
The Design, Implementation, and Evaluation of
Software and Architectural Support for Nested

Virtualization on Modern Architectures

Jin Tack Lim

Submitted in partial fulfillment of the
requirements for the degree of

Doctor of Philosophy
under the Executive Committee

of the Graduate School of Arts and Sciences

COLUMBIA UNIVERSITY

2021

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Columbia University Academic Commons

https://core.ac.uk/display/343132588?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

c© 2020
Jin Tack Lim

All Rights Reserved

Abstract

The Design, Implementation, and Evaluation of Software and Architectural

Support for Nested Virtualization on Modern Architectures

Jin Tack Lim

Nested virtualization, the discipline of running virtual machines inside other virtual ma-

chines, is increasingly important because of the need to deploy workloads that are already

using virtualization on top of virtualized cloud infrastructures. However, nested virtual-

ization performance on modern computer architectures is far from native execution speed,

which remains a key impediment to further adoption. My thesis is that simple changes to

hardware, software, and virtual machine configuration that are transparent to nested vir-

tual machines can provide near-native execution speed for real application workloads. This

dissertation presents three mechanisms that improve nested virtualization performance.

First, we present NEsted Virtualization Extensions for Arm (NEVE). As Arm servers

make inroads in cloud infrastructure deployments, supporting nested virtualization on Arm

is a key requirement. The requirement has recently been met with the introduction of

nested virtualization support for the Arm architecture. We built the first hypervisor using

Arm nested virtualization support and show that, despite similarities between Arm and x86

nested virtualization support, performance on Arm is much worse than on x86. This is

due to excessive traps to the hypervisor caused by differences in non-nested virtualization

support. To address this problem, we introduce a novel paravirtualization technique to

rapidly prototype architectural changes for virtualization and evaluate their performance

impact using existing hardware. Using this technique, we introduce NEVE, a set of simple

architectural changes to Arm that can be used by software to coalesce and defer traps by

logging the results of hypervisor instructions until the results are actually needed by the

hypervisor. We show that NEVE allows hypervisors running real application workloads

to provide an order of magnitude improvement in performance over current Arm nested

virtualization support and up to three times less overhead than x86 nested virtualization.

NEVE is included in the Armv8.4 architecture.

Second, we introduce virtual-passthrough, a new approach for providing virtual I/O

devices for nested virtualization without the intervention of multiple levels of hypervisors.

Virtual-passthrough preserves I/O interposition while addressing the performance problem

of I/O intensive workloads as they perform many times worse with nested virtualization

than without virtualization. With virtual-passthrough, virtual devices provided by a host

hypervisor, the hypervisor that runs directly on the hardware, can be assigned to nested

virtual machines directly without delivering data and control through multiple layers of

hypervisors. The approach leverages the existing direct device assignment mechanism

and implementation, so it only requires virtual machine configuration changes. Virtual-

passthrough is platform-agnostic and easily supports important virtualization features such

as migration. We have applied virtual-passthrough in the Linux KVM hypervisor for both

x86 and Arm hardware, and show that it can provide more than an order of magnitude

improvement in performance over current KVM virtual device support on real application

workloads.

Third, we introduce Direct Virtual Hardware (DVH), a new approach that enables a host

hypervisor to directly provide virtual hardware to nested virtual machines without the inter-

vention of multiple levels of hypervisors. DVH is a generalization of virtual-passthrough

and does not limit virtual hardware to I/O devices. Beyond virtual-passthrough, we intro-

duce three additional DVH mechanisms: virtual timers, virtual inter-processor interrupts,

and virtual idle. DVH provides virtual hardware for these mechanisms that mimics the

underlying hardware and, in some cases, adds new enhancements that leverage the flex-

ibility of software without the need for matching physical hardware support. We have

implemented DVH in KVM. Our experimental results show that combining the four DVH

mechanisms can provide even greater performance than virtual-passthrough alone and pro-

vide near-native execution speeds on real application workloads.

Table of Contents

List of Figures iv

List of Tables vi

Acknowledgements viii

1 Introduction 1

2 NEVE: Nested Virtualization Extensions for Arm 10

2.1 Architectural Support for Arm Nested Virtualization 12

2.2 Paravirtualization for Architecture Evaluation 16

2.3 KVM/ARM Nested Virtualization for Armv8.3 19

2.4 Evaluation of Armv8.3 Nested Virtualization 23

2.5 NEVE: NEsted Virtualization Extensions 29

2.5.1 Architecture Specification . 31

2.5.2 Recursive Virtualization . 36

2.5.3 Architectural Impact . 37

2.5.4 Implementation . 37

2.5.5 Performance Impact . 39

i

2.6 Evaluation of NEVE Nested Virtualization 40

2.6.1 Microbenchmark Results . 41

2.6.2 Application Benchmark Results 43

2.7 Enhanced Support for Nested Virtualiztion 49

2.8 Related Work . 51

2.9 Summary . 54

3 Virtual-passthrough: Boosting I/O Performance for Nested Virtualization 56

3.1 I/O Virtualization for Nested Virtualization 59

3.2 Virtual-passthrough Design . 62

3.2.1 System Configuration . 64

3.2.2 Example . 67

3.2.3 Recursive Virtual-passthrough . 70

3.2.4 Migration . 71

3.3 Virtual-passthrough Implementation . 76

3.4 Experimental Results . 78

3.5 Related Work . 91

3.6 Summary . 96

4 Optimizing Nested Virtualization Performance Using Direct Virtual Hardware 98

4.1 Design . 99

4.1.1 Virtual-passthrough . 103

4.1.2 Virtual Timers . 104

4.1.3 Virtual IPIs . 107

ii

4.1.4 Virtual Idle . 111

4.1.5 Recursive DVH . 113

4.1.6 DVH Migration . 114

4.2 Evaluation . 115

4.3 Related Work . 128

4.4 Summary . 130

5 Conclusions and Future Work 131

Bibliography 136

iii

List of Figures

1.1 Virtualization and Nested Virtualization . 1

1.2 Steps to Handle an Exit from a VM and a Nested VM 3

2.1 Arm Hardware Virtualization Extensions . 13

2.2 Application Benchmark Performance . 45

3.1 I/O Virtualization Models . 60

3.2 Virtual-passthrough . 63

3.3 I/O Write Operation with (Virtual) Passthrough 66

3.4 Recursive Virtual-passthrough . 70

3.5 Application Performance on x86 . 83

3.6 Application Performance on x86 in L3 VM 85

3.7 Application Performance on x86, Xen on KVM 86

3.8 Application Performance on Arm . 88

3.9 Total VM Migration Time on x86 . 89

3.10 Total Transferred Size on x86 . 90

3.11 Total Nested VM Migration Time on x86 . 92

4.1 Hardware Access from Nested VM . 100

iv

4.2 Nested VM IPI Delivery . 108

4.3 Nested VM IPI Delivery with Virtual IPIs . 111

4.4 Application Performance . 120

4.5 Application Performance Breakdown . 122

4.6 Application Performance in L3 VM . 124

4.7 Total VM Migration Time on x86 . 125

4.8 Total Nested VM Migration Time on x86 . 127

v

List of Tables

2.1 Microbenchmark Cycle Counts . 25

2.2 VNCR EL2 Register Fields . 31

2.3 VM System Registers . 32

2.4 Hypervisor Control Registers . 33

2.5 Hypervisor Control GIC Registers . 35

2.6 Microbenchmark Cycle Counts . 42

2.7 Microbenchmark Average Trap Counts . 43

2.8 Application Benchmarks . 44

2.9 Application Benchmark Raw Performance . 46

3.1 Steps to Send a Packet for Each I/O Model . 69

3.2 Application Benchmarks . 81

3.3 Application Benchmark Raw Performance on x86 82

3.4 Application Benchmark Raw Performance on Arm 87

4.1 Virtualization Microbenchmarks . 117

4.2 Application Benchmarks . 118

4.3 Microbenchmark Performance in CPU Cycles 119

vi

4.4 Application Benchmark Raw Performance . 121

vii

Acknowledgements

The entire journey of this Ph.D. would not have been possible without the support of my

family, friends, and colleagues. First and foremost, I want to thank my advisor, Jason Nieh.

His amazing ability to capture the key ideas and present them in such an interesting and

coherent way inspired me every time. Second, I want to thank the rest of my dissertation

defense committee: Junfeng Yang, Larry Rudolph, Edouard Bugnion, and Ronghui Gu.

Christoffer Dall has been much more than a colleague; he has been a mentor and has

become a sincere friend. He provided me with strong moral support throughout my Ph.D.

life. Especially in my hardest times, he encouraged and influenced me to have confidence

in my own work and push forward. Christoffer also nurtured me on many technical aspects,

particularly while working on the NEVE project. The entire experience helped me level up

my skills and abilities. To this day, many great moments from our time working together

come to mind. Shih-Wei Li joined Columbia in the same year as me, and we went through

some challenging moments together. His keen attention to detail and sharp comments

amazed me time and time again. Furthermore, Naser AlDuaij and Alexander Van’t Hof

generously shared their valuable advice from prior experiences as senior Ph.D. students,

which helped me a lot to navigate the Ph.D. program.

Much of my work was done interacting with the Linux and QEMU open-source com-

viii

munities and CloudLab. Marc Zyngier provided helpful code reviews of KVM/ARM

patches and took over the KVM/ARM nested virtualization patch series that I had worked

on. Peter Xu provided insight to troubleshoot many issues related to passthrough and vir-

tual IOMMU for x86. Eric Auger provided an early version of Arm SMMU emulation

support, which allowed me to evaluate virtual-passthrough on Arm. Robert Ricci, Mark

Harber, David M. Johnson, and Leigh Stoller helped with many questions related to using

the CloudLab infrastructure, where most of my experiments were conducted.

Finally, I’d like to thank my family, who provided outstanding support throughout my

journey despite the fact that it started in a later stage of life. My wife, Se Jin, made a huge

sacrifice to give up a guaranteed future career in Korea to come to the US to support my

dream. She has endured this long period with endless patience as my supporter and as

a mother, all while continuing her fight to establish a new professional life. My parents

and parents-in-law stepped up to provide the support we needed undergoing countless trips

back and forth between Korea and the US. I can’t even imagine how I would be where I

am today without the amazing support of my family.

Chapter 1

Introduction

Virtualization is a key technology in cloud computing environments. Virtualization enables

software that is designed to run directly on hardware, such as operating systems (OSes),

to run inside virtual machines (VMs). A VM is an abstraction of the underlying physical

machine, and a hypervisor is software that runs on hardware realizing the abstraction, as

shown in Figure 1.1(a).

Nested virtualization involves running multiple levels of hypervisors to support run-

ning VMs inside VMs, as shown in Figure 1.1(b). We refer to the host hypervisor as the

first hypervisor that runs directly on the hardware, the guest hypervisor as the hypervisor

running inside a VM, and the nested VM as the VM created by the guest hypervisor. For

more levels of virtualization, we refer to the host hypervisor as the L0 hypervisor, the VM

created by the L0 hypervisor as the L1 VM, the guest hypervisor as the L1 hypervisor, the

hypervisor running on top of the L1 hypervisor as the L2 hypervisor, and so on.

Hypervisor

Guest
OS

(a) Virtualization

Virtual Machine
(VM 1)

Hardware

Guest
OS

Guest
OS

VM 2 VM 3

Host Hypervisor

Guest Hypervisor

VM 1

Hardware

Guest
OS

VM 2Nested
Guest OS

Nested Guest
Hypervisor

(b) Nested virtualization

Netsed VM 1 Netsed VM 2

Figure 1.1: Virtualization and Nested Virtualization

1

Nested virtualization is increasingly important for cloud computing as deploying VMs

on top of Infrastructure-as-a-Service (IaaS) cloud providers is becoming more common-

place and requires nested virtualization support [43, 45, 89, 27]. Furthermore, OSes in-

cluding Linux and Windows have built-in hypervisors to support legacy applications [83]

and enhance security [82]; these OS features require nested virtualization support to run in

VMs.

While nested virtualization has many benefits, nested virtualization performance on

modern computer architectures is far from native execution speed, and this remains a key

impediment to its further adoption. In general, the main reason for virtualization overhead

is hypervisor interventions during VM execution required to preserve the VM abstrac-

tion, which makes software running inside a VM run slower than it would on the physical

machine. Current architectural and software support for nested virtualization incur sig-

nificantly more hypervisor interventions than non-nested virtualization support because

multiple levels of hypervisors involved, which leads to the poor nested virtualization per-

formance.

While a VM can execute most instructions without hypervisor interventions, some in-

structions require hypervisor interventions to provide a proper execution environment for

the VM and to protect other software running on the physical machine, such as the hy-

pervisor and other VMs. For example, an instruction to shut down a machine from a VM

should not shut down the physical machine, which would affect the hypervisor and other

VMs’ executions. The hypervisor needs to trap such instructions so that the VM exits its

own execution and execution switches to the hypervisor so it can emulate the instruction

that caused the trap.

2

Hypervisor

Virtual Machine (VM)

1. Trap2. Return
to VM

Host hypervisor

Guest hypervisor Nested VM

1. Trap2. Emulate
the trap

3. Emulate
instruction for nested VM

4. Return
to L2

5. Emulate
the return

…

(a) Virtualization (b) Nested virtualization

VM

Figure 1.2: Steps to Handle an Exit from a VM and a Nested VM

Modern computer architectures, such as x86 and Arm, provide hardware virtualization

support for this well-known trap-and-emulate virtualization technique [22]. On these archi-

tectures, a designated hypervisor mode of operation exists where a hypervisor can access

architectural features for virtualization. For example, software running in hypervisor mode

can execute a special instruction to run a VM. A VM runs in a different mode of operation,

non-hypervisor mode. These architectures enable the hypervisor running in hypervisor

mode to configure which instructions under what specific conditions are required to trap,

allowing the hypervisor to emulate the instruction that VMs attempted to execute. For the

previous shutdown example, the shutdown instruction would cause a trap from the VM

to the hypervisor, which would then determine the reason for the VM exit was the shut-

down instruction and transparently emulate that instruction by terminating only the VM.

Figure 1.2(a) shows the steps of handling a trap from a VM.

