do you disregard the 
speed limits? and How often do you race away from the traffic lights with 
the intention of beating the driver next to you? are seen as measurements of 
a driver’s tendency to violate traffic rules. Similarly, the items How often do 
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you fail to notice that pedestrians are crossing when turning into a side 
street? and How often do you fail to check your rear-view mirror before 
pulling out, changing lanes, etc.? are seen as measurements of a driver’s 
tendency to commit attention-related errors (i.e. slips). More fine-grained 
distinctions can be made: For instance, rule violations can be divided into 
aggressive violations and traffic rule violations.  

The causal assumptions underlying the measurement exercise are 
formalized as the reflective measurement model (Howell, Breivik, & Wilcox, 
2007), a schematic representation of which is given in Figure 1. There, the 
latent variables – the tendency to violate rules and the tendency to commit 
errors – are shown as causing variation in the observed variables – the 
behaviors represented by the questions How often do you exceed speed 
limits? How often do you drive even though you suspect you may be drunk? 
etc. It is noteworthy both theoretically and in terms of potential traffic safety 
interventions that all assumed causal paths run through the latent variables. 
For instance, variables related to driver characteristics, such as enjoying 
speed, affect the drivers’ violation-proneness, which then affects individual 
driving behaviors such as speeding. Notably, the individual behaviors are 
modelled as independent of each other once the drivers’ position on the 
latent variables is known. In other words, speeding correlates with 
overtaking dangerously, drunk driving and showing aggression only 
because these behaviors reflect the underlying latent variable violation-
proneness. Further, speeding correlates with missing signs only because 
their respective causes (violation-proneness and error-proneness) are 
correlated. 

Under this interpretation, strictly taken, there is no other reason for the 
observed variables to correlate than the fact that the latent variable 
underlying them causes variation in all of them. In particular, the observed 
variables are assumed not to be causally related to one another. Further, the 
observed variables are assumed to be qualitatively similar, interchangeable 
indicators of the latent variable in that any given observed variable can be 
dropped or exchanged with another one (Bollen & Bauldry, 2011). This 
conceptualization allows, though, the reliabilities of the observed variables 
and strengths of the relationship between a given observed variable and the 
latent variable (factor loadings) to vary; the point is that dropping any given 
observed variable would not affect the relationships between the latent 
variable and the other observed variables  (Bollen & Lennox, 1991). Further, 
under these causal assumptions, manipulating the observed variables should 
have no effect on the latent variables or other observed variables. For 
instance, under the reflective measurement model, making it impossible to 
drive under the influence of alcohol (by, say, installing an alcolock) has no 
effect on the other violations (speeding, overtaking etc.) or the latent variable 
violation-proneness.  
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Figure 1 A reflective measurement model of violations and errors. The unidirectional arrows 
refer to assumed causal relationships and bidirectional arrows to covariation between 
variables. The ovals and circles represent latent variables and the rectangles 
observed variables. Reproduced from Study III under the CC-BY-4.0 licence. 

The observation that the reflective measurement model seems to offer an 
inadequate causal representation of the actual relationships among the traffic 
behaviors is a central motivation for the present thesis. Indeed, it seems 
plausible that the behaviors represented by the observed variables may be 
causally related without being mediated by the specific mechanisms 
envisioned in the GEMS. For instance, looking at the driving behaviors in 
Figure 1, it would seem commonsensical and plausible to think that the 
tendency to exceed speed limits would have a direct causal connection to the 
tendency to overtake other drivers irrespective of the driver’s position on the 
latent dimension.  

Similar suggestions have recently been made within clinical and 
personality psychology (see, e.g. Borsboom, 2017; Robinaugh, Hoekstra, 
Toner, & Borsboom, 2019), where the network approach to 
psychopathology, personality and psychometrics has been developed since 
2008. Within this approach, clinical phenomena such as depression, PTSD 
and psychosis as well as personality traits have been modelled as 
psychological networks  (Costantini et al., 2015; Cramer et al., 2012a; Cramer 
et al., 2012b; Fried & Cramer, 2017; Fried et al., 2017; Robinaugh et al., 
2019). The network approach is based on the premise that psychological 
properties are formed and maintained through the interactions of their parts; 
for instance, syndromes as networks of symptoms and personality traits as 
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networks of thoughts, emotions and behaviors. In the case of depression, for 
example, it is thought that interactions among sleeplessness, concentration 
difficulties and difficulties in social relations give rise to the phenomenon 
and also maintain it (for instance, more sleeplessness  more concentration 
problems  more social problems). 

In network models, the relationship between the phenomenon under 
investigation (e.g. depression) and its symptoms is seen as one of emergence: 
interactions among the symptoms bring about the phenomenon, which exists 
because of these interactions, not independently of them. This view enables 
the use of different tools of network science and also viewing the 
phenomenon as a complex system (Borsboom, 2017), which 1) occupies 
different stable states (e.g. the depressed and healthy state) depending on the 
patterns of connectivity among the symptoms, 2) contains feedback loops 
among the nodes (e.g., in the previous example, social problems feeding back 
to sleeplessness through a positive connection), 3) contains central 
symptoms, also referred to as hubs, in addition to peripheral symptoms, 4) 
adapts to external influences by aiming toward holding onto the stable state 
through a homeostatic mechanism, 5) is dependent on the history of the 
system in that the same end state (e.g. healthy or depressed state) can be 
reached through different developmental pathways. In addition, such 
systems can be viewed as consisting of nested structures both across time 
and physical organisation (e.g. neurons – brain systems – behavioural 
symptoms – social phenomena), embodying non-linear dynamics among 
their parts and developing over time.  

Within psychopathology research, different states of the network are 
characterized by different connection strengths among the symptoms. Using 
depression as an example, in the depressed state of the symptom network 
activation readily spreads through the network because of strong 
interconnections among the symptoms. Then, when a certain node, such as 
social problems, becomes activated, it activates the other symptoms, which 
are in turn connected to social problems by self-sustaining feedback loops 
(Borsboom, 2017). Moreover, differences in susceptibility to depression can 
be characterized by differences in initial connection strengths among 
symptoms: people are more likely to become depressed at some stage of their 
lives if the symptoms of depression share strong associations in their 
personal symptom networks. In short, the network approach, together with 
closely associated neighboring approaches, offers a rich conceptual 
framework for research in psychopathology, personality psychology, and – as 
is suggested in the present thesis – traffic psychology. A schematical network 
model of traffic behavior is showed below in Figure 2. The model is based on 
no data, and is shown solely for the purpose of illustrating a psychological 
network model.  
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Figure 2 A hypothetical unweighted network model of traffic behavior. Traffic behaviors are 
shown as nodes drawn using solid lines and background factors assumed to 
influence them using dashed lines. Reproduced from Figure 2, Study III, under the 
CC-BY-4.0 licence 

In short, network models and latent variable models are motivated by 
different concerns: examining the internal structure (and dynamics) of 
phenomena and measuring something that cannot be directly observed, 
respectively. Because of this, they are perhaps best understood as 
complementary approaches to psychometrics. In the present thesis, these 
issues are discussed in Sections 4.1.1. and 4.1.2., and an approach combining 
latent variable models and network models known as generalized network 
psychometrics, is briefly discussed in Section 4.4. 

One of the central questions in the present thesis concerns the 
relationship between individual traffic behaviors, such as speeding and 
tailgating, and the latent variables, such as error-proneness and violation-
proneness. Under the latent variable view, their relationship is one of 
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measurement, with self-reports of the individual behaviors functioning as 
measurements of the level of the latent variable. Under the network view, 
their relationship is less clear. This thesis raises the question of whether the 
relationship should be seen as one of emergence or constituency similarly to 
the proposals given in network models of psychopathology and personality, 
or whether violations and errors function as descriptive labels without 
explanatory power of their own. As Study III of the present thesis is the first 
contribution that applies the network approach to psychometrics within 
traffic psychology, the thesis needs to be seen as the starting point of a 
discussion rather than a definitive answer to the questions. 

1.1 A review of relevant DBQ literature 

 
There exist a wide variety of different versions of the DBQ. They have 

been developed based on the original 50 self-report items study (Reason et 
al., 1990), which were intended to capture variation in five theoretical 
constructs: slips, lapses, mistakes, unintended violations and intended 
violations. The classification derives partly from GEMS (Reason, 1990). As 
described in Section 1, in the GEMS, actions that deviate from intention can 
be related to problems in attention (slips) or memory (lapses), while errors 
may also result from bad planning (mistakes). In addition, people sometimes 
violate social rules either intentionally (intended violations) or by accident 
(unintended violations). The study of Reason et al. (1990), however, resulted 
in a three-factor structure of silly errors, dangerous errors and violations, 
which the authors deemed, in essence, to be close enough to the intended 
structure. As the DBQ research tradition began with the study, it is of interest 
that the intended factor structure was not uncovered. This might have to do 
with imperfectly formulated or chosen self-report items, but the authors did 
not discuss the issue.  Nonetheless, both the intended factor structure and 
the obtained factor structure were interpreted as reflecting the functioning of 
different psychological processes. In much subsequent research based on the 
DBQ, the latent factors have been similarly interpreted as reflecting the 
functioning of distinct psychological processes. 

Before introducing subsequent research based on using the DBQ, a couple 
of methodological notes are in order. Reason et al. (1990) used Principal 
Component Analysis (PCA) with the orthogonal varimax rotation as an 
analysis method and chose the number of components to retain based on 
examining the scree plot. Rotation, simply put, is a mathematical procedure 
used for obtaining a simple and interpretable result in an Exploratory Factor 
Analysis (EFA) or a PCA (Brown, 2009). In an oblique rotation, the resulting 
factors / components are allowed to correlate, whereas in an orthogonal 
rotation, this is not the case. Such analytic choices shape the results that are 
obtained and the interpretations that are made. It remains unclear how 
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Reason et al. (1990) ended up with the analytical choices that were made and 
yet their publication launched the use of the DBQ; because of this, the 
consequences of the different analytical options are briefly introduced below.  

First, by carrying out a PCA instead of an EFA the analysis produced, in a 
strict sense, a statistical summary of the data rather than information on the 
latent factors that might underlie the data (Mattsson, 2014, Section 5). In 
practice, PCA tends to produce slightly higher loadings than FA when the 
same rotation method is used. This is because in a PCA, all variation in the 
observed variables is analyzed, whereas in an EFA, variation that is unique to 
a given observed variable is excluded from the analysis; in EFA, this variation 
is considered measurement error. It is important to keep this difference in 
mind when comparing the results of PCA and FA (de Winter & Dodou, 2016). 
Nonetheless, because differences between the results of PCA and EFA are 
often in practice small  (Velicer & Jackson, 1990) and because Reason et al. 
(1990) interpreted their results as evidence of underlying factors, this 
distinction is glossed over in what follows despite its theoretical importance 
(Mattsson, 2014). 

Second, the question of choosing a rotation method is a complex one, and 
arguments related to simplicity and interpretability can be presented in favor 
of either an oblique or an orthogonal rotation (Brown, 2009). It remains 
unknown how Reason et al. (1990) ended up with the orthogonal rotation 
method that they used rather than a method of oblique rotation. This is 
relevant, since later DBQ research has found high intercorrelations among 
obliquely rotated factors (see, for instance, Lajunen et al., 2004; Mattsson, 
Lajunen, Gormley, & Summala, 2015; Mattsson, 2012; Stephens & Fitzharris, 
2016), and it has been recommended that “if the researcher does not know 
how the factors are related to each other, there is no reason to assume that 
they are completely independent” (Preacher & MacCallum, 2003). Thus, it is 
possible that different results would have been obtained by Reason et al. 
(1990) had they used an oblique rotation method.  

Third, thorough reviews of methods of choosing the correct number of 
components / factors to retain have repeatedly recommended to refrain from 
using the scree plot as the sole method in making this decision; rather, it is 
recommended that it be used as an adjunct to more accurate methods such as 
parallel analysis or the Minimum Average Partial Correlation method 
(Preacher & MacCallum, 2003; Velicer, Eaton, & Fava, 2000; Zwick & 
Velicer, 1986). Because of this, it is unclear whether the three-component 
structure obtained by Reason et al. (1990) in fact fit the data optimally or not.  

Due to the three concerns mentioned above, the DBQ-based research 
tradition was built on a partially shaky foundation. Still, to reiterate the 
central findings, Reason et al. (1990) ended up with the three-factor 
structure of silly errors, dangerous errors and violations, which they 
interpreted as reflecting the functioning of different psychological processes 
(different kinds of error-proneness and violation-proneness, respectively). 
Reason et al. (1990) also calculated mean score variables based on the items 
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that loaded on the three factors and concluded that men commit more 
violations than women, that committing violations decreases with age, and 
that women commit more silly errors than men. The preconditions that need 
to be met in order for such comparisons to be permissible are examined in 
Study I and Study II of the present thesis.  

Another early study (Blockey & Hartley, 1995) obtained a different three-
factor structure for the question items used by Reason et al. (1990). The 
authors performed a PCA with varimax rotation and based their conclusions 
on the three PCs having eigenvalues > 1. The authors referred to the PCs as 
general errors (with items intended to measure slips, mistakes and 
unintentional violations loading on the factor), dangerous errors (with items 
intended to measure slips and mistakes loading on it) and violations. The 
factor structure differed somewhat from that obtained by Reason et al. 
(1990) and the authors speculated that this was due to demographical factors 
such as differences in age and gender distributions between the two studies. 
On the other hand, the original three-factor (PC) structure of the DBQ was 
more or less exactly replicated by Åberg & Rimmo (1998) based on a 44-item 
version of the instrument in a sample of Swedish drivers.  

The next major development of the DBQ took place with Parker et al. 
(1995) who picked the 8 items having the highest loadings on the three 
original factors of Reason et al. (1990) and ended up with 24 questionnaire 
items. Parker et al. (1995) referred to the results of their PCA (varimax 
rotation, eigenvalue > 1 criterion for retaining PCs) as errors, lapses and 
violations. This is slightly confusing because lapses was originally intended 
as a sub-category of errors (Reason, 1990; Reason et al., 1990) and the 
errors that are not lapses would then be categorized as slips according to the 
original nomenclature. Because of this, the present thesis refers to the errors 
that are not lapses as slips. The study was a typical example of research 
based on DBQ in that it involved predicting error and violation scores from 
demographic factors and the drivers’ self-image as drivers, and then used the 
DBQ factors (together with the demographic variables) for predicting 
accidents. Further, the principal component structure was nearly perfectly 
replicated by Westerman & Haigney (2000) using the 24-item version of the 
instrument in a large sample of UK drivers (PCA with varimax rotation, 
criterion for number of PCs to retain not reported).  

Even though the questionnaire used by Parker et al. (1995) contained 
items related to aggressive driving, it was Lawton, Parker, Manstead, & 
Stradling (1997) that explicitly modelled aggressive violations as a factor (PC) 
of its own after adding items related to aggressive violations and highway 
code violations. In the study, violations comprised three factors / PCs: fast 
driving, maintaining progress and anger / hostility that were predicted by 
various demographics and the drivers’ affective evaluations of committing 
the violations, i.e. whether doing so would make them feel good or bad.  

The 27- or 28-item “standard” version of the DBQ is a result of combining 
the versions of the instrument used by Parker et al. (1995) and Lawton et al. 
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(1997). The items related to errors and lapses are taken from the instrument 
reported in the first-mentioned study, and the 12 violation items from 
Lawton et al. (1997) and Parker, Lajunen, & Stradling (1998). The resulting 
28-item version of the instrument was first reported by Mesken, Lajunen, & 
Summala (2002), who obtained a factor structure consisting of errors, 
interpersonal violations, speeding violations and lapses after performing a 
principal axis factor analysis using an unspecified oblique rotation and 
choosing the number of factors to retain based on examining the scree plot.  

  Bianchi & Summala (2002) obtained a different four-component 
structure of errors, ordinary violations, aggressive violations and lapses 
using PCA with unspecified oblique rotation and choosing the number of 
components to retain based on examining the scree plot. Lajunen et al. 
(2004) investigated the same 28-item instrument and the 27-item version 
obtained by dropping the item related to drinking and driving because of its 
low correlations with the other items. The authors used principal axis 
factoring with oblimin rotation and chose the number of factors based on 
examining the scree plot, using the eigenvalue > 1 criterion and by 
performing a parallel analysis. As the methods produced different results, the 
number of factors to extract was based on considerations of interpretability. 
The results of the analysis in Lajunen et al. (2004) resulted in a similar factor 
structure to the one reported by Bianchi & Summala (2002); the correlations 
among these first-order factors were further explained by performing a 
second-order factor analysis in which the two violation-related factors loaded 
on a second-order factor (violations) and the other two factors on a factor 
that was dubbed mistakes. This version of the instrument is used in the 
studies reported in the current thesis, as well.  

The 28-item DBQ has subsequently been used in the Spanish context 
(Eugenia Gras et al., 2006). In that study a four-component structure was 
obtained after dropping one item (“misread signs, exit on wrong road”) and 
performing a PCA based on oblique and orthogonal rotation (the results of 
the orthogonal rotation were reported because the results did not differ 
markedly). The choice of the number of components to extract was made 
based on parallel analysis. The factor structure that was obtained comprised 
errors (with items intended to measure errors, lapses and aggressive 
violations loading on the factor), violations (with items intended to measure 
violations, aggressive violations and errors loading on it), interpersonal 
violations (with the three items commonly referred to as aggressive 
violations loading on it) and lapses (with three out of seven items intended 
to measure lapses loading on it).  

In addition, administering the 28-item DBQ to different driver groups has 
resulted in different factor structures.  Dimmer & Parker (1999) expected to 
uncover a four-factor structure (errors, lapses, aggressive violations, 
violations) on data collected from company car drivers, but ended up with six 
factors that were labelled errors, aggressive violations, violations / speeding 
violations, action slips, inattention lapses and not caring about the vehicle. 
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Similarly, Sullman, Meadows, & Pajo (2002) administered the 28-item DBQ 
to Australian truck drivers and began by extracting an eight-component 
solution, which they subsequently dropped. They also dropped certain items 
and extracted four principal components (which they dubbed errors, 
violations, lapses and aggressive violations) based on 22 items, dropping 
the rest of the items. The authors performed PCAs with varimax rotation and 
chose the number of components by examining the scree plot.  

Besides the 27 / 28-item DBQ, several versions of the instrument, 
differing in the number and nature of latent variables and items, have been 
developed. For instance, Åberg & Rimmo (1998) constructed a Swedish 
version of the DBQ to measure violations, mistakes, inattentional errors and 
inexperience errors using 104 items. In addition, Kontogiannis, Kossiavelou, 
& Marmaras (2002) constructed an instrument, also naming it the DBQ, that 
measures mistakes, highway code violations, negligence, aggressive 
violations, lapses, social disregard and parking violations using 112 items, 
while Özkan & Lajunen (2005) suggested adding a positive behaviors 
subscale to the instrument so that it would measure violations, errors and 
positive behaviors using 38 items. Similarly, culture-specific versions of the 
instrument have been created for individual studies: for instance, Sümer 
(2003) formulated a Turkish version of the instrument with 28 items specific 
to the Turkish traffic context while Xie & Parker (2002) constructed a 29-
item Chinese version of the DBQ containing specifically Chinese traffic 
behaviors such as driving on a bicycle lane when the road is congested. These 
different versions of the instrument are not directly relevant for the concerns 
of the present thesis, but are mentioned here for the sake of completeness. 

1.1.1 Studies examining the measurement properties of the DBQ 
Early DBQ studies such as Blockey & Hartley (1995) raised the question that 
the DBQ factor structures might differ across countries, traffic cultures, 
drivers of different ages and across sexes. The similarity of DBQ factor 
structures across groups of respondents has subsequently been investigated 
using different methods.  

The first study to investigate the measurement properties of some version 
of the DBQ was a Swedish study that focused on the 32-item version of DBQ-
SWE that aims to measure violations, mistakes, inattention errors and 
inexperience errors (Rimmö, 2002). The model fit roughly equally well 
across sexes and in data from new and inexperienced drivers (in all groups 
the RMSEA was < 0.05, for instance). Model fit to data from young drivers 
and experienced drivers was slightly worse.  

The above-mentioned study of Lajunen et al. (2004) was close in spirit to 
Study II of the present thesis in that both studies compared factor structures 
across traffic cultures. Lajunen et al. (2004) based their analysis on 
comparing the similarity of EFA loadings across three countries (Great 
Britain, Finland and the Netherlands) based on several descriptive statistics 
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(Pearson correlations, Tucker’s Phi coefficients, additivity and identity 
coefficients). Many of these indices received quite high values when 
comparing the factor structures; for instance, the correlations between the 
factors across samples ranged from 0.86 to 0.91 and the Tucker’s phi values 
from 0.94 to 0.98, respectively. It seems clear, then, that the factors 
examined by Lajunen et al. (2004) were quite similar across samples. 
Translated into the language of measurement equivalence testing (Section 
2.3.2.), the result most closely corresponds with testing the configural 
equivalence of the factor solutions across countries; in other words, assessing 
whether the factor loading patterns were similar across countries. Still, 
Lajunen et al. (2004) describe several important differences in these patterns 
across the countries. The present thesis builds on these results by 1) teasing 
apart different forms of similarity of factor structures and 2) presenting 
rigorous statistical tests on the similarities of factor structures across groups 
of drivers. Similarly, Özkan, Lajunen, Chliaoutakis, Parker, & Summala 
(2006) investigated the cross-cultural similarity of the DBQ factor structures 
across data sets obtained from Finland, Great Britain, Greece, Iran, the 
Netherlands and Turkey. The study was based on a 19-item version of the 
DBQ that was obtained by dropping the 8 items related to lapses from the 27-
item version of the instrument. A confirmatory factor analysis indicated that 
the model had at best a moderate fit to data from the six countries (for 
instance, the values of the CFI fit index ranged from 0.79 to 0.87 and the 
RMSEA ranged from 0.05 to 0.09). The authors also investigated the 
similarity of EFA patterns across countries using the same indices as Lajunen 
et al. (2004). Unlike Lajunen et al. (2004), they state that the factors 
aggressive violations and errors were quite dissimilar across countries. The 
remaining factor, ordinary violations, was more similar across countries. 

