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ABSTRACT  

Methods: We have developed a nuclear and fluorescence labeling strategy for nanocrystalline 

cellulose (CNC), an emerging biomaterial with versatile chemistry and facile preparation from 

renewable sources. We modified CNC through 1,1’-carbonyldiimidazole (CDI) activation with 

radiometal chelators desferrioxamine B and 1,4,7-triazacyclononane-1,4,7-triacetic acid (NOTA), 

allowing for the labeling with zirconium-89 (t½=78.41 h) and copper-64 (t½=12.70 h), respectively, 

for non-invasive positron emission tomography (PET) imaging. The far-red fluorescent dye Cy5 was 

added for ex vivo optical imaging, microscopy and flow cytometry. The multimodal CNC were 

evaluated in the syngeneic orthotopic 4T1 tumor model of human stage IV breast cancer. 

Results: Modified CNC exhibited low cytotoxicity in RAW 264.7 macrophages over 96 hours, and 

high radiolabel stability in vitro. After systemic administration, radiolabeled CNC were rapidly 

sequestered to the organs of the reticulo-endothelial system (RES), indicating immune recognition 

and no passive tumor targeting by the enhanced permeability and retention (EPR) effect. 

Modification with NOTA was a more favorable strategy in terms of radiolabeling yield, specific 

radioactivity, and both the radiolabel and dispersion stability in physiological conditions. Flow 

cytometry analysis of Cy5-positive immune cells from the spleen and tumor corroborated the 

uptake of CNC to phagocytic cells. 

Conclusions: Future studies on the in vivo behavior of CNC should be concentrated on improving 

the nanomaterial stability and circulation half-life under physiological conditions and optimizing 

further the labeling yields for the multimodality imaging strategy presented. 

Advances in Knowledge: Our studies constitute one of the first accounts of a multimodality 

nuclear and fluorescent probe for the evaluation of CNC biodistribution in vivo and outline the 

pitfalls in radiometal labeling strategies for future evaluation of targeted CNC-based drug delivery 

systems. 
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Implications for Patient Care: Quantitative and sensitive molecular imaging methods provide 

information on the structure–activity relationships of the nanomaterial and guide the translation 

from in vitro models to clinically relevant animal models. 

ABBREVIATED TITLE 

Multimodality imaging of CNC biodistribution 

KEYWORDS  

Nanocrystalline cellulose, biodistribution, multimodality, labeling, imaging, positron emission 

tomography (PET)   
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INTRODUCTION 

Nanoscale drug delivery systems are being intensely investigated for targeted delivery of 

chemotherapeutic agents to tumors with the potential advantages of concentrating the active 

pharmaceutical at the tumor by the enhanced permeability and retention (EPR) effect, protecting 

sensitive payloads from premature release and degradation, limiting off-target toxicity, and 

providing sustained release at the tumor[1-4]. Despite the great potential, many nanoscale drug 

delivery systems fall short of the anticipated therapeutic potential in vivo because of limitations 

due to residence time in circulation, aggregation, accumulation to non-target organs, and poor 

penetration to the tumor tissue[5]. Sensitive and quantitative molecular imaging techniques are 

valuable tools for the initial in vivo evaluation of nanoscale drug delivery systems in preclinical 

models as they allow the tracking of the nanosystem behavior non-invasively in real time with 

minimal disturbance to the sequestration of the nanomaterial and payload release[6]. The 

hallmark of nuclear molecular imaging techniques, positron emission tomography (PET) and 

single-photon emission computed tomography (SPECT) is their exceptional sensitivity arising from 

the unlimited penetration of gamma irradiation in tissues. However, multimodality probe 

constructs where the radiolabel is combined with a fluorescent label offer the additional 

advantage of studying these interactions with the same probe in cells and tissues with 

fluorescence microscopy and optical imaging[7, 8]. 

Nanocrystalline cellulose is a top-down nanomaterial prepared from various renewable 

sources including wood pulp, bamboo, cotton, bacteria and tunicate mantles by preferential acid 

hydrolysis of disordered amorphous regions in the biopolymer[9, 10]. The physicochemical 

properties of the cellulose nanomaterials such as size, shape, and surface functionality, can be 

controlled by the utilization of various mineral acids and sources of cellulose[11, 12], which makes 

nanocrystalline cellulose a versatile platform for drug delivery. Nanoscale cellulose materials are 
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classified according to material dimensions either as nanofibrils (NFC, 4–20 nm in diameter, 500–

2000 nm in length), or nanocrystals or whiskers (CNC, 3–5 nm, 50–500 nm)[13]. An important 

distinction between nanofibrillar and nanocrystalline cellulose is that NFC contains both crystalline 

and amorphous regions, whereas the number of the latter are significantly reduced in CNC 

resulting in high order of crystallinity of the material. The crystallinity translates to high tensile 

strength and rigidity of CNC compared to NFC and many other nanomaterials explored for drug 

delivery. Several aspects of CNC make it an appealing candidate material for drug delivery 

applications. First, the as-hydrolyzed surface of CNC is negatively charged facilitating efficient 

loading of both charged and non-ionized payloads, or upon modification with cetrimonium 

bromide (CTAB), hydrophobic anti-cancer drugs[14]. Second, the abundant –OH termination of the 

CNC surface provides an easily accessible handle for further chemical surface modification. The 

principal strategies to modify CNC surface chemistry include oxidation with TEMPO, activation 

with 1,1’-carbonyldiimidazole (CDI), cationization via epoxide ring opening, and esterification by 

acid chlorides and anhydrides, reviewed comprehensively by Lam et al.[15].  

To date, CNC has been primarily investigated in sustained release matrices including 

aerogels, films, wound dressings, and in oral formulations[16-18]. Despite increasing interest for 

drug delivery systems based on CNC scaffolds, only a few reports have investigated the behavior 

of CNC in preclinical models after systemic administration. This is surprising, as the aspect ratios of 

cellulose nanocrystals prepared from cotton match those of carbon nanotubes and tobacco 

mosaic virus (TMV) capsids, both of which have been successfully employed for systemic carrier-

mediated drug delivery in animal models of cancer[19-21]. A high aspect ratio has been even 

shown to promote cellular internalization and tumor penetration of non-targeted rod-shaped 

nanoparticles over spherical ones[22, 23]. Furthermore, CNC has been shown to have a low 

cytotoxic and genotoxic profile in human monocyte-derived macrophages, bronchial epithelial 
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cells and fibroblasts[24, 25], human stem cells[26, 27], in embryonic zebrafish[28], and in a single 

study with Alexa Fluor 633 –labeled CNC in immunocompetent NFR mice[29]. Fluorescent labeling 

of cellulose nanocrystals with fluorescein isothiocyanate (FITC) and Rhodamine B isothiocyanate 

(RBITC) has been reported, but applications of these conjugates have been limited to studies in 

cells[30, 31]. Therefore, the material properties seem to be suited for carrier-mediated drug 

delivery after systemic administration, and further evaluation of CNC behavior in vivo is warranted 

in order to propel the development of targeted drug delivery systems based on nanocrystalline 

cellulose scaffolds.  