Modern architectures also use trap-and-emulate to support nested virtualization. Since

architectures, such as x86 and Arm, only provide single hypervisor mode, a VM that runs a

hypervisor in it still has to stay in non-hypervisor mode. The architectures trap instructions

3

that attempt to access virtualization support inside the VM to hypervisor mode, and the

host hypervisor emulates the instructions. As a result, the guest hypervisor can indirectly

leverage architectural support for virtualization transparently inside the VM, and can man-

age its own VMs, nested VMs. The host hypervisor multiplexes the hardware between the

guest hypervisor and nested VMs, running both of them inside a VM.

Architectural support for virtualization based on trap-and-emulate incurs only modest

performance overhead for non-nested virtualization because the time for emulation, which

is based on the number of exits and the cost of handling exits, is small compared to VM ex-

ecution. The same approach, however, is not efficient enough for nested virtualization. For

example, switching between the hypervisor and a VM is a basic and frequent virtualiza-

tion operation involving more hypervisor interventions for nested virtualization as shown

in step 1, 2, 4, and 5 of Figure 1.2(b). The guest hypervisor’s attempt to run its own VM,

the nested VM, will not switch execution to the nested VM directly but will be trapped to

hypervisor mode first because the guest hypervisor does not have permission to access vir-

tualization features required to run a VM. The host hypervisor then switches to the nested

VM as part of emulating the guest hypervisor’s instruction. Similarly, on exiting the nested

VM, execution always first switches to hypervisor mode, and the host hypervisor forwards

the exit to the guest hypervisor as part of emulating an exit from the nested VM. Therefore,

a switch between a nested VM and the guest hypervisor is indirect and involves twice as

many hypervisor interventions compared to non-nested virtualization.

Furthermore, handling a nested VM exit in a guest hypervisor is more costly than han-

dling an exit in a hypervisor for non-nested virtualization because virtualization features

that guest hypervisors use will only be provided via trap-and-emulate, as shown in Fig-

4

ure 1.2(b) step 3. For example, accessing VM’s states and inspecting its exit reason are

frequent hypervisor operations, but they all need to be emulated if they are done by the

guest hypervisor. Therefore, each exit from a nested VM can result in many more exits

due to indirect hypervisor-VM switches and further virtualization operation emulations, a

problem known as exit multiplication, which causes a dramatic increase in virtualization

overhead.

My thesis is that simple changes to hardware, software, and virtual machine configura-

tion that are transparent to nested virtual machines can provide near-native execution speed

for real application workloads. This dissertation presents three mechanisms that improve

nested virtualization performance by reducing the degree of exit multiplication in one of

two ways. First, we eliminate the need for the guest hypervisor to exit when executing

certain instructions to use virtualization features, avoiding the need to trap and emulate

frequent hypervisor operations. This reduces exit multiplication by reducing the number of

exits due to guest hypervisor execution. Second, we eliminate the need for the guest hyper-

visor to handle certain exits from a nested VM, avoiding the need for the host hypervisor

to forward such exits to the guest hypervisor. This reduces exit multiplication by avoiding

guest hypervisor execution, so it will not cause further exits.

First, we present NEsted Virtualization Extensions for Arm (NEVE) [75]. As Arm

servers make inroads in cloud infrastructure deployments, supporting nested virtualization

on Arm is a key requirement. The requirement has been met with the introduction of

nested virtualization support in the Armv8.3 architecture. We built the first hypervisor us-

ing Armv8.3 nested virtualization support and show that, despite similarities between Arm

and x86 nested virtualization support, performance on Arm is much worse than on x86.

5

This is due to excessive traps from the guest hypervisor to the host hypervisor caused by

differences in non-nested virtualization support. To address this problem, we introduce a

novel paravirtualization technique to rapidly prototype architectural changes for virtualiza-

tion and evaluate their performance impact using existing hardware. Using this technique,

we introduce NEVE, a set of simple architectural changes to Arm, that can be used by

software to coalesce and defer traps by logging the results of hypervisor instructions exe-

cuted by the guest hypervisor in the VM until the results are actually needed by the host

hypervisor. This reduces exit multiplication by batching the handling of multiple hyper-

visor instructions on one exit instead of exiting for each individual hypervisor instruction

executed by the guest hypervisor. We show that NEVE allows hypervisors running real

application workloads to provide an order of magnitude improvement in performance over

the Armv8.3 nested virtualization support and up to three times less overhead than x86

nested virtualization. NEVE is included in the Armv8.4 architecture.

Second, we introduce virtual-passthrough, a new approach for providing virtual I/O

devices for nested virtualization without the intervention of multiple levels of hypervisors.

Virtual-passthrough preserves I/O interposition while addressing the performance problem

of I/O intensive workloads as they perform many times worse with nested virtualization

than without virtualization. With virtual-passthrough, virtual devices provided by a host

hypervisor can be assigned to nested VMs directly without delivering data and control

through multiple layers of hypervisors. Therefore, virtual-passthrough reduces exit mul-

tiplication by eliminating the need for guest hypervisor execution when the nested VM

interacts with the assigned virtual I/O devices. The approach leverages the existing di-

rect device assignment mechanism and implementation, so it only requires virtual machine

6

configuration changes. Virtual-passthrough is platform-agnostic and easily supports im-

portant virtualization features such as migration. We have applied virtual-passthrough in

the Linux KVM hypervisor for both x86 and Arm hardware, and show that it can provide

more than an order of magnitude improvement in performance over current KVM virtual

device support on real application workloads.

Third, we introduce Direct Virtual Hardware (DVH), a new approach that enables a

host hypervisor to directly provide virtual hardware to nested VMs without the interven-

tion of multiple levels of hypervisors [73]. DVH is a generalization of virtual-passthrough

and does not limit virtual hardware to I/O devices. Beyond virtual-passthrough, we intro-

duce three additional DVH mechanisms: virtual timers, virtual inter-processor interrupts,

and virtual idle. DVH provides virtual hardware for these mechanisms that mimics the

underlying hardware and, in some cases, adds new enhancements that leverage the flexi-

bility of software without the need for matching physical hardware support. Like virtual-

passthrough, DVH reduces exit multiplication by eliminating the need for guest hypervisor

execution when the nested VM accesses the virtual hardware. We have implemented DVH

in KVM. Our experimental results show that combining the four DVH mechanisms can

provide even greater performance than virtual-passthrough alone and provide near-native

execution speeds on real application workloads.

Contributions

The contributions of this dissertation include:

1. We build the first hypervisor to use Arm nested virtualization support. We show that

7

despite similarities between Arm and x86 nested virtualization support, performance

on Arm is much worse than on x86.

2. We identify that the performance bottleneck of Arm nested virtualization is due to

excessive traps from the guest hypervisor to the host hypervisor, which are caused

by the architecture design.

3. We propose NEsted Virtualization Extensions for Arm (NEVE), a set of simple ar-

chitectural changes to Arm that reduce the number of traps to the host hypervisor

significantly.

4. We introduce a novel paravirtualization technique to rapidly prototype architectural

changes for virtualization and evaluate their performance impact using existing hard-

ware.

5. We implement and evaluate NEVE using the paravirtualization technique. NEVE

provides an order of magnitude better performance than the existing Armv8.3 nested

virtualization support.

6. We discuss the inclusion of NEVE in the Armv8.4 architecture as Arm’s Enhanced

Support for Nested Virtualization.

7. We introduce virtual-passthrough, a new approach for providing virtual I/O devices

for nested virtualization without the intervention of multiple levels of hypervisors.

Virtual-passthrough preserves I/O interposition while addressing the performance

problem of I/O intensive workloads.

8. We have applied virtual-passthrough in the Linux KVM hypervisor for both x86

and Arm hardware, and show that it can provide more than an order of magnitude

improvement in performance over current KVM virtual device support on real appli-

8

cation workloads.

9. We introduce a new PCI device capability, the migration capability, and we imple-

ment the capability in a virtio virtual PCI device to support migration of unmodified

nested VM using virtual-passthrough.

10. We introduce Direct Virtual Hardware (DVH), a new approach that enables a host

hypervisor to directly provide virtual hardware to nested virtual machines without

the intervention of multiple levels of hypervisors. DVH is a generalization of virtual-

passthrough and does not limit virtual hardware to I/O devices.

11. Beyond virtual-passthrough, we introduce three additional DVH mechanisms: vir-

tual timers, virtual inter-processor interrupts, and virtual idle. We implement them

in KVM.

12. We show that combining the four DVH mechanisms can provide even greater perfor-

mance than virtual-passthrough alone and provide near-native execution speeds on

real application workloads while supporting important virtualization features such as

migration.

13. We contribute to open source communities by providing source code for the first

Arm nested virtualization support in KVM We also provide various bug fixes and

reports related to x86 nested virtualization, PCI passthrough, virtual IOMMU, and

virtio in KVM/QEMU. The changes are either upstreamed or in the process of being

upstreamed.

9

Chapter 2

NEVE: Nested Virtualization Extensions for Arm

While the x86 architecture has dominated the server and cloud infrastructure markets, the

Arm architecture is leveraging its dominance in the mobile and embedded space to make

inroads in cloud infrastructure deployments [18]. Because of the demand for nested vir-

tualization in these markets, Arm introduced architectural support for nested virtualization

in the Armv8.3 architecture [21]. However, no Armv8.3 hardware supporting nested vir-

tualization exists yet and, as a consequence, no hypervisors have been developed for Arm

that support nested virtualization. While nested virtualization can deliver reasonable per-

formance on x86 [19], it remains an unexplored technology on Arm. Given the growing

popularity of virtualization on Arm and attractive use cases for nesting, investigating the

future for nesting support on Arm is important.

Because of the absence of Arm hardware with nested virtualization support, we in-

troduce a novel approach for evaluating the performance of new architectural features for

virtualization using paravirtualization. Paravirtualization is traditionally used to simplify

hypervisor design and improve hypervisor performance by avoiding the use of certain ar-

chitectural features that are difficult or expensive to virtualize. We instead use paravirtu-

alization to enable a hypervisor to leverage new architectural features that do not exist in

the underlying hardware by using existing instructions in the underlying architecture to

10

mimic the behavior and performance of new architectural features. The approach enables

us to evaluate the performance of new architectural features for virtualization on existing

hardware with real application workloads and hypervisors at native execution speeds.

Using this approach, we build the first Arm hypervisor to support nested virtualization.

We modified KVM/ARM [34] to support Armv8.3 nested virtualization features. Both

the hypervisor design and Armv8.3 are based on a trap-and-emulate approach similar to

how software supports nested virtualization on x86 where both architectures have single-

level hardware virtualization support. Despite these similarities, we show that Armv8.3

nested virtualization performance is quite poor and significantly worse than x86. Our re-

sults provide the first quantitative comparison between Arm and x86 nested virtualization

performance, and provide crucial insight regarding virtualization support on other emerg-

ing architectures. We identify for the first time how differences in the design of single-level

hardware virtualization support, which do not cause significant performance impact for

non-nested virtualization, end up causing a very significant performance impact for nested

virtualization due to the Arm’s RISC-style architecture.

To address this problem, we propose NEsted Virtualization Extensions for Arm

(NEVE), a new architecture feature for Arm that can improve nested virtualization per-

formance with minimal hardware and software implementation complexity. We observe

that a primary source of overhead for nested virtualization on Arm is the cost of context

switching between a VM and the hypervisor and between different VMs. On Arm, there

are many instructions involved in these context switches that require hypervisor interven-

tion. This cost is exacerbated when multiple levels of hypervisors are involved in running

a VM for nested virtualization. Our insight is that many of these hypervisor instructions

11

do not have an immediate impact on VM or hypervisor execution, but simply prepare the

hardware for running a different execution context at a later time. NEVE takes advantage

of this insight by logging the results of these hypervisor instructions executed in the VM

and coalescing and deferring traps to the hypervisor that runs directly on the hardware un-

til the execution context being affected is actually used, thereby significantly reducing the

overhead of nested virtualization. NEVE supports completely unmodified guest hypervisor

and OS software.

Using our paravirtualization approach for architecture performance evaluation, we have

built a complete hypervisor for nested virtualization by modifying KVM/ARM to use

NEVE on existing hardware. Our measurements on real application workloads show that

NEVE can provide up to an order of magnitude better performance than the Armv8.3 archi-

tecture, and up to three times less overhead than x86 nested virtualization. Arm has revised

its nested virtualization architectural support to include NEVE starting with the Armv8.4

architecture [49].

2.1 Architectural Support for Arm Nested Virtualization

The Armv8 architecture [10] includes the Arm Virtualization Extensions (VE). VE adds a

more privileged CPU mode, known as an exception level, called EL2. Arm CPU excep-

tion levels EL0, EL1, and EL2 are designed to run user applications, an OS kernel, and a

hypervisor, respectively. Each exception level has different sets of system registers, which

are only accessible from the same or more privileged exception level. For single-level trap-

and-emulate virtualization, VMs are executed in EL0 and EL1. CPU virtualization works

12

VMEL1

(a) KVM on
ARMv8.0

EL2
Host Kernel

KVM

VM

(b) KVM on
ARMv8.1 (VHE)

Guest KVM
Hypervisor

(c) KVM on
ARMv8.3 (nested)

Eret Trap Eret Trap

Host KVM
Hypervisor

Eret Trap

Nested VM
Host

Kernel

KVM

Figure 2.1: Arm Hardware Virtualization Extensions

by letting software executing in EL2 configure the CPU to trap to EL2 on events and in-

structions that cannot be safely executed by a VM, for example on hardware interrupts and

I/O instructions. Memory virtualization works by allowing software in EL2 to point to a

set of page tables, Stage-2 page tables, used to translate the VM’s view of physical ad-

dresses to machine addresses, while Stage-1 page tables can be used and managed by the

VM without trapping to the hypervisor to translate virtual to physical addresses. Interrupt

virtualization works by allowing the hypervisor to inject virtual interrupts to VMs, which

VMs can acknowledge and complete without trapping to the hypervisor.

Armv8.1 introduced the Virtualization Host Extensions (VHE) [30]. Without VHE,

hosted hypervisors, which are integrated with an OS kernel, needed to split their OS and

hypervisor functionality across EL1 and EL2, respectively [34], as shown in Figure 2.1(a).