The stability of 2–6 factor solutions of a 21-item version of the DBQ 
across time was investigated by Özkan, Lajunen, & Summala (2006). The 
authors found that only the two- and four-factor solutions were interpretable 
across time. Among these, only the two-factor solution showed adequate 
stability across time, leading the authors to conclude that “In spite of its good 
cross-cultural validity, DBQ showed surprisingly low test–retest factor 
stability over three years in the present study”. In addition, at least two other 
studies have assessed the longitudinal measurement equivalence of the DBQ. 
Roman et al. (2015) concluded that longitudinal scalar equivalence 
(equivalence of factor loadings and item intercepts, see Section 2.3.2) of the 
27-item DBQ holds in a sample of young drivers (same data as used in Study 
III of the present thesis), while longitudinal scalar equivalence holds for a 47-
item version of the DBQ after dropping certain items in a sample of old 
drivers (Koppel et al., 2018). 

 The fit of two-, three-, and four-factor models in different subgroups of 
Danish respondents that were constructed based on age, sex and annual 
mileage was tested by Martinussen, Hakamies-Blomqvist, Møller, Özkan, & 
Lajunen (2013), who administered a 27-item version of the DBQ that they 
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had derived from the original 50-item DBQ. The two-factor model of errors 
and violations fit the data quite poorly, while the three-factor model of 
errors, lapses and violations and the four-factor model of unfocused errors / 
lapses, emotional violations, reckless violations / lapses and confused errors 
/ lapses had a better fit to data. Nonetheless, none of the three models had 
adequate fit in terms of the CFI index in any of the 15 subgroups in which the 
model was fit.  

Various studies on the measurement equivalence of the DBQ have been 
carried out since Study I of the present thesis was published. Stephens & 
Fitzharris (2016) carried out a rigorous study assessing the measurement 
equivalence of the 28-item DBQ across age groups and genders in a 
representative sample of Australian drivers. The study employed a largely 
similar experimental design as Study I, even though Stephens & Fitzharris 
(2016) used using Confirmatory Factor Analysis (CFA) instead of Exploratory 
Structural Equation Modeling (ESEM) as an analysis method.  Stephens & 
Fitzharris (2016) fit a four-factor model derived from earlier research 
(violations, aggressive violations, lapses and errors) and found that the 
model had a “tolerable” fit to the whole sample of drivers once the error 
variances of the speeding-related items were allowed to covary. Full strong 
(scalar) equivalence was found when comparing genders, while partial strong 
equivalence was obtained when comparing the age groups of 26–39-year-
olds and 40–64-year-olds. The four-factor model fit only after dropping 
several items and correlating certain error variances in the youngest and 
oldest age groups (drivers of ages 17–25 and 65–75 years, respectively), and 
it was deemed inappropriate in a group of professional drivers. Further, the 
four-factor model employed by Stephens & Fitzharris (2016) has been shown 
to work quite well in an Italian sample (Spano et al., 2019). 

In Stanojevi , Lajunen, Jovanovi , Sârbescu, & Kostadinov (2018), none 
of the commonly used factor solutions (ones with either two, three or four 
factors) fit adequately when comparing model fit across three South-East 
European countries (Bulgaria, Romania and Serbia) based on the 27-item 
DBQ. Adding higher-order factors to the model did not produce adequate 
model fit, either. Because of this, the authors ended up with two factors (or 
PCs, errors and violations) that were qualitatively roughly similar across the 
three countries. The authors also compared the frequencies of individual 
traffic behaviors across the countries to better understand the differences 
between the countries.  

Sullman et al. (2019) fit an EFA in one sample of drivers in New Zealand 
and used CFA in an independent sample to test model fit. After running the 
EFA, the authors deleted two items (drunk driving and overtaking on the 
inside). The factor loadings of the EFA indicated that the factors were 
different in nature from those reported by e.g. Lajunen et al. (2004) and 
Stephens & Fitzharris (2016) but still similar enough that their original 
names were retained. The authors concluded the configural model fit well 
(even though some of the fit indices, such as the CFI at 0.90 had not entirely 
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satisfactory values) and proceeded to comparing factor means across gender, 
age groups and drivers who had vs. had not been involved in a crash.  

Other studies carried out in different traffic cultures have indicated that 
the four-factor model fails to offer a universally applicable factor solution for 
the 27 / 28 –item DBQ. For instance, in a study based on the 28-item DBQ in 
China (Chu, Wu, Atombo, Zhang, & Özkan, 2019) a solution with three 
factors was deemed appropriate. The first factor was named errors even 
though it comprised also different behaviors traditionally considered as 
violations (drink & drive, disregard speed limit, close following, forcing 
your way on another lane), while the violations factor comprised mostly 
items that are in one way or another related to aggressive behavior. The 
authors also removed several items from the instrument “to optimize its 
psychometric properties”; the items included, among others, two items 
related to exceeding speed limits and one related to driving when drunk.  

The relationships between the DBQ and being involved in a car crash have 
mainly been examined by correlating the latent variables with accident data. 
These correlations have been examined in two meta-analyses (de Winter, 
Dodou, & Stanton, 2015; de Winter & Dodou, 2010). Due to different 
numbers of items and factors in the various DBQ studies, the analyses in 
both studies were based on the errors / violations dichotomy. According to 
the first meta-analysis (de Winter & Dodou, 2010), errors and violations have 
roughly similar zero-order correlations with being involved in a car crash 
(0.10 and 0.13, respectively). The second meta-analysis (de Winter et al., 
2015) updated the correlations to 0.09 and 0.13, respectively.  

The use of the DBQ as a tool for predicting accidents has, however, also 
been questioned on several grounds. First, the correlation between the DBQ 
scales and self-reported crashes has been argued to arise due to common 
method variance, since it has been shown that the original 50-item version of 
the scale predicts self-reported crashes, but not those that have been shown 
to occur to bus drivers according to company records or to drivers according 
to police records (af Wåhlberg, Dorn & Kline, 2011). Similarly, another meta-
analysis (af Wåhlberf, Barraclough & Freeman, 2015) indicated that the 
correlation between the violations scale and self-reported accidents was 
much higher (r = 0.147) than that between the violations scale and recorded 
crashes (r = 0.023); the meta-analysis also argued that the higher correlation 
between the self-reported crashes and the violation scale may have been due 
to common-method bias and the confounding effects of exposure.  

Interestingly for the present thesis, a previous study (Wallén Warner, 
Özkan, Lajunen, & Tzamalouka, 2011) has also examined the relationships 
between individual driver behaviors and being involved in a crash. The study 
found regression coefficients in the range of 0.12 – 0.32 for individual traffic 
behaviors in a Poisson regression analysis that controlled for age, gender and 
annual mileage.  In an analysis incorporating data from different countries, 
crashes were predicted by getting angered, disregarding the speed limit on 
the motorway (interestingly with a negative coefficient, i.e. that speeding 
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protected the drivers from crashes), disregarding the speed limit within 
residential areas, overtaking on the inside, pulling out of a junction 
dangerously and getting into a wrong lane after a roundabout (again with a 
negative coefficient). In analyses that considered different countries 
separately, overtaking on the inside was found to be predictive of crashes in 
Greece and becoming angered and disregarding the speed limit within 
residential areas in Turkey. 

Overall, a remarkable number of instruments, all referred to as “the 
DBQ”, have been published. The instruments differ in the number and 
content of items, number and nature of latent variables and the methods of 
data analysis used to arrive at the latent variables. The measurement 
properties of the various versions of the DBQ have been examined using 
descriptive statistics such as correlations among factor loadings across 
groups, but also using modern measurement equivalence analyses (see also 
Section 2.3.2). No universally well-fitting model has been found, even though 
the common 2- and 4-factor solutions for the 27- / 28-item version of the 
DBQ have shown at best even strong measurement equivalence across 
groups of drivers or across time; then again, other studies performed in 
different traffic cultures have shown that the same models do not fit data at 
all. 

1.2 Motivation for the studies of this thesis 

When operating within the latent variable view of errors and violations, 
being able to correctly specify the relationships between the observed and 
latent variables (in this case, traffic behaviors and the GEMS variables, 
respectively) is a critical prerequisite for using the latent variables in further 
analyses, such as predicting accidents. More technically: correctly specified 
measurement models are a prerequisite for formulating intelligible structural 
models (see e.g. Kline, 2011, ch. 7). Likewise, for between-group comparisons 
on the latent variables to make sense (for instance, for asking whether men 
and women are equally violation-prone in traffic), the measurement models 
must be correctly specified and the same measurement model must apply 
across groups. In other words, the observed variables must be connected to 
the correct latent variables in models such as the one given in Figure 1, and 
the same measurement model must apply to all the groups to be compared. 
Self-report studies of traffic behavior have since the seminal publication 
(Reason et al., 1990) been motivated by an interest in comparing groups on 
the latent variables and in predicting accidents, but as described in Section 
1.1., rigorous studies investigating the measurement properties of the DBQ 
have been scarce.  

Studies I and II in this thesis address the measurement properties of 
the DBQ. Study I is based on data previously collected in Finland; study II 
based on data previously collectd in Finland and Ireland. More specifically, 
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Studies I and II focus on whether the psychological properties outlined in the 
GEMS can be similarly measured across subgroups of respondents that are 
formed based on age, gender and nationality. The conclusions of these 
articles are largely critical in that they highlight shortcomings in the 
measurement properties of the DBQ. From the practical point of view this is 
important, since the operationalized GEMS variables have been widely used 
as mediators when relating various background variables to accident risk. 
For instance, error- and violation-proneness have been regressed on 
background variables such as driving experience, age and sex while using 
them as predictors of accidents. Such models make sense only when the 
latent variables have the same structure (or “mean the same thing”) across 
subgroups of people. Thus, even though sum scores have been widely used in 
various analyses, the assumption that the instrument functions similarly 
across (groups of) respondents has often been taken for granted instead of 
being rigorously assessed.  

Study III offers a constructive contribution in terms of presenting a 
network model of traffic behavior. It is based on publicly available data 
collected in the United Kingdom. The contribution can be understood by 
making a comparison with the causal assumptions of the latent variable view 
of errors and violations, according to which the individual driving behaviors 
(speeding, drunk driving, misjudging speeds or distances etc.) function as 
causally passive reflections of the underlying latent variables. In a network 
model, on the other hand, direct pairwise relationships among the traffic 
behaviors are the phenomenon of main interest. For instance, it is assumed 
that drivers who are more likely than the average driver to speed may also be 
more likely to overtake others dangerously, miss observing traffic signs or 
other road users and so on. Such direct associations are problematic for the 
latent variable view of violations and errors because according to that view, 
speeding and missing observing something function as measurements of 
different latent variables (violations and errors, respectively). 

One of the essential problems of comparing sum scores of observed DBQ 
variables can be illustrated by the following thought experiment from Study 
III (the same logic applies - mutatis mutandis - to comparisons of latent 
means): 

"Consider two imaginary persons filling in the DBQ: John, known for 
his quick temper, answers the three items related to aggressive 
behavior with the option “nearly all the time,” and reports 
performing no other violations, thus obtaining the sum score of 21. 
Bill, on the other hand, known for his careful nature, chooses the 
option “never” to the aggression-related items and the option “hardly 
ever” or “occasionally” to the other violation items. As there are many 
more items related to non-aggressive violations than to aggressive 
ones, both respondents receive identical scores, even though their 
behavioral profiles are quite different." 

Study III 
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Study III also presents a predictive model of crashes based on the 
individual traffic behaviors. This is in contrast to most of the predictive 
models based on the DBQ: it has been common practice to first create sum 
variables to represent the latent dimensions of interest and then use the sum 
variables in predicting accidents.  The model is motivated by the idea that an 
individual traffic behavior may function as an excellent predictor of 
accidents, completely irrespective of how much it correlates with other traffic 
behaviors. For instance, driving under the influence of drugs may well have a 
low correlation with other traffic behaviors, which would lead to the 
corresponding variable being rejected in a factor analysis – even though 
based on a clinical consideration, it is, on the contrary, important to include 
it as a predictor. Stated more technically, such analyses carry the benefit of 
capitalizing on the unique variation in the question items related to these 
behaviors. Still, it has been common practice to leave out items related to 
such infrequent driver behaviors precisely due to their low correlations with 
other items; see, e.g., Lajunen et al. (2004) and the distinction between the 
27- and the 28-item versions of the DBQ. 

Another novel contribution of the predictive models presented in Study 
III is that the models are built and tested in independent sets of data, thus 
offering a novel perspective to the generalizability of predictive models 
widely used in traffic psychology. Traditionally, such models have been fitted 
and tested in the same sample of data. This leads to good fit in that particular 
data set, but carries a risk of not generalizing to other data sets.  

The overarching theme across the three studies is that of measurement. 
Studies I and II assume the measurability of psychological properties such as 
error-proneness and violation-proneness and proceed to test a central 
characteristic of their measurement models – that of measurement 
equivalence. An important precondition must, however, be met in order for 
the measurement models to make sense: the psychological properties being 
measured must have quantitative structure. The issue is discussed at some 
length in Section 4.3. As the network models (Study III) do not necessarily 
entail the existence of quantitative psychological properties, they provide an 
interesting alternative to the measurement models traditionally used in 
traffic psychology. 
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2 METHODS 

Various kinds of Structural Equation Models (SEMs) were used when 
assessing the measurement properties of the DBQ. Study I was based on 
using Exploratory Structural Equation Models (ESEMs) to investigate the 
measurement equivalence of the DBQ across subgroups of Finnish 
respondents. ESEMs combine the flexibility of EFAs with the statistical tests 
commonly employed with Confirmatory Factor Analyses (CFAs). Study II 
utilized CFAs for the same purpose and also implemented a rigorous 
procedure for testing partial measurement equivalence. CFAs were used 
instead of ESEMs, as ESEMs were not yet at that time (year 2015) 
implemented in the open-source R programming environment, and the use 
of open-source software was seen as a value in itself. In addition, various 
graphical methods were used for making it easier to understand the 
multidimensional data. In Study III, psychological network models were 
constructed as representations of direct interactions among driving 
behaviors; in addition, regression models were built for predicting accidents 
according to the principles of statistical learning theory.  

 

2.1 Data 

The current dissertation is based on a re-analysis of previously collected data. 
In Finland, ethical review is not required for studies that are based on public 
documents, registries or archival data (National Advisory Board on Research 
Ethics, 2009). When it comes to the original studies where the data were 
collected, informed consent was inferred from returned postal or online 
questionnaires. 

The Finnish data used in Study I is a sample of 2000 Finnish car owners, 
stratified by age and gender and with an equal number of men and women. 
The total number of responses was 1126 (for details, see Mesken et al., 2002). 
After removing cases without data in any of the DBQ variables, 1017 cases 
were retained. The dataset has previously been used also by Lajunen et al. 
(2004) and Özkan et al. (2006). 

Study II was based on data on the driving behavior of young drivers (18–
25 years of age) from Finland and Ireland. The Finnish data comprised a 
stratified random sample from the driving license register (Lajunen & 
Summala, 2004). The overall response rate was 35.3 % and the sample size 
1051. The mean age of the Finnish respondents was 20.6 years, and median 
age 20. 62.5 % of the respondents were female, 37.5 % male. The Irish data 
(N = 816) comprised a convenience sample collected using an online 
questionnaire. The mean age of respondents was 20.3 and median age 20 



 

31 

years. 53.6 % of respondents were female, 46.4 % male. The respondents 
were college students at Trinity College, Dublin and visitors of online car 
forums or car sections of other online forums. The participants were 
motivated to participate by offering them a possibility of winning a gift 
voucher. The Irish data set contained no missing values as the online system 
used in data collection required the respondents to answer all the questions. 

Study III is based on data from the longitudinal Cohort II study from 
2001–2005 on new and novice drivers in the United Kingdom (Wells, Tong, 
Grayson, & Jones, 2008). The total sample size was 20,512 and the study 
comprised four waves of data collection with the following numbers of 
responses and response rates: 10,064 at 6 months (49%), 7,450 at 12 months 
(36%), 4,189 at 24 months (26%) and 2,765 at 36 months (26%) after 
licencure. The data comprised mostly young drivers: 59 % of respondents 
were under the age of 20 at the first wave of data collection, while 76 % were 
under the age of 25. This is representative of the population of newly licensed 
drivers in the UK. On the other hand, female drivers were slightly 
overrepresented, with 64 % of respondents (first wave) being female.  

The so-called between-person network model reported in Study III was 
formed based on average responses across the four waves of data collection. 
Only cases without any missing data at any time point were included, 
resulting in 1,173 observations. The respondents had a mean age of 24.04 
years (SD = 9.62) and 71% of them were female. In addition, a cross-sectional 
network model describing connections between driving behaviors and 
background variables was formed based on data collected at the first wave. 
The sample size was 8,858 when cases with no missing data in any of the 
variables were included. The respondents had a mean age of 22.51 (SD = 
7.95), and 64 % were female. The regression analyses were similarly based on 
data with no missing values on the independent variables or the dependent 
variable (number of crashes), resulting in a sample size of 1152, 69 % female.  

2.2 Questionnaires used 

The 28-item version of the DBQ (Table 2) was used in Study I of the present 
thesis. In Study II, the 27-item version was used. In Study III, the 28-item 
version served as the starting point, and certain additional items that were 
judged as potentially relevant determinants of other traffic behaviors were 
included. These additional items included driving after taking drugs and 
using a mobile phone while driving. In addition, variables related to the 
drivers’ self-image, self-perceived improvement needs and attitudes were 
included in the cross-sectional network analysis that is reported in Study III 
but not reproduced in the current thesis.  
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Table 2. The questionnaire items in the 28-item version of the DBQ with their intended 
factor loadings in the 2-, 3-, and 4-factor solutions. Dropping the last item in the table results in 
the 27-item version of the DBQ.  

  Latent variable in the solution with 

Item 
 
 

2 factors – 
Errors and 
Violations 

3 factors – 
Slips, 

Lapses and 
Violations 

4 Factors – 
Slips, Lapses, 
Violations and 

Aggressive 
Violations 

Hit something when reversing that you had not 
previously seen Error Lapse Lapse 

Intending to drive to destination A, you “wake up” to 
find yourself on the road to destination B Error Lapse Lapse 

Get into the wrong lane approaching a roundabout or 
a junction Error Lapse Lapse 

Switch on one thing, such as the headlights, when you 
meant to switch on something else, such as the 
wipers 

Error Lapse Lapse 

Attempt to drive away from the traffic lights in third 
gear Error Lapse Lapse 

Forget where you left your car in a car park Error Lapse Lapse 

Misread the signs and exit from a roundabout on the 
wrong road Error Lapse Lapse 

Realise that you have no clear recollection of the road 
along which you have just been travelling Error Lapse Lapse 

Queuing to turn left* onto a main road, you pay such 
close attention to the main stream of traffic that you 
nearly hit the car in front 

Error Slip Slip 

Fail to notice that pedestrians are crossing when 
turning into a side street from a main road Error Slip Slip 

Fail to check your rear-view mirror before pulling 
out, changing lanes, etc. Error Slip Slip 

Brake too quickly on a slippery road or steer the 
wrong way in a skid Error Slip Slip 

On turning left* nearly hit a cyclist who has come up 
on your inside Error Slip Slip 

Miss “Give Way” signs and narrowly avoid colliding 
with traffic having right of way Error Slip Slip 

Attempt to overtake someone that you had not 
noticed to be signalling a right* turn Error Slip Slip 
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Table 2. (continued) The questionnaire items in the 27-item version of the DBQ with 
their intended factor loadings in the 2-, 3-, and 4-factor solutions 

Underestimate the speed of an oncoming 
vehicle when overtaking 

Error Slip Slip 

Sound your horn to indicate your annoyance to 
another road user 

Violation Violation Aggression 

Become angered by another driver and give 
chase with the intention of giving him/her a 
piece of your mind 

Violation Violation Aggression 

Become angered by a certain type of a driver 
and indicate your hostility by whatever means 
you can 

Violation Violation Aggression 

Pull out of a junction so far that the driver with 
right of way has to stop and let you out 

Violation Violation Violation 

Disregard the speed limit on a residential road Violation Violation Violation 

Stay in a motorway lane that you know will be 
closed ahead until the last minute before 
forcing your way into the other lane 

Violation Violation Violation 

Overtake a slow driver on the inside Violation Violation Violation 

Race away from traffic lights with the intention 
of beating the driver next to you 

Violation Violation Violation 

Drive so close to the car in front that it would 
be difficult to stop in an emergency 

Violation Violation Violation 

Cross a junction knowing that the traffic lights 
have already turned against you 

Violation Violation Violation 

Disregard the speed limit on a motorway Violation Violation Violation 

Drive when you suspect you may be over the 
legal alcohol limit 

Violation Violation Violation 

* The items marked with an asterisk are worded as indicated in the table in studies 
conducted in countries that use left-hand traffic (in the present thesis United Kingdom 
and Ireland). When referring to right-hand traffic, words “left” and “right” are 
interchanged in these items. 