Here we describe a multimodality labeling strategy for CNC for evaluation in a preclinical 

animal model with PET and fluorescence imaging. The cellulose nanocrystals are activated with 

1,1’-carbonyldiimidazole (CDI) followed by a single-step conjugation of amino-functionalized 

chelators desferrioxamine B (DFO) and 1,4,7-triazacyclononane-1,4,7-triacetic acid (NOTA) for 

positron-emitting radiometals zirconium-89 (t1/2=78.41 h) and copper-64 (t1/2=12.70 h), and the 

fluorophore Cyanine 5 (Scheme 1). The developed imaging probes are characterized for 

cytotoxicity in murine RAW 264.7 macrophages and evaluated in vivo for immune cell specificity 

and passive tumor targeting in a mouse model of human stage IV breast cancer.         

MATERIALS AND METHODS 

Materials  

All chemicals unless denoted otherwise were purchased from Sigma-Aldrich (St. Louis, MO, USA) 

and were used without further purification. Cyanine5 (Cy5) amine (95% purity) was from 

Lumiprobe Corporation (Hallandale Beach, FL, USA), and p-NH2-Bn-NOTA (≥ 94%) from 

Macrocyclics (Dallas, TX, USA). Ultrapure water (18.2 M cm-1) was produced on an Elga Purelab 

Ultra system (Elga LCC, Woodridge, IL, USA). Zirconium-89 was prepared in-house at Memorial 

Sloan Kettering Cancer Center (MSKCC) on an TR 19/9 variable beam energy cyclotron (Ebco 
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Industries, Richmond, BC, Canada) in a 89Y(p,n)89Zr reaction and extracted from the foil using 

methods reported in literature[32]. This afforded 89Zr as [89Zr]Zr-oxalate at molar activity ranging 

from 17.76 to 45.14 MBq µmol-1. [64Cu]CuCl2 produced in a 64Ni(p,n)64Cu reaction was purchased 

from Mallinckrodt Institute of Radiology, Washington University, St. Louis, MO, USA. The molar 

activity for copper-64 used for the studies ranged from 259 to 984 GBq µmol-1. RAW 264.7 and 

4T1 cell lines were obtained from ATCC (Manassas, VA, USA). The 4T1-tdTomato cells were a kind 

gift from the laboratory of Dr. Moritz Kircher, Department of Radiology, MSKCC. All culture media 

used were supplied by the MSKCC Media Preparation Core Facility.  

Synthesis of multimodal CNCs 

Unmodified cellulose nanocrystals were prepared from ashless cotton cellulose filter paper by 

hydrolysis in sulfuric acid following a literature procedure[33]. In a typical synthesis procedure, 10 

mg of CNC was used as the starting material. After activation with 10 mg of 1,1’-

carbonyldiimidazole (CDI, 1:1 w/w to CNC, 10 mM final concentration) in 6.2 ml of anhydrous 

dimethyl sulfoxide (DMSO) under inert atmosphere for 22 hours at 40°C, DFO (0.5 mg, 1:20 w/w to 

CNC, 0.15 mM) or p-NH2-Bn-NOTA (5 mg, 1:2 w/w to CNC, 1.93 mM), and Cy5 amine dye (0.1 mg 

from 10 mg ml-1 solution in DMSO, 1:100 w/w, 30.6 µM) were added, and the reaction mixture in 

anhydrous DMSO (5 ml) was stirred at 600 rpm under inert atmosphere for 22 hours at 40°C. 

Modified CNCs were purified with sequential centrifugation and resuspension in DMSO, 1×PBS, 

pH=7.4, and ultrapure water, followed by dialysis for 72 hours against ultrapure water. Purified 

nanocrystals were lyophilized, stored at +4C and used as prepared for subsequent experiments.    

Determination of CNC size distribution with atomic force microscopy (AFM) 

Size distribution of the synthesized CNC materials was determined with atomic force microscopy 

(AFM). Briefly, single-nanocrystal suspensions of unmodified CNC, CNC-NOTA-Cy5, and CNC-DFO-

Cy5 were prepared by sonication of concentrated (5 mg ml-1) nanocrystal samples in ultrapure 
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water on an ultrasonic probe, followed by sedimentation of aggregates by low-speed 

centrifugation. The supernatant single nanocrystal suspensions were applied to mica substrates, 

allowed to attach for a maximum of 15 minutes and the substrate was subsequently washed with 

ultrapure water. Images were acquired on MFP-3D-BIO AFM (Asylum Research, Santa Barbara, CA, 

USA) on an Axio Observer inverted optical microscope (Carl Zeiss Microscopy GmbH, Jena, 

Germany). For AFM image analysis, the images were exported as specified Z-scales from the 

Asylum Research software (version 14.13.143) into MetaMorph (version 7.8.10, Molecular 

Devices, Sunnyvale, CA, USA).  A customized script in MetaMorph was used to identify individual 

nanocrystals for morphometric analysis. Length and width were determined by thresholding 

whereas the diameter or height of the CNC was considered to be the average of the 20 brightest 

pixels of each nanocrystal. The journal was set to prompt the user for visual confirmation of the 

presence of a single crystal in each individual image submitted for analysis. 

Zeta potential measurements 

Zeta potential of unmodified and modified cellulose nanocrystals was measured in ultrapure water 

in a disposable folded capillary cell on a Zetasizer Nano ZS instrument (Malvern Instruments Ltd, 

Malvern, United Kingdom). The zeta potential distribution was determined from the 

electrophoretic mobility of the cellulose nanocrystals using the Smoluchovski relation as an 

average of three measurements.   

Cell culture 

All cell lines were maintained in T-75 culture flasks (Corning) in humidified atmosphere at +37°C 

and 5% CO2. RAW 264.7 macrophages were cultured in Dulbecco’s Modified Eagle’s Medium 

(DMEM) with 10 % fetal bovine serum with 100 units ml-1 penicillin G and 100 g ml-1 

streptomycin. 4T1 and 4T1-tdTomato cells were cultured either in DMEM or RPMI-1640 media 
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supplemented with 10 % fetal bovine serum, 100 units ml-1 penicillin G and 100 g ml-1 

streptomycin.    

