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A Constrained Randomization Approach to
Interactive Visual Data Exploration with

Subjective Feedback
Bo Kang, Kai Puolamäki, Jefrey Lijffijt, Tijl De Bie

Abstract—Data visualization and iterative/interactive data mining are growing rapidly in attention, both in research as well as in
industry. However, while there are plethora of advanced data mining methods and lots of works in the field of visualisation, integrated
methods that combine advanced visualization and/or interaction with data mining techniques in a principled way are rare. We present a
framework based on constrained randomization which lets users explore high-dimensional data via ‘subjectively informative’
two-dimensional data visualizations. The user is presented with ‘interesting’ projections, allowing users to express their observations
using visual interactions that update a background model representing the user’s belief state. This background model is then
considered by a projection-finding algorithm employing data randomization to compute a new ‘interesting’ projection. By providing
users with information that contrasts with the background model, we maximize the chance that the user encounters striking new
information present in the data. This process can be iterated until the user runs out of time or until the difference between the
randomized and the real data is insignificant. We present two case studies, one controlled study on synthetic data and another on
census data, using the proof-of-concept tool SIDE that demonstrates the presented framework.

Index Terms—Exploratory data mining, dimensionality reduction, data randomization, subjective interestingness.

F

1 INTRODUCTION

DATA visualization and iterative/interactive data min-
ing are both mature, actively researched topics of great

practical importance. However, while progress in both fields
is abundant, methods that combine them in a principled
manner are rare.

Yet, methods that combine state-of-the-art data mining
with visualization and interaction are highly desirable as
they could exploit the strengths of both human data ana-
lysts and of computer algorithms. Humans are unmatched
in spotting interesting patterns in low-dimensional visual
representations, but poor at reading high-dimensional data,
while computers excel in manipulating high-dimensional
data and are weaker at identifying patterns that are truly
relevant to the user. A symbiosis of human analysts and
well-designed computer systems thus promises to provide
the most efficient way of navigating the complex informa-
tion space hidden within high-dimensional data. This idea
has been advocated within the visual analytics field already
a long time ago [1], [2], [3].
Contributions. In this paper we introduce a generically
applicable method based on constrained randomizations for
finding interesting projections of data, given some prior
knowledge about that data. We present use cases of in-
teractive visual exploration of high-dimensional data with
the aid of a proof-of-concept tool [4] that demonstrates the
presented framework. The method’s aim is to aid users in
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discovering structure in the data that the user was previ-
ously unaware of.
Overview of the method. The underlying idea is that the
analysis process is iterative, and during each iteration there
are three steps (Fig. 1).
Step 1. The user is presented with an ‘interesting’ projection
of the data, visualized as a scatter plot. Here, interestingness
is formalized with respect to the initial belief state and the
scatter plot shows projections of the data to which the data and
the background model differ most.
Step 2. The user investigates this scatter plot, and may
observe structure in the data that contrasts with, or add
to, their beliefs about the data. We will refer to observed
structures or features as patterns. The user then indicates
what patterns the user has seen.
Step 3. The background model is updated according to the
user feedback given above, in order to reflect the newly
assimilated information.
Next iteration. Then, the most interesting projection with
respect to this updated background model can be computed,
and the cyclic process iterates until the user runs out of time

(1) Data 
Visualization

(2) User
Feedback

(3) Update
Background

Model

User

Algorithm

Fig. 1. The three steps of SIDE’s operation cycle.
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Fig. 2. (a) Pairwise scatter plots of a 3-dimensional toy data set that contains four clusters (indicated by different glyphs/colors). The initial random
background model is shown with gray glyphs. (b) Two-dimensional projection to a direction where the data and the background model differ most.
The user marks three clusters visible in the scatterplot as shown by ellipsoids. Two of the clusters (blue triangles and orange circles) correspond to
the actual clusters of the toy data, but the third cluster (black) is a combination of two clusters (green boxes and cyan crosses). (c) The information
of the three clusters has been absorbed into the background model which now shows more structure. (d) The next projection shows the largest
difference between the updated background model and the data, which now clearly highlights the difference between the green (box) and cyan
(cross) clusters, formerly presented in Fig. 2b to be one (black) cluster. The points in the orange (circle) and violet (triangle) clusters are exactly on
top of the respective background distribution points. After marking these cluster with ellipsoids the user has completely understood the structure of
the data and after updating the background model matches the data.

or finds that background model (and thus the user’s belief
state) explains everything the user is currently interested in.

Central objective. Our main goal is to support serendipity,
i.e., the discovery of new knowledge ‘by chance’. However,
instead of user randomly guessing feature combinations
that may yield interesting visualizations, we employ an
algorithm that provides projection vectors that provide max-

imally contrasting information against an evolving back-
ground model. The central idea is that this increases the
chances of finding truly interesting patterns in the data.

Example. Consider the 3-dimensional dataset of four clus-
ters shown in Fig. 2. The raw data and the initial background
model are shown in Fig. 2a. The clusters are shown with
colored glyphs and the background model that reflects the
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user’s initial beliefs is shown with gray markers. Initially,
the background model is totally random (no beliefs).

Step 1 is that the user is presented with an initial scatter
plot as shown in Fig. 2b. In step 2, the user marks clusters, as
shown also in Fig. 2b. Step 3 is that the background model
is updated based on this feedback, which results in a new
background distribution (Fig. 2c). In the next iteration, the
process repeats itself; steps 1 and 2 of the second iteration
are shown in Fig. 2d.

To illustrate the stepwise process, this example was con-
structed such that the cluster structure of the data is obvious
in any pairwise scatter plot. However, the objective is that
the user can efficiently explore the data, also if the data
has very high dimensionality. In that case, it is beneficial
that an algorithm computes meaningful axes (i.e., interesting
projections) to use for visualization. In Section 3 we present
more extensive walkthrough examples on both synthetic
and real data.
Formalization of the background model. To compute inter-
esting projections, a crucial challenge is the formalization of
the background model. To allow the process to be iterative,
the formalization has to allow for the model to be updated
after a user has given feedback on the visualization. There
exist two frameworks for iterative data mining: FORSIED
[5], [6] and a framework that we will refer to as CORAND
[7], [8], for COnstrained RANDomization.

In both cases, the background model is a probability
distribution over data sets and the user beliefs are modelled
as a set of constraints on that distribution. The CORAND
approach is to specify a randomization procedure that,
when applied to the data, does not affect how plausible the
user would deem it to be. That is, the user’s beliefs should
be satisfied, and otherwise the data should be shuffled as
much as possible.

Given an appropriate randomization scheme, we can
then find interesting remaining structure that is not yet
known to the user by contrasting the real data with the
randomized data. A most interesting projection can be
computed by defining an optimization problem over the
difference between the real data and the randomized data.
Here, the optimization criterion is chosen as the maximal
L1-distance over the empirical cumulative distributions.