2.3 Statistical methods 

2.3.1 Structural equation models 
 

Two types of SEMs were used in Studies I and II: Exploratory Structural 
Equation Models (ESEMs, Asparouhov & Muthén, 2009) and Confirmatory 
Factor Analysis (CFA), respectively. 
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CFA and ESEM, being variants of factor analysis, build on the principle 
that variation in observed variables consists of reliable variance that is due to 
the latent variable(s) and of random error that is due to unmodelled causes. 
The error terms are assumed to be uncorrelated with the latent variables and 
the error terms of the other observed variables. CFA is confirmatory in that 
the analyst needs to specify, in advance, which model parameters to estimate. 
ESEM, on the other hand, comprises an EFA as a measurement model, and a 
central difference between CFA and ESEM is that in the latter, the 
relationships between the latent and observed variables do not need to be 
specified in advance (Asparouhov & Muthén, 2009).  

In a CFA, a matrix of factor loadings (i.e. regression equations regressing 
the observed variables on the latent variables) is always among the 
parameters that must be specified. The loadings are most usually given as a 
matrix of ones and zeroes: a one indicates that the loading is to be estimated, 
a zero that it will be constrained to zero (Gunzler & Morris, 2015). CFA is, 
however, a flexible method and it is possible to specify the factor loadings to 
any value of interest: for instance, it can be tested whether factor loadings 
obtained in a previous study offer a good fit to subsequently collected data 
(Kline, 2011). Further, in a multi-group analysis the values of factor loadings 
can be constrained to equality across groups as discussed below in Section 
2.3.2. Further parameters, such as correlations among the error terms of the 
observed variables, can also be specified.  

The general idea of a CFA can be introduced by looking at Figure 1, where 
the observed variables speeding, drunk driving etc. are specified to load on 
the latent variable violations, while the observed variables misjudge speed, 
miss signs and miss observing pedestrians load on errors. The error terms 
related to, e.g., drunk driving (e2) and showing aggression (e4) could be 
specified to correlate if the analyst believed that they share variation that is 
not in its entirety explained by the position that the respondent occupies on 
the latent variable violations.  

Figure 1 actually shows a full structural equation model that has a CFA as 
a part. The CFA is known as a measurement model as it specifies certain 
observed variables as measurements of the latent variables (the arrows 
emanating from the latent variables marked by the ellipses). In addition, the 
arrows emanating from the background variables (being a fast driver, being 
late etc.) and pointing to the latent variable violations describe a structural 
model that specifies the ways the latent variables are related to other 
variables; in this case, those other variables are their putative causes.  

The general idea of both CFA and the measurement model in an ESEM 
can be described by equation (1); see also Asparouhov & Muthén (2009) 

(1)  

Here, the p × 1 vector xi refers to the observed variables (i = 1…p), the p × 1 
vector i to the intercept terms, the m × 1 vector k to the latent variables (k = 

xi = νi + Λikηk + εi
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1…m), the p × m matrix ik to the influence the latent variables k are posited 
to have on the observed variables and the p × 1 vector i to the random error 
terms. It is standardly assumed that the error terms are normally distributed 
with mean 0 and a diagonal variance-covariance matrix , even though the 
error terms can also be specified to be correlated with one another. Under 
the standard model the observed variables are conditionally independent of 
one another given the latent variables, i.e. cov(xi,xj | k) = 0 for i  j.  

 Referring again to Figure 1, violations is the value of the latent variable 
violations and violations,speeding is the influence that violations has on speeding 
(here, the lowercase  refers to an individual regression coefficient whereas 
the uppercase  above refers to a matrix of such coefficients). speeding refers 
to the intercept term when regressing speeding on violations. The intercept 
terms express the values of the observed variables when the values of the 
latent variables are zero; i.e. in the case of speeding, the level of speeding that 
is unrelated to the level of the tendency to violate traffic rules. The intercepts 
are sometimes interpreted as indications of the level of acquiescent 
responding, i.e. the tendency to agree with the items irrespective of their 
content (Gregorich, 2006).  

The central idea of ESEMs can also be illustrated by referring to Figure 1. 
The ESEM is a general method, and both Exploratory Factor Analysis (EFA) 
and CFA can be considered as special cases of ESEM. Similarly to other 
structural equation models, an ESEM can contain both a measurement 
model and a structural model. In what follows, only the measurement models 
will be considered, as the studies included in the present thesis are based on 
using only measurement models.  

The conceptual idea of formulating the measurement model as an EFA –
as is commonly done when constructing an ESEM – amounts to allowing all 
observed variables to load on all latent variables. In terms of Figure 1, this 
would mean allowing factor loadings such as errors  speeding, errors  
drunk driving etc. and violations  misjudging speed, violations  missing 
traffic signs and violations  missing pedestrians. Obtaining unique 
solutions for the model parameters (i.e. identifying the model) necessitates 
specifying certain restrictions on the general model described in equation (1), 
since the total number of model parameters may not exceed the number of 
unique elements in the covariance matrix of data. In the ESEM context, this 
is accomplished by first estimating the model and then applying a rotation 
similarly to any other EFA; the question of rotations is addressed below. The 
estimation proceeds by 1) specifying the variance-covariance matrix of latent 
variables as an identity matrix (which gives m(m+1)/2 restrictions) and 2) 
fixing all entries in the p × m factor loading matrix above the main diagonal 
to zero (which gives m(m-1)/2 restrictions); Asparouhov & Muthén (2009). 
These restrictions enable obtaining the initial, unrotated model. Specifying 
the measurement model as an EFA is useful because even though the analyst 
might have a clear idea on which observed variables should be related to 
which latent variables, the possibility of cross-loadings (minor loadings on 



Methods 

36 

other factors) remains. Further, this way of specifying the measurement 
model leaves room for surprises: perhaps the intended structure of factor 
loadings fails to fit in the data at hand for one reason or another. On the 
other hand, this strength of the ESEM can also become its weakness in that 
the EFA is a data-driven method, and may, because of that, result in factor 
loadings that are specific to the sample of data at hand that may not replicate 
in another sample. 

As noted above, specifying a CFA model proceeds differently from 
specifying an EFA model: the analyst needs to specify which factor loadings 
(and other potential parameters) to estimate. In a typical CFA, only certain 
loadings are estimated, which frees up degrees of freedom for estimating 
other parameters (e.g. correlated error terms). Because of this flexibility, it is 
difficult to give an algebraic formula for describing when a CFA is identified. 
Nonetheless, what the analyst needs to do is to 1) choose a method for scaling 
the latent variables (usually either by fixing their variances to unity or by 
fixing a given factor loading to unity), 2) have a sufficient number of 
observed variables per latent variable, 3) think about the correlations 
between constructs (only a given number of correlated measurement errors 
can be specified for observed variables that load on different latent variables, 
or the latent variables can be specified to be uncorrelated), 4) estimate factor 
loadings such that for each observed variable, there is at least one other 
observed variable that it does not share a correlated measurement error with 
and 5) avoid specifying an excessive number of multiple loadings for any 
given observed variable to avoid problems with the so-called empirical 
idenfiability of the model (Kline, 2011, Chapter 6).  

As mentioned above, in an ESEM the initial estimation of the model is 
followed by rotating the factor matrix. Factor rotation refers to, as the name 
indicates, rotating the m-dimensional coordinate system with the m factors 
as the axes so that the loadings (points in the coordinate space) will be 
divided optimally among the factors (Browne, 2001). What is considered 
optimal in this case is a simple structure of factor loadings, i.e. roughly that 
items have a high loading on a given factor and low loadings on other factors.  

The rotations can be either orthogonal (latent variables are not allowed to 
correlate) or oblique (they are allowed to correlate). There are many different 
rotation methods that optimize different mathematical criteria, but among 
them, a method known as target rotation has benefits that the other 
methods lack. As the name indicates, target rotation aims to rotate the factor 
space to reproduce a structure of loadings specified by the analyst. The target 
values are typically zeroes (cf. CFA in which certain loadings are typically 
fixed to zero) representing substantive considerations such as prior 
knowledge of the relationships between the observed and latent variables. In 
practice, the analyst specifies a p × m target matrix B such as 
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The rotation function that is then applied is of the form: 

(2)  

Where aij equals 1 if b is specified and 0 otherwise (Browne, 2001). In the 
sum terms, p = number of observed variables and m = number of latent 
variables (factors). Identification conditions related to using target rotation 
in the ESEM context are described by Asparouhov & Muthen (2009, pp. 409-
411). Target rotation is flexible in that it allows the analyst to specify the 
expected pattern of loadings, but it nonetheless allows the loadings to differ 
from this structure in a data-driven manner. In this way, ESEM with target 
rotation can be considered to occupy a middle ground between CFA and EFA 
and to combine both their strengths. In a CFA, no rotation method needs to 
be used as the pattern of factor loadings of interest is specified by the analyst.  

A structural equation model is said to fit the data if it is able to reproduce 
the data accurately. One way to assess model fit is to compare the observed 
covariance matrix of the indicators of the latent variables (in this case, the 
DBQ items) with the covariance matrix reproduced based on the model. 
These can be compared using the 2-test, which, however, tends to produce a 
significant result whenever the test is applied in practice. This happens 
because a large sample size is required to apply the method in the first place, 
and because large sample sizes lead to even minuscule differences between 
the covariance matrices to become statistically significant. Because of this, a 
host of indices of approximate model fit have been developed (Kline, 2011, 
Chapter 8).  

In Studies I and II, different kinds of fit indices are reported. First, the 
Root Mean Square of Approximation (RMSEA) is used as a parsimony-
corrected badness-of-fit index. What this means is that the index penalizes 
for model complexity, and receives the value of zero when the model fits the 
data in the best possible manner. The Bentler Comparative Fit Index (CFI) 
measures model fit in reference to a baseline model, which is usually chosen 
to be a model where the observed variables are independent of each other. 
The Akaike Information Criterion (AIC) used in Study II is a comparative 
measure of fit, which means that it can be used for comparing several 
models, even though it is quite meaningless by itself. The AIC is based on the 

B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

? 0 0
? 0 0
? 0 0
0 ? 0
0 ? 0
0 ? ?
0 0 ?
0 0 ?

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

f(Λ) =

p∑
i=1

m∑
j=1

aij(λij − bij)
2
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2-statistic, the number of parameters to be estimated and the degrees of 
freedom, and it penalizes for the complexity of the model. Finally, the 
Standardized Root Mean Square Residual (SRMR) and the Weighted Root 
Mean Square Residual (WRMR) describe the size of the residual correlations, 
i.e. the correlations among the observed variables that remain after fitting 
the model to data. More information on the fit indices can be found, e.g., in 
Kline (2011, Chapter 8). 

2.3.2 Analyses of measurement equivalence 
 
In Studies I and II, the SEMs are used as tools in analyses of measurement 
equivalence, i.e. investigating whether the same latent variables are being 
measured in the same way across subgroups of respondents. The current 
standard practice in measurement equivalence analysis is based on research 
carried out by Meredith (1993). These analyses begin by investigating 
whether the observed variables are related to the same latent variables across 
groups, and then setting a series of increasingly tightening constraints on the 
models. These constraints are described in equation (3) and figure 3.  

Figure 3 shows a two-factor measurement model being fit in two groups, 
which might be chosen based on sex, age, traffic culture etc. The 
measurement model consists of two latent variables, 1 and 2 in both 
groups. In other words, fitting the models presupposes that the same two-
factor latent variable structure actually is the correct one in both groups. Any 
of the parameters of the model, such as the factor loadings  or the intercepts 

 can either be freely estimated in both groups or constrained to equality 
across groups. Conceptually, analyses of measurment equivalence consist of 
comparing the fit of models with and without such constraints; for instance, 
if a model that constrains the factor loadings  to equality across groups fits 
roughly equally well as a model without such constraints, the factor loadings 
can be judged to be equal across groups.  
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Figure 3 An illustration of analysis of measurement equivalence with two groups. The 
bidirectional arrows refer to correlations, the directed arrows to regression 
relationships. The superscripts represent the groups, i.e. 

1

1 
refers two latent 

variable 1 in group 1, 
2

1 
to latent variable 1 in group 2 and so on.  = covariance,  

 = latent variable,  = factor loading,  = error variance,  = intercept term (the 
value of the observed variable when the value of the latent variable = 0).  

Measurement equivalence analyses begin by fitting the same model 
separately in the different groups and assessing model fit. This stage is called 
analysis of configural equivalence. Reaching configural equivalence requires 
that the same subsets of items are related to the same latent variables. In 
figure 3, this is the case, since items 1-3 are related to latent variable 1 and 
items 4-6 to latent variable 2 in both groups.  

When following the procedure suggested by Meredith (1993), establishing 
configural equivalence is followed by a sequence of equivalence models 
known as weak (or metric) equivalence model, strong (or scalar) equivalence 
model and strict equivalence model. In these models, factor loadings , item 
intercepts  and item error variances  are, respectively, constrained to 
equality across groups in a multigroup CFA / ESEM model. 

The measurement equivalence constraints can be illustrated by equation 
(3), which expresses the value of an observed variable xi as a function of the 
latent variables k  

(3)   

where xg
i is the p × 1 vector of observed variables (i = 1…p) in group g, g

i is 
the the p × 1 vector of intercept terms when regressing xg

i on g
k, the m × 1 

vector k of latent variables (k = 1…m) in group g, g
ik is the p × m matrix 

xg
i = νgi + Λg

ikη
g
k + εgi
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describing the influence that the latent variables g
k are posited to have on the 

observed variables in group g and g
i  is the p × 1 vector of random error terms. 

The standard assumption in the model is that the error terms are normally 
distributed with mean 0 and a diagonal variance-covariance matrix  (even 
though the error terms can also be specified to be correlated with one 
another). Under the standard model, given the latent variables, the observed 
variables are conditionally independent of one another, i.e. cov(xi,xj | k) = 0 
for i  j. Equation (3) applies to CFA analyses based on continuous observed 
variables xi and is used here to illustrate the conceptual logic of measurement 
equivalence analyses.  

If the configural equivalence model is deemed to fit equally well across 
groups, a constraint is introduced into the models: the respective factor 
loadings are constrained to equality across groups (for instance, 1

1 = 2
1 , 

1
2 = 

2
2, 1

3 = 2
3 and so on in equation (3) and figure 3). This constraint is known 

as weak measurement equivalence (or metric equivalence; Meredith, 1993; 
Gregorich, 2006).  

As the factor loadings are taken to be causal influences under the 
reflective measurement model, the test of weak equivalence is often 
interpreted as showing that the latent variables have the same meaning 
across groups, i.e. that they are interpreted in the same way across groups. 
The latent variable view of errors and violations is built on the framework of 
reflective measurement models (Howell, Breivik, & Wilcox, 2007).  

If the weak / metric equivalence model does not fit significantly worse 
than the configural equivalence model, an additional constraint is 
introduced: the item intercepts are constrained to equality (e.g. 1

1 = 2
1 , 

1
2 = 

2
2 , 

1
3 = 2

3 , and so on, equation (3) and figure 3). Passing this test – known 
as the test of strong (or scalar) equivalence – enables the researcher to 
compare factor means across groups, as in that case systematic biases in item 
means can be judged to be similar enough in the groups under comparison 
(Meredith, 1993; Gregorich, 2006).  

If strong measurement equivalence is established, item errors can be 
constrained to equality (e.g. 1

1 = 2
1 , 

1
2 = 2

2 , 
1
3 = 2

3  and so on, equation (3) 
and figure 3). This constraint is known as that of strict equivalence, and can 
be interpreted as showing that the observed variables have similar 
reliabilities across groups (Meredith, 1993; Gregorich, 2006). It is also 
noteworthy that this test needs to be passed for comparisons of sums of 
observed variables to be warranted. Comparisons of such sum variables have 
been of interest in studies of self-report traffic behavior since the seminal 
study of Reason et al. (1990), but to the best of my knowledge, no study has 
ever showed the strict equivalence to hold for the models in question.  
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Statistical tests on whether the constrained models fit the data are based 
on the idea of nested models. For instance, the weak equivalence model is 
nested within the configural equivalence model and the strong equivalence 
model in the weak equivalence model; in other words, the set of parameters 
constrained to equality is a subset of the set of parameters estimated in the 
previous model. This makes it possible to use the 2-test to compare the 
models and to calculate various fit indices to assess how much model fit 
worsened through introducing the constraint.  

2.3.3 Introduction to network analysis 
 
The network approach to data analysis can be seen as a practical application 
of mathematical graph theory. Network methods have been applied in 
domains ranging from different branches of physics to biology, computer 
science, economics, sociology and traffic research  (Borgatti, Mehra, Brass, & 
Labianca, 2009; Holme, 2003; Mason & Verwoerd, 2007; Newman, 2008).  

In network analysis, the phenomenon of interest is described using nodes 
connected by edges, which can be either weighted or unweighted. For 
instance, when analyzing air traffic, the nodes might correspond to airports 
and the weighted nodes to traffic volumes between them. Further, depending 
on the analysis question, the edges may be signed in addition to being 
weighted. For instance, when analyzing social networks, the intensity of 
friendship relations might be represented as positively signed weighted edges 
and the intensity of adversarial relations as negatively signed weighted edges. 
Figure 4 illustrates these ideas. The unweighted network in the left panel 
could correspond to airline routes between cities or social connections 
between people. The weighted and signed network in the center might 
represent social relations, with nodes (persons) 3 and 5 having a strong 
positive connection, nodes (persons) 1 and 3 having quite a strong negative 
connection and so on.  
 

 

Figure 4 Examples of network graphs. Panel A: an unweighted graph. Panel B: a weighted 
and signed graph, with continuous lines representing positive edges and dashed 
lines negative edges between nodes. Panel C: Network from panel B represented 
as a matrix. 
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The network perspective has recently been applied in modeling 
psychological phenomena. This approach has come to be known as network 
psychometrics (Epskamp, 2017), and the resulting models have been 
referred to as psychological networks. In such models, nodes represent 
psychological variables such as symptom scores, self-reported behaviors, 
experiences or attitudes etc. The edges represent statistical relationships 
between the variables quantified in some way. Cross-sectional psychological 
networks have usually been based on co-occurrence data of one sort or 
another, either correlations (Cramer et al., 2012a) or – as has become more 
common – partial correlations controlling for the rest of the nodes of the 
network (Epskamp & Fried, 2018). As such, the networks would only be 
visualizations of partial correlations. They become models of the underlying 
phenomena through low partial correlations being constrained to exactly 
zeroes by using a regularization method such as LASSO estimation (Least 
Absolute Shrinkage and Selection Operator, introduced in more detail in 
section 2.3.6. below and in Epskamp & Fried, 2018). Network models can 
also be constructed based on longitudinal data, where the vector 
autoregression method has most commonly been applied (Epskamp et al., 
2018). Longitudinal data makes it possible to estimate both 
contemporaneous (relationships between nodes at the same time point) and 
temporal (an earlier observation predicts a latter one) relationships. The 
temporal dimension enables the analyst to construct directed networks 
where the edges are asymmetric. The issue is mentioned here mainly for the 
sake of completeness, since intensive longitudinal data of this type was not 
used in the present thesis. 

The psychological network models build on the idea of Gaussian 
Graphical Models (Lauritzen, 1996), which, as the name implies, assume 
multivariate normally distributed data. In the cross-sectional case, the 
network structure is related to the inverse of the covariance matrix (also 
known as the precision matrix). Given a p-dimensional multivariate normal 
vector X with covariance matrix  and precision matrix , a key property of 
the precision matrix is that zero entries show that pairs of variables are 
conditionally independent given all other variables. Partial correlations are 
then obtained by standardizing the off-diagonal elements of the precision 
matrix and reversing their signs. These issues, together with estimation 
methods, are described in more detail in, e.g., Kuismin & Sillanpää (2017).  

The phenomena of main interest in network models conceived as GGMs 
are the conditional (in-)dependence relationships between pairs of variables 
xi and xj when conditioned on all other variables xk (k i,j). The edges that 
remain between nodes xi and xj in such networks are interpreted as pairwise 
interactions that can be given substantive interpretations. These direct 
relationships are assumed to represent either uni- or bidirectional causal 
connections, logical entailments (for instance, if questionnaire items contain 
“I am able to walk 100 m” and “I am able to walk 1 km”, answering in the 
affirmative to the second entails an affirmative answer to the first, 
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Kossakowski et al., 2016), semantic relationships of the items having similar 
contents or indeed, in some cases the effects of an unmodeled latent variable 
affecting the nodes (Costantini et al., 2015).  