Cytotoxicity and confocal microscopy in murine RAW 264.7 macrophages 

The cytotoxicity of the modified CNC probes was determined in RAW 264.7 macrophages using the 

Molecular Probes LIVE/DEAD® Viability/Cytotoxicity Kit for mammalian cells (Thermo Fisher 

Scientific, Waltham, MA, USA) according to the manufacturer’s instructions. For the assay, RAW 

264.7 cells were plated on #1.5 Nunc Lab-Tek II chambered coverglasses (Thermo Fisher Scientific) 

at a density of 25,000 cells per well in 250 l of DMEM and allowed to attach overnight. The 

medium was replaced with 200 l of medium containing 5, 25, or 100 g ml-1 of unmodified CNC, 

DFO-CNC-Cy5, or NOTA-CNC-Cy5 and the samples were incubated at +37C, 5% CO2 for 6, 24, and 

96 hours. After incubation the cells were stained with 2 M calcein AM (for viable cells) and 4 M 

ethidium homodimer-1 (dead cells) in 1PBS, pH=7.4. Saponin (0.1% w/w) and medium only were 

used as controls for dead and viable cells, respectively. The cells were imaged on a Leica TCS SP8 

confocal microscope using excitation wavelength 495 nm and emission filters for maxima at 515 

nm (calcein AM) and 635 nm (EthD-1 in the presence of DNA). Images were obtained at 40 

magnification and 0.75 zoom, and snapshots rendering ≥ 100 cells for analysis (typically from 4–6 

sites on the well) were recorded. The proportion of live and dead cells was determined using 

MetaMorph software.       

Radiolabeling of multimodal CNCs with 89Zr and 64Cu 

All solutions used for radiolabeling were prepared from trace metal-free salts in ultrapure water 

rendered trace metal-free by treatment with Chelex 100 resin (Bio-Rad Laboratories, Hercules, CA, 

USA) at a concentration of 5.0 g l-1 for 12 hours. For radiolabeling with 89Zr, 0.75–0.9 mg of DFO-

CNC-Cy5 nanocrystals were dispersed in 2.5 ml of Chelex-treated ultrapure water with sonication 

on an ultrasonic probe, and the volume supplemented to 5 ml with 0.2 M ammonium acetate, 
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pH=7.0, to give final concentration of 0.1 M ammonium acetate. [89Zr]Zr-oxalate (64.4±11.8 MBq) 

was neutralized with 1 M Na2CO3 solution, and added to the nanocrystals. The mixture was 

vigorously shaken on a vortex shaker protected from light at ambient temperature for 12 hours. 

The [89Zr]Zr-DFO-CNC-Cy5 was separated from unreacted radiolabel by sequential washes in 1 ml 

of 1 mM DTPA, ultrapure water and 1PBS, pH=7.4 before final formulation to 0.5% Kolliphor HS 

15–1PBS, pH=7.4 by sonication. The nanocrystals were pelleted by centrifugation at 10,000 rpm 

for 10 minutes between washes, and the radioactivity remaining in the nanocrystal pellet and the 

supernatant was measured after each wash on a dose calibrator (Capintec Inc., Florham Park, NJ, 

USA). The radiochemical purity of the product was determined by paper chromatography on an 

iTLC-SA strip (Agilent Technologies Inc., Santa Clara, CA, USA) eluted with 50 mM DTPA. The strip 

was scanned on Bioscan AR-2000 radio-TLC scanner (Eckert & Ziegler Radiopharma Inc., 

Hopkinton, MA, USA). For radiolabeling with 64Cu, 0.5–1.2 mg NOTA-CNC-Cy5 nanocrystals were 

dispersed in 1 ml of 0.1 M ammonium acetate, pH=4.0 by sonication on an ultrasonic probe, and 

68.8±23.7 MBq [64Cu]CuCl2 was added. The reaction was stirred (750 rpm) at 80C for 20 minutes, 

and the nanocrystals purified and formulated as described for the [89Zr]Zr-DFO-CNC-Cy5. 

Radiochemical purity was determined on an iTLC-SG strip (Agilent Technologies) eluted with 50 

mM ethylenediaminetetraacetic acid (EDTA), and analyzed as described above. Radiolabel stability 

in vitro was determined using the iTLC methods described above after incubation of the 

radiolabeled CNC in 50% human serum–1×PBS, pH=7.4 at +37°C with shaking at 500 rpm.           

4T1 orthotopic mammary carcinoma model 

Allografts of 1106 4T1 or 4T1-tdTomato cells in 50 L of culture medium were inoculated into 

surgically exposed right mammary fat pad of 6–10 week-old female Balb/c mice (Charles River 

Laboratories, Kingston, NY, USA) under isoflurane anesthesia. All experiments were commenced 

on day 9 following tumor implantation, when the tumors had reached an average diameter of 8 
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mm in the largest dimension. All animal experiments were conducted under the ethical approval 

of the Institutional Animal Care and Use Committee of Memorial Sloan Kettering Cancer Center, or 

under the project license granted by the National Board for Animal Experimentation in Finland in 

compliance with the respective federal and European regulations and guidelines. Detailed 

descriptions of the surgical method, the fractionation of whole mouse blood for radioactivity 

counting, and the generation of the positive control tissue (BT-474 model) for the anti-Cy5 

immunohistochemistry are given in the Supplementary Information. 

Biodistribution and blood half-life determination in orthotopic 4T1 allograft-bearing mice 

4T1 allograft-bearing mice were injected intravenously with either 89Zr-labeled DFO-CNC-Cy5 or 

64Cu-labeled NOTA-CNC-Cy5 nanocrystals in 200 l of 0.5% Kolliphor HS 15–1PBS, pH=7.4 in the 

lateral tail vein. For an ex vivo biodistribution study, a dose of either 1.85 MBq (30 µg) of [89Zr]Zr-

DFO-CNC-Cy5 or 3.7 MBq (30 µg) of [64Cu]Cu-NOTA-CNC-Cy5 was used. Animals were sacrificed by 

CO2 asphyxiation followed by cervical dislocation at the designated time points, and tissues were 

collected for radioactivity measurements. The samples were measured on a Wizard 3” automated 

gamma counter (PerkinElmer, Waltham, MA, USA) for 60 seconds. Additionally, a subset of 

animals was imaged under isoflurane anesthesia on Focus 120 Micro-PET small animal PET scanner 

(Siemens Medical Solutions, Malvern, PA, USA) at designated time points after nanocrystal 

administration to visualize CNC biodistribution in the same animal subject as a function of time. 

For the longitudinal imaging experiment, higher doses of 3.7 MBq (60 µg) of [89Zr]Zr-DFO-CNC-Cy5 

and 7.4 MBq (60 µg) of [64Cu]Cu-NOTA-CNC-Cy5 were used to permit registration of at least 20 

million coincidence events. Imaging data was processed on ASIPro software (Concord Biosystems). 

Blood half-life for [89Zr]Zr-DFO-CNC-Cy5 and [64Cu]Cu-NOTA-CNC-Cy5 was determined after single 

intravenous injection of the radiolabeled nanocrystals. Venous blood samples were collected at 5, 

15, 30, 60, 120, and 240 minutes following administration either into a pre-weighed 
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microhematocrit capillary through a temporary cannula in the tail vein contralateral to the 

injection site, or by cardiac puncture after CO2 asphyxiation. The radioactivity in the blood samples 

was measured on an automated gamma counter. 