New beliefs can be incorporated in the background
model by adding corresponding constraints to the random-
ization procedure, ensuring that the patterns observed by
the user are present also in the subsequent randomized data.
Hence, subsequent projection will again be informative be-
cause the randomized and the real data will be equivalent
with respect to the statistics already known to the user.
Outline of this paper As discussed in Section 2, three
challenges had to be addressed to use the CORAND ap-
proach: (1) defining intuitive pattern types (constraints) that
can be observed and specified based on a scatter plot of
a two-dimensional projection of the data; (2) defining a
suitable randomization scheme, that can be constrained to
take account of such patterns; and (3) a way to identify the
most interesting projections given the background model.
The evaluation with respect to usefulness as well as com-
putational properties of the resulting system is presented in
Section 3. Experiments were conducted both on synthetic

data and on a census dataset. Finally, related work and
conclusions are discussed in Sections 4 and 5, respectively.

NB. This manuscript is an expanded and integrated
version of two conference papers [4], [9]: [9] introduced
the algorithmic problem, while [4] presented the proof-
of-concept tool and interface. Besides the integration and
changes throughout, the main differences are this new in-
troduction and the introduction of a stopping criterion (Secs.
2.4, 3.5).

2 METHODS

We will use the notational convention that upper case
bold face symbols (X) represent matrices, lower case bold
face symbols (x) represent column vectors, and lower case
standard face symbols (x) represent scalars. We assume
that our data set consists of n d-dimensional data vectors
xi. The data set is represented by a real matrix X =(
xT1 xT2 · · · xTn

)T ∈ Rn×d. More generally, we will
denote the transpose of the ith row of any matrix A as
ai (i.e., ai is a column vector). Finally, we will use the
shorthand notation [n] = {1, . . . , n}.

2.1 Projection tile patterns in two flavours

In the interaction step, the users declare that they have
become aware of (and thus are no longer interested in
seeing) the value of the projections of a set of points onto a
specific subspace of the data space. We call such information
a projection tile pattern for reasons that will become clear
later. A projection tile parametrizes a set of constraints to
the randomization.

Formally, a projection tile pattern, denoted τ , is defined
by a k-dimensional (with k ≤ d) subspace of Rd, and a
subset of data points Iτ ⊆ [n]. We will formalize the k-
dimensional subspace as the column space of an orthonor-
mal matrix Wτ ∈ Rd×k with WT

τ Wτ = I, and can thus
denote the projection tile as τ = (Wτ , Iτ ). We provide two
ways in which the user can define the projection vectors Wτ

for a projection tile τ .
2D tiles. The first approach simply chooses Wτ as the two
weight vectors defining the projection within which the data
vectors belonging to Iτ were marked. This approach allows
the user to simply specify that he or she knows the positions
of that set of data points within this 2D projection. The
user makes no further assumptions—they assimilate solely
what they see without drawing conclusions not supported
by direct evidence.
Clustering tiles. It is possible that after inspecting a cluster,
the user concludes that these points are clustered not just
within the two dimensions shown in the scatter plot, and
wishes for the system to model immediately also other
dimensions in which the selected point set forms a cohesive
cluster. This would lead to the system not considering
other projections that highlight this cluster as particularly
informative. To allow the user to express such belief, the
second approach takes Wτ to additionally include a basis
for other dimensions along which these data points are
strongly clustered. This is achieved as follows.

Let X(Iτ , :) represent a matrix containing the rows in-
dexed by elements from Iτ from X. Let W ∈ Rd×2 contain



This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2019.2907082, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. A, NO. B, SOME DATE 2016 4

the two weight vectors onto which the data was projected
for the current scatter plot. In addition to W, we want to
find any other dimensions along which these data vectors
are clustered. These dimensions can be found as those along
which the variance of these data points is not much larger
than the variance of the projection X(Iτ , :)W.

To find these dimensions, we first project the data
onto the subspace orthogonal to W. Let us represent this
subspace by a matrix with orthonormal columns, further
denoted as W⊥. Thus, W⊥TW⊥ = I and WTW⊥ = 0.
Then, Principal Component Analysis (PCA) is applied to
the resulting matrix X(Iτ , :)W⊥. The principal directions
corresponding to a variance smaller than a threshold are
then selected and stored as columns in a matrix V. In other
words, the variance of each of the columns of X(Iτ , :)W⊥V
is below the threshold.

The matrix Wτ associated to the projection tile pattern
is then taken to be:

Wτ =
(
W W⊥V

)
.

The threshold on the variance used could be a tunable
parameter, but was set here to twice the average of the
variance of the two dimensions of X(Iτ , :)W.

2.2 The randomization procedure

Here we describe the approach to randomizing the data. The
randomized data should represent a sample from an implic-
itly defined background model that represents the user’s
belief state about the data. Initially, our approach assumes
the user merely has an idea about the overall scale of the
data. However, throughout the interactive exploration, the
patterns in the data described by the projection tiles will be
maintained in the randomization.
Initial randomization. The proposed randomization pro-
cedure is parametrized by n orthogonal rotation matrices
Ui ∈ Rd×d, where i ∈ [n], and the matrices satisfy
(Ui)

T = (Ui)
−1. We further assume that we have a bijective

mapping f : [n]× [d] 7→ [n]× [d] that can be used to permute
the indices of the data matrix. The randomization proceeds
in three steps:

Random rotation of the rows: Each data vector xi is rotated
by multiplication with its corresponding random ro-
tation matrix Ui, leading to a randomised matrix Y
with rows yTi that are defined by:

∀i : yi = Uixi.

Global permutation: The matrix Y is further randomized
by randomly permuting all its elements, leading to
the matrix Z defined as:

∀i, j : Zi,j = Yf(i,j).

Inverse rotation of the rows: Each randomised data vector
in Z is rotated with the inverse rotation applied in
step 1, leading to the fully randomised matrix X∗

with rows x∗i defined as follows in terms of the rows
zTi of Z:

∀i : x∗i = Ui
T zi.

The random rotations Ui and the permutation f are sam-
pled uniformly at random from all possible rotation matri-
ces and permutations, respectively.

Intuitively, this randomization scheme preserves the
scale of the data points. Indeed, the random rotations leave
their lengths unchanged, and the global permutation sub-
sequently shuffles the values of the d components of the
rotated data points. Note that without the permutation step,
the two rotation steps would undo each other such that
X∗ = X. Thus, it is the combined effect that results in a
randomization of the data set.