VHE allows running both the OS kernel and hypervisor functionality in EL2 as shown in

Figure 2.1(b). VHE expands the capabilities of EL2 so that it can be functionally equiv-

alent to EL1, including adding additional EL2 system registers. VHE supports running

existing OS kernels written for EL1 in EL2 without having to modify the OS source code.

13

VHE transparently redirects EL1 system register access instructions to access EL2 system

registers instead. New instructions are added for the hypervisor to access the EL1 system

registers, which belong to the VM context.

Running nested hypervisors on Arm involves running the host hypervisor using EL2

as normal, but deprivileging the guest hypervisor to preserve protection so that instead of

running in EL2, as it is designed to do, it runs in either EL0 or EL1. While it is functionally

possible to run the guest hypervisor in EL0 and trap and emulate hypervisor instructions

to the host hypervisor, there are at least two important drawbacks of that approach. First,

delivering interrupts to the guest hypervisor has to be fully emulated in software and can-

not leverage the VE support for virtual interrupts because the architecture does not support

delivering virtual interrupts to EL0. Second, because the host hypervisor must trap hyper-

visor instructions, it must enable a feature to Trap General Exceptions (TGE), which has

the unfortunate side effect of disabling the Stage-1 virtual address translations for the guest

hypervisor. The host hypervisor must instead construct shadow page tables using Stage-

2 translation for the guest hypervisor running in EL0, making the host hypervisor overly

complicated and likely results in poor performance.

A better alternative is running the guest hypervisor in EL1. Unfortunately, this does

not work without Armv8.3 nested virtualization support. Hypervisor instructions do not

trap to EL2 when executed in EL1, but cause exceptions directly to the guest hypervisor in

EL1. This would typically lead to an unmodified hypervisor crashing if executed in EL1.

For example, suppose the guest hypervisor wishes to configure its own page table base

register. Since this EL2 register is accessed using a hypervisor instruction which does not

trap to EL2 but instead causes an exception in EL1, attempts to change the register would

14

cause an unexpected exception to the guest hypervisor executing in EL1, likely leading

to a software crash. To address this limitation, Arm introduced architectural support for

nested virtualization in the Armv8.3 architecture [21]. It works in three parts. First, it

enables trapping of hypervisor instructions executed in EL1 to EL2. Second, it disguises

the deprivileged execution by telling the guest hypervisor that it runs in EL2 if it reads the

CurrentEL register, which contains the current exception level. Third, it supports using

the EL2 page table format in EL1. The resulting configuration using KVM on Armv8.3 is

shown in Figure 2.1(c).

Comparison to x86 Armv8.3 nested virtualization support is similar to x86 in that

guest hypervisor instructions can be configured to trap to the host hypervisor. However,

the core hardware virtualization support is different. We limit our discussion of x86 to In-

tel VT as it is similar to AMD-V for all purposes discussed here. While Arm VE provides

a separate CPU privilege level, EL2, with its own set of features and register state, Intel VT

provides root vs. non-root mode, completely orthogonal to the CPU privilege levels, each

of which supports the same full range of user and kernel mode functionality. Both Arm

and Intel trap into their respective EL2 and root modes, but transitions between root and

non-root mode on Intel are implemented with a VM Control Structure (VMCS) residing

in normal memory, to and from which hardware state is automatically saved and restored

when switching to and from root mode, for example when the hardware traps from a VM

to the hypervisor. Arm instead, as a RISC-style architecture, has a simpler hardware mech-

anism to transition between EL1 and EL2, but leaves it up to software to decide what state

needs to be saved and restored, providing more flexibility to optimize what is done for each

transition.

15

Because of these differences in the core hardware virtualization support, Armv8.3 must

provide some additional mechanisms not necessary for x86 to provide the same level

of support for nested virtualization. First, since Arm augments the existing CPU privi-

lege level for virtualization support, as opposed to introducing an orthogonal mechanism,

Armv8.3 needs to disguise the CPU privilege level so that a hypervisor that normally runs

in EL2 does not know that it is running in EL1 as a guest hypervisor. Second, because EL2

is a separate privilege level with its own page table format that differs from the EL1 page

table format, Armv8.3 allows a hypervisor, which would normally use the EL2 page table

format when running in EL2, to use the same format when running as a guest hypervisor

in EL1.

2.2 Paravirtualization for Architecture Evaluation

Unfortunately, Armv8.3 hardware supporting nested virtualization is not available. As

architectural support for virtualization is increasingly common, understanding the perfor-

mance of these features is important, ideally before they become set in production hard-

ware. However, evaluating new architecture features for virtualization is challenging be-

cause of costs associated with prototyping new hardware and the need to understand the

interaction of both hardware and software. Chip vendors use cycle-accurate simulators

to measure performance, but they are typically many orders of magnitude slower than real

hardware, making it hard to evaluate real-life workloads. Booting a full virtualization stack

including the hypervisor and VM can take days, and even then, measuring key application

performance characteristics such as fast I/O performance using 10G Ethernet is still not

16

possible. Furthermore, simulators of commercial architecture designs are themselves quite

complex to build and often closed and proprietary, limiting their availability in practice.

Software developers often can only use simpler architecture models before hardware is

available, at the cost of not being able to measure any real architecture performance.

To overcome this challenge, we introduce an existing idea, paravirtualization, in a new

context. Paravirtualization allows for a software interface to a VM that differs slightly

from the underlying hardware [108]. It is used to make hypervisors simpler and faster by

avoiding certain architecture features that are complex or difficult to virtualize efficiently.

We instead use paravirtualization to allow us to build hypervisors using new architecture

features that do not exist on current hardware, and measure the performance of a full vir-

tualization stack using new architecture features at native execution speeds on existing

hardware.

Paravirtualization to evaluate new architecture features is only possible when the per-

formance and functionality of the proposed feature can be closely emulated using instruc-

tions supported by available hardware. For core virtualization support in the architecture,

changes often involve traps; either by adding features to trap on instructions that previously

did not trap, or by adding logic to avoid costly traps. In both cases, paravirtualization can

be used to replace instructions inside the VM with other ones supported by available hard-

ware such that the resulting behavior and performance closely mimic that of a proposed

architectural change.

For example, as discussed in Section 2.1, current Arm server hardware does not sup-

port nested virtualization, because when a hypervisor runs inside a VM on top of another

hypervisor, various instructions that it executes do not trap to the underlying hypervisor

17

for proper execution, but instead simply fail improperly. However, if we replace those hy-

pervisor instructions with instructions that do trap on current hardware and the trap cost is

expected to remain similar in future hardware, we can obtain similar relative performance

to future hardware that supports nested virtualization with correct trapping behavior.

There are a couple key assumptions in this example. First, the approach is useful for

evaluating the relative performance of an architecture feature compared to something else,

not to estimate absolute performance of future hardware. For example, the approach can

provide an accurate evaluation of the overhead of nested virtualization compared to native

execution.

Second, the approach assumes that certain types of traps are interchangeable in terms of

performance. For example, on Arm, the trap cost using an explicit trap instruction should

be similar to the cost of any system register access instruction that traps. Only the cost of

the trap itself needs to remain similar; the overall cost of handling the respective trap can

be quite different. This assumption is likely to be true in most cases and we have validated

it on Arm hardware, as discussed in Section 2.4.

Using this approach, it becomes possible to efficiently evaluate the performance of

full virtualization stacks interacting with fast I/O peripherals, using many CPU cores, and

with real-world workloads. It avoids the extremely slow performance, complexity, and lim-

ited availability of cycle-accurate simulators for recent architecture versions of commercial

CPUs. Perhaps more importantly, the approach allows co-design and rapid prototyping of

software and architecture together, reducing long feedback loops common today when the

performance of full software stacks is not known until full OS support and hardware is

released, which is long after the architecture design phase takes place.

18

2.3 KVM/ARM Nested Virtualization for Armv8.3

Because Armv8.3 hardware is not yet available, we leverage our paravirtualization ap-

proach discussed in Section 2.2 to allow us to design, implement, and evaluate the first

Arm hypervisor to support nested virtualization using Armv8.3 architectural support on

existing Armv8.0 hardware, which was the newest publicly available Arm hardware at the

time this research was conducted. Since both Arm and x86 provide a single level of archi-

tectural virtualization support, we take an approach similar to Turtles [19] for supporting

nested virtualization on x86, where multiple levels of virtualization are multiplexed onto

the single level of architectural support available. We have implemented nested virtual-

ization support on Arm by modifying KVM/ARM [34], the widely-used mainline Linux

Arm hypervisor. There are two kinds of modifications: (1) changes to KVM/ARM as a

host hypervisor to support running guest hypervisors on Armv8.3, and (2) paravirtualiza-

tion of KVM/ARM to run as a guest hypervisor on Armv8.0 with similar behavior as an

unmodified KVM/ARM guest hypervisor on Armv8.3. We have posted the former to the

Linux KVM community [74], and the patches are being upstreamed by the KVM/ARM

maintainer [127].

CPU virtualization is accomplished by deprivileging a guest hypervisor so that instead

of running in EL2, it runs in EL1 and traps on hypervisor instructions to the host hypervi-

sor running in EL2, which emulates the instruction as needed. A guest hypervisor and its

nested VMs all run in a single VM from the point of view of the host hypervisor. The host

hypervisor emulates virtual CPUs, including the virtualization extensions, by providing a

virtual EL2 mode, creating the illusion to the guest hypervisor running in the VM, that it

19

runs on real hardware capable of running additional VMs. Once the host hypervisor em-

ulates the full architecture including VE to a VM, nesting is recursively supported. Based

on the support from the L0 host hypervisor, the L1 guest hypervisor can provide the same

architecture environment in the L2 nested VM to run an L2 hypervisor. An L2 hypervisor

will run in EL1 and trap on hypervisor instructions to the L0 host hypervisor, which can

then forward it to the L1 guest hypervisor providing the emulated architecture for the L2

hypervisor. In this manner, nested virtualization can be done recursively as each hyper-

visor is limited to providing the architecture environment including VE for the next level

hypervisor running in a VM, but is not concerned with further levels of hypervisors.

To mimic Armv8.3 behavior using Armv8.0 hardware so that hypervisor instructions

run by the guest hypervisor trap as needed to the host hypervisor, we paravirtualize the

guest hypervisor by replacing the hypervisor instructions with hvc instructions. An hvc

instruction takes a 16-bit operand and generates an exception to EL2, which can read the

16-bit operand back from a system register. We encode the hypervisor instructions using

the 16-bit operand so that on the trap to EL2, the host hypervisor is informed of the original

guest hypervisor instruction that was replaced by an hvc and can emulate the behavior of

that instruction.

Our paravirtualization technique can be implemented in multiple ways. We added

wrappers around all candidate instructions at the source code level, which, depending on

a configuration option, at compile time replaces hypervisor instructions with hvc instruc-

tions. In this way, we did not change any of the logic or instruction flow of the original

KVM/ARM code base and thereby avoided unintentionally introducing bugs or depart-

ing from the original hypervisor implementation. It is also possible to paravirtualize the

20

guest hypervisor using a fully automated approach, for example by binary patching a guest

hypervisor image.

There are four kinds of hypervisor instructions that are paravirtualized to mimic

Armv8.3 behavior so they trap if executed by the guest hypervisor on Armv8.0 hardware.

First, instructions that can only run in EL2, such as those that directly access EL2 registers,

are undefined when executed in EL1 on Armv8.0, so they are paravirtualized to trap to EL2

to access virtual EL2 state.

Second, instructions that run as part of the hypervisor and access EL1 registers are par-

avirtualized to trap to EL2 because they will now interfere with the execution of the guest

hypervisor which is really running in EL1. For example, an Arm hypervisor will configure

EL1 registers to run a VM with its guest OS in EL1. This works fine if the hypervisor is

running in EL2 and writes to EL1 registers for the VM, but is problematic if the hypervisor

is deprivileged running in EL1, because it will then unknowingly be overwriting its own

EL1 register state. Instead, these EL1 access instructions must trap to the host hypervisor

which will then emulate the instruction on virtual EL1 register state. The host hypervisor

is then responsible for multiplexing EL1 state between the guest hypervisor and the nested

VM by context switching the hardware EL1 state to the nested VM’s virtual EL1 state when

the nested VM runs. For some EL1 access instructions, existing Armv8.0 mechanisms are

used by the host hypervisor to configure them to trap, avoiding paravirtualization of these

instructions.

Third, the eret instruction is paravirtualized to trap to EL2 and reading the

CurrentEL special register is paravirtualized to return EL2 as the current exception level.

eret is used by a hypervisor to return to a VM. The guest hypervisor should not directly

21

return to a nested VM without the host hypervisor’s intervention, but must trap to the host

hypervisor. The nested VM’s EL1 register state is emulated by the host hypervisor; enter-

ing the nested VM is only possible once the host hypervisor loads the emulated nested VM

state to physical registers.

Finally, VHE adds a number of new instructions that are undefined on Armv8.0 which

must be paravirtualized to trap to EL2 so they can be emulated. These new instructions

are used to access EL1 state when running in EL2 with register access redirection enabled,

as explained in Section 2.1. Because these instructions are not defined on Armv8.0, they

generate an exception to EL1 when executed by a guest hypervisor, instead of trapping to

EL2. To allow guest hypervisors to be configured with VHE on Armv8.0, these instructions

are paravirtualized to trap as they would on Armv8.3. Because VHE is designed to make

EL2 work the same way as EL1 and because the guest hypervisor already runs in EL1,

running a VHE guest hypervisor works trivially without further changes.

Memory virtualization is done using shadow page tables [1] to handle additional levels

of memory translation imposed by nested virtualization. Arm hardware supports only two

stages of address translation via Stage-1 and Stage-2 page tables. Nested virtualization

requires at least three: L2 VM virtual address (VA) to L2 VM physical address (PA), L2

VM PA to L1 VM PA, L1 VM PA to L0 PA. Similar to previous work [19], the host

hypervisor creates shadow Stage-2 page tables to map from L2 VM PAs to L0 PAs by

collapsing Stage-2 page tables from the guest and host hypervisors. The Stage-1 MMU

translates L2 VAs to L2 PAs using the L2 guest OS’s page tables, and the Stage-2 MMU

then translates L2 VM PAs to L0 PAs using the shadow page tables.