Ex vivo fluorescence imaging and histology 

For determination of the biodistribution based on the Cy5 fluorescence label, 4T1 allograft-bearing 

mice maintained on a low-autofluorescent diet (Teklad 16% protein rodent diet, Envigo RMS, 

Indianapolis, IN, USA) were intravenously injected with 25 g of non-radioactive DFO-CNC-Cy5 or 

NOTA-CNC-Cy5. A control mouse received the same amount of unmodified, non-fluorescent CNC. 

The mice were sacrificed 24 hours post-injection and the principal tissues that had showed uptake 

of radiolabeled CNC were removed and imaged individually on IVIS Spectrum optical imaging 

system (PerkinElmer, Waltham, MA, USA) under epifluoresence illumination in the spectral 

unmixing mode. Tissue autofluorescence spectra were determined from the corresponding tissues 

from an animal injected with the unmodified CNC. Fluorescence images were recorded and 

analyzed using the Living Image software (version 4.6, PerkinElmer). After imaging the tissues 

were processed for cryosectioning for fluorescence microscopy and automated hematoxylin–eosin 

(H&E) staining, or fixed in 10% neutral buffered formalin and processed for paraffin sections. The 

paraffin sections were stained in an automated system with a mouse monoclonal anti-Cy5 

antibody at a concentration of 7.5 µg ml-1 followed by 3,3’-diaminobenzidine (DAB) staining and 

counterstaining with hematoxylin. Cryosections (for fluorescence) were post-fixed with 4% 

paraformaldehyde in 1PBS, pH=7.4, counterstained with 1:1000 DAPI (4',6-diamidino-2-

phenylindole), and imaged on a Zeiss AxioPlan 2 widefield fluorescence microscope using 

excitation and emission settings for DAPI, and Alexa Fluor 647, respectively. H&E -stained sections 

were imaged on the same system under brightfield illumination. Anti-Cy5 –stained slides were 

scanned on an automated slide scanner (3DHistech Mirax Pannoramic) and processed on the 
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Pannoramic Viewer software. Detailed description of the generation of the Cy5-trastuzumab-

labeled BT-474 positive control tissue for anti-Cy5 antibody staining is described in the 

Supplementary Information.    

Isolation of phagocytic cells and flow cytometry analysis 

For flow cytometry analysis of CNC uptake to phagocytic immune cells, mice bearing orthotopic 

4T1-tdTomato mammary fat pad allografts were administered with 50 g of DFO-CNC-Cy5 and 

NOTA-CNC-Cy5 in 200 l of 0.5% Kolliphor HS 15–1PBS, pH=7.4 or vehicle intravenously. At 120 

minutes after administration, the mice were sacrificed by CO2 asphyxiation and perfused 

transcardially with ice-cold 100 units ml-1 heparin solution in 1PBS, and the tumor and spleen 

were collected. Minced tissues (200 mg for tumor and 100 mg for spleen) were digested with a 

cocktail containing 4 units ml-1 liberase TH, 40 units ml-1 hyaluronidase, and 40 units ml-1 DNAse at 

37C for 30 min (spleen) and 60 min (tumor). The cell suspension was filtered through a 70-m cell 

strainer and the cells were collected by centrifugation at 400g at 4C for 5 minutes. The red blood 

cells in the spleen sample were removed by a treatment with red blood cell lysis buffer (BD 

Biosciences, San Jose, CA, USA). The cell number in the suspensions was determined on an 

automated cell counter (Vi-CELL, Beckman Coulter, La Brea, CA, USA) and the concentration 

adjusted to 10106 cells ml-1. Aliquots of 2106 cells per sample were stained with the appropriate 

antibodies (see Supplementary Information for dilutions and respective fluorescent labels) and 

DAPI and analyzed on a BD LSR Fortessa flow cytometry analyzer. 

Statistical analysis 

Where applicable, statistical significance between groups was determined using GraphPad Prism 

(version 6.0f, GraphPad Software Inc., La Jolla, CA, USA). The statistical methods used are denoted 

for each data set in the Results and Discussion section. 
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RESULTS AND DISCUSSION 

Preparation and characterization of multimodal CNC imaging probes 

Several strategies, including TEMPO oxidation[34], amidation[35] and hydrazone conjugation to 

the reducing end aldehyde[29, 36] could be employed for the chemical modification of CNC for 

radiolabeling. In this study, activation of the hydroxyl-terminated surface with CDI afforded a 

straight-forward strategy for the conjugation of desferrioxamine B (DFO), p-NH2-benzyl-NOTA, and 

Cy5-amine to the CNC surface, in line with the previous observation that the stability of the 

reducing end hydrazone linkage is compromised in the acidic radiolabeling conditions needed for 

radiometal chelation[36]. The constructs are named DFO-CNC-Cy5 and NOTA-CNC-Cy5. The 

amount of DFO and NOTA chelators needed for sufficient radiolabeling yield with 89Zr and 64Cu, 

respectively, was determined with pilot radiolabeling experiments and was shown to be 20 

equivalents to the nanocrystal mass for DFO and 2 equivalents for p-NH2-benzyl-NOTA. This 

afforded decay-corrected radiochemical yields (RCY) of 61±16% (n=5) and 65±3% (n=5) for 89Zr and 

64Cu, respectively. The maximum specific activity attained was 59.2 MBq mg-1 for [89Zr]Zr-DFO-

CNC-Cy5 and 96.2 MBq mg-1 for [64Cu]Cu-NOTA-CNC-Cy5, with radiochemical purity exceeding 

99% for both radiolabeled constructs after the purification (determined by radio-iTLC).   

Quantitative RCY could not be attained for either isotope in this experimental setup likely 

because of the transient adsoption of the radiometals to the CNC surface. The presence of this 

phenomenon was corroborated by the removal of surface-bound radiolabel with subsequent 

washing with 50 mM diethylenetriamine pentaacetic acid (DTPA), and the lack of stable 

radiolabeling in unmodified as-hydrolyzed CNC (data not shown). Radiolabel stability in human 

serum was high over the time course of an in vivo experiment, 95.1±1.2% of radiolabel remaining 
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in nanocrystals for [89Zr]Zr-DFO-CNC-Cy5 after 7 days of incubation at 37°C (Supplementary Figure 

S1a), and 94.4±2.3% for [64Cu]Cu-NOTA-CNC-Cy5 at 24 hours (Supplementary Figure S1b).  