The random rotations may seem superfluous: the global
permutation randomizes the data so dramatically that the
added effect of the rotations is relatively unimportant.
However, their role is to make it possible to formalize the
growing understanding of the user as simple constraints on
this randomization procedure, as discussed next.
Accounting for one projection tile. Once the user has assim-
ilated the information in a projection tile τ = (Wτ , Iτ ), the
randomization scheme should incorporate this information
by ensuring that it is present also in all randomized versions
of the data. This ensures that the randomized data is a sam-
ple from a distribution representing the user’s belief state
about the data. This is achieved by imposing the following
constraints on the parameters defining the randomization:

Rotation matrix constraints: For each i ∈ Iτ , the com-
ponent of xi that is within the column space of
Wτ must be mapped onto the first k dimensions of
yi = Uixi by the rotation matrix Ui. This can be
achieved by ensuring that:

∀i ∈ Iτ : WT
τ Ui = (I 0) . (1)

This explains the name projection tile: the information
to be preserved in the randomization is concentrated
in a ‘tile’ (i.e., the intersection of a set of rows and a
set of columns) in the intermediate matrix Y created
during the randomization procedure.

Permutation constraints. The permutation should not af-
fect any matrix cells with row indices i ∈ Iτ and
columns indices j ∈ [k]:

∀i ∈ Iτ , j ∈ [k] : f(i, j) = (i, j). (2)

Proposition 1. Using the above constraints on the rotation
matrices Ui and the permutation f , it holds that:

∀i ∈ Iτ ,xTi Wτ = x∗i
TWτ . (3)

Thus, the values of the projections of the points in the projec-
tion tile remain unaltered by the constrained randomization.
Hence, the randomization keeps the user’s beliefs intact. We
omit the proof as the more general Proposition 2 is provided
with proof further below.
Accounting for multiple projection tiles. Throughout sub-
sequent iterations, additional projection tile patterns will be
specified by the user. A set of tiles τi for which Iτi ∩Iτj = ∅
if i 6= j is straightforwardly combined by applying the rel-
evant constraints on the rotation matrices to the respective
rows. When the sets of data points affected by the projection
tiles overlap though, the constraints on the rotation matrices
need to be combined. The aim of such a combined constraint
should be to preserve the values of the projections onto the
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projection directions for each of the projection tiles a data
vector was part of.

The combined effect of a set of tiles will thus be that
the constraint on the rotation matrix Ui will vary per data
vector, and depends on the set of projections Wτ for which
i ∈ Iτ . More specifically, we propose to use the following
constraint on the rotation matrices:

Rotation matrix constraints. Let Wi ∈ Rd×di denote a
matrix of which the columns are an orthonormal
basis for space spanned by the union of the columns
of the matrices Wτ for τ with i ∈ Iτ . Thus, for any
i and τ : i ∈ Iτ , it holds that Wτ = Wivτ for some
vτ ∈ Rdi . Then, for each data vector i, the rotation
matrix Ui must satisfy:

∀i ∈ Iτ : WT
i Ui = (I 0) . (4)

Permutation constraints. Then the permutation should not
affect any matrix cells in row i and columns [di]:

∀i ∈ [n], j ∈ [di] : f(i, j) = (i, j).

Proposition 2. Using the above constraints on the rotation
matrices Ui and the permutation f , it holds that:

∀τ,∀i ∈ Iτ ,xTi Wτ = x∗i
TWτ .

Proof. We first show that x∗i
TWi = xTi Wi:

x∗i
TWi = zTi U

T
i Wi = zTi

(
I
0

)
= zi(1 : di)

T = yi(1 : di)
T = yTi

(
I
0

)
= xTi Wi.

The result now follows from the fact that Wτ = Wivτ for
some vτ ∈ Rdi .

Technical implementation of the randomization. To ensure
the randomization can be carried out efficiently throughout
the process, note that the matrix Wi for the i ∈ Iτ for a new
projection tile τ can be updated by computing an orthonor-
mal basis for (Wi W). Such a basis can be found efficiently
as the columns of Wi in addition to the columns of an
orthonormal basis of W −WT

i WiW (the components of
W orthogonal to Wi), the latter of which can be computed
using the QR-decomposition.

Additionally, note that the tiles define an equivalence
relation over the row indices, in which i and j are equivalent
if they were included in the same set of projection tiles
so far. Within each equivalence class, the matrix Wi will
be constant, such that it suffices to compute it only once,
tracking which points belong to which equivalence class.

2.3 Visualization: Finding the most interesting two-
dimensional projection

Given the data set X and the randomized data set X∗, it is
now possible to quantify the extent to which the empirical
distribution of a projection Xw and X∗w onto a weight vec-
tor w differ. There are various ways in which this difference
could be quantified. We investigated a number of possibili-
ties and found that the L1-distance between the cumulative
distribution functions works well in practice. Thus, with Fx

the empirical cumulative distribution function for the set of
values in x, the optimal projection is found by solving:

max
w
‖FXw − FX∗w‖1 .

The second dimension of the scatter plot can be sought
by optimizing the same objective while requiring it to be
orthogonal to the first dimension.

We are unaware of any special structure of this optimiza-
tion problem that makes solving it particularly efficient. Yet,
using the standard quasi-Newton solver in R [10] with ran-
dom initialization and default settings (the general-purpose
optim function with method="BFGS"), or the numericjs
library for Javascript [11], already yields satisfactory results,
as shown in the experiments below.

2.4 Significance of a projection and stopping criterion

Although it has not been written down before, it is concep-
tually straightforward in CORAND to assess the statistical
significance of any pattern of interest (here projection),
because it is always possible to compute the empirical p-
value of a pattern under the background model.

This works as follows. Denote the score function of a
pattern as f(X,X∗), e.g., the optimized statistic is

f(X,X∗) = max
w
‖FXw − FX∗w‖1 .

This statistic hinges by definition on a comparison between
the real data X and the randomized data X∗. An important
question is: how surprising is this statistic?

We can take the viewpoint that we are comparing a cer-
tain randomized dataset X∗, which has no structure except
for the constraints that we have defined so far, to another
dataset X. The question that we need to consider is, does the
real data X still have interesting structure with respect to the
pattern syntax? Essentially, we are asking whether f(X,X∗)
is surprising given the background model. Equivalently,
if X would not contain interesting structure anymore, we
expect f(X,X∗) to be ‘similar’ to f(X∗

′
,X∗), where X∗

′
is

another randomized dataset from the same constraints.
This latter statement about similarity can be made quan-

tified in an empirical p-value p̂ [8], [12], where we compare
f(X,X∗) against f(X∗

′

1 ,X
∗), . . . , f(X∗

′

N ,X
∗) with X∗

′

i be-
ing a randomized version of X∗, employing still the same
constraints. A rationale why X∗

′

i should derived from X∗

and not from X can be found in [13]. In full, given N
randomizations to compare with, the empirical p-value is

p̂ =
1 +

∑N
i=1 1

(
f(X∗

′

i ,X
∗) ≥ f(X,X∗)

)
N + 1

.