The role and interpretation of partial correlations in cross-sectional 
network models can be contrasted with how they are used in factor analysis, 
where partial correlations (conditioning on all other variables) are treated 
mainly as a nuisance. For instance, measures such as the KMO measure of 
sampling adequacy and the examination of anti-image correlation matrices 
indicate that data is suitable for factor analysis when the off-diagonal 
elements of partial correlation matrices are small (see, e.g. Hauben, Hung, & 
Hsieh, 2017, for a practical application of these ideas). This practice reflects 
the causal assumptions made in latent variable models: the observed 
variables correlate because they are affected by underlying latent variables. 
So, even though cross-sectional psychological network models (NMs) and 
latent variable models are both based on assessing the covariance of the 
observed variables, the underlying causal assumptions and the role of 
pairwise interactions are markedly different.  

A hypothetical cross-sectional network model of traffic behavior was 
shown in Figure 2 in Section 1. First, the different causal assumptions of 
CFAs and NMs can be understood by comparing Figure 2 with Figure 1. 
While the items showing aggression, overtaking on the inside, drunk 
driving, and speeding are assumed to reflect the influence of a latent variable 
– proneness to violate rules – in the reflective measurement model shown in 
Figure 1, they are shown as being connected by direct edges in the NM shown 
in Figure 2. Such edges can be readily given a causal interpretation: being 
drunk can be hypothesized to lead to aggressive behavior and to exceeding 
speed limits, for instance. With cross-sectional data, such causal hypotheses 
can naturally not be proven or disproven. While such direct connections can 
in principle be represented in CFAs as correlated error terms of the observed 
variables, this is possible for only a few observed variables at a time (due to 
reasons related to the identifiability of the model, see, e.g. Chapter 6 in Kline, 
2011 or Gunzler & Morris, 2015); stated technically, local independence is 
said to be a fundamental assumption of SEMs / CFAs. Further, the 
fundamental assumption of CFAs remains: in them, traffic behaviors are 
causally determined by underlying psychological properties.  

Second, insofar as the edges of the NM are drawn based on partial 
correlations, the NM represents relationships of conditional independence 
among the traffic behaviors. Looking at Figure 2, this would mean, for 
instance, that speeding and showing aggression have been shown to be 
conditionally independent when conditioning on the other nodes of the 
network. Importantly, this would not mean that speeding and showing 
aggression would need to be uncorrelated in the raw data; rather, their raw 
correlation would be interpreted as being explained by the (potentially 
causal) relationships they have with the other nodes of the network. Even 
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though Figure 2 is drawn using unweighted edges, the partial correlation 
network would naturally include weighted edges.  

Finally, the NM shown in Figure 2 includes direct connections between 
background variables and the traffic behaviors. For instance, enjoying speed 
and owning a comfortable car are shown as directly linked to speeding 
instead of the latent variable violations as in Figure 1. Even though such 
connections would be possible to specify even in SEMs, they would not 
accord with the fundamental motivation of using reflective measurement 
models as in them, the observed variables function as causally passive 
indicators (or measurements) of the underlying latent variables, such as 
violation-proneness and error-proneness. All in all, in a psychological 
network model, individual observed variables are seen not as indicators of 
latent factors, but rather as components of a network, with a component 
referring to a part of the network having unique causal relationships with the 
rest of the network (Borsboom, 2017; Cramer et al., 2012a).  

Various descriptive indices have been developed to characterize networks. 
The indices have a long history, and they have been developed outside the 
context of network psychometrics. The indices belong into two main classes, 
centrality indices and clustering indices. The former describe the importance 
of nodes in a network in different ways, the latter the redundancy of the 
nodes. The perhaps simplest centrality index indicates the number of nodes 
that the focal node is connected and is known as the degree of the node. A 
generalization to weighted networks is known as the strength of a node, and 
it indicates the sum of the absolute values of the connection weights of the 
focal node. Both degree and strength are concerned with the connections that 
the focal node has with its immediate neighbors, i.e. nodes that it is directly 
connected with (Opsahl, Agneessens, & Skvoretz, 2010). 

There are, in addition, centrality indices that consider the relationships 
that a focal node has with all other nodes. Closeness centrality is, for 
instance, defined as the reciprocal of the summed distances to other nodes 
from a focal node (Opsahl et al., 2010), with distance referring to the 
reciprocal of connection strength in weighted networks. Thus, a node with 
high closeness centrality can reach other nodes quickly; for instance, in a 
social network, an individual with high closeness centrality would easily be 
able to affect the opinions of other people. In addition, betweenness 
centrality indicates the number of times that the focal node lies on the 
shortest path between two other nodes (Opsahl et al., 2010).  

In psychological network models, the centrality indices have been used in 
identifying nodes (symptoms, behaviors, attitudes etc.) that play an 
important role in the network in some sense. It has been suggested, for 
instance, that central symptoms in a depression network may be useful for 
predicting the probability of relapse and the treatment response (Fried, 
Epskamp, Nesse, Tuerlinckx, & Borsboom, 2016). The edges in psychological 
networks are often interpreted through the idea of activation: central nodes 
are seen as important determinants of whether other nodes become activated 



 

45 

or not. There are numerous further indices to describe node centrality in 
networks, and more information on them can be found in, e.g., Koschützki et 
al. (2005).  

Clustering indices (Saramäki, Kivelä, Onnela, Kaski, & Kertesz, 2007) 
come in two flavors, local and global. In the present thesis, only local 
clustering indices are examined. The local clustering coefficient of a focal 
node describes how strongly its neighbors are connected with each other; the 
stronger these connections are, the more redundant the focal node in the 
network.  

Many of these indices have been first developed for describing 
unweighted networks and then generalized to apply to weighted networks. 
Some clustering indices, such as Zhang’s index used in Study III have also 
been generalized to the weighted and signed case (Costantini & Perugini, 
2014). This is not the case for the centrality indices, though, so absolute 
values of connection weights were used when calculating them.  

2.3.4 Statistical methods for Study I 
 

Study I was based on combining the use of CFA (referred to in the article as a 
Structural Equation Model) and an ESEM. The models were built for 
comparing the factor structures of the 27-item DBQ across age groups and 
genders in a sample of Finnish drivers.  

The ESEM combines features of Exploratory Factor Analysis (EFA) and 
Confirmatory Factor Analysis (CFA) in that the measurement model is 
estimated similarly to an EFA, while model fit is described similarly to CFA  
(Asparouhov & Muthén, 2009). Further, and importantly for present 
purposes, the ESEM enables multi-group measurement equivalence 
analyses. Article I refers to them as analyses of “measurement invariance”, 
but this nomenclature is unnecessarily complicated, as the lack of 
measurement invariance would be referred to “measurement non-
invariance”. The terms “measurement equivalence” and “measurement non-
equivalence” are thus used in the present thesis.  

In Study I, in which the observed variables are treated as ordinal, the 
model specified in equation (1) is modified such that X is replaced by X* 
according to equation (4).  

(4)  

In other words, it is acknowledged that the ordinal variables X provide an 
imperfect approximation of underlying continuous variables X*, and that it 
would in principle be possible to obtain more accurate estimates of the values 
of these properties. For instance, if x refers to frequency self-reported 
speeding on a Likert scale from 0 to 5, x* might be actual time spent 

X = k ⇔ τk < X∗ < τk+1
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speeding, cut into discrete categories at thresholds 0… c, where c = 5. In 
Study I, the Likert variables had highly skewed distributions, and were 
consequently recoded as follows: 0 = 0, 1 = 1, 2–5 = 2.  

In Study I, factor loadings were estimated as in an exploratory factor 
analysis. Model identifiability was ensured by placing several constraints on 
the parameters of the model. These constraints are not essential for 
understanding the conceptual logic of the present study, but they can be 
found in Asparouhov & Muthén (2009), equations (5) – (14). An important 
consideration in performing an ESEM analysis is that of choosing a suitable 
rotation method. In Study I, an oblique target rotation to structure derived 
from an earlier study (Lajunen et al., 2004) was applied; the target was 
chosen to reflect a clean simple structure without cross-loadings.   

The equation for target rotation is shown above in equation 2. It is based 
on minimizing the squared differences between the actual loadings ij and 
the prespecified targets bij. Treating the observed variables as ordered 
categorical influenced the analyses of measurement equivalence, as well. This 
had two consequences: 1) When testing strong measurement equivalence, 
item thresholds  rather than item intercepts  were constrained to equality 
and 2) weak and strong measurement equivalence were tested at the same 
time for model identification purposes  (Muthén & Asparouhov, 2002). Even 
though tests of weak and strong equivalence could not be teased apart, the 
essential conceptual logic of measurement equivalence testing remained the 
same. The analysis plan for Study I is shown in Figure 5. 

The fit of the models used in Study I was assessed using the following fit 
indices: 2-test, RMSEA, CFI, TLI and WRMR.  
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Figure 5 Analysis plan for Study I. The rectangles circled in bold line show the analysis path 
that was followed. 

2.3.5 Statistical methods for Study II 
 

Study II was based on the use of CFAs instead of ESEMs. CFA analyses 
followed the conceptual logic of fitting SEMs (section 2.3.1.) and performing 
analyses of measurement equivalence (section 2.3.2.) presented above. In 
Study II, more fine-grained distinctions related to measurement equivalence 
were made than in Study I. First, treating the observed variables as 
continuous enabled teasing apart analyses of weak and strong measurement 
equivalence. Second, analyses of partial measurement equivalence were 
performed. The analysis plan followed in Study II is presented in Figure 6.  

 

Compare fit of SEM 
and ESEM models 

If models fit equally 
well, proceed 

within the SEM 
framework 

Assess configural 
equivalence 

If adequate, assess 
combined weak & 
strong equivalence 

If adequate, assess 
strict equivalence 

End analysis 

If ESEM fits better, 
proceed within the 
ESEM framework 

Assess configural 
equivalence 

If adequate, assess 
combined weak & 
strong equivalence 

If adequate, assess 
strict equivalence 

End analysis 

If not adequate, 
examine configural 

models across 
groups separately 

End analysis 
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Figure 6 Analysis plan for Study II. The rectangles circled in bold line show the analysis path 
that was followed in Study II. 

Partial measurement equivalence refers to constraining only a subset of 
parameters to equality at each stage of equivalence testing. The idea can be 
illustrated by an example. Let us assume that an analyst has concluded that 
the weak equivalence model does not fit her data. After examining various 
statistics related to model fit, she may conclude that the problem lies in the 
loading of the second variable on the first latent variable, which differs across 
groups ( 1

2  2
2 in figure 3 and equation 3). After freeing the loading in 

question to be freely estimated in both groups but holding other loadings of 
the latent variable equal across groups (i.e. 1

1 = 2
1 ,  

1
3 = 2

3), model fit can be 
tested again. If the model fits the data, the analyst can conclude that her data 
passes the test of partial weak equivalence. Partial strong equivalence can be 
tested similarly, just constraining a subset of item intercepts to equality. 

Assess fit of 2-, 3-, and 
4-factor models

If adequate, assess 
(partial) weak 
equivalence 

If adequate, assess 
(partial) strong 

equivalence 

If adequate, assess 
(partial) strict 

equivalence 

End analysis 

If not adequate, examine 
residuals, modify model  

If now adequate, assess 
(partial) weak 
equivalence 

If adequate, assess 
(partial) strong 

equivalence  

If adequate, assess 
(partial) strict 

equivalence 

End analysis 

If inadequate, proceed 
with exploratory analysis 

If some factors have similar 
structure, assess (partial) 
equivalence (conf./weak/

strong) 

End analysis 

Assess configural 
equivalence of best-

fitting model
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When assessing the fit of the models in Study II, the following fit indices 
were used: 2-test, RMSEA, CFI, the Akaike Information Criterion (AIC) and 
SRMR. 

2.3.6 Statistical methods for Study III 

2.3.6.1 Network models 
 

In Study III, the network edge weights represent partial correlations between 
variables xi and xk, controlling for all other observed variables X:  

(5)  

Partial correlations are affected by sampling variation, which has the 
effect that no edge weight becomes exactly zero, | ik| > 0 for all i,k. This is so 
even if the nodes i and k would in reality be conditionally independent at the 
population level when conditioned on all other nodes in the network. To 
account for this, the partial correlation networks were estimated using the 
LASSO procedure, which adjusts the absolute values of all correlations 
slightly toward zero. This is the main principle of the statistical technique of 
shrinkage: trading a slight increase in bias with a reduction in variance 
(Tibshirani, 1996). Using LASSO, partial correlations with low absolute 
values become exactly zero (resulting in sparse networks), which has the 
desirable effect of producing more generalizable results that are less likely to 
overfit sample data (as raw partial correlations would). 

The LASSO controls the level of sparsity based on the value of the tuning 
parameter . When  = 0, all edges remain in the network, and when  = 
max(| ik|), i.e. equal to the largest absolute value of the partial correlations, 
no edges remain. The optimal value of  is chosen by fitting a large number 
of different network models with different values of  (typically 100) to the 
data. The fit of these models is typically assessed based on the Extended 
Bayesian Information Criterion (EBIC, Foygel & Drton, 2010) whose value is 
a function of the likelihood for the LASSO-estimated inverted covariance 
matrix, the number of edges retained, sample size and the number of 
parameters in the model (Williams & Rast, 2020). The value of  that 
minimizes the EBIC is chosen. The EBIC penalizes for model complexity, and 
results in a model with high specificity but varying sensitivity depending on 
sample size and network density (Epskamp, Borsboom, & Fried, 2017). A 
variant of the LASSO known as the graphical lasso was used in Study III 
(Friedman, Hastie, & Tibshirani, 2008), and the value of the EBIC 
hyperparameter  set to 0.5 as per the recommendation of Foygel & Drton 

Cor(xi, xk|X−(i,k)) = ωik = ωki
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(2010) to produce sparse models (high specificity) and to err toward 
parsimony or caution rather than discovery and possibly spurious results. 

The accuracy of the edge weight estimates and the stability of the 
centrality index estimates were assessed using bootstrap analyses. A non-
parametric bootstrap procedure was used for calculating 95 % confidence 
intervals for the edge weight estimates because 1) the input variables were 
ordinal in nature and 2) the LASSO procedure, which biases estimates 
downward, was used; under such circumstances, a parametric bootstrap 
would have produced biased results. The stability of centrality index 
estimates was assessed using a so-called m out of n bootstrap, which 
gradually drops a larger and larger number of observations and re-estimates 
the values of the index. The correlation between the original estimates and 
the average of the bootstrapped estimates was then calculated. If the 
correlation dropped rapidly with dropping observations, the centrality index 
was considered unstable and was not reported. The Correlation Stability 
coefficient (CS-coefficient) was also reported. It is defined through the 
proportion of observations that can be dropped such that the correlation 
between the original and the average of the bootstrapped estimates does not 
fall below 0.7. For more details, see Epskamp et al.  (2017). 

2.3.6.2 Poisson regression models 
 

In addition to the network models, Study III presented several regression 
models for predicting crashes from individual DBQ variables. The models 
were truly predictive in that the independent variables used in them were 
collected at an earlier time point (6 months post-licensure) than the 
dependent variables (number of crashes at 7–36 months post-licensure). The 
regression models were first fit in training data and then tested in an 
independent hold-out data (75 / 25 ratio). Three Poisson regression models 
were fit: 1) a naive Poisson regression model, 2) a ridge regression model, 3) 
an elastic net model  (Zou & Hastie, 2005).  

Poisson regression is used when the dependent variable is a count – in 
this case, the number of crashes that the driver had been involved in. In 
Poisson regression, the logarithm of the count is modelled as a linear 
function of the independent variables according to equation 6 (referred to as 
naive Poisson regression in Study III).  

(6)  

where  is the crash count and x1...xp are the predictor variables.  
The ridge regression model and the elastic net model and are two 

different variants of regularized regression. In regularized regression, the 
regression weights ( ) are adjusted downward to avoid overfitting the model 

log(μ̂) = α+ β1x1 + β2x2 + . . .+ βpxp

μ̂
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to the data at hand and to produce more generalizable results. The ridge 
penalty involves constraining the sum of the squares of regression 
coefficients 1… p such that the sum does not exceed the value of a tuning 
parameter t. In other words,  

(7)  

The optimal values for the tuning parameter were chosen using 10-fold 
cross-validation (Picard & Cook, 1984) in the training sample. 10-fold cross-
validation is based on the idea of first fitting the model in 9/10 of the data 
and testing it in the remaining part of the data (the validation set). This 
procedure is repeated for all 10 sets of data such that each set functions once 
as the validation set and nine times as a part of the training set. In this case, 
the deviance statistic was used to describe model error. The tuning 
parameter minimizing model error was chosen. 

To understand the elastic net, an equation for the LASSO penalty term 
needs to be introduced. The LASSO constrains the sum of absolute values of 
the regression coefficients, or in other words 

(8)  

Unlike the ridge penalty, the LASSO penalty can constrain regression 
coefficients so that they come to equal zero. It can thus perform variable 
selection. Its weakness, though, is that it tends to choose one variable at 
random among many that are correlated. The elastic net is a combination of 
the ridge and lasso penalties,  (Hastie, Tibshirani, & Friedman, 2009, p.73): 

(9)  

The elastic net penalty contains two parameters,  and . The former 
adjusts the amount of regularization, the latter the balance between LASSO 
and ridge penalties. The strength of the elastic net is that it performs variable 
selection similarly to the LASSO, but includes correlated variables into the 
model as a group similarly to the ridge penalty.  

The optimal values for the parameters  and  were chosen using 10-fold 
cross-validation in the training sample. A grid search on the optimal values 
of  and  parameters was performed, and the combination of the 
parameters that minimized error was chosen.  

Fitting the Poisson regression models was based on the central idea of 
statistical learning theory: instead of aiming for a model that would optimally 
fit the sample of data at hand, the objective was to maximize predictive 
power out of sample, i.e. in a data set that is independent from the data set 
used for building the model (Chapman, Weiss, & Duberstein, 2016). 

p∑
j=1

β2 ≤ t

p∑
j=1

|βj | ≤ t

λ

p∑
j=1

(αβ2
j + (1− α)|βj |)
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3 RESULTS 

3.1 Study I 

The objective of Study I was to assess whether the same psychological 
properties could be measured across groups of Finnish drivers defined based 
on age and gender. Data analysis began by comparing the fit of a 
confirmatory factor model (“SEM” in Table 3) and an ESEM. The ESEM 
proved to fit the data considerably better (see the entries on “Whole sample” 
in Table 4). The models mainly differ in that items are only allowed to cross-
load on several factors in the ESEM. For instance, in the CFA items 18 (stay 
on a lane until the last minute, forcing your way onto the neighboring lane) 
and 20 (overtake a slower driver on the inside) were specified as rule 
violations, while in the ESEM they had roughly equal loadings on aggressive 
violations, rule violations and slips. Such results can – among other things – 
be due to several latent variables influencing the observed variables or to 
different factor loading patterns being present in subgroups of respondents. 
When the latent variables are interpreted as psychological properties, the 
importance of the seemingly technical difference of specifying cross-loadings 
becomes apparent: navigating traffic situations is such a complex endeavor 
that traffic behaviors are rarely determined by a single psychological 
mechanism. In the previous example, this would mean that drivers partly 
overtake on the inside as an act of aggression, partly knowingly breaching a 
rule without an aggressive intention and partly due to not paying attention to 
the driving task.  

However, the correlational structure of the observed variables naturally 
remains identical across the two kinds of models. In the confirmatory factor 
model, the only way of representing the intercorrelations that lead to cross-
loadings in the ESEM is through inflating inter-factor correlations. This is 
shown in Table 3. On the right-hand side (SEM), slips and lapses are highly 
correlated (r = 0.8), while their correlation is lower in the ESEM (r = 0.61). 
Correlations of this magnitude would, as such, call the discriminant validity 
of the DBQ into question; in other words, when the factors correlate this 
strongly, it is unclear whether they should be interpreted as two separate 
latent variables at all. On the other hand, the alternative interpretation based 
on the results of the ESEM would be better compatible with the existence of 
two latent variables. Further, differences in inter-factor correlations are high 
when comparing the correlations of rule violations and aggressive violations 
(rSEM - rESEM = 0.35) and rule violations and slips (rSEM - rESEM = 0.36). And, 
in any case, the nonsatisfactory fit of the confirmatory factor model showed 
that the high intercorrelations between the factors did not succeed in 
capturing all of the relevant linear covariation in the data.  
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Table 3. Factor loadings of the confirmatory factor model (SEM) and ESEM models 
(reproduced with permission from table 4, Study I)  

 
Continuing the ESEM analysis showed that the configural model had an 

adequate fit both across genders and age groups (for definitions, see Section 
2.3.2). In an ESEM analysis, this result is in itself not yet all that strong, as 
the factor loadings were allowed to differ across groups; in other words, the 
configural equivalence models are actually nothing but EFAs run separately 
in the subgroups. Interpreted through the example given in Figure 1, this 
would amount to all the variables specified as loading on violations as also 
loading on errors and vice versa, leaving ample room for intergroup 
differences. Still, target rotation was used as a rotation method, which 
increases the similarity of patterns of factor loadings across groups, other 
things being equal. 