A 1:100 (w/w) ratio of Cy5-amine to CNC resulted in a fluorescent product. The scattering and 

bright fluorescence of the CNC products rendered the material unsuitable for particle size 

determination using dynamic light scattering (DLS), and nanocrystal size was instead determined 

with atomic force microscopy (AFM) using an automated journal in the MetaMorph software to 

measure the dimensions of individual nanocrystals. Size distributions for unmodified CNC, DFO-

CNC-Cy5, and NOTA-CNC-Cy5 with representative AFM images are presented in Figure 1. A 

considerably smaller number of CNC could be measured for DFO-CNC-Cy5 than for unmodified 

and NOTA-modified nanocrystals because of prominent aggregation of the nanomaterial upon 

application onto the mica substrate. Surface modification of single-crystal suspensions of CNC can 

be challenging as the aqueous suspension is often stabilized by the residual sulfate ester groups 

(from the hydrolysis with sulfuric acid) on the CNC surface[37]. Subsequent chemical modifications 

may result in destruction or masking of the sulfate residues, and consequently, reduce the 

hydrophilicity of the nanomaterial. This was especially true for the case of DFO, the conjugation of 

which to the CNC surface resulted in pronounced loss in the stability of the CNC suspension in 

aqueous and physiological media including phosphate-buffered saline (PBS) and serum at 

concentrations exceeding 1 mg ml-1. The aggregation of DFO-CNC-Cy5 is possibly a result of the 

ability of the DFO structure to promote hydrogen-bonding between adjacent DFO chains, a 

phenomenon that has been previously described for DFO-containing monolayers for iron sensor 

applications[38], and for the self-assembly of bacterial vesicles upon sequestration of iron[39]. In 

order to stabilize the nanocrystals for systemic administration, we chose to use 0.5% Kolliphor® HS 

15, a non-ionic solubilizer in the final formulation. Kolliphor® has been previously reported to 
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improve the dispersion of hydrophobic porous silicon nanoparticles at physiological salt 

concentration and is safe for intravenous administration in rodents[40]. Characterization data for 

the CNC used in this study are compiled in Table 1. 

Modified CNC exhibit low cytotoxicity in murine RAW 264.7 macrophages 

Cytotoxicity of the modified CNC was investigated in murine RAW 264.7 macrophages, a widely 

used cell model to study cytotoxic effects of engineered nanomaterials. Luminescence and 

fluorescence –based 96-well-plate assays were quickly found to be incompatible with Cy5-labeled 

CNC because of scattering and strong adsorption of the reagents to the CNC in culture resulting in 

readouts higher than for the positive control. In order to overcome this problem, we chose to use 

the LIVE/DEAD® Cell Viability Assay (Molecular Probes, Thermo Fisher Scientific) with confocal 

microscopy to obviate the issue with scattering and nanocrystal aggregation. The assay is based on 

the fluorescence detection of two reagents, ethidium homodimer (EthD-1) staining DNA after loss 

of plasma membrane integrity in dead cells, and Calcein AM converted to bright fluorescent 

product by intracellular esterase activity in viable cells. Cell viability after incubation with sterilized 

unmodified CNC, NOTA-CNC-Cy5, and DFO-CNC-Cy5 was determined after 6, 24, and 96 hours, 

extending over one doubling time of the cell line. Saponin (0.1%) in medium and nanocrystal-free 

medium were used as controls for dead and viable cells, respectively. Representative microscopy 

images at 96 hours are shown in Figure 2a, with quantification of the results at each time point in 

Figure 2b–d. Representative confocal microscopy images for the earlier time points can be found 

in Supplementary Figure S2a–S2b. At the 6 h time point, the viability of RAW 264.7 cells incubated 

with NOTA and DFO modified CNC was reduced compared to the positive control, while no 

difference was seen for the unmodified CNC. At 24 hours, the viability was lower for unmodified 

CNC, and the highest 100 µg/mL concentration of NOTA-CNC-Cy5, but no difference was seen for 
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DFO-CNC-Cy5 at this time point. After 96 h, only slight reduction in viability was seen at the 

highest concentration for both NOTA-CNC-Cy5 and DFO-CNC-Cy5, while no statistically significant 

differences were observed for unmodified CNC or lower concentrations of the modified CNC when 

compared to the control for viable cells. The morphology of the RAW 264.7 incubated with NOTA-

CNC-Cy5 and DFO-CNC-Cy5 appears to change at the 96 hours towards a phenotype of enlarged 

cells with increased number of cytoplasmic vacuoles possibly indicative of nanomaterial 

internalization and inflammatory response[41-43]. 

Multimodal CNC show transient lung uptake and rapid sequestration to the RES in syngeneic 

mouse model of breast cancer 

Surgical orthotopic implantation of murine 4T1 mammary adenocarcinoma cells to the mammary 

fat pad of Balb/c mice recapitulates the progression of human breast cancer with metastasis[44]. 

The orthotopic 4T1 model has become widely used in nanomaterial studies because of the ability 

to conduct studies in immunocompetent animals, the high take rate and rapid growth of the 

allograft, spontaneous metastasis, and pronounced EPR effect allowing passive tumor 

targeting[45]. After intravenous administration to tumor-bearing mice, both [89Zr]Zr-DFO-CNC-Cy5 

and [64Cu]Cu-NOTA-CNC-Cy5 showed rapid accumulation from circulation to the principal organs 

of the reticuloendothelial system (RES), the liver and the spleen, in the PET images with minimal 

tumor uptake (Figure 3a–b), suggesting that the circulation residence time of CNC is not optimal 

to permit passive tumor accumulation. Ex vivo biodistribution at 24 hours showed significant 

differences for CNC accumulation in the blood, tumor, spleen, pancreas, liver, lung and bone for 

the two nanocrystal constructs (Figure 3c). Biodistribution data for earlier time points is presented 

in Supplementary Figure S3a–b for [64Cu]Cu-NOTA-CNC-Cy5 and Supplementary Figure S4a for 

[89Zr]Zr-DFO-CNC-Cy5.    
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The sequestration of [64Cu]Cu-NOTA-CNC-Cy5 from the circulation to the liver and spleen was 

extremely rapid, with radioactivity in the blood dropping to less than 1% of the injected dose per 

gram (ID%/g) within 1 hour of nanocrystal administration. Maximum tumor-to-blood ratio of 

2.20±0.33 was attained at 4 hours post-injection (p.i.) as shown in Supplementary Figure S3c. For 

[89Zr]Zr-DFO-CNC-Cy5, clearance from the circulation was markedly slower, and tumor-to-blood 

ratio peaked at the last time point of the biodistribution study, 48 hours p.i., reaching 5.71±1.33 

(Supplementary Figure S4b). The lung uptake of both materials was initially high, but cleared over 

time, possibly indicating trapping of the nanocrystals upon injection and subsequent removal by 

phagocytosis to patrolling immune cells in the circulation[46, 47]. Proportion of CNC ending up to 

the liver versus the spleen was different for [89Zr]Zr-DFO-CNC-Cy5 and [64Cu]Cu-NOTA-CNC-Cy5, 

likely arising from the differences in the physicochemical properties of the two materials and their 

impact on the subsequent formation of the plasma protein corona in vivo[48-50]. Splenic uptake 

was significantly lower for [89Zr]Zr-DFO-CNC-Cy5, possibly an indication that the DFO-modified 

nanocrystals resist physical filtration in the interendothelial slits – the fenestrations between the 

venous sinus and the red pulp – in the spleen[51]. 