The two-dimensional scatterplot is based on two or-
thogonal projections that each have a different value
‖FXw − FX∗w‖1. These can be compared against the the
series f(X∗

′

i ,X
∗) to obtain an empirical p-value for either

axis. If the p-value for an axis is above a threshold that
the user finds acceptable, e.g., 0.05, the values should not
be studied. Since constraints can only be added, meaning
the model will be closer to the data, the p-values should
be roughly monotonic and the analysis can be terminated
when the threshold is reached. See Section 3 for an example.
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Fig. 3. Layout of our web app SIDE, with the data visualization and interaction area (a–e), projection meta information (f, g), and timeline (h).

2.5 The risk of false positive observations
One may have the concern that even with the use of a
stopping criterion, showing a user projections that hopefully
contain meaningful structure can lead to—or even increase
the chance to—the observation of patterns that are not real.
There are three important aspects to consider here:

1) The proposed approach makes no claims about
causality. For example, the data may be biased,
contain errors, there may be missing variables that
could explain observed correlations and patterns.
The projections may highlight information that is
spurious in the sense that it pertains to the data col-
lection process rather than the reality the data was
intended to capture. However, this should be con-
sidered a positive feature, because learning about
such artefacts in the data can be greatly beneficial.
During interpretation of the patterns, one should
always be cautious and aim to explain the observed
patterns, instead of taking them at face value.

2) The patterning (i.e., arrangement) of the points in
the visualizations shown to a user correspond to
projections, which is simply a weighted combina-
tion of the original features. As such, only structure
that is present in the data can be shown.

3) The prototype implementation introduced in the
next section shows besides the data also the ran-
domized version of the data that the projection
is aimed to contrast with. In our experience, it
is straightforward to visually observe whether the
structure shown in the visualization has substantial
magnitude as compared to the randomized data. As
such, the stopping criterion can be used to make
the system even more robust against the analysis of
noise, but it is usually easy to see when the pro-
jections no longer pick up any significant structure,
even without the stopping criterion. See for example
Figure 7.

3 EXPERIMENTS

We present two case studies to illustrate the framework and
its utility. We first introduce a proof-of-concept tool and
discuss how this tool implements the concepts presented
in Section 2. A description of how the tool may be used in
practice is interweaved with the subsequent case studies. Fi-
nally, we present an evaluation of the runtime performance
and the stopping criterion.
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(a)

(b)

Fig. 4. Example of the first visualization given by SIDE on the synthetic data (Section 3.2). Solid dots represent actual data vectors, whereas open
circles represent vectors from the randomized data. Row (a) shows the first visualization, while (b) shows the same visualization with the three
clusters marked by us. Right of the scatter plot are bar charts that represent the weight vectors that constitute the projection vectors.

TABLE 1
Mean vectors of user marked clusters for the Synthetic data (Section 3.2).

Figure Cluster Dim 1 Dim 2 Dim 3 Dim 4 Dim 5 Dim 6 Dim 7 Dim 8 Dim 9 Dim 10

4b

top (1) 0.250 0.467 -0.334 0.347 -0.00263 -0.0331 -0.0201 -0.0506 -0.00254 -0.0610
mid (2) -0.774 -1.45 1.03 -1.07 0.0815 0.103 0.0623 0.157 0.00787 0.189

bottom (3) 0.348 0.0525 0.401 -0.329 0.0859 -0.0694 -0.0212 -0.0307 0.0557 -0.152

3.1 Proof-of-concept tool SIDE

The case studies are completed with the a JavaScript version
of our tool, which is available freely online, along with the
used data for reproducibility.1 [4]

The full interface of SIDE is shown in Figure 3. SIDE
was designed according to the three principles for ‘visually
controllable data mining’ [3], which essentially state that
both the model and the interactions should be transparent
to users, and that the analysis method should be fast enough
such that the user does not lose its trail of thought.

The main component is the interactive scatter plot (Fig-
ure 3e). The scatter plot visualizes the projected data (solid
dots) and the randomized data (open gray circles) in the
current 2D projection. By drawing a polygon, the user can
select data points to define a projection tile pattern. Once a set
of points is selected, the user can press either of the three
feedback buttons (3c), to indicate these points form a cluster
or to define them as outliers.

1. http://www.interesting-patterns.net/forsied/side/

If the user thinks the points are clustered only in the
shown projection, they click ‘Define 2D Cluster’, while ‘De-
fine Cluster’ indicates they expect that these points will be
clustered in other dimensions as well. ‘Define Outliers’ fully
fixes the location of the selected points in the background
model to their actual values, such that those points do not
affect the projections anymore.

To identify the defined clusters, those data points are
given the same color, and their statistics are shown in a table
(Figure 3g). The user can define multiple clusters in a single
projection, and they can also undo (Figure 3d) the feedback.
Once a user finishes exploring the current projection, they
can press ‘Update Background Model’ (Figure 3b). Then, the
background model is updated with the provided feedback
and a new scatter plot is computed and presented to the
user in an iterative fashion.

A few extra features are provided to assist the data ex-
ploration process: to gain an understanding of a projection,
the weight vectors associated with the projection axes are
plotted in bar charts (Figure 3f). Below those, a table (Figure

http://www.interesting-patterns.net/forsied/side/
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(a)

(b)

Fig. 5. Continuation of the visualizations given by SIDE on the synthetic data (Section 3.2). Rows (a) and (b) show the second and third visualization.

3g) lists the mean vectors of each colored point set (cluster).
The exploration history is maintained by taking snapshots
of the background model when updated, together with the
associated data projection (scatter plot) and weight vectors
(bar charts). This history in reverse chronological order is
shown in Figure 3h.

The tool also allows a user to revert back to a certain
snapshot, to restart from that time point. This allows the
user to discover different aspects of a dataset more consis-
tently. Finally, custom datasets can be loaded for analysis
from the drop-down menu (Figure 3a). Currently our tool
only works with CSV files and it automatically sub-samples
the custom data set so that the interactive experience is not
compromised. By default, two datasets are preloaded so that
users can get familiar with the tool. Notice that, since the
tool runs locally in your browser and there are no server-
side computations, you can safely analyse data that you
cannot share or transmit elsewhere.

3.2 Synthetic data
In the first case study, we generated a synthetic data set
that consists of 1000 ten-dimensional data vectors of which
dimensions 1–4 can be clustered into five clusters, dimen-
sions 5–6 into four clusters involving different subsets of data
points, and of which dimensions 7–10 are Gaussian noise.
All dimensions have equal variance.