The analysis proceeded by examining the combined weak and strong 
equivalence across genders and age groups, and showed that these 
constrained models fit worse across genders and age groups (Table 4) than 
the unconstrained models (see especially CFI and the other fit indices that 
indicate worse model fit for the constrained models across the board).  
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Table 4. Model fit for all models in Study I (reproduced from table 3, Study I) 

 
After concluding this, Study I proceeded with examining differences in 

factor loadings between the genders and age groups in a painstaking manner. 
The analysis concluded that the profiles of factor loadings and cross-loadings 
were different enough to warrant naming the latent variables differently 
across the groups. For instance, in the youngest age group, three out of nine 
items that were expected to measure rule violations had an unexpectedly low 
(push in at last minute) or non-existing loading on it (drink and drive, push 
on to a main road irrespective of a “give way” sign). The expected pattern is 
shown in Table 3 above (see the right-hand panel, “SEM model”). On the 
other hand, several items that were intended to measure other latent 
variables had an unexpectedly high loading on the rule violations factor 
(having no memory of the road; sound horn to indicate annoyance; turning 
to side street, barely missing pedestrians). The resulting factor thus differed 
from the one that was intended to be measured to such an extent that it was 
named violations of social norms. Similarly, as items potentially related to 
inexperience loaded on one factor in the youngest age group, it was suggested 
that it might be appropriate to call the factor inexperience rather than lapses.  

Similarly, in the oldest age group several items that were expected to 
measure rule violations loaded most strongly on other factors (drunk driving 
on lapses; pushing on to a main road and pushing in at last minute on slips) 
or had a high cross-loading on another factor (close following on slips and 
driving through a traffic light on red on lapses). Because of observations 
such as these, Study I suggested that perhaps drivers belonging to the oldest 
age group unwittingly committed certain driving behaviors that were 
originally considered as rule violations.  

The results of Study I can further be illustrated by an example of 
comparing two age groups. Table 5 shows ESEMs separately for two age 
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groups (36–50-year olds and over 50-year-olds). Let us examine the items 
that were expected to measure rule violations. Item 3 (drunk driving) loaded 
on rule violations in age group 36-50, but not in age group 51-. Item 10 (pass 
“give way” sign, push onto main road) did not have its main loading on the 
intended factor (rule violations) in either group, even though it cross-loaded 
on it in the younger age group. Item 18 (pushing in at the last minute) loaded 
mostly on rule violations in age group 36-50 and on slips in age group 51-.  

 

Table 5. ESEMs with no equivalence constraints, 36-50 year-olds and over 50-year-olds 
(reproduced with permission from table 7, Study I) 

 
Based on examining the results in this manner, Study I suggests that the 

items were interpreted differently enough by the different subgroups of 
respondents that the latent variables should be named differently. Further, 
the strong cross-loadings among the items attest that several latent variables 
affected the variation in the individual observed variables. All in all, the 
results of Study I casted doubt on the ability of the DBQ to measure the same 
psychological properties across subgroups of Finnish drivers.  
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3.2 Study II 

Study II assessed the measurement equivalence of the 27-item DBQ across 
groups of young drivers from Finland and Ireland. In other words, the study 
aimed at answering the question of whether the instrument measures the 
same latent variables in the same way across countries. It showed that the 
socially oriented latent variables (aggressive violations and traffic rule 
violations) had clearly different structures across the countries, while the 
cognitively oriented latent variables (slips and lapses) were more similar.  

3.2.1 Dimensionality of the DBQ 
 

Study II took part in the discussion concerning the dimensionality of the 
DBQ when modelled using latent variables. In other words, the study aimed 
at answering the question of which number of latent variables to use for 
representing the correlational structure of the 27-item version of the DBQ. 
This discussion started with the seminal DBQ publication (Reason et al., 
1990) and a definitive answer to the question is still lacking. Study II showed 
that out of the three main competing factor models used in the DBQ 
literature, the four-factor model fit the data best in both samples (Table 6). 

Table 6. Fit indices for testing the dimensionality of the DBQ 
(reproduced with permission from table 2, Study II) 

 
Even though the four-factor model had the best fit out of the models that 

were compared, the approximate fit indices (RMSEA and, especially, CFI) 
indicated that it failed to reach a desirable fit to data. Sources for the lack of 
fit were examined by calculating modification indices and by examining 
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residual correlation graphs (Figure 7). The modifications that would have 
improved model fit were partly different across samples (cf. the patterns of 
residuals in Figure 7), but certain commonalities could be found: specifying 
item 9 to load on slips and allowing the residual correlations of the speeding-
related items 11 and 27 to correlate improved model fit in both samples.   
 

 

Figure 7 Residual correlations (|r| > 0.10) among the DBQ items after fitting the four-factor 
model to the Finnish (left) and the Irish (right) sample. The color and type of the 
lines indicates whether the correlation is positive (solid green) or negative (dashed 
red), while the width and the level of transparency of the line indicate the strength of 
the correlation. Reproduced with permission from Figures 3 and 4, Study II.  

After modifying the model and still not reaching a satisfactory fit to data, the 
exploratory mode of analysis was adopted as suggested by Browne (2001):  

“Confirmatory factor analysis procedures are often used for 
exploratory purposes. Frequently a confirmatory factor analysis, with 
prespecified loadings, is rejected and a sequence of modifications of the 
model is carried out in an attempt to improve fit. The procedure then 
becomes exploratory rather than confirmatory . . . In this situation the 
use of exploratory factor analysis, with rotation of the factor matrix, 
appears preferable . . . The discovery of misspecified loadings, 
however, is more direct through rotation of the factor matrix than 
through the examination of model modification indices.” 

(Browne, 2001, p.113) 

EFAs (Figure 8) indicated why the structures differed across samples: the 
socially-oriented latent variables (the violations) comprised different item 
sets across samples. However, the cognitively-oriented latent variables (slips 
and lapses) involved the same items. Because of this, analyses of (partial) 
measurement equivalence were carried out across the samples.  
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Figure 8 Results of the exploratory factor analysis in the Finnish (left) and the Irish (right) 
sample. Factor loadings (|>0.2|) implied by the original four-factor model are shown 
in the legend. Reproduced with permission from Figures 6 and 7 (Study II).  

3.2.2 Measurement equivalence of the DBQ across countries 
 

The cognitively-oriented latent variables, slips and lapses, were deemed 
sufficiently similar across samples so that analyses of measurement 
equivalence could be performed. The analyses were carried out one factor at 
a time, and they proceeded as described in section 2.3.2, i.e. testing whether 
equal subsets of items load on the same factors (configural equivalence), 
followed by tests of equality of factor loadings (weak equivalence) and of item 
intercepts (strong equivalence). Unlike Study I, Study II was able to tease 
apart analyses of weak and strong measurement equivalence. In addition, 
differential item functioning was assessed using tests of partial equivalence, 
i.e., the equivalence constraints were relaxed for individual items.  

When examining the latent variable slips, configural and weak 
equivalence were established, but the strong equivalence model failed to 
adequately fit the data. Tests of partial strong equivalence showed that the 
intercepts of items 7 (fail to check the rear-view mirror), 8 (brake too 
quickly) and 15 (attempt to overtake someone turning left) could be 
constrained to equality, while those of the remaining five indicators of slips 
needed to be freely estimated. Looking at lapses, the configural model fit the 
data adequately, whereas the weak equivalence model fit significantly worse. 
Partial weak equivalence was established with loadings of items 2 (intending 
to drive to A, find yourself on your way to B) and 18 (forget where you left 
your car) estimated freely and the loadings of the other five indicators of 
lapses constrained to equality.  

In summary, Study II showed that the socially-oriented latent variables 
(different types of violations) differed in nature across young drivers from 
Finland and Ireland, while the cognitively-oriented latent variables were 
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more similar in nature. Study II recommended against comparing sum 
scores calculated based on any of the latent variables across the countries (or 
traffic cultures), even though latent means of slips could be compared after 
fitting the appropriate partial equivalence models to data.  

3.3 Study III 

Study III viewed the traffic behaviors encoded in the DBQ as psychological 
networks (Sections 2.3.3. and 2.3.6.1.). The statistical model and the causal 
assumptions were thus essentially different from those of Studies I and II. In 
brief, the study focused on direct interactions between the nodes of the 
network (either DBQ variables or DBQ variables together with background 
variables), whereas in Studies I and II, the traffic behaviors were seen as 
causally inefficacious reflections of the latent variables (rule violations, 
aggressive violations, slips and lapses). Study III, then, examined the 
structure of psychological constructs instead of attempting to measure them.  

3.3.1 Network analyses 
The results of Study III were based on a longitudinal data comprising four 
time points (the first after 6 months and the rest at 12, 24, and 36 months of 
obtaining a driver’s licence). The between-person model (Figure 9) 
represents relationships among the respondents’ average scores across the 
four time points. The benefit of forming a network model based on average 
scores is that doing so reduces the effects of reporting biases and spurious 
effects such as mood-congruent recall  (Shiffman, Stone, & Hufford, 2008). 

The psychological network shown in Figure 9 comprises traffic behaviors 
labeled as violations (v) and errors (e) in a LASSO-estimated partial 
correlation network. Weak edges are constrained to zero as per the logic of 
LASSO-estimation (Section 2.3.6.1). The network has certain conspicuous 
properties: 1) The errors are most clearly connected with other errors and 
violations with other violations, but there exist several driving behaviors that 
connect the two, functioning as bridge behaviors; for instance, v5 (speeding), 
v3 (driving through a red light), e7 (failing to notice people). 2) Many of the 
edges are quite weak (thin and transparent), while certain nodes are 
connected by clearly stronger edges (thick and opaque); 3) Within violations 
and errors, thematically related nodes are connected by strong edges, the 
aggression-related nodes (v2, v4 and v9) and speeding-related nodes (v5 and 
v11) being a case in point, but 4) there are other thematically related nodes 
that share only weak edges, such as the two nodes related to not perceiving 
traffic signs (e8 and e16), 5) at least certain edges can be readily interpreted 
as causal hypothses, e.g. drivers who speed more than average (v5) tailgating 
more than average (e15).  
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Figure 9 The between-person network model. The colors of the nodes correspond with the 

errors / violations dichotomy. Green edges signify positive associations, dashed red 
edges negative ones. The wider and the more opaque the edge, the stronger the 
association. Reproduced under the CC-BY-4.0 licence from Figure 3, Study III.  
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The accuracy of the edge weight estimates was assessed using the 
bootstrap procedure described in Section 2.3.6.1. The edge weights had for 
the most part quite narrow confidence intervals, which indicates that their 
values were accurately estimated. This is understandable as Study III was 
based on a large sample of new drivers.  

The importance of the individual nodes as well as their redundancy can be 
better understood by examining indices of centrality and clustering (Figure 
10). Strength centrality reflects the connection strengths that a given node 
has with its immediate neighbors. Panel B in Figure 11 shows a smoothly 
declining curve with most of the nodes near to the center of the curve. Six 
nodes, from e10 (nearly hit car in front) and v5 (speeding on residential 
roads) to v3 (crossed junction knowing lights had turned against you) were 
clearly more strength central than the rest of the nodes. Some of the 
connections between the most strength central nodes can be given a causal 
interpretation (for instance v5 speeding – e15 tailgating), rendering these 
nodes potential candidates for traffic safety measures. Closeness centrality is 
less sensitive to single strong edges than strength centrality, so it is perhaps a 
useful index in this context. As stated in Study III: “In general, the nodes 
along the path connecting speeding with various errors (v11-v5-v3-e7-e17-
e15-e10 or v11-v5-e15, etc.) were central.” Connections between some of 
these nodes can be interpreted as causal hypotheses, as well. On the other 
hand, nodes v12 (driving under the influence of drugs) and e12 (hitting 
something while reversing) were clearly least central among the nodes. They 
share only weak connections with the other nodes in Figure 9.  

The stability of the centrality index estimates was assessed using the 
bootstrap procedure described in Section 2.3.6.1. The bootstrap analyses 
showed that strength centrality and closeness centrality were largely 
unaffected by the composition of the sample. For instance, after dropping 70 
% of the observations in the sample, the correlation between the original 
value of the closeness centrality index and the average of the bootstrapped 
values was still roughly 0.7; for strength centrality, the corresponding 
correlation was still higher.  

Nodes with high values of the clustering coefficient can be interpreted as 
redundant in that they add little unique information to the network. Node v4 
(become angered, give chase) received a high value for Zhang’s clustering 
coefficient largely because its neighbors v2 and v9 share an extremely strong 
connection. Similar logic applies to the redundancy of node e3 (forget where 
left car in carpark) with respect to its neighbors e6 and e13.  
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Figure 10 Indices of centrality and clustering for the between-person network. All indices are 
shown in a standardized metric. (A) Closeness centrality. (B) Strength centrality. (C) 
Zhang’s local clustering coefficient. Reproduced under the CC-BY-4.0 licence from 
Figure 4, Study III.   

The network model with background variables included as nodes of their 
own is only described here, and shown as Figure 5 in Study III. In short, the 
nodes related to perceiving certain improvement needs in one’s own driving 
shared negative edges with various violations. For instance, perceiving a 
need to improve lane changing skills shared a strong negative edge with 
nodes related to staying in a lane that will be closed and forcing one’s way 
on a free lane. Further, positive attitude towards decreasing speed limits 
shared a strong negative edge with the node related to speeding on a 
motorway. Similarly, a negative attitude toward overtaking on the inside 
shared a strong negative edge with reporting actually doing so. While these 
associations may seem trivial, it is noteworthy that questionnaires assessing 
attitudes and self-reported behavior were filled in on different occasions, 
thus perhaps reducing common method variance and providing validity 
evidence of sorts. Also, as in all network models discussed herein, the results 
remained after controlling for the effects of all other variables in the network. 
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As stated above, such results can be interpreted as hypothetical causal 
relations between the variables connected by an edge. Furthermore, it is of 
interest that if the relations indeed prove to be causal in nature, causation 
may flow either from attitudes to behavior or vice versa – a possibility that is 
seldom considered in SEMs investigating the relationships of attitudes and 
traffic behavior.  

3.3.2 Regression analyses 
Separate regression analyses were performed for predicting the number of 
self-reported crashes based on the individual driving behaviors. The DBQ 
variables were collected at 6 months post-licensure, while the number of 
crashes was aggregated from data collected at 12 months, 24 months and 36 
months post-licensure, making the models truly predictive. Three kinds of 
regression models were fit as described in Section 2.3.6.2. The models were 
first fit in the training sample and then tested in an independent test sample.  

Model fit in both samples for all three models is shown below in Table 7. 
The naive Poisson model (i.e. the “normal way” of fitting linear models) 
provided the best fit to the training data (as it should), but a remarkably poor 
fit to test data, actually fitting worse than the null model with no predictors 
as evidenced by the negative value for McFadden’s pseudo R2 statistic. The 
elastic net and the ridge regression models fit both the training and test data 
roughly equally well, which favors the elastic net model because of its greater 
parsimony. The regression weights are shown below in Table 8.   

The regression weights in table 8 are low partly because they have been 
adjusted downward according to the principle of regularized regression 
(Section 2.3.6.2). Variables with the highest regression weights were those 
related to failing to notice pedestrians, using gears and different forms of 
aggressive behavior. Hitting something while reversing, which in itself is a 
minor crash, also predicted future crashes. 

 

Table 7. Regression model fit in the training and hold-out samples. Reproduced under 
the CC-BY-4.0 licence from Table 1, Study III 
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Table 8. Regression weights for predicting accidents (elastic net regression analysis). 
Reproduced under the CC-BY-4.0 licence from Table 2, Study III. 
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3.3.3 Summary of the findings of Study III 
Study III had two aims: firstly, to construct and analyze network models of 
driver behavior and secondly, to report the results of cross-validated, 
regularized regression analyses of predicting crashes from individual driver 
behaviors. The data used in the study was longitudinal in nature, consisting 
of four different time points.  

Regarding the first aim, two network models were constructed: a 
between-subjects model that was based on the averages of the responses 
across the four time points and a cross-sectional model with background 
variables that was based on data from the first time point. The between-
subjects model showed that even though the errors had strongest 
connections with other errors and violations with other violations, no sharp 
boundary existed between errors and violations. Centrality analyses showed 
that nodes along a path connecting speeding-related violations to errors 
related to car control (v11-v5-v3-e7-e17-e15-e10 or v11-v5-e15) were central 
in the network. Study III suggested that certain edges along this path could 
be interpreted as causal hypotheses. The network models with background 
variables showed that driving-related attitudes and the self-image of the 
drivers were related to the driving behaviors in an understandable manner 
(for instance, a positive attitude toward reducing speed limits shared a 
negative edge with self-reported speeding). Insofar as the relationships are 
interpreted as causal hypotheses, it is of interest that the network models 
allow interpreting causation to flow in either direction – or both directions – 
between attitudes and behavior. 

The regression models offered several novel methodological contributions 
to the field. First, the models were built and tested in separate subsets of data 
in order to minimize the risk of over-fitting the models to data. Second, 
regularized regression methods were used for performing variable selection 
and model estimation at the same time. Traditionally, methods that rely on 
calculating p-values that require correcting for multiple comparisons have 
been used in similar contexts, even though the problem of multiple 
comparisons has simply been ignord (see, e.g., Wallén Warner et al., 2011). 
Third, the optimal models were searched for using ten-fold cross-validation, 
which further reduced the risk of over-fitting; cross-validation was also used 
for choosing the values of the so-called hyperparameters of the regularized 
regression models. Variables with the highest regression weights were those 
related to failing to notice pedestrians, using gears and different forms of 
aggressive behavior. 
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4 DISCUSSION 

Self-report-based traffic research is a lively field that has the potential to 
produce results that contribute to the well-being of people and to increasing 
traffic safety. One particular tradition of carrying out research in the field 
emerged with the introduction of the DBQ in the early 1990s: self-report data 
is collected, factor analysis performed, sum scores – that serve as 
operationalizations of the assumed latent variables – calculated and 
accidents predicted. The tradition has its theoretical background in the 
Generic Error Modeling System (GEMS; Reason, 1990), which describes 
different types of human errors in safety-critical situations, and the DBQ 
latent variables are often identified with the psychological processes 
described in the GEMS (e.g. Mesken et al., 2002; Reason et al., 1990; 
Stephens & Fitzharris, 2016). Even though the description is a simplification 
and does not do justice to more nuanced ideas within the field, it still 
describes the current state of normal science (Kuhn, 1996) within self-
report-based traffic psychology.  

According to Kuhn, during a period of normal science, experiments and 
observations serve several purposes, such as articulating the paradigm 
theory, revealing the nature of things the theory refers to and solving 
problems the theory has drawn attention to (Kuhn, 1996). When applied to 
self-report based traffic research, the idea translates to, among other things, 
searching for the optimal factor solution for the DBQ, examining the 
correlates of the factor scores and using them to predict crashes.  

The “normal science” approach has served the field well for 30 years, 
producing important results regarding accident risk (de Winter & Dodou, 
2010), the social and and emotional determinants of traffic behavior (Lawton 
et al., 1997) and the traffic behavior of different special groups (Biederman et 
al., 2012; Parker et al., 2000; Sakashita et al., 2014). The approach to self-
report studies in traffic psychology was named the latent variable view of 
violations and errors in the present thesis. In short, it is the view that 
violation and error proneness are stable psychological traits that are similar 
across age groups, genders, traffic cultures etc., need to be targeted by 
specific interventions targeted at just them, have different relationships with 
the drivers’ accident risk and can be measured using the DBQ. The view 
naturally encompasses also other factor structures of the DBQ, such as the 
four-factor structures examined in Studies I and II.  

According to Kuhn, not questioning the underlying assumptions of the 
current theory or methodology pertains to the nature of normal science. On 
the other hand, in order for the field to make methodological and theoretical 
progress, it is timely to critically assess the underlying – often tacit – causal 
assumptions that are made when adopting the latent variable view of 
violations and errors. That is something the current thesis attempts to do in 
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order to provide the field with new methods and conceptual tools to be 
applied in the future.  

Studies I and II took the latent variable view as a starting point and 
assessed the assumption that the DBQ measures the same latent variables in 
the same way across different groups of drivers. Study III, on the other hand, 
departed from the latent variable view and made two general suggestions: 1) 
traffic behaviors influence each other instead of, or in addition to, being 
influenced by latent psychological properties and 2) individual traffic 
behaviors can be fruitfully used as predictors of crashes without positing 
latent variables. 