The blood half-life of both nanomaterials was determined by radioactivity measurement of 

venous blood samples collected at 5, 15, 30, 60, 120, and 240 minutes after nanomaterial 

administration. As expected, the blood half-life of [64Cu]Cu-NOTA-CNC-Cy5 was extremely short, 

mere 4.03.1 minutes (Figure 4a), in accordance with the rapid clearance of the material to the 

lung and liver from the circulation seen in the biodistribution study. For [89Zr]Zr-DFO-CNC-Cy5 the 

situation was much more curious, as the initial blood half-life curve showed a rising phase 

indicative of the sustained release of a radiolabeled species to the circulation likely from the lung 

(Figure 4b), where about 40 % of the injected dose remained at 2 hours p.i. according to the 
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biodistribution results (Supplementary Figure S4a). The blood half-life of the released zirconium-

89 species was determined from venous blood samples supplemented with the blood samples 

collected by cardiac puncture at later points in the biodistribution study and gave a value of 

4.242.22 h (Figure 4c). 

 Several studies with [89Zr]Zr-DFO-radioimmunoconjugates have shown that the long-term in vivo 

stability of the DFO chelator for 89Zr is not infinite[52-54]. Released 89Zr has been shown to 

accumulate in the skeleton[55, 56], and increased uptake at 24 h and 48 h p.i. of [89Zr]Zr-DFO-CNC-

Cy5 in bone were also seen in this study. Consequently, the bone tropism of CNC reported earlier 

by Colombo et al.[29] could not be corroborated in our study, as the [64Cu]Cu-NOTA-CNC-Cy5 

particles showed only minimal bone uptake. The released 89Zr could also be bound to endogenous 

plasma proteins, perturbing the intended biodistribution. As a control to determine the in vivo 

radiolabel stability, 4T1 tumor-bearing mice were administered with 1.85 MBq of [89Zr]Zr-oxalate 

in physiological saline intravenously and sacrificed at the same time points as for the [89Zr]Zr-DFO-

CNC-Cy5 study (Supplementary Figure S5a–c). At 2 hours p.i., significantly higher amount of 

radioactivity was seen in the blood for the [89Zr]Zr-oxalate group, and in the lung for the 

nanocrystal-receiving animals (Supplementary Figure S5a). At 24 hours, the radioactivity 

remaining in blood was similar for both of the groups, but significantly higher ID%/g was seen in 

the tumor and bone for the [89Zr]Zr-oxalate group, whereas the uptake was higher in the lung and 

liver for the [89Zr]Zr-DFO-CNC-Cy5 group (Supplementary Figure S5b). The differences in tumor 

and bone persisted until 48 hours (Supplementary Figure S5c), suggesting that the accumulation 

of radioactivity seen in the [89Zr]Zr-DFO-CNC-Cy5 can be at least partially attributed to zirconium-

89 released from the CNC construct in vivo. This was further corroborated by the lack of significant 

differences in the tumor-to-blood ratio for either group at any of the time points (Supplementary 
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Figure S5d), illustrating that the radioactive species that localizes to the tumor after 

administration of the 89Zr-labeled CNC behaves in part analogously to [89Zr]Zr-oxalate, although 

the travel of the 89Zr-radioactivity in the blood as intact CNC taken up by circulating monocytes 

could not be ruled out. In order to investigate this, we further fractionated the whole blood 

collected by cardiac puncture at 4 hours after an intravenous injection of either [89Zr]Zr-DFO-CNC-

Cy5 nanoparticles or [89Zr]Zr-oxalate using density gradient centrifugation to plasma, monocytes 

and erythrocytes and measured the radioactivity of each fraction by gamma counting 

(Supplementary Figure S6). The lack of significant differences between the distribution of 

radioactivity to the various blood components between the groups further illustrates that the 

remaining radioactive species in circulation arises from released zirconium-89 in vivo for animals 

dosed with [89Zr]Zr-DFO-CNC-Cy5.  

In order to demonstrate the potential of the multimodal cellulose nanocrystal constructs 

for fluorescence imaging, tissues from 4T1 tumor-bearing mice intravenously injected with 25 µg 

of either DFO-CNC-Cy5, NOTA-CNC-Cy5, and unmodified nanocrystals were excised at 24 hours p.i. 

and imaged under epifluorescence illumination on a PerkinElmer IVIS Spectrum in vivo imaging 

system with spectral unmixing from tissue autofluorescence determined from the control tissues 

of a mouse receiving the unmodified CNC. The fluorescence imaging (Figure 5) corroborated the 

results of the biodistribution study, as intense fluorescence was seen in the liver, lung, and spleen 

for DFO-CNC-Cy5, and primarily in the spleen for NOTA-CNC-Cy5. Slight blood pool fluorescence in 

the heart and blood was also seen for DFO-CNC-Cy5, in line with the observation of the increased 

blood half-life for this nanocrystal type. Both the kidneys and urine (data not shown) were void of 

the fluorescent signal. The fluorescence imaging study also revealed that the amount of Cy5 
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conjugated to the NOTA-modified CNC was likely not sufficient to permit optical imaging and 

needs to be optimized for subsequent studies.  

Tissue samples from the optical imaging study were also processed for cryosections for 

fluorescence microscopy and for paraffin sections for immunohistochemistry with amplification of 

the Cy5 signal with a mouse monoclonal α-Cy5 antibody. As expected, the signal from Cy5 alone 

was not enough to permit visualization of nanocrystal uptake in fluorescence microscopy, and only 

scattered CNC aggregates were seen in the liver and spleen of animals injected with DFO-CNC-Cy5 

and NOTA-CNC-Cy5 (Supplementary Figure S7a–d). Immunohistochemistry with a mouse 

monoclonal anti-Cy5-antibody of selected tissues from an animal injected with DFO-CNC-Cy5 

showed amplification of the signal in the liver, lung, and spleen (Figure 6), the principal tissues of 

CNC accumulation in vivo. The specificity of the anti-Cy5 DAB staining was corroborated with both 

a non-specific IgG, and the staining of a positive control tissue, a HER2-positive human ductal 

adenocarcinoma BT-474 xenograft from an outbred nude mouse injected intravenously with Cy5-

labeled trastuzumab (Herceptin), a HER2-targeting monoclonal antibody. 

Hematoxylin–Eosin (H&E) staining of the tissues (Supplementary Figure S8) showed no gross 

histopathological changes elicited by either unmodified CNC, DFO-CNC-Cy5, or NOTA-CNC-Cy5 at 

the dose used at 24 hours p.i. Cellulose nanocrystals have shown no acute toxicity in a previous 

study after systemic delivery of 4.2 μg of CNC[29], but as with any engineered nanomaterial, the 

material properties will have a profound impact on its biocompatibility and toxicity in vivo and 

need to be evaluated rigorously at therapeutically relevant dosages before use for carrier-

mediated drug delivery. Furthermore, the degradation and tolerance of accumulated CNC in 

tissues needs to be determined on a longer time scale. 