Interrupt virtualization is accomplished by providing a hypervisor control interface to

22

a guest hypervisor via trap-and-emulate. This interface is used by a hypervisor to con-

trol virtual interrupts for higher-level VMs and is multiplexed onto the single-level Arm

virtual interrupt support in the Arm Generic Interrupt Controller (GIC). When a guest hy-

pervisor programs registers in the hypervisor control interface, this must trap to the host

hypervisor to sanitize and translate the payload before writing shadow copies of the register

payload into the hardware control interface. The hypervisor control interface is memory

mapped with GICv2 and therefore trivially traps to EL2 when not mapped in the Stage-2

page tables, but GICv3 uses system registers and must use paravirtualization of the guest

hypervisor to mimic Armv8.3’s behavior of trapping EL1 accesses to EL2 on Armv8.0.

2.4 Evaluation of Armv8.3 Nested Virtualization

We present some experimental results that quantify the nested virtualization performance

of Armv8.3 based on running our paravirtualized KVM/ARM guest hypervisor on our

KVM/ARM host hypervisor on multicore Arm hardware. We also measure the perfor-

mance of a KVM x86 guest hypervisor on top of a KVM x86 host hypervisor to compare

against a more mature nested virtualization solution with a similar hypervisor design; KVM

x86 is based on Turtles. These results provide the first measurements of Arm nested vir-

tualization as well as the first comparison of nested virtualization between Arm and x86.

Experiments were conducted using server hardware in CloudLab [41].

Arm measurements were done using HP Moonshot m400 servers, each with a 64-bit

Armv8-A 2.4 GHz Applied Micro Atlas SoC with 8 physical CPU cores. Each m400

node had 64 GB of RAM, a 120 GB SATA3 SSD for storage, and a Dual-port Mellanox

23

ConnectX-3 10 GbE NIC. x86 measurements were done using Cisco UCS SFF 220 M4

servers, each with two Intel E5-2630 v3 8-core 2.4 GHz CPUs. Hyperthreading was dis-

abled on the nodes to provide a similar hardware configuration to the Arm servers. Each

node has 128 GB of ECC memory (8x16 GB DDR4 1866 MHz dual-rank RDIMMs), a

2x1.2 TB 10K RPM 6G SAS SFF HDD for storage, and a Dual-port Cisco UCS VIC1227

VIC MLOM 10 GbE NIC. The x86 hardware includes VMCS Shadowing [55], the latest

x86 hardware support for nested virtualization. All servers were connected via 10 GbE, and

the interconnecting network switch easily handles multiple sets of nodes communicating

with full 10 Gb bandwidth.

To provide comparable measurements, we kept the software environments across all

hardware platforms and hypervisors the same as much as possible. For the host and guest

hypervisors, we used KVM in Linux 4.10.0-rc3 with QEMU 2.3.50, with our modifications

for Arm nested virtualization. KVM/ARM can be configured to run with or without VHE

support; we ran experiments with both versions as guest hypervisors. KVM was configured

with its standard VHOST virtio network, and with cache=none for virtual block storage

devices [66, 99, 51]. All hosts and VMs used Ubuntu 14.04 with the same Linux 4.10.0-rc3

kernel and software configuration. All VMs used paravirtualized I/O using virtio-net and

virtio-block over PCI.

We ran experiments in two configurations, in a VM (no nesting) and in a nested VM.

The VM was configured with 4 cores and 12 GB RAM running on KVM with 8 cores

and 16 GB RAM. The nested VM was configured with 4 cores and 12 GB RAM running

on a KVM guest hypervisor with 6 cores and 16 GB RAM running on the host KVM

hypervisor with 8 cores and 20 GB RAM. The CPU and memory configurations were

24

Armv8.3 x86
Micro-
benchmark VM Nested

VM
Nested

VM VHE VM Nested
VM

Hypercall 2,729 422,720 307,363 1,188 36,345
Device I/O 3,534 436,924 312,148 2,307 39,108
Virtual IPI 8,364 611,686 494,765 2,751 45,360
Virtual EOI 71 71 71 316 316

Table 2.1: Microbenchmark Cycle Counts

selected to provide the same hardware resources to the VM or nested VM used for running

the experiments while ensuring more than adequate hardware resources for the underlying

hypervisor(s).

We leveraged the kvm-unit-test microbenchmarks [65] to quantify important micro-

level interactions between the hypervisor and its VM. Table 2.1 shows the results for run-

ning kvm-unit-test in the VM and nested VM configurations for Armv8.3, with and without

VHE, and x86. Measurements are shown in cycles instead of time to provide a useful com-

parison across hardware. Despite using a similar hypervisor architecture on Arm and x86,

which both leverage trap-and-emulate hardware support for nested virtualization, as well

as sharing the same architecture-independent parts of the KVM implementation, the mea-

surements show that Armv8.3 has drastically worse nested virtualization performance than

x86.

The Hypercall benchmark measures the cost of switching from a VM to the hypervisor,

and immediately back to the VM without doing any work in the hypervisor. Compared to

using a VM, making hypercalls from a nested VM to a guest hypervisor on Armv8.3 is 155

and 113 times more expensive using a non-VHE and VHE guest hypervisor, respectively.

When a nested VM makes a hypercall, it first traps to the host hypervisor running in EL2.

The host hypervisor then forwards this hypercall to the guest hypervisor by emulating an

25

exception to the virtual EL2 mode in the VM. When the guest hypervisor processes the

hypercall, it simply returns back to the nested VM. However, the process of transition-

ing between the guest hypervisor and the nested VM involves executing many hypervisor

instructions that trap to the host hypervisor, which ends up being very expensive.

The Device I/O benchmark measures the cost of accessing an emulated device in the

hypervisor. This is a frequent operation for many device drivers and provides a common

baseline for accessing I/O devices emulated in the hypervisor. Device I/O is more costly

than Hypercall because it emulates the device in addition to performing similar operations

to Hypercall. This additional work reduces the relative overhead of running in a nested

VM versus a VM, but the overhead is still hundreds of thousands of cycles on Armv8.3

compared to tens of thousands of cycles on x86.

The Virtual IPI (Inter Processor Interrupt) benchmark measures the cost of issuing a

virtual IPI from one virtual CPU to another virtual CPU when both virtual CPUs are ac-

tively running on separate physical CPUs. This is a frequent operation in multicore OSes

that affects many multithreaded workloads. Virtual IPI is more costly than Hypercall be-

cause it involves exits from both the sending VM and receiving VM. The sending VM exits

because sending an IPI traps and is emulated by the underlying hypervisor. The receiving

VM exits because it gets an interrupt which is handled by the underlying hypervisor. Com-

pared to VMs, virtual IPIs between CPUs in nested VMs are more than 73 and 59 times

more expensive using non-VHE and VHE guest hypervisors, respectively.

The Virtual EOI benchmark measures the cost of completing a virtual interrupt, also

known as End-Of-Interrupt. The interrupt controllers of both platforms, GIC [9] on Arm

and APICv [56] on x86, include support for completing interrupts directly in the VM with-

26

out trapping to the hypervisor. As a result, this operation is much less expensive than the

other benchmarks which trap. The KVM host hypervisor provides support on both Arm

and x86 so that nested VMs can use hardware-accelerated virtual interrupt completion,

resulting in the same cost for both VMs and nested VMs.

In all cases except Virtual EOI, the cost of running the microbenchmarks in a nested

VM on Armv8.3 is prohibitively expensive compared to running in a VM. Compared to

x86, nested VM performance on Armv8.3 imposes more than an order of magnitude more

overhead in terms of cycle counts, and up to 7 times more overhead in terms of relative

performance compared to a VM. While trap-and-emulate nested virtualization provides

reasonable performance on x86, it does not on Armv8.3.

To investigate the reasons behind the poor Armv8.3 performance, we measured the

average number of traps to the host hypervisor when running the Hypercall benchmark.

While Hypercall only causes a single trap when running in a VM, it causes 126 and 82

traps to the host hypervisor when running in a nested VM using a non-VHE and VHE

guest hypervisor, respectively. Clearly, each trap, also known as an exit, from the nested

VM results in a multitude of additional traps from the guest hypervisor to the host hyper-

visor. This is a major source of overhead for nested virtualization and is called the exit

multiplication problem [19].

The guest hypervisor using VHE performs better than without VHE, because it traps

less often. When KVM/ARM runs with VHE enabled, it uses EL1 system register access

instructions wherever possible with the expectation that the hardware redirects these in-

structions to EL2 registers, as discussed in Section 2.1. When this is done as a VHE guest

hypervisor running in EL1 on Armv8.0 hardware, it simply accesses EL1 registers directly

27

without trapping to the host hypervisor, and the host hypervisor configures the EL1 hard-

ware registers with the guest hypervisor’s state. In contrast, a non-VHE guest hypervisor

can only access EL2 state using EL2 system register access instructions, and each such ac-

cess will trap to the host hypervisor since EL2 registers are not accessible at EL1. Despite

this reduction in the number of traps for a VHE guest hypervisor, its nested virtualization

performance remains poor.

Our measurements of Armv8.3 nested virtualization performance are based on replac-

ing guest hypervisor instructions on Armv8.0 that do not trap as they would on Armv8.3

with hvc instructions, which are explicit trap instructions, to mimic Armv8.3 behavior.

The replaced instructions are mostly system register access instructions along with a few

eret instructions. On Arm, the cost of a trap should be evaluated in two parts: (1) finding

out that you need to generate an exception, and (2) generating the exception. The first can

range from expensive (memory fault) to being free (hvc instruction), with a system regis-

ter trap being almost free. The second is a fixed cost for all instructions. As a result, the

cost of traps for the replaced instructions is expected to be very similar to that of an hvc

instruction on all implementations of the Arm architecture.

We further measured the trap cost of several different system register access instruc-

tions that trap on Armv8.0 hardware and compared their cost with an hvc instruction. In

all cases, trapping from EL1 to EL2 was between 68 to 76 cycles, and returning from a trap

to EL2 back to EL1 was 65 cycles. The difference in trap costs across different instructions

was less than 10% overall and less than 10 cycles. These measurements on Armv8.0 hard-

ware support our assumption that hvc instructions can be used as a suitable replacement to

mimic Armv8.3 instructions that trap on system register accesses with similar performance.

28

2.5 NEVE: NEsted Virtualization Extensions

Nested virtualization support as introduced in Armv8.3 traps hypervisor instructions from

a deprivileged guest hypervisor running in EL1 to a host hypervisor running in EL2. A

single exit from a nested VM can result in the guest hypervisor issuing many hypervisor

instructions, resulting in a multitude of additional traps from the guest hypervisor to the

host hypervisor. Many hypervisor instructions need to trap because they access system

registers. If we can reduce the number of accesses to system registers that need to trap, we

can potentially reduce overhead and improve the performance of nested virtualization on

Arm.

System registers accessed by the guest hypervisor can be loosely classified into two

groups: VM registers, which only affect the VM, and hypervisor control registers, which

directly affect hypervisor execution. A key observation is that VM registers do not have an

immediate effect on the guest hypervisor’s execution, but instead are used to prepare the

hardware for running the nested VM when execution returns to the nested VM.

Based on this observation, we propose NEVE, an addition to the Armv8.3 architecture

that avoids traps from the guest hypervisor to the host hypervisor for a wide range of hyper-

visor instructions that access system registers. NEVE supports unmodified guest hypervi-

sors, both hosted and standalone designs, and unmodified guest OSes. NEVE has three key

mechanisms. First, it avoids traps to the host hypervisor for VM registers and instead adds

hardware support to store VM registers in memory until they are actually needed for VM

execution. In Armv8.3, when a guest hypervisor accesses a VM system register, it traps

to the host hypervisor, which simply stores this value in memory in a software-managed

29

data structure, and later programs this value into physical registers when running the nested

VM. NEVE instead supports this operation in hardware by using an architecturally defined

storage format and transparently rewriting system register access instructions into normal

memory accesses.

Second, NEVE reduces traps to the host hypervisor for hypervisor control registers by

instead identifying and using equivalent registers that can be accessed without trapping.

In Armv8.3, when the guest hypervisor writes to a hypervisor control register and traps to

the host hypervisor, in many cases, the host hypervisor handles the trap by writing into an

equivalent EL1 register. For example, the guest hypervisor will write the base address of

the exception vector for itself in VBAR EL2 which will trap to the host hypervisor, which

in turn needs to write the address to VBAR EL1, the equivalent EL1 register, so that the

guest hypervisor running in EL1 will handle exceptions correctly. In cases where the EL1

and EL2 registers have the same format, NEVE instead supports this operation in hardware

by transparently redirecting accesses to EL2 registers to EL1 registers without trapping to

the host hypervisor.

Third, NEVE reduces traps to the host hypervisor when reading certain hypervisor con-

trol registers by keeping a cached copy in memory and redirecting register read instructions

into normal memory accesses. Read instructions, in the absence of side effects, have no

immediate impact on hypervisor execution and can be serviced from a memory cache to

avoid traps.

30

2.5.1 Architecture Specification

NEVE introduces an EL2 Virtual Nested Control Register (VNCR EL2) which is managed

exclusively by the host hypervisor. The host hypervisor can use the VNCR EL2 to enable

and disable NEVE and to configure a deferred access page in memory used to store the

values of VM system registers. Table 2.2 shows the bit fields in the VNCR EL2 register.

The BADDR field contains the physical base address of the deferred access page. The

layout of the deferred access page can be arbitrarily defined as long as each VM system

register is stored at a well-defined offset from BADDR. The Enable bit completely enables

or disables NEVE. When the Enable field is set to 1, and the Armv8.3 nested virtualization

support is enabled, all accesses to the VM system registers which would otherwise trap to

the host hypervisor are redirected to memory accesses to the deferred access page. Sim-

ilarly, the register redirection described above for hypervisor control registers is enabled

and disabled using the Enable field in the VNCR EL2.