Study I concentrated on different subgroups of Finnish drivers that were 
defined based on age and gender. It tested whether the latent variable model 
comprising aggressive violations, rule violations, slips and lapses applies to 
all these groups in the same way. The conclusion of Study I was that the 
factor structures were different enough to warrant being named differently. 
Previous studies have examined similar questions within the DBQ tradition. 
Rimmö (2002) concluded that the 32-item Swedish version of the DBQ 
functions roughly equally well within subgroups of men and women. On the 
other hand, the study was about a different instrument with different item 
content, measurement model and latent variables than the 27- / 28-item 
version of the DBQ examined in the present thesis. An additional difference 
was that the study was based on building separate SEMs in the different 
subgroups rather than performing rigorous tests of measurement 
equivalence across them. Further, after Study I was published, Stephens & 
Fitzharris (2016) replicated the study using CFA in a sample of Australian 
drivers and found that the model had a tolerable fit to data after correlating 
the error variances of the speeding-related items. In addition, Stephens & 
Fitzharris (2016) obtained partial strong equivalence when comparing two 
groups of middle-aged drivers after freely estimating the intercepts of two 
items. The four-factor model fit only after dropping several items and 
correlating certain error variances in the youngest and oldest age groups 
(drivers of ages 17–25 and 65–75 years, respectively). The results were, then, 
similar to those of Study I in that the model had the best fit in the middle-
aged age groups. Further, the study elegantly built on Study I in separating 
analyses of weak and strong equivalence and in performing analyses of 
partial equivalence. Still, the essential conclusions were quite similar: 
adequate model fit was obtained only after heavily modifying the original 
model – particularly in the youngest and oldest age groups – calling it into 
question whether the same psychological properties were being measured 
across all groups. Similarly, Martinussen et al. (2013) constructed yet 
another version of the DBQ and compared model fit using CFA in different 
subgroups of Danish drivers. Their four-factor model had the best fit to data, 
but as the latent variables and items were largely different than those used in 
the present thesis, the results are of little direct relevance for the present 
concerns.  
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Study II had a similar research question as Study I: it compared the fit of 
the same measurement model in groups of young Finnish and Irish drivers 
based on confirmatory factor analyses. Its general finding was that especially 
the socially-oriented latent variables (rule violations and aggressive 
violations) were different in nature across the two traffic cultures, whereas 
the cognitively-oriented latent variables (slips and lapses) were more similar 
– even though not quite enough so to warrant, for instance, calculating sum 
scores and comparing them across the two countries (or traffic cultures). 
Previous studies have examined similar questions, but mainly based on more 
descriptive and therefore more ambiguous methods. Lajunen et al. (2004) 
found that EFA solutions obtained for the 28-item DBQ were quite similar 
(had high correlations) across three countries: Great Britain, Finland, and 
the Netherlands. Still, even high correlations are compatible with significant 
differences in the configural models, and Lajunen et al. (2004) indeed found 
the loading patterns to differ across the countries in important respects: the 
loading patterns of aggressive violations and errors (slips in the present 
thesis) were most similar across countries, while those of violations and 
lapses were more varied. Özkan et al. (2006), for their part, examined a 
similar research question in data obtained from Finland, Great Britain, 
Greece, Iran, the Netherlands and Turkey using CFA and a 19-item version of 
the DBQ without items related to lapses. Their results were in a sense 
opposite to those of Lajunen et al. (2004) in that they found aggressive 
violations and errors to be quite dissimilar across countries and violations to 
be more similar. Further, a quite different three-factor structure was 
obtained in Chinese data for the 27 / 28-item DBQ (Chu et al., 2019), 
indicating that the four-factor model does not offer a universal solution 
across different traffic cultures.  

All in all, Studies I and II together with the studies cited above call into 
question the widely held practice of forming sum variables based DBQ items 
and comparing them across different groups of drivers in order to investigate 
their accident risk. This is because the correlational patterns among the DBQ 
variables differ in important respects from sample to sample. Further, 
rigorous studies based on analyses of measurement equivalence (Study I, 
Study II, Stephens & Fitzharris, 2016) obtained well-fitting models only after 
handcrafting the original model to fit the data at hand. Also, even in highly 
similar groups of drivers such as the two groups of middle-aged drivers 
examined by Stephens & Fitzharris (2016), only partial strong equivalence 
for the four-factor model of the 27-item DBQ was obtained, and even that 
after modifying the original model. The result is thus similar to that of Study 
II when it comes to slips, where partial strong equivalence was also obtained 
after modifications to the original model. In practice, then, it seems safe to 
conclude that it is the exception rather than the rule that the levels of the 
latent variables can be compared across groups of drivers, and even then only 
after carefully examining and modifying the model structures to fit the data 
at hand. 
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Study III, for its part, was based on data from novice drivers from the 
Great Britain and offered an alternative to the latent variable view by 
employing methods of network psychometrics (Epskamp, 2017). When 
applied to traffic psychology, it states that 1) there exist direct relationships 
among individual traffic behaviors, 2) these relationships can be modelled 
based on correlational data and 3) analysed using tools developed within 
mathematical graph theory and the analysis of social networks, such as 
indices of centrality and clustering.  

The network models can be understood as tools for generating novel 
testable hypotheses concerning the causal relations among the traffic 
behaviors in a data-driven manner. Because of that, they offer a useful point 
of view to associations among DBQ variables that are problematic for the 
latent variable models. For instance, it is easy to understand that exceeding 
speed limits, tailgating and having to brake abruptly are associated as soon 
as they are assumed to be causally related. On the other hand, under the 
latent variable view, the first two of these behaviors are taken to be generated 
by the tendency to violate rules and the remaining one by the error-
proneness of the driver, so the former two should not be correlated with the 
third one. The causal assumption made in the network models naturally 
remains as nothing more than an assumption, but at least one that is 
compatible with the results and with what we know independently about how 
people behave in traffic. In latent variable models, such associations can be 
explained by allowing the error variances of the observed variables to 
correlate, but doing so is necessarily more of an exception than a rule: the 
models are able to accommodate only a certain number of such associations 
before becoming overly complex to be estimated based on the observed 
correlations (see e.g. Chapter 6 in Kline, 2011, or Gunzler & Morris, 2015). 

The application of centrality indices for identifying intervention targets is 
an actively discussed topic within the network psychometric literature (see, 
for instance, Fried et al., 2018 and Bringmann et al., 2019). If high values of 
the centrality indices identify nodes that have strong causal connections with 
the rest of the network, then introducing a change in the central nodes might 
have a marked effect on the rest of the network (for a thoughtful discussion 
of this interpretation, see Fried et al., 2018). Study III suggests that speeding, 
crossing an intersection on red and tailgating could be among such central 
behaviors. This can be contrasted with conclusions from studies based on the 
latent variable view of violations and errors: such studies 1) identify groups of 
behaviors, based on the factor loadings of individual observed variables, that 
are putatively affected by the same psychological processes, 2) analyze 
subgroup differences in the level of these processes – e.g. the tendency to 
deliberately violate rules or a general tendency to be commit errors – and 
finally 3) suggest interventions targeting the process in the subgroups that 
have high values on the respective sum scores. As argued above, studies I and 
II identify critical problems in this practice, as identical latent variables are 
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seldom uncovered across groups. Further, a remark from Study III deserves 
to be repeated:   

“If we take the latent variable view seriously, we can only influence 
individual behaviors through manipulating the latent variables: 
whether we want to reduce drunk driving or speeding, we should aim 
at the drivers’ rule-breaking tendencies, because influencing an 
individual violation has no effect on other behaviors under the latent 
variable view”. 

Study III 

In these respects, then, network models of driving behaviors seem to offer a 
more intuitive basis for possible traffic safety interventions: if certain driving 
behaviors are directly related to one another, influencing their interactions 
becomes meaningful. Still, one must be cautious when drawing data-driven 
conclusions and making recommendations based on statistics such as the 
centrality indices, since even if the network models would succeed in 
capturing true causal associations between variables, the models are 
compatible with several different causal structures (Fried et al., 2018); 
indeed, the correct interpretation and use of centrality indices in network 
psychometrics is an active current research topic (Bringmann et al., 2019). In 
addition, the centrality indices seem blind to certain traffic behaviors that are 
independently known to be critical to traffic safety, such as driving under the 
influence of drugs, which appears as the least central node in the network 
model reported in Study III (Figures 9 and 10). Uncritical use of any 
statistics, be them factor loadings or centrality indices, will certainly lead to 
poor conclusions. 

Similar considerations in other domains of psychology have led 
researchers to discuss sufficient causal variables; for instance, in the domain 
of quality of life studies, intense pain may by itself be a sufficient cause for 
lowered quality of life (Fayers & Hand, 2002), even though there may be 
other similarly important sufficient causes, such as intense vomiting. This 
has implications on constructing self-report instruments: all predictors of 
clinically relevant outcomes need to be included, irrespective of their 
correlational patterns with other variables. This is relevant also when it 
comes to the DBQ: for instance, the 27- and the 28-item versions of the 
instrument differ in including vs. leaving out the item related to drunk 
driving, and the decision to do so is motivated by the item having low 
correlations with the rest of the items. Further, when adopting the idea of 
sufficient causal variables, it may be wise to perform analyses by calculating 
the maximum value of the sufficient causal variables rather than calculating a 
sum of all indicator scores, which may dilute the effects of the important 
variables (Fayers & Hand, 2002). This, for its part, might mean picking 
certain DBQ variables based on their independently known relevance in 
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accident causation and examining responses to them, irrespective of their 
correlations with the rest of the variables.  

On a more general level, the network view offers promise of bringing 
different traditions of traffic research – self-report-based research on the one 
hand, theoretical and experimental research on the other hand – closer to 
each other. This is because the network view makes it possible for self-report-
based research to adopt a starting point that has been self-evident within the 
other traditions: recognizing the importance of individual driver behaviors 
and their interrelationships. For instance, rather than viewing speeding as an 
indicator of the rule-breaking tendency of a driver, theories of driver 
motivation (Fuller, 2005; Summala, 2007) and engineering models of 
accidents (Abdel-Aty & Radwan, 2000) view it as an important determinant 
of crashes and driver errors in itself. Similarly, the network view is easily 
reconciled with studies that aim at determining the reasons for individual 
traffic behaviors such as speeding (Lawton et al., 1997; Parker et al., 1992; 
Wallén Warner & Åberg, 2006). 

4.1 Relationships between latent variables and self-
reported driving behaviors 

Factor analyses of the DBQ are often motivated by the idea that they are 
useful for identifying psychological traits or mechanisms that underlie 
observed traffic behaviors (e.g. Mesken et al., 2002; Reason et al., 1990; 
Stephens & Fitzharris, 2016). The present thesis as a whole takes a sceptical 
view toward this motivation, and argues that relationships between 
psychological mechanisms and individual traffic behaviors are likely much 
more complicated than suggested by studies based on factor analyses of the 
DBQ. Not only is it plausible that certain behaviors are affected by different 
psychological mechanisms in different groups of drivers (for instance, an 
older driver may drive through a red light by mistake whereas a younger one 
may do it on purpose), individual differences in the frequency of performing 
the driving behaviors are likely to depend on the functioning of multiple 
psychological processes. In addition, it is important to remember that 
analyses of cross-sectional data produce results related to differences 
between individuals. As is well known, psychological mechanisms 
functioning within individuals cannot be studied by such methods, and 
careful modelling, laboratory work and, indeed, case studies of individuals 
are needed instead (Borsboom et al., 2003). This observation is not new: 
William Stern, often hailed as the father of differential psychology, actually 
spoke fervently for personalistic inquiry as a method for understanding 
psychological processes in the beginning of the 20th century; Lamiell (2003) 
is a book-length treatise of his ideas. Further, the distinction has been 
acknowledged within mainstream psychology at least since Cronbach’s 
classic article The two disciplines of scientific psychology (Cronbach, 1957). 
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The question of the relationship between differential and experimental 
psychology is a deep one, as it relates to what it is possible to investigate 
within scientific psychology. At one extreme it has been argued that the 
psychic structures of no two individual are alike (Lykken, 1991). If this were 
indeed the case, scientific psychology would reduce to studying individuals 
one person at a time and no finding could be generalized to others. In the 
other extreme it can be assumed that the dimensions along which individuals 
differ from each other are identical to the dimensions that explain variation 
within individuals and that the psychological structures underlying the 
mental lives of any two individuals are essentially alike. It is possible to take 
different kinds of intermediate positions, as well. The first two studies in the 
present thesis imply that one way of integrating the perspective of 
interindividual differences and intraindividual processes would be to 
construct theories and models that account for the behavior of suitably 
chosen subgroups of drivers – even though see the discussion on ergodicity, 
below, for central reservations that call this interpretation into question. 

The third study takes a different perspective and concentrates on direct 
associations among individual traffic behaviors, interpreting them as causal 
hypotheses. Such hypotheses would naturally need to be tested either in 
laboratory conditions or based on time-series data (Costantini & Perugini, 
2018). Adopting this approach has the effect of downplaying the importance 
of latent variables, and the present thesis considers the possibility of viewing 
the latent dimensions as emergent properties of interactions among the 
individual driving behaviors. Ideas from the study of complex systems are 
also tentatively applied: it is suggested that the network of driving behaviors 
may occupy different states which depend on the status of the driver 
(stressed, tired, etc.), the driving situation and the (social) context in which 
the driver is embedded.  

The discussion related to complex systems is motivated by a central 
methodological question:  

Given a particular set of selected variables, under which conditions 
will an analysis of interindividual variation—an analysis in which 
information is pooled across subjects—yield the same results as an 
analysis of intraindividual variation? 

Molenaar & Campbell, 2009 

The question is known as that of ergodicity (Molenaar & Campbell, 2009) 
and the answer is, in a nutshell: extremely rarely. For a process to qualify as 
ergodic, the conditions of homogeneity of the population and stationarity of 
the phenomenon must be fulfilled. The former refers to the applicability of 
the same statistical model across individuals. In the present case, the 
assumption would be fulfilled if the same latent variable model or the same 
network model of the DBQ would fit data from each individual comprising 
the sample. Assessing the assumption would naturally necessitate collecting 



 

73 

intensive longitudinal data. The same goes for testing the stationarity 
assumption, according to which the statistical parameters of the model (such 
as factor loadings or network edge weights) remain invariant over time. 
Questions related to ergodicity and interpretations relying on ideas from 
complex systems research cannot, then, be tested based on the data used in 
Studies I – III, and they are mainly mentioned as possible directions for 
future research.  

Studies I and II partitioned the samples of drivers into subgroups that 
shared a property such as age, gender or nationality. Molenaar & Campbell 
(2009) describe a study that went much further and constructed within-
person models of the personality of individual respondents based on Big Five 
data. Perhaps surprisingly, the within-person models comprised two to four 
factors instead of five, calling into question whether the Big Five model 
functions as a description of the personality of any given individidual across 
time. The example encourages considering whether the factor models and 
network models of the DBQ might prove to be ergodic in the same sense. 
When it comes to factor models, the lack of measurement equivalence of the 
DBQ reported in Studies I and II casts preliminary doubt on the assumption.  

On the other hand, could traffic be such a sphere of human life where 
the ergodicity assumption holds? Consider, for the sake of a thought 
experiment, edges connecting speeding and tailgating in a between-person 
network model and (as of yet non-existent) within-person network models. 
For example, it may be that if John speeds more than the average driver, he 
ends up tailgating more than the average driver; similarly, if he on a certain 
day speeds more than he usually does, he may end up tailgating more than he 
usually does. In other words, because traffic behavior is regulated by rather 
strict rules, it seems at least conceivable that edges formed in within-person 
and between-person network models of driver behavior might behave 
similarly, thus supporting the assumption of the homogeneity of population. 
When it comes to the assumption of stationarity, could it be that after the 
relationships between the driving behaviors of a given individual have 
stabilized, i.e. when their driving has become automatized, their 
relationships could be described by statistical parameters that are invariant 
across time? 

The preceding discussion is admittedly speculative, but it is 
important to consider such questions because in the DBQ tradition, the 
latent variables have commonly been identified with psychological processes. 
The linkages between psychological processes and latent variables are, then, 
likely to be much more complex than currently assumed within DBQ studies. 
The following discussion is organized around the broad themes of violations 
and errors, and it examines the causal assumptions of different kinds of 
statistical models for DBQ data.  
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4.1.1 The structure of violations 
Studies I and II concluded that the internal structure of the latent variables 
related to violations differed across subgroups of respondents, perhaps 
according to what was considered a violation of social rules in the different 
groups of drivers. Network models of traffic behavior (Study III) offered a 
novel point of view and a potential explanation for these differences when 
violations are considered from the point of view of network science and as 
complex systems. This approach allows us to ask questions such as whether 
the networks of traffic behaviors can be thought to occupy different states 
similarly to the symptom model of depression that can be said to be either in 
the healthy state or the depressed state (Borsboom, 2017). If so, what would 
these states be? Answering the questions would necessitate collecting 
intensive longitudinal data on individual drivers, but the results of Study III 
can at least be interpreted from this point of view.  

Study III tentatively suggests that the states of the networks of driving 
behaviors might be related to the drivers’ status (such as tired, under the 
influence of substances or intensely emotional) or the presence of other 
people in the car: for instance, young drivers are likely to behave differently 
when accompanied by their peers than when they are in the company of older 
relatives (Alver, Demirel, & Mutlu, 2014). The peers may encourage the 
drivers to try their limits, which perhaps translates to the nodes related to 
speeding becoming activated in the context of driving with peers. Similarly, 
the crash risk of young mothers has been shown to be elevated when they 
drive with an infant passenger vis-à-vis alone (Maasalo, Lehtonen & 
Summala, 2017); it is likely that the dynamics of their behaviors are different 
across these two contexts.  

Figure 9 of the present thesis indicates that drivers who are more likely 
than average to exceed speed limits on motorways are also more likely to 
race from traffic lights and somewhat more likely to overtake other drivers 
from the inside. High activation of the node related to speeding on 
motorways would then activate the other two nodes, which are themselves 
connected to nodes related to aggressive behavior and staying in lanes that 
will be closed. Perhaps, then, the tendency to violate traffic rules and the 
tendency to behave aggressively could be interpreted as emergent properties 
of the network of traffic behaviors: Rather than being unobservable 
properties that cause people to behave in a certain manner, they are states of 
high activity in the network of driving behaviors and properties that arise 
from patterns of strongly interconnected behaviors in suitable contexts such 
as the presence of other people in the car, the driver being stressed or tired 
etc.  

Study III also suggests that errors and violations cannot be categorically 
differentiated from each other. This seems intuitively plausible, since 
violations related to speeding or driving through intersections against a red 
light may well increase the probability of committing errors as shown in, for 
instance, in the zero-risk theory of Summala (2007): when drivers approach 
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the limit of their skills, they have less cognitive resources available for 
considering everything that happens in their surroundings. It must be noted, 
however, that one of the nodes in Figure 9 of the present thesis is categorized 
erroneously: node e15 (tailgating) usually loads on violations rather than 
errors, and even though it often has a strong cross-loading on an error 
factor, it should have been categorized as a violation. Still, the essential 
observation holds: the node in question has strong associations with 
prototypical error nodes such failing to check rear-view mirror and having 
to brake abruptly; especially the latter is a plausible candidate for a causal 
consequence of tailgating. Similarly, node v3 (crossing a junction on red) is 
connected to missing observing pedestrians and not having a clear 
recollection of the road, which in itself may function as an indicator of an 
unmodelled latent variable absent-mindedness as argued below in Section 
4.1.2. Interpreted as a causal hypothesis, this association can be taken as 
indicating the possibility that absent-mindedness might increase the 
probability of driving through an intersection against a red light.   

Further, it is possible that the personal histories of the drivers determine 
the initial strengths of the interconnections between the individual traffic 
behaviors, such as speeding and showing aggression. This would explain why 
certain drivers become more aggressive than others when their progress is 
impeded as per the quote from Björklund (2008) below. Indeed, one 
motivation for performing network analyses of traffic behavior is that they 
are well compatible with the idea of human behavior being highly context-
dependent and likely affected by multiple factors, with the individual 
behaviors being in dynamic relationships with each other (Mischel & Shoda, 
1998). The importance of considering such dynamic relationships has been 
voiced, among others, when investigating aggression in traffic:  

“Drivers who enjoy a somewhat faster speed than other drivers will 
more often be obstructed by other traffic, and therefore they will 
become irritated more often and be more likely to educate other road 
users. They probably also will become more irritated than other 
drivers when obstructed, because they want a faster progress”  

(Björklund, 2008) 

The above quote illustrates the interplay of individual differences in traffic 
behaviors and character traits.  Similar relationships were in fact observed in 
Study III even though the study targeted the whole population of new drivers 
instead of those with anger-management issues. The background variable of 
perceiving oneself to be a fast driver shared a strong edge with racing away 
from traffic lights to beat other drivers, which was for its part related to 
becoming angered by other drivers and giving them chase.  

Incidentally, the becoming angered node shared another strong edge with 
the node overtaking others when they are turning (traditionally classified as 
an error), which was, for its part, related to overtaking slower drivers on the 
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inside. These behaviors can also be interpreted as being related to the 
dynamics described in the quote from Björklund (2008), above. 

Further, the network models may help to explain how character traits and 
behaviors become aligned, for instance for avoiding cognitive dissonance 
(Dalege et al., 2016). Indeed, in Study III, the node describing attitudes 
decreasing motorway speed limit is a good idea shared a moderately strong 
negative edge with perceiving oneself to be a fast driver and a considerably 
strong negative edge through one of the nodes related to speeding. These 
relationships are seen by inspecting Figure 5 in Study III. The interesting 
property of network models in this context is that they encourage the 
researcher to consider different causal (and non-causal) relationships 
between attitudes and behaviors. For instance, it may well be that drivers 
who usually drive according to the speed limits develop anti-speeding 
attitudes as a consequence, i.e. behaving in a certain manner may influence 
the attitudes of a driver instead of or in addition to the opposite. 