In Figure 4a we observe the initial visualization from
SIDE. The blue dots are data points while the open cir-
cles correspond to a randomized version of the data. The

randomized data points are shown in order to ground any
observed patterns in the visualization because they show
what we should be expecting given the background knowl-
edge encoded thus far. As this is the initial visualization, the
only encoded knowledge is the overall scale of the data.

Next to the visualization we find two bar charts that
visualize the projection vectors corresponding to the x-
and y-axis. We observe the x-axis has loadings mostly on
dimensions 2 and 3 and to a lesser extent 1 and 4. The
other loadings (dimensions 7–10) are so small they likely
correspond to noise that is by chance slightly correlated to
the cluster structure in dimensions 1–4. The y-axis is loaded
onto dimensions 2–4.

The distribution of the projected data points clearly con-
trasts with the randomized data, indicating that probably
the visualization is showing meaningful structure. Because
the data is 10-dimensional while the scatter plot is 2-
dimensional, we cannot be sure just from the visualization
where in the original space the observed clusters are located.
Hence, we mark the three clusters, as shown in Figure 4b.

Table 1 shows the mean vectors for each of the three
clusters. Because this is synthetic data, the dimensions are
meaningless, but normally it should be possible to under-
stand what the clusters mean and how they differ from
each other based on careful inspection of these numbers.
Future use of the tool will have to show whether these mean
statistics are sufficient, or whether additional information
(e.g., variances) could be helpful or necessary.

Once we understand the meaning of the clusters, we ask
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for a new visualization (’Update background model’ in the
full interface shown in Figure 3), which is then based on a
model that incorporates the marked structure.

The subsequent most interesting projection is given in
Figure 5a. The x-axis corresponds almost purely to di-
mension 6, which together with dimension 5 contains the
orthogonal cluster structure. The y-axis again corresponds
to a subspace of dimensions 1–4, highlighting that indeed
the red cluster actually consists of two parts.

If we mark the four clusters shown in Figure 5a, our
model will contain eight clusters: the red cluster breaks into
four parts, the green and orange into two each. In Figure 5b
we recover the remaining structure in the data; the x-axis
(dimension 5) divides each of the already defined clusters
into two, and on the y-axis, there is again a subspace of
dimensions 1–4, which splits the brown-yellow cluster into
two, while the others are unaffected.

We designed this example to illustrate the feedback
that a user can give using the constrained randomizations.
Additionally, it shows how the methods succeeds in finding
interesting projections given previously identified patterns.
Thirdly, it also demonstrates how the user interactions
meaningfully affect subsequent visualizations.

3.3 UCI Adult data
In this case study, we demonstrate the utility of our method
by exploring a real world dataset. The data is compiled
from the UCI Adult dataset2. To ensure the real time in-
teractivity, we sub-sampled 218 data points and selected six
features: “Age” (17− 90), “Education” (1− 16), “HoursPer-
Week” (1 − 99), “Ethnic Group” (White, AsianPacIslander,
Black, Other), “Gender” (Female, Male), “Income” (≥ 50k).
Among the selected features, “Ethnic Group” is a categorical
feature with five categories, “Gender” and “Income” are bi-
nary features, the rest are all numeric. To make our method
applicable to this dataset, we further binarized the “Ethnic
Group” feature (yielding four binary features), and the final
dataset consists of 218 points and 9 features.

We assume the user uses clustering tiles throughout
the exploration. Each of the patterns discovered during the
exploration process corresponds to a certain demographic
clustering pattern. To illustrate how the constrained ran-
domizations help the user rapidly gain an understanding
of the data, we discuss the first three iterations of the
exploration process. The first projection (Figure 6a) visually
consists of four clusters. The user notes that the weight
vectors corresponding to the axes of the plot assign large
weights to the “Ethnic Group” attributes (Table 2, 1st row).
As mentioned, we assume the user marks these points as
part of the same cluster. After marking (Figure 6b), the tool
informs the user of the mean vectors of the points within
each clustering tile. The 1st row of Table 3 shows that each
cluster completely represents one out of four ethnic groups,
which may corroborate with the user’s understanding.

Taking the user’s feedback into consideration, a new
projection is generated. The new scatter plot (Figure 6c)
shows two large clusters, each consisting of some points
from the previous four-cluster structure (points from these
four clusters are colored differently). Thus, the new scatter

2. https://archive.ics.uci.edu/ml/datasets/Adult

plot elucidates structure not shown in the previous one.
Indeed, the weight vectors (2nd row of Table 2) show that
the clusters are separated mainly according to the “Gender”
attribute. After marking the two clusters separately, the
mean vector of each cluster (2nd row of Table 3) confirms
this: the cluster on the left represents male group, and the
female group is on the right. Notice that these clusters also
yield other meaningful information, because the projection
vectors not only correspond to gender (Table 2, 2nd row).
We find in the table of cluster means (Table 3, 2nd row) that
the genders are skewed over age, ethnicity, and income.

The projection in the third iteration (Figure 6d) consists
of three clusters, separated only along the x-axis. Interest-
ingly, the corresponding weight vector (3rd row of Table 2)
has strongly negative weights for the attributes “Income”
and “Ethnic Group - White”. This indicates the left cluster
mainly represents the people with high income and whose
ethnic group is also “White”. This cluster has relatively low
y-value; i.e., they are also generally older and more highly
educated. These observations are corroborated by the cluster
mean (Table 3, 3rd row).

For this case study, we also measured the performance
of SIDE in three components: loading data, fit background
model then compute new projection, update visualizations.
We repeated the experiment (with two iterations each) ten
times on a desktop with 2.7 GHz Intel Core i5 processor
and recorded the wall clock time. On average, loading
Adult dataset takes 11ms, fitting the background model
then computing the new projection takes 7.0s, updating the
visualization takes 41ms.

This case study illustrates how the proposed constrained
randomization methods facilitates human data exploration
by iteratively presenting an informative projection, consid-
ering what the user has already learned about the data.

3.4 Performance on synthetic data

Ideally any interactive data exploration tool should work in
close to real time. This section contains an empirical analysis
of an (unoptimized) R implementation of the method, as a
function of the size, dimensionality, and complexity of the
data. Note that limits on screen resolution as well as on
human visual perception render it useless to display more
than of the order of a few hundred data vectors, such that
larger data sets can be down-sampled without noticeably
affecting the content of the visualizations.

We evaluated the scalability on synthetic data with d ∈
{16, 32, 64, 128} dimensions and n ∈ {64, 128, 256, 512}
data points scattered around k ∈ {2, 4, 8, 16} randomly
drawn cluster centroids (Table 4). The randomization is
done here with the initial background model. The most
costly part in randomization is usually the multiplication
of orthogonal matrices, indeed, the running time of the
randomization scales roughly as ndx, where x is between
2 and 3. The results suggests that the running time of the
optimization is roughly proportional to the size of the data
matrix nd and that the complexity of data k has here only a
minimal effect in the running time of the optimization.