Fields Description
bits[52:12] BADDR: Deferred Access Page Base Address
bits[11:1] Reserved
bit[0] Enable

Table 2.2: VNCR EL2 Register Fields

It is up to the host hypervisor to determine when NEVE is enabled and when register

values are copied to and from the deferred access page. In a typical workflow, the host

hypervisor populates the deferred access page with the initial values of the registers and

enables NEVE before running the guest hypervisor. During guest hypervisor execution,

all accesses to VM system registers are redirected to the deferred access page. When the

host hypervisor needs to use the VM register values, it simply accesses the deferred access

31

Category Register Description

VM
Trap
Control

HACR EL2 Hypervisor Auxiliary Control
HCR EL2 Hypervisor Configuration
HPFAR EL2 Hypervisor IPA Fault Address
HSTR EL2 Hypervisor System Trap
TPIDR EL2 EL2 Software Thread ID
VMPIDR EL2 Virtualization Multiprocessor ID
VNCR EL2 Virtual Nested Control
VPIDR EL2 Virtualization Processor ID
VTCR EL2 Virtualization Translation Control
VTTBR EL2 Virtualization Translation Table Base

VM
Execution
Control

AFSR0 EL1 Auxiliary Fault Status 0
AFSR1 EL1 Auxiliary Fault Status 1
AMAIR EL1 Auxiliary Memory Attribute Indirection
CONTEXTIDR EL1 Context ID
CPACR EL1 Architectural Feature Access Control
ELR EL1 Exception Link
ESR EL1 Exception Syndrome
FAR EL1 Fault Address
MAIR EL1 Memory Attribute Indirection
SCTLR L1 System Control
SP EL1 Stack Pointer
SPSR EL1 Saved Program Status
TCR EL1 Translation Control
TTBR0 EL1 Translation Table Base 0
TTBR1 EL1 Translation Table Base 1
VBAR EL1 Vector Base Address

Thread ID TPIDR EL2 Software Thread ID

Table 2.3: VM System Registers

page. For example, when the guest hypervisor runs the nested VM, it executes the eret

instruction to enter the nested VM, which traps to the host hypervisor. The host hypervisor

copies register values from the deferred access page to physical EL1 registers to run the

nested VM and disables NEVE while running the nested VM so the VM can access its EL1

registers. Similarly, when the host hypervisor emulates an exception from the nested VM

to the guest hypervisor, it copies the EL1 system register values from the hardware into the

deferred access page, enables NEVE, and runs the guest hypervisor. The guest hypervisor

can now access the VM system registers directly without trapping to the host hypervisor.

32

NEVE EL2 Register Description

Redirect to * EL1

AFSR0 EL2 Auxiliary Fault Status 0
AFSR1 EL2 Auxiliary Fault Status 1
AMAIR EL2 Auxiliary Memory Attribute Indirection
ELR EL2 Exception Link
ESR EL2 Exception Syndrome
FAR EL2 Fault Address
SPSR EL2 Saved Program Status
MAIR EL2 Memory Attribute Indirection
SCTLR EL2 System Control
VBAR EL2 Vector Base Address

Redirect to * EL1 (VHE)
CONTEXTIDR EL2 Context ID
TTBR1 EL2 Translation Table Base 1

Trap on write

CNTHCTL EL2 Counter-timer Hypervisor Control
CNTVOFF EL2 Counter-timer Virtual Offset
CPTR EL2 Architectural Feature Trap
MDCR EL2 Monitor Debug Configuration

Redirect or trap
TCR EL2 Translation Control
TTBR0 EL2 Translation Table Base

Table 2.4: Hypervisor Control Registers

Table 2.3 lists the 27 VM system registers we identified as part of the Armv8.3 specifi-

cation which do not affect the execution of the hypervisor directly. When enabled, NEVE

redirects accesses to these registers to the deferred access page. The VM Trap Control

registers control when certain operations performed by the VM trap to the hypervisor and

other virtualization features such as Stage-2 translation and virtual interrupts. The VM

Execution Control registers are system registers that belong to the VM itself and do not

affect hypervisor execution. The Thread ID register, TPIDR EL2, is commonly used by

hypervisors to store thread-specific data but does not affect the hypervisor’s execution.

We distinguish two types of hypervisor control registers, normal system registers and

GIC registers related to the hypervisor control interface used for interrupt virtualization,

discussed in Section 2.3. When the guest hypervisor executes in virtual EL2, which really

runs in EL1, accesses to these EL2 registers would normally trap to the host hypervisor, but

33

NEVE uses two techniques to avoid traps, register redirection and cached copies. Table 2.4

shows the 17 normal system registers we identified that affect the hypervisor’s execution

in EL2, and the techniques NEVE used to avoid traps.

Register redirection transparently redirects accesses from an EL2 register to its corre-

sponding EL1 register if it exists and has the same format as the EL2 register. Since the

guest hypervisor is really running in EL1, EL2 register accesses can be redirected to cor-

responding EL1 registers such that changes to the registers have the same impact on the

hypervisor’s execution when running deprivileged in EL1 as running in EL2 on real hard-

ware. NEVE provides register redirection for 12 EL2 registers with corresponding EL1

registers as shown in Table 2.4, two of which are grouped separately (VHE) as they were

added as part of VHE and are only relevant for VHE hypervisors.

Cached copies (shown as “Trap on write” in Table 2.4) transparently change reads

from EL2 registers that don’t have an equivalent EL1 to instead read a cached copy from

the deferred access page. The host hypervisor copies the value of the virtual EL2 register

to the deferred access page when running the guest hypervisor to cache the latest value

of the register for reads from the guest hypervisor. Writes to these registers will trap,

allowing the host hypervisor to update the content of the deferred access page as needed.

Cached copies are used for four EL2 registers, two of which have similar EL1 registers but

with different formats and thus cannot be used with register redirection from EL2 to EL1

registers, namely CNTHCTL EL2 and CPTR EL2.

Table 2.4 lists two EL2 registers, TCR EL2 and TTBR0 EL2, that may be redirected

to corresponding EL1 registers for VHE guest hypervisors only. VHE changes the for-

mat of these EL2 registers to be identical to the corresponding EL1 registers. VHE guest

34

NEVE GIC Register Description

Trap on write

ICH HCR EL2 Hypervisor Control
ICH VTR EL2 VGIC Type
ICH VMCR EL2 Virtual Machine Control
ICH MISR EL2 Maintenance Interrupt Status
ICH EISR EL2 End of Interrupt Status
ICH ELRSR EL2 Empty List Register Status
ICH AP0R<n> EL2 Active Priorities Group 0, n=0-3
ICH AP1R<n> EL2 Active Priorities Group 1, n=0-3
ICH LR<n> EL2 List, n=0-15

Table 2.5: Hypervisor Control GIC Registers

hypervisors can therefore access these registers directly using EL1 access instructions. A

non-VHE guest hypervisor, however, would use the EL2 register formats, which are incom-

patible with the EL1 registers, and therefore the EL2 register accesses cannot be redirected

to EL1 registers but must instead be supported using cached copies, trapping on writes to

these registers.

Table 2.5 shows the GIC registers in the hypervisor control interface registers we identi-

fied that affect the hypervisor’s execution in EL2. NEVE uses cached copies in the deferred

access page for all of these registers to avoid traps.

Arm also provides performance monitoring, debugging, and timer system registers. We

note that accesses to the PMUSERENR EL0 and PMSELR EL0 performance monitor con-

trol registers can be redirected to the deferred access page like VM system registers, reads

from the MDSCR EL1 debug control register can be redirected to a cached copy so that

only writes must trap, and all accesses to the virtual and physical hypervisor timer EL2 reg-

isters, namely CNTHV CTL EL2, CNTHV CVAL EL2, CNTHV TVAL EL2, CNTHP -

CTL EL2, CNTHP CVAL EL2, and CNTHP TVAL EL2, trap as reads must access the

registers directly to obtain correct values updated by hardware.

35

2.5.2 Recursive Virtualization

NEVE supports multiple levels of nesting, also known as recursive nesting. As discussed

in Section 2.3, recursive nesting is supported with Armv8.3, because the host hypervisor

emulates the same virtual execution environment as the underlying machine including the

hardware virtualization support and nesting support. NEVE can further improve the perfor-

mance of each level of hypervisor. The L0 host hypervisor can create a VM with support

for NEVE, which the guest hypervisor will use when running the L2 guest hypervisor.

When the L1 guest hypervisor configures NEVE by accessing the VNCR EL2, we cache

the register state to the deferred access page. Because the VNCR EL2 of the L1 guest

hypervisor does not affect the execution of L1 hypervisor, but only affects the execution

of the L2 guest hypervisor. On entry to the L2 VM’s virtual EL2, the L0 host hypervisor

can emulate the behavior of NEVE by using the hardware features directly. This works

by translating the VM physical address written by the L1 guest hypervisor into a machine

physical address and using this address in the hardware VNCR EL2. This allows transpar-

ently changing register accesses performed by the L2 guest hypervisor into memory and

EL1 register accesses. The memory used is provided by the L1 guest hypervisor which

can therefore directly access the content of the deferred access page used to support the L2

guest hypervisor running NEVE. In this scenario, NEVE avoids the same amount of traps

between the L2 and L1 guest hypervisors as in the normal nested case described above.

36

2.5.3 Architectural Impact

NEVE represents a relatively small architectural change. It requires adding the VNCR EL2

register and adding logic to redirect system register access instructions from VM registers

to memory at a specified offset when NEVE is enabled in the VNCR EL2 register. It also

requires adding logic to redirect instructions accessing EL2 registers to corresponding EL1

registers or to memory on read accesses, when NEVE is enabled. Since Armv8.1 already

supports redirecting system register access instructions to other system registers depending

on a run-time configuration, the most invasive part of our proposal is to redirect a system

register access to a memory access. To simplify the logic to handle this, we propose that the

architecture mandates that the host hypervisor software programs a page-aligned physical

address in the VNCR EL2.BADDR field to avoid the need to perform alignment checks or

handle address translation faults.

2.5.4 Implementation

Although NEVE is designed to work with unmodified guest hypervisors, it requires modest

hardware changes to do so. To show how NEVE can be used in the absence of a hardware

implementation of NEVE, we describe how we can modify KVM/ARM to use this feature

via our paravirtualization approach from Section 2.2. We can use the same KVM/ARM

design from Section 2.3, but with modifications to CPU virtualization to use NEVE. To

implement the deferred access page, we establish a shared memory region between the

host and guest hypervisor. We modify KVM/ARM to run as a guest hypervisor using

NEVE by replacing instructions that access VM registers with normal load and store in-

37

structions that access the shared memory region. We also modify KVM/ARM to run as

a guest hypervisor by replacing instructions that access EL2 hypervisor control registers

with instructions that access corresponding EL1 registers to provide the equivalent register

redirection functionality shown in Table 2.4. The resulting guest hypervisor eliminates the

same traps to the host hypervisor and provides the same performance characteristics as a

hardware system with NEVE.

We run KVM/ARM in two configurations as the guest hypervisor, non-VHE and VHE.

Non-VHE KVM/ARM issues EL1 system register access instructions to access EL1 VM

system registers and EL2 system register access instructions to access EL2 VM system

registers. These are replaced with load and store instructions to mimic NEVE. As described

in Section 2.1, a VHE hypervisor takes advantage of the VHE register redirection feature to

allow its integrated OS written for EL1 to run in EL2 without modification. With VHE, EL1

system register access instructions are redirected to EL2 system registers, and KVM/ARM

with VHE uses EL1 system register access instructions wherever possible to access EL2

registers, as discussed in Section 2.4. VHE KVM/ARM running as the guest hypervisor

will therefore access its own virtual EL2 register state directly using EL1 system register

instructions, and there is no need to replace any of these instructions. However, VHE

introduces separate EL12 system register access instructions to access EL1 VM system

registers, which are replaced with load and store instructions to mimic NEVE.

38

2.5.5 Performance Impact

The performance benefit of NEVE depends on the design and implementation of the guest

hypervisor. The more often a guest hypervisor accesses system registers, the greater po-

tential performance benefit. We briefly discuss three alternative Arm hypervisor designs in

this context, which are also the most widely-used Arm hypervisors: KVM/ARM without

VHE, KVM/ARM with VHE, and Xen.

First, consider a legacy KVM/ARM implementation without support for VHE [34].

KVM/ARM saves and restores all the VM system registers and modifies VM trap control

registers on every VM exit because it uses the same EL1 hardware state to run the Linux

kernel portion of the hypervisor. Furthermore, a non-VHE hosted hypervisor frequently ac-

cesses the hypervisor control registers when moving between EL1 and EL2. Each of these

register accesses from the guest hypervisor traps, resulting in significant exit multiplica-

tion using Armv8.3, and NEVE provides a significant performance gain for this hypervisor

design as shown in Section 2.6.

Second, consider KVM/ARM in the context of the Virtualization Host Extensions

(VHE) [30], which were introduced in Armv8.1. While KVM/ARM was originally de-

signed to run across both EL1 and EL2, VHE allows the KVM/ARM hypervisor to run

entirely in EL2. As a result, KVM/ARM no longer needs to use EL1 system registers, and

the hypervisor is unaffected by VM trap controls. Therefore, switching between the VM

and a VHE hypervisor no longer requires saving and restoring the full VM system regis-

ter state or configuring VM trap-control registers. However, even with VHE, the current

KVM/ARM implementation frequently accesses the VM system registers. The reason is

39

that KVM/ARM saves the VM EL1 context and modifies the VM trap-control registers

when switching from the VM to the hypervisor and back, because avoiding these oper-

ations while preserving backwards compatibility with non-VHE systems is difficult and

would complicate the code base. Furthermore, saving and restoring the full EL1 system

register state is still needed when switching between VMs. Therefore, KVM/ARM and

similar VHE-enabled hypervisors will benefit from NEVE as shown in Section 2.6.

Third, consider Xen [118] which runs only in EL2 as a standalone hypervisor. Since

Xen does not need to use the VM system registers for its execution, it does not save and re-

store them for every VM exit. However, even Xen must save and restore all the VM system

registers when it switches between VMs, which is a common operation on Xen because

all I/O is handled in a special separate VM called Dom0. Furthermore, Xen frequently

accesses the hypervisor control registers which trap when Xen is a guest hypervisor under

Armv8.3. Therefore, Xen is likely to also benefit from NEVE.