 The network conceptualization of the relationships between attitudes and 
behavior offers both theoretical and methodological benefits when compared 
to structural equation models of these phenomena. For instance, Lucidi et al. 
(2019) present a SEM that consists of directed relationships between latent 
variables; the causal chain encoded in the SEM runs from personality traits 
to attitudes, from there to GEMS variables (violations, lapses and errors) and 
from there to crashes and traffic fines. Network models leave room for such 
relationships to be non-directed, which allows the researcher more freedom 
in interpreting the results. Furthermore, in a typical SEM, a great multitude 
of equivalent models (models that fit the data equally well) can be specified, 
even though typically only one model is reported (Kline, 2011, Chapter 8). 
This property is known as the issue of underdetermination of latent variable 
models. Network models are more transparent in this respect, as the 
estimation procedures that are commonly used lead to a single model 
(Epskamp, 2017).  

This section presented a network perspective to traffic rule violations and 
cognitive errors in traffic; it was suggested that many of the relationships 
that have traditionally been analyzed as reflecting the level of a driver’s 
tendency to break traffic rules could equally well be interpreted as direct 
causal links between the behaviors. Still, the whole picture seems more 
complicated than that. For instance, the aggression-related nodes form a 
strong clique and one of them (v4; become angered and give chase) is the 
most redundant node in the network (Figure 10). The aggression-related 
variables could perhaps indeed be modelled by a latent variable of their own; 
on the other hand, it might well suffice to include only one of the three 
aggression-related nodes in a network model of traffic behavior. Models 
integrating latent variables and network models are discussed below in 
section 4.4.  



 

77 

4.1.2 The structure of errors 
The common theme across the three studies included in the present thesis is 
that errors are not a homogenous group of traffic behaviors. Studies I and II 
indicated that the four-factor model fits better than the two-factor model, 
while the network analyses of Study III indicate that not all errors share 
strong associations with one another. This is perhaps to be expected, as the 
errors are not intended as a homogenous category: for instance, the GEMS 
characterizes slips as a failure in the execution stage of an action sequence, 
and lapses as a failure in the storage stage (Reason et al., 1990, p. 43). 
Moreover, as discussed above (Section 4.1.1.), there is no sharp empirical 
boundary between errors and violations – something also attested by the 
strong cross-loadings and different factor structures observed across 
subgroups of drivers in Studies I and II.  

The results related to errors can partly be interpreted from the point of 
view of network psychometrics, looking at the network of driving behaviors 
as a complex system occupying different states, as argued above (Section 
4.1.1.). Still, some of the associations are perhaps most naturally interpreted 
as reflecting the effects of unmodelled latent variables. The driving behaviors 
related to lapses in the four-factor model of the DBQ occupy the upper left-
hand side in Figure 9. They do not, however, form a single homogenous 
clique in the network, i.e. they are not all interconnected; rather, node e13 
(noticed ending up on a different road than intended) shares strong 
connections with the rest of the nodes. Particularly, errors apparently related 
to absent-mindedness (e3: forget where left car, e13: ending up on a 
different road than intended and e6: no recollection of road) form a strong 
clique, and could perhaps be modelled by a latent variable of their own. 
Further, the association of misreading signs and getting into wrong lane can 
rather naturally be interpreted as a causal hypothesis whereas the strong 
association between e4 (switch on a wrong thing) and e1 (take off in too high 
a gear) may reflect the presence of an unmodelled latent variable such as 
inexperience with car controls. Looking at behaviors that are categorized as 
lapses (in the four-factor model) in Figure 9, it seems that no parsimonious 
explanation for the results is to be found: the results are likely related both to 
unmodeled latent variables and potentially causal associations among the 
items.  

Further, it is possible, and perhaps even likely, that the frequency of 
different kinds of cognitive errors depends on the age and experience of the 
driver, thus complicating psychometric studies of driver behavior. Study I 
suggested that different subgroups of drivers might be homogenous enough 
so that a common denominators for different categories of error could be 
found within the groups, if not across groups. For instance, it might be that 
the items thought of as measurements of lapses could be related to 
inexperience in the youngest age group, to inadequate planning of the 
driving task in slightly older drivers and to problems in updating a mental 
model of the driving situation in the oldest age group. In Study II, lapses 
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were also interpreted as reflecting the inexperience of the young drivers. 
Even though such interpretation may seem at odds with the considerations 
related to ergodicity (Section 4.1.), it may be that phenomena such as 
inexperience occupy a middle ground between fully individual psychological 
processes and latent variables intended as psychological descriptions of the 
whole population: it may be that they are formulated at a suitable level of 
granularity to describe a given subgroup of respondents if not the whole 
sample.  

Moreover, as the network models reported in Study III show, doing 
research in the real world presents complications not accounted for in the 
ideal picture painted in GEMS. Even if slips or lapses are based on similar 
malfunctions in cognitive processing, the individual driving behaviors that 
are taken as measurements of them under the latent variable view are still 
related to other driving behaviors – some of which are classified as violations 
– in ways that are shown in Figure 9 of the present thesis. That is, certain 
violations share potentially causal associations with certain errors as 
discussed above. 

In closing, it may be of interest to note that recent research in 
mathematical psychology has developed models that combine an 
intraindividual information-processing model with a latent variable model of 
interindividual differences. In the first stage, intraindividual processes are 
explicitly and mathematically modelled, and the parameters of these models 
used as input to latent variable models concerned with interindividual 
differences  (van der Maas, Molenaar, Maris, Kievit, & Borsboom, 2011; 
Vandekerckhove, 2014). The first stage aims at modelling the cognitive 
processes that underlie the production of a response to a given item in the 
test or self-report instrument and can consist of, for instance, a model of the 
component processes that influence the reaction time to an item. Van der 
Maas et al. (2011) refer to their models as proofs-of-concept rather than fully 
developed analytical solutions, but such models offer a promise of uniting the 
two disciplines of scientific psychology. Perhaps the cognitive errors encoded 
in the DBQ would benefit of being modelled based on a related method: the 
GEMS variables are, after all, related to intraindividual processes, and it is 
unlikely that interindividual variation would succeed in directly mirroring 
the functioning of intraindividual processes (Molenaar & Campbell, 2009).  

4.2 Predicting crashes from individual driver behaviors 

Study III reported several regression analyses in which crashes were 
predicted from driving behaviors. In all models, age, sex and annual mileage 
were controlled for. Missing observing other road users, having problems 
with car controls and behaving aggressively were the most important 
predictors together with hitting something when reversing, which 
incidentally is a minor crash in itself. The results can be compared to those of 
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Wallén Warner et al. (2011), who also predicted self-reported crashes from 
individual driving behaviors. Incidentally, five out of six of the predictors 
they ended up with were also among the predictors of the elastic net model 
reported in the present study. The predictive model reported in the present 
study included, however, also several other predictors. It is not possible to 
draw firm conclusions based on only two studies, so further studies assessing 
individual driving behaviors as predictors of crashes are in order. 

Nonetheless, the approach taken to model building in the present thesis 
was certainly as important (if not more so) than the actual results of the 
regression analyses. First, from the substantive point of view, it seems 
obvious that the different kinds of violations encoded in the DBQ must have 
differential associations with accidents; they range, after all, from quite 
harmless (honking at other road users) to clearly irresponsible (driving 
under the influence of alcohol). Stated slightly more technically, when DBQ 
variables are used as predictors of accidents, it is quite likely that they 
contain unique information when it comes to predicting accidents; such 
unique information is lost when a sum variable representing a putative 
underlying latent variable is calculated. The regression analyses reported in 
Study III can also be interpreted as representing an approach to constructing 
psychometric scales known as criterion-keyed scale development (Chapman, 
Weiss & Duberstein, 2016). Under this framework, the internal consistency 
(reliability) of the scale plays no role; indeed, the precision of the estimates of 
the value of the predicted variable is maximized when the collinearity of the 
scale variables is zero (Chapman, Weiss & Duberstein, 2016). From this 
perspective, the variables with non-zero regression coefficients in Table 8 
above represent a criterion-keyed DBQ, with the self-reported accidents 
serving as the criterion. For the sake of clarity, the version of the DBQ with 
those variables could be called DBQaccident-keyed, and it would be of interest to 
see whether future studies embodying the same analytical framework end up 
including the same variables in the accident-keyed DBQ scale.  

When it comes to methodological details, Study III had certain benefits 
not shared by previous models that aim at predicting accidents based on the 
DBQ: In Study III, the regression models were truly predictive in that the 
independent variables and the dependent variables were collected at 
different time points, the models were built and tested in separate subsets of 
data, and model fit was tested based on cross-validation of models. 
Regularized regression was used for avoiding overfitting the model to data 
and for selecting the predictors. Being able to employ the hold-out data was 
deemed especially useful, since doing so enabled showing that the naïve 
Poisson model including all predictors fit the hold-out data worse than a null 
model with no predictors. Overfitting is, then, a serious problem when 
creating models of accident prediction based on self-report data. It is hoped 
that the methods used presently would benefit future self-report based 
studies in traffic psychology.  
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4.3 The measurability of psychological properties 

Before considering the limitations of the present work and possible future 
directions afforded by the network perspective, an interlude to the 
measurability of psychological properties is made. Interest in such 
philosophical questions has motivated both the empirical studies related to 
the measurement properties of the DBQ (Studies I and II) and the search for 
alternative conceptualizations for the correlational structure of the 
instrument such as the network models presented in Study III.  

As argued above, the latent variable view of violations and errors assumes 
the existence of stable and measurable psychological traits as properties of 
individual drivers. Speaking of psychological traits amounts to adopting a 
realist interpretation of latent variables, i.e. assuming that they are things 
that exist independently in the world and have causal power. The realist view 
is compatible with the correspondence theory of truth, but hardly with the 
coherence theory of truth associated with a social constructivist view of 
psychological properties (Borsboom, Mellenbergh & Van Heerden, 2003). As 
the issue has not (to my knowledge) been explicitly discussed within the DBQ 
tradition, the argument of Borsboom et al. (2003) is briefly presented below.  

Borsboom et al. (2003) argue that latent variables need to be given a 
realist interpretation on three grounds: First, evaluating the position of a 
subject on the latent variable is possible only if there is something to be right 
or wrong about, i.e. a continuum along which subjects are placed; otherwise, 
it seems unsensible, for instance, to speak about having made an error in 
such an evaluation, even though much of latent variable theory is about the 
probabilities of making such mistakes given the positions that two 
individuals occupy on the continuum. Second, and on similar grounds, 
estimating the population values of parameters would seem to require that 
there is something to be estimated, and again, something to be either right or 
wrong about. The third argument is a bit more involved. It revolves around 
the ideas misspecification (“all models are false even though some of them 
are useful”), underdetermination of models and the relationships these ideas 
have with estimating the values of parameters. In short, the concept of 
misspecification of models would seem to presuppose giving latent variables 
a realist interpretation because there needs to be a true model to which the 
misspecified model is compared. On the other hand, equating truth with 
empirical adequacy would lead to counterintuitive conclusions when it comes 
to, for instance, equivalent models such as a model with two correlated 
factors vs. a single factor. This is because empirically, both models fit data 
equally well and under the definition truth = empirical adequacy, the 
assumption that model B is true can be replaced with the assumption that 
model A is true. This, then, leads to such potent absurdities as estimating the 
correlation between two latent variables even though the model only contains 
one. These themes are more fully discussed in Borsboom, Mellenbergh, & 
Van Heerden, (2003, pp. 209–211). The DBQ research tradition seems to be 
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in line with these arguments, since the common practice of equating the 
latent variables (errors and violations) with psychological properties has a 
realist undertone to it. In what follows, a realist interpretation of the latent 
variables (errors and violations) is assumed.  

A central consequence of adopting the latent variable view is that the 
measuranda (things to be measured) are – perhaps implicitly – assumed to 
possess quantitative structure (Michell, 2008). This assumption has 
remarkable consequences, even though it is seldom problematized within 
psychology (Michell, 2008). Theories and measurements of intelligence 
function as a prime example of purportedly quantitative research within 
psychology: within its history, psychologists have considered problems such 
as the unit of intelligence and whether there exists a well-defined zero point 
of intelligence etc. (Eysenck, 1973). Considering questions such as these is 
important in itself, as measurement involves deep philosophical questions 
that are to date without equivocal answers (Tal, 2017), but also because the 
measurability of attributes has its own important role to play in determining 
whether the results of inquiry can be replicated (Hanfstingl, 2019).  

Within psychology, the question of whether attributes are quantitative is 
famously sidestepped by defining measurement as the “assignment of 
numerals to objects or events according to rules” (Stevens, 1946). When the 
assignment is done to classify things, one speaks of nominal measurement 
and when to order things, of ordinal measurement. Measurement on the 
interval scale supports ordering things such that consecutive points on the 
scale are equidistant, while measurement on the ratio scale has the 
additional property of having a meaningful zero point. The first two 
categories are often treated as nonquantitative, the latter two quantitative. 
Although this may seem unproblematic, it is important to note that the 
question “When is an attribute quantitative?”, i.e. when is it appropriate to 
apply one of the latter two scales, is rarely raised. This is because the theory 
of Stevens was operationalist through and through, i.e. it assumed that the 
meanings of scientific concepts are defined by the operations used in 
identifying them (Michell, 1997). Further, this amounted to measurement 
becoming synonymous with the operations used when assigning the 
numerals to objects, resulting in, among others, the famous “definition”:  

“Intelligence is what the test tests” 
(Boring, 1923) 

This, however, is obviously unsatisfactory for a researcher that assumes a 
realist stance towards psychological attributes  (Borsboom et al., 2003). As 
remarked above, in traffic psychology a realist stance towards errors and 
violations is, in fact, assumed; further, errors and violations are treated as 
continuous latent variables that have by definition quantitative structure. 
Because of this, it would appear that an independent definition for an 
attribute to possess quantitative structure is needed.  
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The first formal definition for an attribute to be considered as a quantity 
was given in the beginning of the 20th century by Hölder in the form of seven 
axioms, the first four of which are reproduced below for the sake of an 
example in the form presented by Michell (1999). Below, Q refers to an 
attribute such as length, intelligence or the tendency to violate rules. In order 
to be measurable, a property needs to fulfill these conditions for a quantity 
(with analogous conditions applying to positive real numbers): 

 
1. Given any two magnitudes, a and b, of Q, one and only one of the 
following is true:  

(i) a is identical to b (a = b, b = a); 
(ii) a is greater than b and b is less than a (a > b, b < a); or 
(iii) b is greater than a and a is less than b (b > a, a < b) 

(any two magnitudes of the same quantity are either identical or 
different and if the latter, one is always greater than the other). 
2. For every magnitude, a, of Q, there exists a b in Q such that b < a 
(for every magnitude of a quantity there is another that is less). 
3. For every ordered pair of magnitudes, a and b, from Q, there exists 
c in Q such that a + b = c (for every pair of magnitudes, there exists 
another, their sum). 
4. For all a and b in Q, a + b > a and a + b > b (every sum of two 
magnitudes is greater than each of those summed). 

Michell (1999, pp. 52–53) 

As the present thesis is not an exercise in mathemathical psychology, the 
axioms will not be discussed in detail. They are, however, reproduced here to 
highlight the fact that – contra Stevens (1946) – it is not trivial for a property 
to qualify as a quantity. Nonetheless, a couple of remarks are made to 
illustrate the kinds of questions that are at stake. Consider axiom 4, 
according to which the magnitudes of quantities must be greater than zero. 
Intuitively, it would seem possible for someone to be not at all depressed so 
that their depression would be equal to zero, or to think that someone is not 
at all likely to break rules so that their tendency to violate rules would be 
zero; however, this is not possible under axiom 4. Importantly, these 
examples concern ideal cases; in the real world, measuring such vague 
properties as depression – even if it were possible – involves so many 
uncertainties related to conceptualization, observation and measurement 
that it would be impossible to know if a measured zero value of depression 
corresponds to an actual zero level of depression1.  

Or consider axiom 3, according to which magnitudes are additive. Is it 
correct to say: “If Brian’s tendency to violate rules is 5 and Joel’s tendency to 

                                                
1 I am grateful to professor Reijo Sund, who acted as the pre-examiner of the present thesis, for 

pointing out this qualification. 
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violate rules is 10, taken together, their tendency to violate rules is 15” or that 
“On Tuesday, Brian’s tendency to commit errors was 12 and on Friday it was 
24, thus on Friday he was twice as likely to commit errors”? It seems at least 
possible that psychological properties do not behave in this manner, that is, it 
seems conceivable that they are properties that do not possess additive and / 
or multiplicative structure.  

Meanwhile, sophisticated (even though perhaps in practice infeasible) 
methods ascertaining the nature of psychological properties as quantities 
have been developed. Additive conjoint measurement (ACM, Luce & Tukey, 
1964) is sometimes hailed as the greatest of such developments (Michell, 
1997), and some scholars have argued that modern psychometrics should be 
replaced by ACM to ensure that what is being measured indeed are quantities 
(for a review of the discussion, see Sijtsma, 2012). The ACM model builds on 
the idea that the thing to be measured, P, is independently influenced by two 
other factors, A and X. For instance, test performance might be influenced by 
motivation (A) and ability (X) 

 
P = f(A,X) = A + X  
 

Axioms such as single cancellation and double cancellation are central to 
ACM. They involve independently manipulating ordered pairs of A and X 
that provide a partial ordering on P, and from this it can be inferred that P 
has a quantitative structure. The presentation given here is obviously limited, 
and a fuller account of ACM can be found, for instance, Michell (1999, ch. 8). 
Others argue that so-called Rasch models developed within Item Response 
Theory (IRT) function as stochastic versions of ACMs, with the important 
difference that they take random error explicitly into account (for a review of 
the discussion, see Sijtsma, 2012).  

These issues are the subject of ongoing philosophical and methodological 
discussion. It has been argued, for instance, that measurement in psychology 
cannot be possible even in principle, because being able to measure 
something would necessitate ruling out the influence of systematic error 
factors, and because this cannot be done in psychology, it is not even possible 
to determine that a property has equal levels across subjects or across time 
within a subject (Trendler, 2009). Nonetheless, painstaking, decades-long 
experimentation based on the ACM has now tentatively showed that certain 
fundamental psychological properties such as perceived loudness and 
brightness can perhaps be treated as quantities (Luce & Steingrimsson, 
2011). As a sidenote, such research is as unpopular as it is necessary: the 
Luce & Steingrimsson (2011) article has acquired 15 citations in 9 years 
according to Google Scholar.  

The point I wish to make with these examples is that the measurability of 
properties cannot be unproblematically assumed and taken for granted 
within traffic psychology. Constructive reactions to these problems have 
included underscoring the importance of well-developed theories as the basis 
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of measurement and urging researchers to consider whether classification or 
ordering of phenomena would be feasible objectives in their field (Sijtsma, 
2012). These questions must be addressed within traffic psychology, as well. 
When it comes to an underlying theory, self-report-based traffic research is 
in a good place in that the GEMS exists as a carefully developed background 
theory for the self-report instruments. The following quote may well be 
applicable in the present case, as well – in Section 1.1. it was argued that the 
original version of the DBQ failed to operationalize all the constructs referred 
to in GEMS: 

“Even for a correct attribute theory, an unfortunate 
operationalization may undermine meaningful measurement.” 

(Sijtsma, 2012) 

Further, whether our focus is on latent variables or individual traffic 
behaviors, their status as quantities cannot be continued to be taken for 
granted.  Because of this, considering research methods that explicitly treat 
the subject matter as having not quantitative but rather nominal or ordinal 
structure, such as Observation Oriented Modeling (OOM) might be in order 
within traffic psychology as well (Grice, Barrett, Schlimgen, & Abramson, 
2012; Grice, 2014).  

This discussion can be simultaneously taken as a severe consideration of 
the limitations of the present thesis. In case the properties examined in 
Studies I and II are deemed not to be quantities, the results of these studies 
are essentially devoid of meaning – or perhaps the findings  are trivially true. 
Still, the studies of the present thesis are naturally not alone in facing these 
challenges, which are shared by all self-report based studies into traffic 
behavior.  

The network models of traffic behavior discussed in the present thesis 
face the same challenges concerning measurability and the nature of the 
phenomena as quantities. However, the co-occurrence of phenomena can be 
examined using different kinds of indices of mutual information, which do 
not entail that the properties under comparison are quantities or their 
relations linear. Network analyses based on partial mutual information have 
been employed in, for instance, investigating the structure of stock markets  
(You, Fiedor, & Ho da, 2015) – such indices may perhaps prove useful also 
within traffic psychology.  

4.4 Limitations of the studies 

The current section considers the theoretical and methodological 
limitations of Studies I–III. It, however, abstains from philosophical 
discussion concerning the measurability of psychological properties (Section 
4.3.) and takes for granted that the enterprise of treating psychological 
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properties as quantities stands on solid ground – an admittedly bold 
assumption given the discussion in Section 4.3.  

In this thesis, network models have been put forward as a significant 
advance compared to latent variable models, even though the two models 
have complementary strengths and weaknesses. Study III, in particular, 
failed to discuss this theme, so it is briefly considered in what follows. Latent 
variable models are an elegant method to account for measurement error in 
item responses, which is precisely the weak spot of network models. If an 
estimate of the reliability of the measures exists, it can be input directly as a 
parameter of latent variable models, or it can be estimated using, e.g., CFA or 
ESEM. On the other hand, creating data-driven hypotheses concerning the 
(causal) relationships among a group of variables is what network models 
excel at, whereas latent variable models face the problem of choosing among 
equivalent models in such a setting.  