Multimodal CNC associate primarily with macrophages and Ly-6Chi monocytes in the spleen 
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Since accumulation of the multimodal CNC after systemic administration to the RES was apparent 

from the biodistribution data, we decided to further dissect the sequestration of the nanocrystals 

in the immune cells by flow cytometry. Furthermore, the blood kinetics of [89Zr]Zr-DFO-CNC-Cy5 

indicated that the lung might act as a reservoir that initially traps the CNC and gradually releases 

them to the blood stream. The removal of CNC from the lung is likely to be mediated by uptake 

into phagocytic cells of the immune system because of their high abundance in the blood and 

constant presence in the lung, an important physiological barrier to the entry of foreign materials 

and pathogens into the body[57, 58]. For the flow cytometry analysis, single-cell tissue 

suspensions containing immune cells were collected after intravenous administration of Cy5-

labeled DFO- and NOTA-modified CNC from the spleen and the orthotopic 4T1-tdTomato tumor 

(expressing the fluorescent protein to help identify the tumor cells). Different immune cells were 

identified by their distinct surface markers and the Cy5 content in the cells was analyzed using 

flow cytometry. Flow cytometry quantification from the spleen (Figure 7a) showed accumulation 

of DFO-CNC-Cy5 to macrophages, dendritic cells, Ly-6Chi monocytes, and neutrophils, while NOTA-

CNC-Cy5 was detected only in minute amounts in macrophages and Ly-6Chi monocytes.  In the 

tumor (Figure 7b), virtually no nanocrystals of either type were detected in any of the cell types 

studied. Gating procedures for the identification of the different immune cell populations used for 

the flow cytometry are given in Supplementary Figure S9a–b. The overall low percentage of Cy5-

positive cells in both tissues is likely a result of the fact that only a small fraction of the 50-

microgram injected dose accumulated to the spleen and tumor at 2 hours p.i., lowering 

considerably the signal for Cy5. Additionally, the amount of Cy5 conjugated to the CNC might not 

be enough to permit efficient detection at low concentrations of the nanomaterial. 
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The results from the spleen indicate that CNC are rapidly internalized by phagocytic cells, 

with possible inflammatory activation[58, 59]. The macrophages and Ly-6Chi monocytes are likely 

from the splenic reservoir[59, 60], although the uptake of nanomaterials to Ly-6Chi monocytes and 

their patrolling counterparts in the vasculature, the Ly-6Clow monocytes, could also occur in the 

blood and lung capillaries[46, 47]. Uptake to macrophages, dendritic cells, and monocytes is a 

common fate to nanomaterials[61], and has been recently exploited for targeting of tumor-

associated macrophages and monocytes for PET imaging[62, 63], and for improved chemotherapy 

and immunotherapy in cancer and cardiovascular disease[64, 65]. For the CNC constructs used in 

this study, a detailed investigation of their sequestration to the leukocyte populations in different 

compartments of the lung[66], and uptake to circulating monocytes would be in place to evaluate 

their potential for targeting cells of the immune system. Interestingly, recent reports in mouse 

models show that the presence of a tumor potentially accelerates nanomaterial clearance through 

the RES[67], likely through modulation of the ratio of M1 (pro-inflammatory) and M2 (anti-

inflammatory) macrophages, and that nanomaterial clearance from circulation is more 

pronounced in “Th2-prone” (i.e. expressing higher levels of Th2 cytokines driving the transition of 

the macrophage to the M2 phenotype) mouse strains such as Balb/c[68], which was used in this 

study as the 4T1 tumor cell line originated in Balb/c mice. 
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CONCLUSIONS 

The development of new engineered nanomaterials for carrier-mediated drug delivery 

necessitates thorough in vivo evaluation of the materials for their biodistribution and 

biocompatibility in clinically relevant animal models. Nanocrystalline cellulose has been already for 

some time been advertised as a promising nanomaterial for biomedical applications because of its 

versatile chemistry, facile preparation and high biocompatibility in cell models, but preclinical in 

vivo studies have been scarce. Herein, we have strived to advance the in vivo evaluation of CNC 

materials by developing a multimodality labeling strategy allowing both the non-invasive PET 

imaging of nanocrystal biodistribution in a mouse model of human stage IV breast cancer, and 

detection of the nanocrystals ex vivo in tissues by fluorescence imaging, microscopy, and flow 

cytometry. In our study, the non-targeted CNC were rapidly sequestered to the liver and spleen 

after intravenous administration, indicating immune recognition which was further confirmed by 

flow cytometry analysis of phagocytic cells. The choice of the radiometal chelator between DFO 

and NOTA had a profound impact on the biodistribution of the CNC, likely as a result of impacting 

the material surface charge and subsequent immune recognition of the nanocrystals. Therefore, 

future studies on the in vivo behavior of CNC should be concentrated on improving the 

nanomaterial stability and circulation half-life under physiological conditions, improving the 

labeling yields for both radiolabeling and fluorescence labeling to obviate the use of excessively 

large amounts of radiometal chelator impacting the CNC behavior in vivo, and dissecting the 

immune recognition and biocompatibility of the material to realize the potential of CNC for 

systemic drug delivery and immune cell targeting. Nevertheless, our studies advance the 

understanding on the potential pitfalls on the development of CNC multimodal imaging probes in 

terms of radiometal chelator and conjugation chemistry selection. Out of the two radiolabeled 
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constructs generated in this work, the radiolabeling strategy employing copper-64 and the 1,4,7-

triazacyclononane-1,4,7-triacetic acid (NOTA) chelator was superior to zirconium-89 chelation with 

desferrioxamine B in terms of the specific radioactivity attained and the stability of the 

radiolabeled construct in terms of both the radiolabel stability and stability of the dispersion in 

physiological conditions. Our study highlights the importance of the choice of the labeling strategy 

on the generation of successful imaging probes for engineered nanomaterials for their in vivo 

evaluation. 
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AFM, atomic force microscopy; CNC, nanocrystalline cellulose or cellulose nanocrystal(s); DFO, 

desferrioxamine B; DAB, 3,3’-diaminobenzyl; DAPI, 4',6-diamidino-2-phenylindole; DMSO, 

dimethylsulfoxide; DTPA, diethylene triamine pentaacetic acid; EDTA, ethylenetriamine tetraacetic 

acid; NOTA, 1,4,7-triazacyclononane-1,4,7-triacetic acid; PET, positron emission tomography; RES, 

reticuloendothelial system; SPECT, single-photon emission computed tomography 
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FIGURE CAPTIONS 

Scheme 1. a) Schematic representation of CNC preparation from plant cellulose by selective acid 

hydrolysis of amorphous regions. b) AFM image of as-hydrolyzed CNC with residual sulfate ester 

groups. c) CNC activation with 1,1’-carbonyldiimidazole (CDI) followed by conjugation of amine-

functionalized radiometal chelators p-NH2-Bn-NOTA (for copper-64), desferrioxamine B (DFO, for 

zirconium-89), and the Cyanine5 (Cy5) fluorophore.   