2.6 Evaluation of NEVE Nested Virtualization

We measured the nested virtualization performance of NEVE based on running our par-

avirtualized KVM/ARM guest hypervisor on our KVM/ARM host hypervisor on mul-

ticore Arm hardware. An actual hardware implementation of NEVE would not require

paravirtualization and would run unmodified guest hypervisors; paravirtualization is only

used to provide measurements on Armv8.0 hardware. We also compare NEVE against

both Armv8.3 and x86 nested virtualization. Experiments were conducted using the same

hardware and software configurations as discussed in Section 2.4. For NEVE measure-

40

ments, the guest hypervisor has been paravirtualized to use NEVE by sharing a memory

region with the host hypervisor for logging the results of hypervisor instructions, and redi-

recting hypervisor control register accesses to the corresponding EL1 system registers, as

discussed in Section 2.5. Although the Arm hardware we used has a GICv2 which uses

a memory-mapped interface for registers instead of the GICv3 hypervisor control system

registers discussed in Section 2.5, the programming interfaces for both GIC versions are

almost identical.

2.6.1 Microbenchmark Results

We repeated the kvm-unit-test microbenchmark measurements from Section 2.4 using

NEVE with the same nested VM configurations. Table 2.6 shows the results in terms

of cycle counts and relative overhead compared to running in a non-nested VM, along with

the previous results from Table 2.1. NEVE provides a dramatic performance improvement

compared to Armv8.3. When running in a nested VM, NEVE provides up to 5 times faster

performance than Armv8.3 for both non-VHE and VHE guest hypervisors. While x86

nested virtualization remains much faster in terms of absolute cycle counts, this is due to

the fact that the base VM measurements are faster on x86 than on Arm. However, compar-

ing the relative performance of a nested vs. non-nested VM on each platform, we see that

a guest hypervisor using NEVE has similar overhead to x86. For example for Hypercall,

NEVE incurs a 34 to 37 times slowdown while x86 incurs a 31 times slowdown running in

a nested vs. non-nested VM.

Table 2.7 shows the average number of traps to the host hypervisor when running each

41

Armv8.3 NEVE x86

Microbenchmark Nested
VM

Nested
VM VHE

Nested
VM

Nested
VM VHE

Nested
VM

Hypercall 422,720 307,363 92,385 100,895 36,345
(155x) (113x) (34x) (37x) (31x)

Device I/O 436,924 312,148 96,002 105,071 39,108
(124x) (88x) (27x) (30x) (17x)

Virtual IPI 611,686 494,765 184,657 213,256 45,360
(73x) (59x) (22x) (25x) (16x)

Virtual EOI 71 71 71 71 316
(1x) (1x) (1x) (1x) (1x)

Table 2.6: Microbenchmark Cycle Counts

microbenchmark in the nested VM. NEVE reduces the number of traps by more than six

times compared to Armv8.3. For example, Hypercall takes only one trap from a VM, but

from a nested VM on Armv8.3, it requires 126 and 82 traps to the host hypervisor using a

non-VHE and VHE guest hypervisor, respectively. Using NEVE, Hypercall only requires

15 traps to the host hypervisor using either a non-VHE or VHE guest hypervisor. Although

non-VHE and VHE guest hypervisors require the same number of traps for Hypercall,

they incur different numbers of cycles as shown in Table 2.6 as the traps incurred are

different with different emulation costs. For example, VHE adds an additional timer, the

EL2 virtual timer, where non-VHE systems only have one virtual timer, the EL1 virtual

timer. This additional timer must be supported for VHE guest hypervisors. Because of

the register redirection functionality of VHE, and because the VHE guest hypervisor runs

deprivileged in EL1, the VHE guest hypervisor directly accesses the EL1 virtual timer

when it programs its EL2 virtual timer. However, when attempting to program its EL1

virtual timer, the guest hypervisor will use new VHE-specific EL02 access instructions,

which always trap to the host hypervisor, resulting in traps for a VHE guest hypervisor that

do not occur for a non-VHE guest hypervisor. As the number of traps also depends on the

42

Armv8.3 NEVE x86

Microbenchmark Nested
VM

Nested
VM VHE

Nested
VM

Nested
VM VHE

Nested
VM

Hypercall 126 82 15 15 5
Device I/O 128 82 15 15 5
Virtual IPI 261 172 37 38 9
Virtual EOI 0 0 0 0 0

Table 2.7: Microbenchmark Average Trap Counts

guest hypervisor implementation especially on Arm, we confirmed that a more optimized

VHE guest hypervisor [31] with NEVE reduces the number of traps to the host hypervisor

down to 2, which is even less than x86.

The Device I/O and Virtual IPI microbenchmarks show similar improvements. Virtual

EOI remains unaffected because the nested VM can interact directly with the hardware sup-

port in all cases. The results show how NEVE significantly improves nested virtualization

performance by resolving the exit multiplication problem.

2.6.2 Application Benchmark Results

To provide a more realistic measure of performance, we next evaluated nested virtualization

using widely-used CPU and I/O intensive application workloads, as listed in Table 2.8. We

used three different configurations for our measurements: (1) native: running natively on

Linux capped at 4 cores and 12 GB RAM, (2) VM: running in a 4-way SMP guest OS

with 12 GB RAM using KVM as a hypervisor with 8 cores and 16 GB RAM, and (3)

nested VM: running in a 4-way SMP nested guest OS with 12 GB RAM using KVM

as the guest hypervisor, which is capped with 6 cores with 16 GB RAM, while the host

KVM hypervisor has 8 cores and 20 GB RAM. The last two configurations are the same as

those used in Section 2.4. For benchmarks that involve clients interacting with the server,

43

Kernbench Compilation of the Linux 3.17.0 kernel using the allnoconfig for Arm using
GCC 4.8.2.

Hackbench hackbench [93] using Unix domain sockets and 100 process groups running
with 500 loops.

SPECjvm2008 SPECjvm2008 [97] 2008 running real life applications and benchmarks cho-
sen to measure Java Runtime Environment performance; we used 15.02 release
of the Linaro AArch64 port of OpenJDK.

Netperf netperf v2.6.0 [60] server running with default parameters on the client in
three modes: TCP RR, TCP STREAM, and TCP MAERTS, measuring la-
tency and throughput, respectively.

Apache Apache v2.4.7 Web server running ApacheBench [100] v2.3 on the remote
client, measuring requests handled per second serving the 41 KB file of the
GCC 4.4 manual using 10 concurrent requests.

Nginx Nginx v1.4.6 Web server running Siege [58] v3.0.5 on the remote client,
measuring requests handled per second serving the 41 KB file of the GCC 4.4
manual using 8 concurrent requests.

Memcached memcached v1.4.14 using the memtier benchmark v1.2.3 with its default
parameters.

MySQL MySQL v14.14 (distrib 5.5.41) running SysBench v.0.4.12 using the default
configuration with 200 parallel transactions.

Table 2.8: Application Benchmarks

the client ran on a separate dedicated machine and the server ran on the configuration

being measured, ensuring that clients were never saturated during any of our experiments.

Clients ran natively on Linux with the same kernel version and userspace as the server and

configured to use the full hardware available.

Figure 2.2 shows the performance measurements for each VM and nested VM con-

figuration across two different vertical scales given the large dynamic range of the mea-

surements. Since we are most interested in overhead and in comparing across different

hardware platforms, VM and nested VM performance are normalized relative to their re-

spective Arm or x86 native execution, with lower meaning less overhead. Table 2.9 shows

the non-normalized results from the measurements.

As expected, running in a nested VM on Armv8.3 shows the highest overhead, in some

44

0

10

20

30

40

Armv8.3 VM
Armv8.3 Nested
Armv8.3 Nested VHE

NEVE Nested
NEVE Nested VHE

x86 VM
x86 Nested

Kernbench

Hackbench

SPECjvm2008

TCP RR

TCP STREAM

TCP MAERTS
Apache

Nginx

Memcached

MySQL
0

1

2

3

4

P
er

fo
rm

an
ce

O
ve

rh
ea

d

Figure 2.2: Application Benchmark Performance

cases more than 40 times native execution. The largest overhead occurs for network-related

workloads, including Netperf TCP MAERTS, Apache, and Memcached. The high over-

head is likely due to the high frequency of interrupts caused by many incoming network

packets. Injecting a high number of virtual interrupts to the nested VM results in a high

number of switches between the nested VM and the guest hypervisor, which in turn results

in many traps using only Armv8.3. Hackbench also performs quite poorly as it is 15 and

11 times slower for non-VHE and VHE guest hypervisors, respectively, compared to native

execution. Hackbench is a highly parallel SMP workload in which the OS frequently sends

IPIs to synchronize and schedule tasks across CPU cores. As shown in Table 2.6, virtual

45

Application Unit Architecture Baseline L1 L2 L2 (VHE)

Kernbench sec
Armv8.3 49.6 51.1 65.9 62.4
NEVE - - 56.2 57.3
x86 22.1 24.0 25.40

Hackbench sec
Armv8.3 15.8 18.0 239.2 172.5
NEVE - - 82.0 103.3
x86 6.2 8.3 18.98

SPECjvm2008 ops/min
Armv8.3 62.2 61.3 50.2 56.8
NEVE - - 54.4 56.1
x86 163.1 158.6 155.10

Netperf TCP RR trans/sec
Armv8.3 23,544 13,533 1,417 1,986
NEVE - - 3,067 3,176
x86 37,453 25,002 7,103

Netperf TCP STREAM Mbits/sec
Armv8.3 9,407 9,385 3,657 4,058
NEVE - - 5,991 5,709
x86 9,410 9,408 9,394

Netperf TCP MAERTS Mbits/sec
Armv8.3 6,242 6,071 236 515
NEVE - - 4,651 5144
x86 9,414 9,406 3,803

Apache trans/sec
Armv8.3 8,255 6,700 195 405
NEVE - - 1,523 1,460
x86 16,925 9,893 3,489

Nginx trans/sec
Armv8.3 2,327 1,947 452 558
NEVE - - 841 897
x86 6,303 3,698 1,783

Memcached trans/sec
Armv8.3 147,754 133,668 3,459 6,742
NEVE - - 57,064 58,850
x86 463,102 301,821 56,272

MySQL sec
Armv8.3 14.8 17.1 57.0 50.0
NEVE - - 34.5 35.3
x86 7.3 17.6 21.3

Table 2.9: Application Benchmark Raw Performance

IPIs are costly in nested VMs on Armv8.3, which accounts for the noticeable slowdown

in Hackbench. Compared to native execution, CPU-intensive workloads such as SPECjvm

and kernbench have a relatively modest performance slowdown in nested VMs, 24% and

33% overhead for a non-VHE guest hypervisor and 14% and 26% for a VHE guest hy-

pervisor, respectively. These workloads have much less overhead than other application

workloads because they cause far fewer interactions between the nested VM and the guest

46

hypervisor, and therefore don’t suffer as much from the exit multiplication problem as

network related benchmarks.

In contrast, NEVE provides significantly better Arm nested virtualization performance,

reducing performance overhead by more than or close to an order of magnitude in some

cases. For example, Memcached performance goes from more than a 40 times slowdown

using Armv8.3 to less than a 3 times slowdown using NEVE, more than an order of mag-

nitude improvement. For network-related workloads including Netperf TCP MAERTS,

Apache, and Memcached, NEVE successfully reduces exit multiplication by coalescing

traps to reduce the performance overhead. Unlike Armv8.3, which has significantly worse

performance, NEVE provides overall performance that is comparable to, and in many cases

better than, x86 nested virtualization using the latest x86 virtualization optimizations.

In fact, NEVE incurs significantly less overhead than both Armv8.3 and x86 on many

of the network-related workloads, including Netperf TCP MAERTS, Nginx, Memcached,

and MySQL. MySQL runs better with NEVE because of the high cost of x86 non-nested

virtualization compared to Arm, but this is not the case for the other workloads. For exam-

ple, Memcached running in a nested VM on x86 shows an 8 times slowdown compared to

only a 2.5 times slowdown on NEVE. The reason for this is that Memcached incurs sub-

stantially more exits on x86 than Arm, including more than four times as many exits from

the nested VM for processing I/O on x86 versus NEVE. Since the relative cost of nested

VM exits is similar on x86 and NEVE as shown in Table 2.6, the much higher number

of exits on x86 results in much higher overhead than NEVE. Netperf TCP MAERTS and

Nginx exhibit similar behavior.

The reason for the much higher number of exits can be explained based on the network

47

I/O behavior. When a nested VM wants to send packets, its frontend driver notifies the

backend driver running in the L1 VM, which causes an exit from the nested VM. Virtio,

which is used for paravirtualized I/O, provides mechanisms to optimize I/O performance

by reducing the number of VM exits due to notifications. While the backend driver is busy,

it tells the frontend driver that it can continue to send packets without further notification.

Only once the backend driver has nothing left to do does it tell the frontend driver to notify

it again when it has more packets to send. On x86, it turns out that Memcached requires

many more virtio notifications than on NEVE. This is because as soon as the backend driver

running in L1 is notified, it handles the packets quickly and enables the notification again.

In other words, the quicker the backend driver handles packets, the more the frontend

driver needs to notify. In fact, by introducing some delay by busy waiting to artificially

slow down the backend driver in L1 when running Memcached in x86, we can reduce the

x86 Memcached overhead to be close to NEVE. The reason that the x86 L1 backend driver

is much faster to process packets than Arm backend driver is that the x86 hardware is much

faster than the Arm hardware used. Memcached runs natively roughly three times faster

on the x86 server compared to the Arm server. This leads to an interesting performance

anomaly that having faster hardware can result in more virtualization overhead.

Our results are based on paravirtualizing KVM/ARM as a guest hypervisor to mimic

the behavior of Armv8.3 and NEVE on existing Armv8.0 hardware. Future Arm hardware,

such as Armv8.3 hardware, may have somewhat different performance characteristics. In

particular, Armv8.3 is a more complex architecture than Armv8.0, so it would not be sur-

prising if the relative cost of traps is higher for such hardware compared to Armv8.0 hard-

ware. Because NEVE improves performance by reducing the number of traps for nested

48

virtualization, a high trap cost for actual Armv8.3 hardware would only accentuate the per-

formance difference between NEVE and Armv8.3, making Armv8.3 nested virtualization

performance worse and NEVE’s relative improvement even better.

As further validation of this work, we have presented these results to Arm, which has

decided to include NEVE in the next release of the Arm architecture.