It may well be that the structures of the network models of traffic 
behavior discussed in the present thesis are partly due to the influence of 
unmodelled latent variables (see Sections 4.1.1. and 4.1.2.). On the other 
hand, it seems plausible that at least some of the associations among the 
traffic behaviors are due to direct (causal) connections among the traffic 
behaviors. Because of this, an optimal research method would perhaps 
combine the strengths of latent variable models and network models. 
Fortunately, such methods have been developed: Latent Network Models 
(LNMs) contain a latent variable model as a measurement model and then 
model relationships among the latent variables as a network, while Residual 
Network Models (RNMs) model the residuals in a Structural Equation Model 
as network (Epskamp, Rhemtulla, & Borsboom, 2017). Both could be 
productively used in the context of psychometrics of driver behavior. For 
instance, the potential unmodelled latent variables discussed above (Sections 
4.1.1. and 4.1.2.) could have been explicitly modelled using a LNM, while a 
“poor man’s version” of a RNM was already used in Study II in visualizing the 
residual correlations of the measurement models.  

The usefulness of LNMs is naturally not restricted to explicitly accounting 
for unmodelled latent variables. Rather, it is a reasonable requirement that 
measurement error must be accounted accounted for in all variables that are 
input into a network model. Indeed, it has been suggested that all observed 
variables should be interpreted as multidimensional latent variables: 

“It is not inconceivable that experience and judgment (positive latent 
outcomes of age) are positively related to task performance, while 
decreased physical and cognitive capacity (again latent outcomes 
positively related to age) may relate negatively to task performance. 
If these latent outcomes of age happen to cancel each other out, how 
does one interpret the finding that age is not related to task 
performance?” 

(Howell, 2008) 
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The example is delightful: While the unidimensionality of latent variables 
is assumed and receives a great deal of attention in methodological literature, 
it is a refreshing thought that even the seemingly simplest observed variable 
can be interpreted as carrying information about several latent variables. 
Study III might, then, have benefited from modelling all variables that were 
used in the network models as latent variables, with measurement error 
input as a parameter for the variables whose reliability could not be 
estimated otherwise.  

When it comes to more purely methodological limitations of the studies, 
the estimation method used in Study I did not allow teasing apart analyses of 
weak and strong measurement equivalence. This can be considered a major 
flaw, since Study II showed that such differences may well be relevant in 
DBQ data. A further limitation of Study I is that it did not follow up the initial 
measurement equivalence analyses with analyses of partial measurement 
equivalence. This might have qualified the results in important ways: 
perhaps some of the latent variables would have proved to be at least similar 
in nature across the age groups or genders. Study II, for its part, was based 
on comparing the measurement properties of the DBQ across two countries 
using pre-existing archival datasets that were originally collected for other 
purposes. This may well have introduced bias into the results, but the 
question could not be investigated for the same reason: the data sets included 
only few common background variables.  

Further, Study I has been criticized for being based on overly small 
sample sizes, for overextraction of latent variables and for unrealistic 
expectations  (de Winter, 2013). A reply to the arguments has been published 
(Mattsson, 2014), and the arguments and counterarguments are summarized 
in what follows. First, de Winter (2013) made the strikingly strong argument 
that the results of Study I were “likely … artifacts, caused by failing to recover 
stable factors”. The argument was supported by a simulation study  (de 
Winter, Dodou, & Wieringa, 2009) according to which hundreds of more 
observations would have been needed in order to reliably estimate 
population parameters in a sample such as the one used in Study I. However, 
the simulation study was based on principal axis factor analyses of 
continuous, normally distributed variables, whereas in Study I, the input 
variables were categorical (and thus obviously non-normal), and a weightd 
least squares estimator with mean and variance correction (WLSMV), based 
on polychoric correlations, was used instead of principal axis factoring. 
Because of this, there are more appropriate simulation studies to cite in order 
to judge the adequacy of the sample sizes of Study I. For instance, Flora & 
Curran (2004) stated that when the WLSMV estimator is used with 
polychoric correlations, it produces accurate results even with the most 
skewed and curtotic variables (much like those used in Study I) with sample 
sizes exceeding 200, i.e. less than the within-group sample sizes in Study I. 
Mattsson (2014) cites also several other simulation studies that point in the 
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same direction, supporting the conclusion that sample sizes in Study I were 
in fact quite adequate.  

 De Winter (2013) continued the critique of Study I by discussing the 
overextraction of factors. In other words, he claimed that in Study I, a factor 
model with too many factors was specified. To put this criticism into 
perspective, it is good to remember that the model specified the number of 
factors that the instrument was built to measure, and Study I showed that the 
four-factor model fit the data better than the two-factor model (errors and 
violations) advocated by de Winter (2013). Further, it is naturally possible to 
specify a factor model that combines these perspectives: if the two factors are 
specified as higher-order factors, the four factors discussed in Study I can be 
thought of as first-order factors (a proposal also made by Lajunen et al., 
2004).  

On a more theoretical level, Mattsson (2014) argued that as long as the 
latent variables are given a realist interpretation, i.e. as long as it is assumed 
that there exists a cognitive process that the latent variable reflects 
(something that has always been assumed at least implicitly in the DBQ 
literature), it would rather be desirable to extract a far larger number of 
latent variables: the world is, after all, a complicated place and several 
cognitive processes are likely to determine whether we commit an error in 
traffic or not, and the DBQ items could be grouped according to the cognitive 
processes employed when carrying out the behavior or committing the error 
described in the item. My understanding of these issues has since developed, 
and if I were to write the article today, I would probably refer to more 
complex models such as those combining a within-person information-
processing model with an individual differences model that were briefly 
introduced in Section 4.3 and to issues such as ergodicity discussed in 
Section 4.1. 

Finally, de Winter (2013) criticized Study I for unrealistic expectations 
when it demanded that strong factorial invariance should be demonstrated 
before comparing factor means. De Winter (2013) cites Meredith & Teresi 
(2006) as support for his statement that “arguing against comparing means 
of these subgroups of respondents is an unnecessarily skeptical standpoint.” 
The argument is difficult to understand, since Meredith and Teresi (2006) 
clearly state that  

If strong factorial invariance is observed, then one can legitimately 
compare groups in terms of factor and observed means; without 
strong factorial invariance, observed group differences will not 
correspond to differences in underlying factor means, but will be 
confounded by differences in item-specific intercepts, which are 
typically not of substantive importance. 

Meredith & Teresi (2006) 
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 The intercepts, for their part, are used for modelling differential effects of 
acquiescence bias, different response styles and social desirability bias etc. 
across groups. Because of this, stating that strong equivalence is too much to 
ask when comparing factor means amounts to having the opinion that it does 
not matter whether the means reflect the above-mentioned biases or the 
phenomenon of interest. This clearly cannot be the case, especially since 
within the DBQ research tradition, concrete suggestions related to traffic 
safety measures have often been made based on such differences in factor 
means.  

Study III had its own limitations that ranged from pre-processing data to 
interpreting descriptive indices of network models. First, Study III treated 
missing data in a wasteful manner (listwise deletion). This may have created 
selective effects in the data. Still, more elegant methods of dealing with 
missing data, such as Full Information Maximum Likelihood have not yet 
been implemented within the network analysis framework (Epskamp, 2017). 
In addition, network models were not compared across driver groups: it is 
possible that systematic differences would have been found between groups 
of drivers, such as drivers of different ages – similarly to what was found in 
Studies I and II using the latent variable methodology. Comparing the 
structure of the network models across subgroups would amount to a test of 
measurement equivalence of sorts even though the network models are not 
measurement models in the traditional sense of the word. Further, it is 
naturally possible that individual drivers’ personal network structures differ 
from other drivers’ respective network structures; this question could, 
however, be investigated only by creating individual and group-level network 
models based on longitudinal data. When it comes to the Poisson regression 
models used in Study III, the suitability of the models was not assessed 
thoroughly: for instance, zero-inflated Poisson models might have been a 
more principled choice for modeling rare events such as the crashes2.  

The use of network centrality indices for identifying targets for traffic 
safety interventions in a data-driven manner is another theme in the data 
analysis of Study III that can be contested. This is because it is currently an 
open theme whether and to which extent the indices that have been 
developed for characterizing social networks are applicable to psychological 
networks (Bringmann et al., 2019). For instance, the betweenness index and 
the closeness index refer to flow of information between the nodes of the 
network, even though it is unclear whether it can sensibly be stated that 
something “flows” when a node related to a certain traffic behavior is 
connected to the node related to another behavior. On the other hand, the 
strength centrality index that was also reported in Study III does not suffer of 
this difficulty. Further, any given network model is compatible with several 

                                                
2 I would like to thank professor Reijo Sund, who acted as a pre-examiner of the present thesis, for 

this observation. 
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causal structures, and a recent caution (from a study reporting network 
models of PTSD) is relevant here, as well: 

It is important to highlight that centrality does not automatically 
translate to clinical relevance and that highly central symptoms are 
not automatically viable intervention targets. Suppose a symptom is 
central because it is the causal endpoint for many pathways in the 
data: Intervening on such a product of a causal chain would not lead 
to any changes in the system. 

Fried et al. (2018) 

Other possibilities exist, as well: a central node can be involved in several 
feedback loops, and “switching it off” would perhaps not be a viable 
intervention target because the other nodes might “switch it back on again” 
easily (Fried et al., 2018). In Study III, the speeding-related node v5 might be 
a case in point: for instance, even if we succeeded in discouraging drivers 
from speeding while racing from the traffic lights (v10) still belongs to their 
behavioral repertoire, it might be that when the drivers end up in a traffic 
situation that encourages racing from the lights, they would still end up 
speeding. Further, certain behaviors are important targets for traffic safety 
interventions quite irrespective of the values of centrality indices in network 
models; for instance, even though driving under the influence of drugs (v12) 
is the least central node in the network model presented in Figure 9, it is 
certainly an important target for traffic safety interventions. Such issues 
related to the limitations of using centrality indices were not presented 
clearly enough in Study III.  

On a more general level, all three studies were based on self-report 
questionnaires. This is a clear weakness of the present thesis, because based 
on the Studies I–III, common method bias cannot be teased apart from 
variance related to the phenomena of interest. For instance, the present 
results are in principle compatible with the possibility that traffic behavior is 
indeed determined by a small number of general psychological properties, 
such as the tendency to break rules or the tendency to commit errors. For 
instance, it is conceivable that people do indeed exceed speed limits and 
overtake on the inside because they have a tendency to break rules, even 
though the self-report questionnaire might not be a sufficiently sophisticated 
instrument for measuring such properties. If this is so, thorough open-ended 
interviews on the reasons that drivers give to their behavior, might, for 
instance, reveal the fact better than self-report questionnaires. Instead of 
returning to deep questions of measurement in psychology (see Section 4.3.) 
or considering the myriad of reasons for a given individual to break rules on 
a given occasion, two general points of view are offered to counter arguments 
related to method bias:  

First, explanations that have the form “people behave in manner X 
because they have a tendency to do so” are blatantly circular, and do not 
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increase our understanding of the behavior in the least. Because of this, the 
main point of the present thesis – that human behavior is complex and 
should be modeled as such – stands irrespective of self-report methodology. 
Second, because of the circularity of such explanations, it might be more 
fruitful to consider the psychological properties as taxonomical nametags 
rather than explanations. It appears, indeed, that this is what Reason (1990) 
does when using the GEMS concepts: they are a way of classifying factors 
that contribute to accidents rather than explanations; on the other hand, 
Reason (1990) does provide thorough explanations of accidents that did take 
place, such as the Challenger explosion and the Chernobyl accident. These 
descriptions of the accidents can be considered true explanations as they 
involve causal chains such as disregarding known problems with o-rings 
leading to them failing catastrophically in the Challenger explosion. The 
present thesis argues that such causal chains are what counts when 
explaining accidents, and that network analysis can prove to be a helpful tool 
when formulating hypotheses concerning them. 

4.5 Open questions and future directions 

The major novel question that the present thesis raises is: “What is the 
constructive contribution that psychometric network models can make in the 
field of traffic psychology?” It is an open question whether the major 
difference between network models and latent variable models is related to 
the causal determinants of traffic behaviors or to the networks’ ability to 
function as natural representations of dynamic phenomena that happen in 
time and develop over a longer time scale  (Bringmann & Eronen, 2018). 
Further, the network models are built based on pairwise relationships 
between nodes while statistically controlling for the effects of the remaining 
nodes. Is this a relevant starting point for modelling traffic behavior, or 
should the models include dependencies spanning a larger number of 
relationships? Could these interactions (pairwise or otherwise) be 
represented using some version of latent variable models as plausibly as with 
network models? Latent variable models and structural equation models are 
after all an enormously flexible technique for modelling multivariate data. 

On the whole, the status of latent variables in network models of driving 
behavior is another future challenge to be tackled. For instance, will the 
drivers’ tendency to violate rules and to commit errors still be seen as a 
relevant research topic in the future? If so, should the focus be on general 
tendencies (independent of driving or traffic as a context) or on driving-
related tendencies? How should the latent variable view and the network 
view be integrated in the future? Should the tendencies be included as latent 
variables that influence the driving behaviors, or should they rather be seen 
as emergent properties of the patterns of interaction in networks of driver 
behavior?  
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Moreover, psychometric network models can only prove to be useful in 
traffic psychology and traffic safety work if they are constructed based on 
variables that are relevant for traffic safety. Section 4.2. referred to the 
variables reported in Table 8 forming a criterion-keyed version of the DBQ; 
those variables served as the best independent predictors of self-reported 
crashes. What if this idea were to be taken a bit further and network models 
of driving behavior constructed based on variables that are independently 
known to function as parts of causal chains leading to crashes? The network 
models reported in Study III were, after all, constructed based on self-report 
items that were originally included in the questionnaire because of their 
maximal intercorrelations (Reason et al., 1990). Such highly redundant items 
are surely not optimally enlightening if the objective is to uncover causal 
chains leading to crashes.  

Indeed, some of the edges in the network models of traffic behavior were 
suggested as plausible causal hypotheses, while others were interpreted as 
indicating the presence of unmodelled latent variables. If the network view is 
adopted in future studies, it would seem beneficial to build the models based 
on a carefully selected set of variables with likely causal associations among 
them. Models of accident analysis, such as the Driving Reliability and Error 
Analysis Model (DREAM, Wallén Warner et al., 2008) could perhaps be used 
as inspiration for developing such self-report instruments. The DREAM was 
constructed based on in-depth analyses of serious crashes and it contains 
variables that have been identified as parts of causal chains leading to actual 
crashes. The DREAM contains background variables such as personality 
traits and stress that are used in explaining why drivers might choose an 
inappropriately high speed that then lead to them missing observing 
something etc and to eventually crashing. Network models based on self-
report of such phenomena might prove interesting for traffic safety work.  

The previous considerations naturally lead to considering the relevance of 
complex systems theories to network models of traffic behavior. Such 
theories are useful for understanding change over time across multiple time 
scales (Richardson, Dale & Marsh, 2014). Traffic behavior is complex in just 
this way: it involves a large number of interacting elements that operate on 
different time scales. For instance, the personalities of drivers are taken to 
influence the way they behave in traffic from one moment to another; still, 
the dynamics of change in personality traits take place on an extremely long 
time scale (years), while the moment-to-moment traffic behavior unfolds on 
a time scale expressed in seconds. Such differences in time scales and the 
granularity of variables would surely need to be explicitly taken into account 
when combining background variables such as personality traits into 
network models of traffic behavior.  

Traditionally, research on traffic behavior has been based on different 
kinds aggregate statistics such as self-reported frequencies of behaving in a 
certain manner. While the network models reported in the present thesis are 
based on such aggregate data, they still comprise interacting parts that form 
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an entity with potentially emergent properties – both hallmarks of complex 
dynamic systems. It would be of great interest to take these ideas further and 
to examine changes in traffic behaviors modelled as a complex system with 
interacting parts; this might prove fruitful for understanding the (in-)efficacy 
of traffic safety interventions (Nóvoa, Pérez & Borrell, 2009), for instance. 
Intensive longitudinal data would naturally be needed in such studies.  

Another potential direction for future research would be investigating the 
influence that the state of the driver (tired, stressed, in a hurry etc.) has on 
the network of driving behaviors; it is conceivable that the network could 
occupy qualitatively different states of interconnectivity in each case. Similar 
methods could perhaps be used in assessing how novice drivers’ driving 
behaviors interact and solidify into driving habits across a longer period of 
time. It is an open question whether such developmental studies can be 
carried out based on the DBQ but it might again be desirable to develop an 
instrument separately for this purpose in order to better represent the 
relevant causal connections.  

Collecting intensive longitudinal data would make it possible to assess the 
similarity (or lack thereof) of within-person and between-person models of 
traffic behavior – something that the current thesis could only point out as 
an outstanding question. The observations related to ergodicity that were 
raised in Section 4.1. raise an interesting question: what if we were able to 
first construe person-specific models describing the dynamical relationships 
among psychological processes within individuals, and only then aggregate 
data from those persons whose person-specific models are similar in nature 
(Molenaar & Campbell, 2009)? This would enable sidestepping the difficult 
questions of ergodicity, homogeneity of the population and the stationarity of 
parameters.  

4.6 Conclusions 

The current thesis has provided a first example of using psychometric 
network analysis in the context of traffic behavior, and future studies can 
build on this basis both theoretically and methodologically. Understanding 
direct interactions among traffic behaviors, together with associated 
thoughts and emotions, provides a novel point of view to psychometrics of 
traffic behavior, and brings the field closer to other fields of traffic 
psychology, such as overarching theories of traffic behavior (Fuller, 2005; 
Summala, 2007), models of accident causation  (Abdel-Aty & Radwan, 2000; 
Wallén Warner et al., 2008) and modern taxonomies of human error 
(Stanton & Salmon, 2009). Network analyses feed back to the subject matter 
theory by considering pairwise relationships between variables and the 
nature of cliques in the network: as a visual method, network analysis is able 
to summarize a large amount of information in a small space, which enables 
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the researcher to consider where and how the associations between variables 
are in line with expectations.  

In the presently reported network models, certain potential hubs – 
behaviors of central importance in terms of determining other behaviors – 
were suggested. Among these are speeding within or outside residential 
areas. The present thesis showed an example of how causal hypotheses 
concerning the assocations among traffic behaviors can be reached through 
network modelling. Further, the thesis suggests that the relationship between 
individual traffic behaviors and that of the overarching category of violations 
can be understood as one of emergence. Future studies can build on this 
basis by examining the dynamics of driving behaviors, such as how certain 
associations form and change. One direction for future studies would be to 
employ time-series data to examine the factors that affect changes of network 
state between the rule-abiding and the violation-prone state. 

The present thesis as a whole offers important reminders to researchers 
wishing to operationalize theoretical concepts using self-report instruments. 
The history of the DBQ, as developed on the basis of GEMS, highlights the 
extreme difficulty of coming up with self-report items that would be 
unequivocally related to only the properties being measured. The extremely 
large number of different instruments, all going by the name of “the DBQ”, 
encourages considering whether the DBQ should return to its roots: perhaps 
items should carefully be crafted such that all the important GEMS variables 
will be accounted for. On the other hand, the present thesis raised the 
question of whether it might be of more interest to construe self-report 
instruments that are more consistent with the network view, such as one 
based on variables that are independently known to affect crash risk. The 
starting point in network models is, after all, the idea of a component, i.e. a 
node having unique causal associations with the rest of the nodes. Because of 
this, variables that are known to be associated with crash risk might function 
as a more principled starting point than those that are psychometrically 
optimized to have maximal intercorrelations – and consequently low 
predictive power of their own.  

The present thesis also included a method of modelling crashes based on 
the principles of statistical learning theory that include building and testing 
the predictive model in different subsets of data and testing model fit based 
on cross-validation. Further, regularized regression was used both for 
avoiding overfitting the model and for selecting the predictors. Traffic 
psychology would perhaps benefit of wider application of such methods and 
analysis procedures in predicting the occurrence of crashes.  

Still, the most original contribution of the present thesis lies in the 
application of network models and interpreting traffic behaviors as a 
complex, interacting system. Adopting the network view was based on 
observing a central contradiction in the foundation of DBQ studies: the 
studies are motivated by arguing that latent variables – violation- and error-
proneness that are obviously related to properties of individual drivers – can 
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be studied using large cross-sectional samples of drivers from the whole 
population. The present thesis argues that the exercise is likely to fail due to 
problems related to ergodicity (Section 4.1.) and proposes that studies 
utilizing network models constructed based on intensive longitudinal data 
would be needed in order to examine within-person psychological processes 
such as violation- and error-proneness. Because the network models 
reported in the present thesis are not based on this kind of intensive 
longitudinal data, they can be interpreted only as suggesting a hopefully 
fruitful way forward for self-report-based studies in traffic psychology. Still, 
the models that were reported can, in the future, be compared with models 
based on such longitudinal data: it is in itself an interesting question whether 
and to what extent the within-person and between-person models 
correspond with each other when studying such a clearly bounded sphere of 
human life as traffic. I hope future studies build on this basis and examine 
whether traffic behavior can fruitfully be analysed as a complex system with 
all that this entails. 
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