Furthermore, in 90% of the tests, the L1 loss on the
first axis is within 1% of the best L1 norm out of ten
restarts. The optimization algorithm is therefore quite stable,

https://archive.ics.uci.edu/ml/datasets/Adult
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Fig. 6. Projections of UCI Adult dataset: (a) projection in the 1st iteration, (b) clusters marked by user in the 1st iteration, (c) projection in the 2nd
iteration, and (d) projection in the 3rd iteration

and in practical applications it may well be be sufficient
to run the optimization algorithm only once. These results
have been obtained with unoptimized and single-threaded
R implementation on a laptop having 1.7 GHz Intel Core
i7 processor.3 The performance could probably be signifi-
cantly boosted by, e.g., carefully optimizing the code and
the implementation. Yet, even with this unoptimized code,
response times are already of the order of 1 second to 1
minute.

3.5 Stopping criterion
Finally, we tested whether the stopping criterion presented
in Section 2.4 can indeed quantify whether the current
projection is different from the structure level present due
to random noise. We evaluated this in a controlled setting,
i.e., using the synthetic data described in Section 3.2, which
consists of 1000 ten-dimensional data vectors of which di-
mensions 1–4 can be clustered into five clusters, dimensions
5–6 into four clusters involving different subsets of data points,
and of which dimensions 7–10 are Gaussian noise.

Since the data essentially contains cluster structure at
three levels (in dimensions 1–6) and noise (dimensions 7–
10 are purely random, 1–6 also contain some noise), we
expect that in the fourth iteration the background model
does not yet contain all the exact values of the data, but
it contains the cluster structure, assuming the user has

3. The R implementation used to produce Table 4 is available also via
the demo page (footnote 1).

properly marked that. Then, because the constraints contain
all real structure, the projection is based purely on random
differences between the real data and the randomized data.

In experiments, we find that not in every run the results
are the same, due to the nondeterministic randomization
and optimization procedures. For example, it is not rare that
the background model already contains the exact values of
all data points after three iterations. However, if the run goes
indeed as described above, where the first three iterations
show the various clusterings in the data, then the empirical
p-values align perfectly with our expectation: the p-values
should be high after three iterations, and equal to one after
four iterations. In the other cases, the p-values are equal to
one already after three iterations.

The test statistic of the projections and the empirical p-
value for five iterations in one test run are given in Table 5.
We observe that in the first three iterations, p̂ ≤ 0.01 for both
axes. As expected, in the fourth iteration (shown in Figure
7) the projections do not correspond to substantial structure
anymore, and p̂ > 0.05 for both axes. In the fifth iteration,
the data is completely fixed and hence we find p̂ = 1.

4 RELATED WORK

Visualization pipeline. The pipeline of visualizing high-
dimensional data is recognized to have three stages [14]:

Data transformation is the act of changing the data into a
desired representation. In this stage methods such as dimen-
sionality reduction (DR), clustering, and feature extraction
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TABLE 2
Projection weight vectors for the UCI Adult data (Section 3.3).

Figure axis Age Edu. h/w EG AsPl EG Bl. EG Oth. EG Whi. Gender Income

6a X -0.039 -0.001 0.001 0.312 -0.530 -0.193 0.763 0.017 0.008
Y 0.004 -0.004 -0.002 0.816 -0.141 0.465 -0.313 -0.011 0.002

6c X 0.081 -0.028 -0.022 -0.259 -0.233 -0.104 -0.380 -0.846 -0.001
Y -0.590 0.541 0.143 -0.233 -0.380 -0.026 -0.293 0.232 0.000

6d X 0.119 -0.149 0.047 0.102 0.191 0.104 -0.556 0.0581 -0.769
Y -0.382 -0.626 -0.406 0.346 0.317 -0.0287 0.111 -0.248 0.059

TABLE 3
Mean vectors of user marked clusters for the UCI Adult data (Section 3.3).

Figure Cluster Age Edu. h/w EG AsPl EG Bl. EG Oth. EG Whi. Gender Income

6b

top left 35.0 8.67 34.7 0.00 0.00 1.00 0.00 0.667 0.333
bott. left 37.2 9.43 40.3 0.00 1.00 0.00 0.00 0.286 0.071
top right 35.6 1.3 51.1 1.00 0.00 0.00 0.00 0.750 0.250

bott. right 38.4 10.2 41.6 0.00 0.00 0.00 1.00 0.762 0.275

6c left 39.0 10.2 43.3 0.0377 0.0252 0.0126 0.925 1.00 0.321
right 36.0 9.95 37.9 0.0339 0.169 0.0169 0.780 0.00 0.102

6d left 42.5 11.6 46.3 0.00 0.00 0.00 1.00 1.00 1.00

TABLE 4
Median wall clock running times, for randomization and optimization

over ten iterations of finding 2D-projections using L1 loss. Also shown
is the number of iterations in which the L1 norm first component ended
up within 1% of the result with the largest L1 norm (out of 10 tries). A
high number indicates the solution quality is stable, even though the

actual projections may vary.

rand. k ∈ {2, 4, 8, 16}
n d (s) optim. (s) #tries ∆ < 1%
64 16 0.1 {1.0, 1.2, 0.9, 1.2} {10, 10, 9, 8}
64 32 0.5 {1.8, 2.1, 2.4, 2.5} {10, 8, 10, 10}
64 64 2.5 {5.6, 3.5, 4.6, 4.5} {10, 9, 10, 8}
64 128 11.5 {8.9, 10.1, 11.4, 10.2} {10, 10, 8, 9}
128 16 0.2 {2.0, 1.7, 2.4, 2.0} {10, 1, 6, 8}
128 32 0.8 {2.6, 3.5, 4.0, 4.8} {9, 10, 10, 10}
128 64 5.1 {6.7, 5.3, 8.3, 9.6} {8, 10, 10, 9}
128 128 24.5 {13.8, 17.4, 15.2, 20.4} {10, 9, 10, 7}
256 16 0.4 {4.3, 2.6, 3.3, 4.7} {10, 8, 10, 9}
256 32 1.8 {6.3, 8.2, 7.9, 8.8} {8, 9, 10, 10}
256 64 9.2 {12.4, 10.1, 19.2, 16.3} {10, 10, 10, 9}
256 128 39.9 {33.5, 36.3, 30.6, 35.6} {10, 9, 8, 9}
512 16 0.5 {6.7, 6.3, 6.1, 7.5} {10, 9, 10, 10}
512 32 2.4 {16.6, 19.6, 20.2, 17.5} {9, 9, 10, 10}
512 64 13.6 {34.9, 23.5, 22.3, 41.0} {10, 10, 8, 7}
512 128 68.0 {74.5, 68.1, 72.3, 62.8} {10, 1, 9, 9}

TABLE 5
Test statistic and empirical p-value for both projections (x and y axes)

in a test run of the synthetic data.