2.7 Enhanced Support for Nested Virtualiztion

Arm has incorporated NEVE into the Armv8.4 architecture as its Enhanced Support for

Nested Virtualization [11]. The Enhanced Support for Nested Virtualization provides two

register redirection mechanisms - one to redirect VM register accesses to memory accesses,

and the other to redirect EL2 system register accesses to corresponding EL1 system register

accesses.

The Enhanced Support for Nested Virtualization adds a single bit to the hypervisor

control register (HCR EL2), the NV2 bit. The Enhanced Support for Nested Virtualization

maintains complete backwards compatibility with Armv8.3 nested virtualization; if the

NV2 bit is not set, Armv8.4 hardware nested virtualization support behaves the same as

Armv8.3. However, setting the NV2 bit significantly changes how the nested virtualization

extensions work. In the following, we explain the two most important features of the

Enhanced Support for Nested Virtualization.

First, the Enhanced Support for Nested Virtualization introduces a new register,

VNCR EL2, that holds the base memory address used for memory redirection of sys-

tem register accesses, as we proposed in Section 2.5. A subtle difference between NEVE

49

and the Enhanced Support for Nested Virtualization is that NEVE has the enable bit of

the NEVE feature at the bit field 0 of the VNCR EL2 register to make the register self-

contained while the bit in the Enhanced Support for Nested Virtualization locates in the

HCR EL2 register (NV2 bit) where other VM control bits exist.

Second, Enhanced Support for Nested Virtualization redirects system register accesses

when the NV2 bit is set to 1. When the guest hypervisor accesses VM registers in EL1,

hardware transforms the system register access instructions into memory access instruc-

tions. The address of the resulting memory access is defined using a combination of a base

address in VNCR EL2 and a pre-defined offset, which is unique for each register. GIC

registers in the hypervisor control interface are also redirected to memory. In addition,

when the guest hypervisor accesses EL2 system registers, hardware redirects EL2 register

accesses to corresponding EL1 register accesses.

While the Enhanced Support for Nested Virtualization can support unmodified guest

hypervisors, the host hypervisor must be modified to use the new hardware features such

as the VNCR EL2 register and the NV2 bit. The host hypervisor needs to allocate memory

to keep VM register states and set the memory address to the VNCR EL2 register so that

the hardware can access. When entering the guest hypervisor, the host hypervisor sets the

NV2 bit in the HCR EL2 register to enable register redirections. On the other hand, the

host hypervisor clears the NV2 bit when entering a nested VM so that the register accesses

from the OS running inside the nested VM work as expected without being redirected to

memory.

50

2.8 Related Work

Paravirtualization is used to make hypervisors simpler and faster by avoiding certain ar-

chitecture features that are complex or difficult to virtualize efficiently [15, 92]. It is also

used to provide virtual architectures that differ from the underlying hardware architecture

and can run custom guest OSes designed for performance and scalability [108]. We lever-

age paravirtualization in a new way to emulate the behavior and measure the performance

of new architecture features at native execution speeds on existing and currently available

hardware.

Previous work has explored ways to use existing hardware to emulate new hard-

ware. For example, Shade [28] proposed a dynamic translation framework that could run

SPARCv9 binaries on a SPARCv8 CPU. However, Shade incurs significant performance

overhead. Simulating SPARCv9 on SPARCv8 is more than an order of magnitude slower

than native execution on SPARCv8. Our paravirtualization technique is applied statically

and does not incur substantial performance overhead, but is focused on virtualization hard-

ware support rather than emulating entire future architectures.

Much work on nested virtualization has focused on x86 [4, 19, 126, 62]. Turtles [19]

was the first to show that trap-and-emulate nested virtualization provides reasonable per-

formance on x86. Our Arm hypervisor design uses the same approach as Turtles for CPU

and memory virtualization, but uses paravirtualized I/O in lieu of direct device assignment

as used in Turtles; the latter was not supported on the Arm server hardware available for our

measurements. However, we show that the lessons learned from trap-and-emulate nested

virtualization on x86 may not apply to other architectures and that a similar approach on

51

Arm performs poorly due to differences between the Arm and x86 virtualization support.

We introduce a new architecture extension to address this problem and significantly im-

prove Arm performance.

To optimize nested virtualization further, Intel added a new hardware extension called

VMCS shadowing [55], which allows a guest hypervisor to execute VMCS access instruc-

tions without trapping. VMCS shadowing redirects instructions that are designed to access

the VMCS, which is stored in memory, to a different memory location. Our x86 measure-

ments in Section 2.6.2 show that the VMCS shadowing optimization provides roughly a

10% performance improvement. Both VMCS shadowing and NEVE use the basic idea of

redirection to mitigate the exit multiplication problem by reducing traps from guest hy-

pervisors. However, unlike VMCS shadowing, NEVE introduces register redirection, and

rewrites system register accesses to memory accesses or to other existing registers based

on a classification of the functionality of the registers. NEVE is designed for RISC archi-

tectures without adopting techniques similar to VMCS which are more suitable for CISC

architectures. Unlike the modest gain of VMCS shadowing on x86, NEVE provides an

order of magnitude performance improvement on Arm. This is due in part to the CISC

vs. RISC architecture designs. x86 automatically saves and restores VM state using the

hardware VMCS mechanism which coalesces accesses to VM register state when chang-

ing between root and non-root mode in a single operation, mitigating the exit multiplication

problem and reduces the benefit of VMCS shadowing. In contrast, Arm requires software

to save and restore VM state to individual registers, which results in many more accesses

to VM state in software, for which NEVE can significantly reduce exit multiplication and

improve performance.

52

Xen-Blanket [110] leverages nested virtualization to transform existing heterogeneous

cloud infrastructures into a homogeneous Blanket layer to host x86 nested VMs. Unlike the

aforementioned nested x86 solutions that use hardware virtualization primitives exposed to

the guest hypervisor, it does not rely on the host hypervisor to expose those primitives to

the nesting layers. Therefore, Xen-Blanket only supports paravirtualized guest OSes, not

unmodified OSes in the nested VM.

Agesen et al. [2] proposed software techniques for avoiding VM exits by leveraging

existing work on binary translation to detect and rewrite sequences of instructions that

cause multiple exits from the VM and rewrite them into translated sequences that only

cause a single exit. LeVasseur et al. [69] proposed pre-virtualization, a form of static

paravirtualization that uses a hypervisor-specific module in the guest OS to rewrite itself

when loaded by a hypervisor. In contrast, NEVE is a hardware approach to transparently

rewrite deferrable register accesses to memory accesses in the guest hypervisor and delivers

substantial performance gain for workloads running in nested VMs.

Some techniques [3, 37] reduce VM exits by coalescing interrupts, effectively changing

the hardware semantics to reduce interrupt overhead while increasing interrupt latency.

NEVE does not defer interrupts but defers trapping on instruction execution in a way that

preserves existing architecture semantics and improves performance even in the absence of

interrupts.

Various Arm virtualization approaches have been developed [48, 54, 32, 35, 17, 34,

118, 104, 8, 31], but none of them support nested virtualization. Our work presents the first

Arm hypervisor to support nested virtualization, and introduces new architecture improve-

ments that can be used by host hypervisors to significantly enhance performance.

53

As virtualization continues to be of importance, understanding the trade-offs of differ-

ent approaches to hardware virtualization support is instrumental in the design of new ar-

chitectures. For example, RISC-V [91] is an emerging architecture for which virtualization

support is being explored. NEVE provides an important counterpoint to x86 practices and

shows how acceptable nested virtualization performance can be achieved on RISC-style

architectures.

2.9 Summary

We presented the first in-depth study of Arm nested virtualization. We introduce a novel

paravirtualization technique to evaluate the performance of new architectural features be-

fore hardware is readily available. Using this technique, we evaluate Armv8.3 nested vir-

tualization support and find that its performance is prohibitively expensive compared to

normal virtualization, despite its similarities to x86 nested virtualization. We show how

differences between Arm and x86 in non-nested virtualization support end up causing sig-

nificant exit multiplication on Arm. To address this problem, we introduce NEVE, simple

architecture extensions that provide register redirection, and coalesce and defer traps by

logging system register accesses from the guest hypervisor to memory and only copying

the results of those accesses to hardware system registers when necessary. This reduces

exit multiplication by batching the handling of multiple hypervisor instructions on one exit

instead of exiting for each individual hypervisor instruction executed by the guest hyper-

visor. We evaluate the performance of NEVE and show that NEVE can improve nested

virtualization performance by an order of magnitude on real application workloads com-

54

pared to the Armv8.3 architecture, and can provide up to three times less virtualization

overhead than x86. NEVE is straightforward to implement in Arm and has been included

in the Arm architecture starting with Armv8.4.

55

Chapter 3

Virtual-passthrough: Boosting I/O Performance for Nested

Virtualization

Despite both x86 and Arm architectures having architectural support to enhance nested vir-

tualization performance, many I/O intensive applications still perform many times worse

with nested virtualization than they do with non-nested virtualization or native execution

without virtualization. A significant portion of the overhead for the applications running in-

side nested VMs comes from delivering data and control through multiple layers of virtual

I/O devices, which involves expensive switches between different virtualization levels.

One solution is device passthrough, also know as direct device assignment. Passthrough

directly assigns physical devices to the nested VM so that the nested VM and the physical

device can interact with each other without the intervention of multiple layers of hypervi-

sors [19, 23]. For example, the physical device can deliver data directly to the nested VM.

However, direct device assignment comes with a significant cost, the loss of I/O interpo-

sition and its benefits. I/O interposition allows the hypervisor to encapsulate the state of

the VM and decouple it from physical devices, enabling important features such as sus-

pend/resume, live migration [119, 20], I/O device consolidation, and various VM memory

optimizations [22]. Many of these features, especially migration, are essential for cloud

computing deployments. Furthermore, direct device assignment requires additional hard-

56

ware support such as physical Input/Output Memory Management Units (IOMMUs) and

Single-Root I/O Virtualization (SR-IOV), which may not be available or supported on all

platforms, especially in the case of newer virtualization architectures such as Arm. Because

of the disadvantages of direct physical device assignment, paravirtual I/O devices are most

commonly used in VM deployments. Unfortunately, nested virtualization with virtual I/O

devices including paravirtual I/O devices incurs high overhead.

We introduce virtual-passthrough, a novel yet simple technique for boosting I/O perfor-

mance when using nested virtualization. Virtual-passthrough is similar to direct physical

device assignment but instead assigns virtual I/O devices to nested VMs. Virtual devices

provided by the host hypervisor can be assigned to nested VMs directly without delivering

data and control through multiple layers of virtual I/O devices, which makes I/O operations

from nested VMs efficient. Therefore, virtual-passthrough reduces exit multiplication by

eliminating the need for guest hypervisor execution when the nested VM interacts with the

assigned virtual I/O devices. Virtual-passthrough preserves I/O interposition in the host

hypervisor different from physical device passthrough while virtual-passthrough also can

easily support important I/O interposition benefits such as migration in the hypervisors

at intermediate layers. Scalability is not a problem as many virtual devices can be sup-

ported by a single physical device. Supporting both paravirtual and emulated I/O devices

is straightforward. The technique is platform agnostic, does not require hardware support

such as physical IOMMUs or SR-IOV. Furthermore, virtual-passthrough makes it possible

to support virtualization optimizations only in software and add support for new features

not natively supported by hardware. For example, virtual-passthrough can provide support

for virtual IOMMUs and posted interrupts, even in the absence of corresponding hardware

57

support.

With virtual-passthrough, the host hypervisor makes available its virtual I/O devices

for direct assignment to nested VMs. Each intervening hypervisor layer passes through the

virtual I/O device to the next layer. The nested VM provides a device driver to communicate

with the passed through virtual I/O device, which appears to the nested VM no different

from any other I/O device that it accesses. Virtual IOMMUs are made available and used

by the nested hypervisors to provide necessary mappings between different guest physical

address spaces to support transferring data between the memory buffers of the nested VM

and the virtual I/O device provided by the host hypervisor. Data is transferred directly

between the nested VM and the virtual I/O device provided by the host hypervisor without

further intervention by intermediate layers of virtual machines and hypervisors. Interrupts

also can be delivered from the virtual I/O device to the nested VM directly as well as the

nested VM can program the virtual I/O device with support from the host hypervisor.

We have implemented virtual-passthrough in KVM for both x86 and Arm hardware

and Xen for x86, demonstrating the technique can be used across different architectural

platforms and hypervisors. We have evaluated its performance in nested virtualization

environments on both x86 and Arm and show that it can provide more than an order

of magnitude better performance than current virtual device support on real application

workloads. We also show that virtual-passthrough can provide comparable performance to

device passthrough while at the same time enabling migration of nested VMs, thereby pro-

viding a combination of both good performance and key virtualization features not possible

with device passthrough.

58

3.1 I/O Virtualization for Nested Virtualization

I/O virtualization There are largely two I/O virtualization models, the virtual I/O device

model and the passthrough (or direct device assignment) model, as shown in Figures 3.1(a)

and 3.1(b), respectively.

In the virtual I/O device model, physical I/O devices are not visible to a VM. Instead,

the VM interacts with virtual I/O devices provided by the hypervisor. Each I/O request

such as sending a network packet or reading a file is trapped to the hypervisor, which is

referred to as I/O interposition. The hypervisor processes the request in software, typically

leveraging underlying physical devices, and sending an interrupt to the VM to notify it

when the I/O request has been completed. Even though such requests from a VM need

to trap to the hypervisor, any memory accesses from the virtual I/O device to access I/O

data in the VM can be done asynchronously without trapping as the hypervisor can access

VM memory freely. The hypervisor can provide either emulated I/O devices [98], where

the VM is not aware that the given device is emulated, or paravirtualized I/O devices [15,

92], where hypervisors and VMs communicate via simplified software I/O interfaces to

overcome the inefficiency of I/O device emulation.

The virtual I/O device model is widely used for VMs because it provides tremendous

flexibility as a software solution. I/O interposition made possible using the virtual I/O

device model brings many benefits [107, 22], including the ability to consolidate many

virtual I/O devices on a single physical device as part of server consolidation, thereby

increasing utilization, improving efficiency, and reducing costs. It also enables memory

optimizations and state encapsulation to facilitate migration, a key virtualization feature.