Figure 1. Representative AFM images and 3D height maps for unmodified CNC (a), NOTA-CNC-Cy5 

(b), and DFO-CNC-Cy5 (c), with corresponding length and diameter distributions derived from the 

morphometric analysis of >100 individual nanocrystals for unmodified CNC (d), NOTA-CNC-Cy5 (e), 

and DFO-CNC-Cy5 (f). Columns represent the percentage of particles analyzed falling within the 

given length and diameter range; n denotes the number of nanocrystals analyzed. A considerably 

smaller number of nanocrystals could be analyzed for DFO-CNC-Cy5 because of prominent 

aggregation of the sample upon application on the substrate. 

Figure 2. a) Representative confocal microscopy images of RAW 264.7 macrophages incubated 

with different concentrations of unmodified CNC, NOTA-CNC-Cy5, and DFO-CNC-Cy5 for 96 h. 

Nuclei of dead cells stain red with EthD-1 after loss off cell membrane integrity, while live cells 

stain green with Calcein AM due to intracellular esterase activity. Medium and 0.1% saponin are 

used as controls for live and dead cells, respectively. Scale bar 100 µm. Quantification of the 

proportion of Calcein AM –positive cells at 6 h (b), 24 h (c), and 96 h (d) of incubation with 

different concentrations of unmodified and modified cellulose nanocrystals. Columns denote 

mean ± SD of n=6.5±0.5 (mean±SEM) analyzed images per time point. Statistical significance of the 

difference against the positive control was determined by unpaired Mann-Whitney U test with *p 

< 0.05, **p < 0.01, and ***p < 0.001; ns, not significant. 
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Figure 3. a) Serial PET imaging of the same animal bearing single orthotopic 4T1 mammary fat pad 

allograft after intravenous administration of 3.7 MBq (60 µg) of [89Zr]Zr-DFO-CNC-Cy5 shows 

accumulation of the nanocrystals in the liver, spleen, and bone. The tumor area (circled) shows 

only slight radioactive signal on the perimeter of the tumor. b) Serial PET imaging of a single 

mouse after intravenous administration of 7.4 MBq (60 µg) of [64Cu]Cu-NOTA-CNC-Cy5 shows 

rapid accumulation of the tracer in the liver, preventing delineation of the tumor in the image. Lu, 

lung; Li, liver; Sp, spleen; Bl, bladder; Bm, bone with marrow. PET images were acquired under 

isoflurane anesthesia on a Focus 120 Micro-PET small animal PET scanner with the imaging 

protocol set to register a minimum of 20 million coincidence events. c) Ex vivo biodistribution of 

[89Zr]Zr-DFO-CNC-Cy5 and [64Cu]Cu-NOTA-CNC-Cy5 at 24 h p.i. shows significant differences in the 

biodistribution of the two materials. Columns denote mean±SD of n=3. Statistical analysis was 

carried out with an unpaired t-test with the two-stage step-up method of Benjamin, Krieger and 

Yekutieli with the false discovery rate set to Q = 10%; *p < 0.05, **p < 0.01, and ***p < 0.001. 

Figure 4. a) Blood half-life curve for [64Cu]Cu-NOTA-CNC-Cy5, markers represent mean±SD of five 

samples per time point with fitted exponential one-phase decay (red dashed line) to determine 

the half-life, R2=0.3974; b) Early time points in the blood sampling for [89Zr]Zr-CNC-DFO-Cy5 

showed the slow release of radioactivity from an unknown reservoir, presumably the lung, to the 

circulation after 60 minutes. Markers represent mean±SD of five samples, the dashed line in red is 

guide for the eye only. c) In order to determine the blood half-life of [89Zr]Zr-CNC-DFO-Cy5, the 

data for 60–240 min in b) was supplemented with blood values from the biodistribution study at 

24 and 48 h (*; n=3 per time point, markers represent mean±SD). Red dashed line shows fitted 

exponential one-phase decay with R2=0.6225. 
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Figure 5. Ex vivo fluorescence imaging of selected tissues from animals injected with 25 µg of 

either DFO-CNC-Cy5 or NOTA-CNC-Cy5 at 24 hours p.i. corroborated the biodistribution pattern 

seen with the radiolabeled cellulose nanocrystals. For DFO-CNC-Cy5, intense fluorescence was 

seen in the RES, the liver and the spleen, with residual signal in the lung and the blood pool. For 

NOTA-CNC-Cy5, the bulk of the signal was seen in the spleen, with slight fluorescence present in 

the liver and lung.  

Figure 6. DAB immunohistochemistry and Cy5 signal amplification with an anti-Cy5 antibody in 

paraffin sections of tissues from 4T1 tumor-bearing mice injected intravenously with 25 µg of 

either unmodified CNC, or DFO-CNC-Cy5. A HER2-positive human ductal adenocarcinoma BT-474 

xenograft grown in a nu/nu mouse injected with Cy5-labeled HER2-targeting monoclonal antibody 

trastuzumab was used as a positive control. Magnification 10×, scale bar 100 µm. Intense DAB 

staining in the liver, lung, and spleen of the animal receiving DFO-CNC-Cy5 further supports the 

presence of Cy5-labeled CNC in these organs. 

Figure 7. a) Sequestration of Cy5-labeled DFO- and NOTA-modified cellulose nanocrystals to 

immune cells in the mouse spleen 120 min after a single intravenous administration of 50 µg of 

the nanocrystals shows uptake of DFO-CNC-Cy5 to macrophages, dendritic cells (DC), Ly-6Chi 

monocytes (Mo) and neutrophils, with only very low numbers of Cy5-positive macrophages and 

Ly-6Chi monocytes detected for NOTA-CNC-Cy5. b) Negligible uptake of either DFO-CNC-Cy5 or 

NOTA-CNC-Cy5 is seen in the orthotopic 4T1-tdTomato tumor confirming that the nanocrystals do 

not reach the tumor by passive targeting. Columns denote mean±SEM of n=5 for DFO-CNC-Cy5 

and n=4 for NOTA-CNC-Cy5.  
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TABLES 

Table 1. Characterization data for the cellulose nanocrystals developed in this study. 

Nanocrystal type Mean length±SD [nm]
a 

Mean diameter±SD [nm]
a 

Zeta potential [mV] 

Unmodified CNC 60.76±24.63 4.37±1.74 -41.6 

NOTA-CNC-Cy5 87.62±32.90 5.94±1.79 -20.8 

DFO-CNC-Cy5 89.74±35.10 6.25±1.92 -14.7 

aData derived from AFM. 

Journal Pre-proof