Iteration fx(X,X∗) fy(X,X∗) p̂x p̂y
1 0.127 0.093 0.01 0.01
2 0.084 0.078 0.01 0.01
3 0.080 0.044 0.01 0.01
4 0.028 0.026 0.17 0.14
5 0.000 0.000 1.00 1.00

are used. As we aim to find informative projections in lower
dimension, we focus on the discussion of DR methods.
Dimensionality reduction for exploratory data analysis has
been studied for decades. Early research into visual explo-
ration of data led to approaches such as multidimensional
scaling [15], [16] and projection pursuit [17], [18]. Most
recent research on this topic (also referred to as manifold
learning) is still inspired by the aim of multi-dimensional

Fig. 7. Projection of the synthetic data, fourth iteration in the empirical
p-value test run. The empirical p-values for the axes are 0.17 and
0.14, indicating the amount of structure shown is comparable to what
is expected in random noise. Notice also that the distribution of the
randomized data is very similar to that of the real data and that the
projection vectors are not similarly sparse as in the previous iterations
(Figures 4 and 5), both signalling that the background model captures
all meaningful structure present in the data.

scaling; find a low-dimensional embedding of points such
that their distances in the high-dimensional space are well
represented. In contrast to Principal Component Analysis
[19], one usually does not treat all distances equal. Rather,
the idea is to preserve small distances well, while large dis-
tances are irrelevant, as long as they remain large; examples
are Local Linear and (t-)Stochastic Neighbor Embedding
[20], [21], [22]. Even that is typically not possible to achieve
perfectly, and a trade-off between precision and recall arises
[23]. Recent works are mostly spectral methods along this
line.

Visual mapping aims to encode the information in data
space (the outcome of data transformation) into visual
representations. For different types of the input data, the
applicable encoding varies [14], [24]. Our approach takes
multivariate real-valued data as input and visualizes the
2D projections of the data using scatterplots. While simple
2D scatter plots allow to track the information learned by
user, it would be possible to simultaneously visualize mul-
tiple pairwise relationships. For example, Scatterplot Matrix
(SPLOM) [25] and Parallel Coordinate Plot (PCP) [26] show
pairwise relationships between multiple data data attributes
at once. Based on radial coordinates, visual encodings such
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as Star Coordinate Plot [27] and Radviz [28] are also used
for simultaneous multivariate data visualization.

View transformation renders the visual encodings on the
screen. Visualization of large number of data points usually
has limitations such as high computational cost, visual
cluttering (hence occlusions). To address these issues, con-
tinuous scatterplots [29] and continuous PCPs [30] as well as
splatting scatterplots [31] and splatting PCPs [32] have been
introduced. Such techniques are not yet used in proof-of-
concept tool SIDE but may be useful if users need to anaylze
datasets with very many data points.
User Interaction. Orthogonal to the data visualization
pipeline, data visualization methods and systems can also
be categorized by the amount of user interaction involved.
We adopt the categorization proposed by Liu et al. [14]:

Computation-centric approaches have minimum interac-
tivity, where a user only needs to set the initial parameters.
The previously introduced dimensionality reduction meth-
ods all belong to this category.

Interactive exploration approaches fix data transformation
models but allow users to explore the models with inter-
active visual mappings, e.g., navigate, query, and filter. For
example, SAMP-Viz [33] and the work by Liu et al. [34]
first compute a few data representatives using clustering
methods. A user can navigate through these representatives
and study the corresponding visualizations. Voyager [35]
takes user selected data attributes as input and recommends
either the visualizations that contains the selected attributes
or representative visualizations that reveal the relationships
between other attributes. Although the described recom-
mendation mechanism is rather naive (visualizations are
ordered by the types and names of the corresponding
attributes). For each visualization, the authors propose a
rule of thumb for choosing the visual encodings based on
cognitive considerations. SeeDB [36] takes a user-specified
database query and a reference query as input. For both
queries, SeeDB evaluates all possible aggregate views that
defined by a triplet: a group-by attribute, a measure at-
tribute, and an aggregation function. Based on the deviation
between the aggregative views of user-specified query and
the corresponding one of the reference query, SeeDB visual-
izes the top k views that have largest deviation in bar charts.

Model manipulation techniques maintain a model that
reflects a user’s interaction in order to provide the user
new insights. The existing methods (e.g., [37], [38], [39])
usually assume the user have a specific hypothesis in mind.
Through interactions, these methods aim to help the user
efficiently confirm or reject the hypothesis. On the other
hand, we model user’s belief about the data, and update
the model after a user has studied a new visualization. Our
approach exposes as much new information as possible to
the user, thus increasing the user’s serendipity of gaining
new insights about the data.

In order to reflect a user’s interaction in the model, it
is important to acknowledge the cognitive aspect of how
humans identify [40], [41], [42] and assimilate [43] visual
patterns. As our first attempt, SIDE assumes a user can vi-
sually identify the clusters in 2D scatterplots and internalize
the position of the points in the clusters. One important
line of future work is to investigate alternative assumptions
about what a human operator can learn from a scatterplot.

Iterative data mining and machine learning. There are
two general frameworks for iterative data mining: FORSIED
[5], [6] is based on modeling the belief state of the user as
an evolving probability distribution in order to formalize
subjective interestingness of patterns. This distribution is
chosen as the Maximum Entropy distribution subject to the
user beliefs as constraints, at that moment in time. Given
a pattern syntax, one then aims to find the pattern that
provides the most information, quantified as the ‘subjective
information content’ of the pattern.

The other framework, which we here named CORAND
[7], [8], is similar, but the evolving distribution does not
necessarily have an explicit form. Instead, it relies on sam-
pling, or put differently, on randomization of the data,
given the user beliefs as constraints. Both these frameworks
are general in the sense that it has been shown they can
be applied in various data mining settings; local pattern
mining, clustering, dimensionality reduction, etc.

The main difference is that in FORSIED, the background
model is expressed analytically, while in CORAND it is
defined implicitly. This leads to differences in how they
are deployed and when they are effective. From a research
and development perspective, randomization schemes are
easier to propose, or at least they require little mathematical
skills. Explicit models have the advantage that they often
enable faster search of the best pattern, and the models
may be more transparent. Also, randomization schemes are
computationally demanding when many randomizations
are required. Yet, in cases like the current paper, a single
randomization suffices, and the approach scales very well.
For both frameworks, it is ultimately the pattern syntax that
determines their relative tractability.

Besides FORSIED and CORAND, many special-purpose
methods have been developed for active learning, a form
of iterative mining or learning, in diverse settings: clas-
sification, ranking, and more, as well as explicit models
for user preferences. However, since these approaches are
not targeted at data exploration, we do not review them
here. Finally, several special-purpose methods have been
developed for visual iterative data exploration in specific
contexts, for example for itemset mining and subgroup
discovery [44], [45], [46], [47], information retrieval [48], and
network analysis [49].
Visually controllable data mining. This work was moti-
vated by and can be considered an instance of visually con-
trollable data mining [3], where the objective is to implement
advanced data analysis method so that they are understand-
able and efficiently controllable by the user. Our proposed
method satisfies the properties of a visually controllable
data mining method (see [3], Section II B): (VC1) the data
and model space are presented visually, (VC2) there are
intuitive visual interactions that allow the user to modify
the model space, and (VC3) the method is fast enough to
allow for visual interaction.

5 CONCLUSIONS

In order to improve the efficiency and efficacy of data explo-
ration, there is a growing need for generic and principled
methods that integrate advanced visualization with data
mining techniques to facilitate effective visual data analysis
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by human users. Our aim with this paper was to present a
principled framework based on constrained randomization
to address this problem: the user is initially presented with
an ‘interesting’ projection of the data and then employs data
randomization with constraints to allow users to flexibly
express their interests or beliefs. These constraints expressed
by the user are then taken into account by a projection-
finding algorithm to compute a new ‘interesting’ projection,
a process that can be iterated until the user runs out of time
or finds that constraints explain everything the user needs to
know about the data. By continuously providing a user with
information that contrasts with the constructed background
model, we maximize the chance of the user to encounter
striking and truly new information presented in the data.

In our example, the user can associate two types of con-
straints on a chosen subset of data points: the appearance
of the points in the particular projection or the fact that
the points can be nearby also in other projections. We also
provided case examples on two data sets, one controlled
experiment on synthetic data and another on real census
data. We found that in these preliminary experiments the
framework performs as expected; it manages to find inter-
esting projections. Yet, interestingness can be case specific
and relies on the definition of an appropriate interestingness
measure, here the L1 norm was employed. More research
into this choice is warranted. Nonetheless, we think this
approach is useful in constructing new tools and methods
for interactive visually controllable data mining in variety
of settings.

Also, a fundamental problem with linear projections is
that they may not capture all types of structure in the data. It
would be possible to work in a kernel space to overcome this
or study non-linear manifold learning. However, the defini-
tion of clusters in the visualization does not readily map
back to the original data space. Hence, it is not obvious then
how to track the user’s gained knowledge in a background
model. Thus, this remains an open research question.

We have been actively working to put SIDE into practical
use. One interesting application is a data analysis task
called “gating”. Gating is an analysis technique applied by
biologists to flow cytometry data, where cells are data points
and each point is described by a few intensity readings
corresponding to emissions of different fluorescent dyes.
The goal of gating is to extract clusters (‘gates’) based on
cell’s fluorescence intensities so that the cell types of a given
sample can be differentiated. This is ongoing work.

SIDE is a prototype with several limitations. From a
fundamental perspective, we assume a user can visually
recognize the clusters in 2D scatterplots and internalize the
position of the points in the clusters. This may misguide
users if they give feedback and progress through a series of
visualizations without making the effort to truly understand
the defined clusters. They may not learn much, but more im-
portantly because the intent is to provide new information
continuously, there is almost no redundancy between the
visualizations so information that is a combination of two
or more previous visualizations is also never shown.

In further work we intend to investigate the use of the
FORSIED framework to also formalize an analytical back-
ground model [5], [6], as well as its use for computing the
most informative data projections. Additionally, alternative

pattern syntaxes (constraints) will be investigated. Another
future research direction is the integration of the constrained
randomisation methods into software libraries in order to
facilitate the integration of the methods in production level
visualization systems.

ACKNOWLEDGMENTS

This work has received funding from the European Re-
search Council under the European Union’s Seventh Frame-
work Programme (FP7/2007-2013) / ERC Grant Agreement
no. 615517, from the FWO (project numbers G091017N,
G0F9816N), from the European Union’s Horizon 2020 re-
search and innovation programme and the FWO under the
Marie Skłodowska-Curie Grant Agreement no. 665501, from
the Academy of Finland (decisions 326280 and 326339), and
from Tekes (Revolution of Knowledge Work project).

REFERENCES

[1] J. Thomas and K. Cook, Illuminating the Path: Research and Develop-
ment Agenda for Visual Analytics. IEEE Press, 2005.

[2] D. Keim, J. Kohlhammer, G. Ellis, and F. Mansmann, Eds., Mas-
tering the Information Age: Solving Problems with Visual Analytics.
Eurographics Association, 2010.
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fessor of computer science and atmospheric sci-
ences in the Department of Computer Science at
the University of Helsinki. He completed his PhD
in 2001 in theoretical physics at the University of
Helsinki. His primary interests lie in the areas of
data mining, machine learning, and related algo-
rithms. He holds a title of Docent in Information
and Computer Science at the Aalto University
School of Science, Finland. He has a website at
http://www.iki.fi/kaip/.

Jefrey Lijffijt Jefrey Lijffijt is a FWO [Pegasus]2
Marie Skłodowska-Curie Fellow at the IDLab,
Ghent University, Belgium. He graduated as a
Doctor of Science in Technology (graded with
distinction) in 2013 at Aalto University, Finland.
For his doctoral thesis, he won the Aalto Uni-
versity School of Science ’Best Doctoral Thesis’
of 2013 award. His main research interests are
theory and practice of statistical modeling and
pattern mining in various data. He has a website
at http://users.ugent.be/∼jlijffij/.

Tijl De Bie Tijl De Bie is currently Full Professor
at Ghent University, Belgium. Before moving to
Ghent, he was a Reader at the University of
Bristol, where he was appointed Lecturer (Assis-
tant Professor) in January 2007. Before that, he
was a postdoctoral researcher at the KU Leuven
(Belgium) and the University of Southampton.
He completed his PhD on machine learning and
advanced optimization techniques in 2005 at the
KU Leuven. During his PhD he also spent a
combined total of about 1 year as a visiting re-

search scholar in U.C. Berkeley and U.C. Davis. He is currently most
actively interested in the formalization of subjective interestingness in
exploratory data mining, and in the use of machine learning and data
mining for music informatics as well as for web and social media mining.

http://users.ugent.be/~bkang/
http://www.iki.fi/kaip/
http://users.ugent.be/~jlijffij/