59

I/O Device

Hypervisor

VM

Virtual
I/O Device

(a) Virtual I/O device

I/O Device

Host Hypervisor

Guest Hypervisor

Nested VM

Virtual
I/O Device

Virtual
I/O Device

(c) Virtual I/O device(b) Passthrough

I/O Device

Hypervisor

VM

(d) Passthrough

I/O Device

Host
Hypervisor

Guest
Hypervisor

Nested VM

Virtualization Nested Virtualization

Virtual
IOMMU

IOMMU IOMMU

Device Access

DMA

Legend

Figure 3.1: I/O Virtualization Models

In the passthrough model, a VM is directly assigned a physical I/O device exclusively,

allowing it to access the device without hypervisor intervention, at the expense of I/O inter-

position. The assigned device can also access VM memory directly as needed to read and

write I/O data. Recent hardware support can allow interrupts from the physical I/O device

to be delivered to VMs directly without going through the hypervisor. With those direct in-

teractions between the device and the VM, the passthrough model can achieve near-native

I/O performance. However, because I/O interposition is lost, it forgoes those benefits, in-

cluding making it difficult, if not impossible, to support migration. The passthrough model

requires additional hardware support. An IOMMU, an address translation unit for I/O de-

vices, is essential for safe and correct direct memory access (DMA) from the assigned

60

physical device to the VM. SR-IOV is needed for scalability, otherwise a device is tied to

and can only be used by one VM.

Nested I/O virtualization

For nested I/O virtualization, the hypervisor at each level can decide the I/O virtual-

ization model for its own VM. The most common approach is repeating the model that is

provided by the host hypervisor recursively. Using the virtual I/O device model, the hyper-

visor at each level provides its own virtual devices to its VMs, as shown in Figure 3.1(c).

Using the passthrough model, the host hypervisor assigns devices to the guest hypervisor,

and the guest hypervisor at each level, in turn, assigns the same devices to its VMs [19], as

shown in Figure 3.1(d). These two models naturally inherit and intensify the pros and cons

of their non-nested I/O virtualization counterparts.

The virtual I/O device model does not need any further hardware or even software sup-

port. Hypervisors at each level provide virtual I/O to its own VMs in software, which is

transparent to their underlying hypervisors, respectively. Each hypervisor has the bene-

fits from I/O interposition as previously discussed. The downside of this model is poor

performance. While using the virtual I/O device model with non-nested virtualization of-

ten can deliver sufficient performance with modest overhead, the same virtual I/O device

model when used for nested virtualization can result in performance that is many times

worse [19] as we observed in the experiments in Chapter 2.

The passthrough model has the best performance [19]. For the guest hypervisor to as-

sign a device to the nested VM, it requires additional hardware or software support beyond

what was needed in the case of non-nested virtualization. The host hypervisor needs to have

a physical IOMMU to assign a physical device to the guest hypervisor. Furthermore, the

61

host hypervisor needs to provide a virtual IOMMU [6], emulated or paravirtualized, to the

guest hypervisor so that the guest hypervisor can then assign the device to the nested VM.

In other words, to directly assign a physical device to a nested VM, two levels of IOMMU

support are required, the physical IOMMU for the host hypervisor and the virtual IOMMU

for the guest hypervisor. The host hypervisor then creates shadow page tables in software

by combining mappings in the virtual and physical IOMMUs using the same principles as

used for MMUs, which previously did not support two levels of translation. More advanced

IOMMU hardware may allow the guest hypervisor to also use a physical IOMMU [5, 57,

13] instead of a virtual one. However, foregoing virtualization features such as migration

to use passthrough for improved I/O performance is considered too much of a drawback in

many scenarios, especially for cloud computing.

3.2 Virtual-passthrough Design

We introduce virtual-passthrough, a novel yet simple technique for boosting I/O perfor-

mance when using nested virtualization. Virtual-passthrough is similar to passthrough in

allowing a nested VM to directly access the I/O device but assigns virtual I/O devices to

nested VMs instead of physical I/O devices. Loosely speaking, virtual-passthrough takes

the virtual I/O device model for the host hypervisor and combines it with the passthrough

model for subsequent guest hypervisors. The virtual device provided to the guest hyper-

visor is, in turn, assigned to the nested VM. As shown in Figure 3.2, the nested VM can

interact directly with the assigned virtual device, bypassing the guest hypervisor(s).

Unlike the virtual I/O device model, virtual-passthrough avoids the need for guest hy-

62

I/O Device

Host Hypervisor

Guest
Hypervisor

Nested VM

Virtual I/O Device

Virtual IOMMU

L1 VM

Device Access

DMA

Legend

Figure 3.2: Virtual-passthrough

pervisors to provide their own virtual I/O devices, removing expensive guest hypervisor

interventions [19] for virtual I/O device emulation. Unlike the passthrough model, virtual-

passthrough supports I/O interposition and all its benefits as the host hypervisor provides a

virtual I/O device for use by the L1 VM instead of a physical I/O device. For example, it is

straightforward to migrate VMs and their nested VMs among different machines. Virtual-

passthrough is a software-only solution and does not require any additional hardware. It

is easily scalable to support running many VMs on the same hardware for as many virtual

I/O devices as desired; no SR-IOV hardware support is required.

Virtual-passthrough is hypervisor and platform agnostic. It works transparently with

any virtual I/O device that meets physical device interface specifications such as PCI so

that it appears to the guest hypervisors and OSes on any platform just like a physical I/O

device. Being hypervisor agnostic is important for cloud computing deployments where

63

various hypervisors are used on servers [26, 95, 16, 84] and, users may freely choose what

guest hypervisors and OSes they want to use. Being platform agnostic is also important as

cloud providers move towards diversifying their platforms [18, 90].

3.2.1 System Configuration

Virtual-passthrough requires system configuration changes in how devices are managed

and used but requires no additional implementation effort for hypervisors that already sup-

port both virtual I/O and passthrough device models. It can be achieved by simply lever-

aging existing software components already introduced for virtual I/O device model and

passthrough model. Virtual-passthrough configures these components in a different way at

each virtualization level from the two models but does not need to introduce further com-

ponents. We discuss how the host hypervisor, guest hypervisor, and nested VM need to be

configured to support virtual-passthrough.

Using virtual-passthrough, the host hypervisor provides a virtual I/O device to the guest

hypervisor. However, simply using the virtual I/O configuration used for the standard vir-

tual I/O device model is not sufficient. Instead, the host hypervisor must provide virtualized

hardware to a VM so that the guest hypervisor running in the VM thinks it has sufficient

hardware support for the passthrough model.

Figure 3.3 shows the steps involved for an I/O write operation with virtual-passthrough;

what virtual-passthrough does for nested VMs is analogous to what passthrough does for

non-nested VMs. In the latter case, passthrough requires the hardware to provide both a

physical I/O device to assign as well as a physical IOMMU for translating VM physical ad-

64

dresses to host physical addresses. The VM cannot be directly assigned the physical device

without the IOMMU without compromising the safety and isolation guarantees provided by

the hypervisor. The hardware ensures that memory accesses from the physical I/O device

go through the IOMMU so that the physical I/O device safely accesses the correct memory

addresses in the VM. Similarly, virtual-passthrough requires the host hypervisor to provide

both a virtual I/O device to assign as well as a virtual IOMMU for translating nested VM

physical addresses to VM physical addresses used by the guest hypervisor. Without a vir-

tual IOMMU for the guest hypervisor to use, the guest hypervisor has no mechanism to

safely assign the virtual I/O device to the nested VM. With virtual-passthrough, the host

hypervisor ensures that memory accesses from the virtual I/O device go through the virtual

IOMMU so that the virtual I/O device safely accesses the correct memory addresses in the

nested VM. Unlike the passthrough model, virtual-passthrough does not require a physical

IOMMU.

Using virtual-passthrough, the guest hypervisor simply assigns the given virtual I/O

device directly to the nested VM. What the guest hypervisor does with virtual-passthrough

is exactly the same as what it does with the regular passthrough model for nested virtual-

ization. In both cases, the guest hypervisor is given an I/O device and an IOMMU, and if

properly configured, the guest hypervisor does not know whether the device or IOMMU

are physical or virtual. The guest hypervisor simply unbinds the device from its own de-

vice driver and creates mappings in the MMU and IOMMU provided by the underlying

hypervisor for direct access between the device and the nested VM. Unlike the virtual I/O

device model, the guest hypervisor itself does not provide its own virtual I/O device to the

nested VM but simply passes through device access to virtual I/O device provided by the

65

I/O Device

Host Hypervisor

Guest Hypervisor

Nested VM

Virtual I/O Device

Virtual IOMMU

1. Program vIOMMU (once)

3.
 S

en
d

I/O
 w

rit
e

re
qu

es
t

4. Access data
in nested VM physical address

5. Access data
in guest physical address

7. Send I/O write request

Hypervisor

VM

I/O Device

IOMMU

1. Program IOMMU (once)

3.
 S

en
d

I/O
 w

rit
e

re
qu

es
t

4. Access data
in guest physical address

5. Access data
in physical address

buffer buffer

6. Handle I/O write request

2. Put data in buffer

8. Handle I/O write request

6. Put data in buffer

(a) Passthrough
(Virtualization)

(b) Virtual-passthrough
(Nested virtualization)

2. Put data in buffer

buffer

Figure 3.3: I/O Write Operation with (Virtual) Passthrough

host hypervisor.

Any guest hypervisor that provides support for passthrough can use virtual-

passthrough. However, since the passthrough model was developed for physical I/O de-

vices, most hypervisor implementations expect the I/O devices used with the passthrough

framework to conform to physical device interface specifications, the most common of

which is PCI. While virtual I/O devices, especially paravirtual I/O devices, may use any

device interface as a software-only solution, those that do not adhere to a standard physical

device interface specification are likely to not be assignable or work properly with existing

66

passthrough implementations. However, PCI-based virtual I/O devices are widely available

and are assignable to work transparently with existing passthrough frameworks to enable

virtual-passthrough.

Using virtual-passthrough, the nested VM is directly assigned the virtual I/O device.

Just like the passthrough model, this requires that the nested VM have the correct device

driver for the given I/O device. Since virtual-passthrough is used with standard PCI de-

vices, the necessary PCI device drivers are widely available for common OSes. The driver

may be already included in the OS [67, 29] or can be installed as needed [68, 106, 42]. As

the given device just appears as a regular device to the nested VM, the nested VM does

not care from where or how the device is given to it or, whether unbeknownst to it, the

device is virtual instead of physical. As a result, virtual-passthrough is designed to work

transparently with nested VMs without any modifications other than potential device driver

installation.

3.2.2 Example

We use an example of sending a network packet from a nested VM to show how virtual-

passthrough operates compared to virtual I/O and passthrough models. The send operation

can be viewed in three steps: the nested VM asks the device to send data, the device reads

the data from the nested VM, and the device sends the data. If the device is a virtual I/O

device, then these three steps are repeated again with the next lower virtualization levels

until the device is a physical I/O device.

In the first step, the nested VM first prepares data in a buffer that the device can access

67

and then notifies the device to send the data, which is a common operation for all I/O

models. How the notification is delivered to the device is different for each I/O model.

A notification from the nested VM is essentially a write operation to a device register via

MMIO. For virtual I/O, the write causes a trap to the guest hypervisor, which manages

the virtual I/O device visible to the nested VM. For passthrough, the device is assigned to

the nested VM, so the write is delivered directly to the physical device with no hypervisor

intervention. For virtual-passthrough, the write causes a trap to the host hypervisor, which

manages the virtual I/O device visible to the nested VM.

In the second step, when the device receives the notification, it reads data from the

buffer in the nested VM. The device accesses the data depends on how the device and

IOMMU are configured and where they are located in the physical/virtual machines. For

virtual I/O, the device reads data from the nested VM without translation, just like phys-

ical I/O devices access physical memory directly on a system not having IOMMU. For

passthrough, the physical device is located behind the physical IOMMU, so the device ac-

cesses the nested VM through the physical IOMMU. For virtual-passthrough, the virtual

I/O device is located behind the virtual IOMMU, so the device accesses the nested VM

through the virtual IOMMU.

In the last step, the device sends data. If the device is a physical device as for

passthrough, then the data is simply sent over the wire. If the device is a virtual I/O device,

then we go back to the first step again.

Table 3.1 summarizes all the resulting steps required to send a packet for each of the

three I/O models, virtual I/O (V), passthrough (P), and virtual-passthrough (VP). Virtual

I/O takes the most number of steps. Furthermore, not all the steps take the same amount

68

of time. The switches between L1 and L2 that occur during steps 3 and 4, as well as

steps 15 and 16, are known to be very expensive [19] as we also have shown in Chapter 2,

more than an order of magnitude more expensive compared to a simple switch between L2

and L0, or L1 and L0. For nested virtualization with single-level hardware virtualization

support as available on modern x86 or Arm servers, trapping to the guest hypervisor may

require multiple traps to the host hypervisor before finally switching to the guest hypervi-

sor as known as exit multiplication. Passthrough obviously takes the least number of steps.

Virtual-passthrough only takes a few more steps than passthrough and, more importantly,

avoids the most expensive steps required by virtual I/O since it bypasses the guest hyper-

visor. As we show in Section 3.4, this important difference results in virtual-passthrough

being able to achieve performance significantly better than virtual I/O and comparable to

passthrough.

Steps V P VP
1 L2 puts a packet in the buffer X X X
2 L2 notifies the I/O device X X X
3 Execution switches from L2 to L0 X X
4 Execution switches from L0 to L1 X
5 L1 reads the packet from the buffer X
6 L1 puts the packet in the buffer X
7 L1 notifies the I/O device X
8 Execution switches from L1 to L0 X
9 L0 reads the packet from the buffer X X*
10 L0 puts the packet in the buffer X X
11 L0 notifies the physical device X X
12 Physical device reads the packet X X* X
13 Physical device sends a packet X X X
14 Execution switches from L0 to L1 X
15 Execution switches from L1 to L0 X
16 Execution switches from L0 to L2 X X

Table 3.1: Steps to Send a Packet for Each I/O Model
V, P, and VP means virtual I/O model, passthrough model and virtual-passthrough respectively. X*

means the device accesses memory through (v)IOMMU.

69

3.2.3 Recursive Virtual-passthrough

Virtual-passthrough can be easily used with additional levels of nested virtualization. The

configuration of the L0 host hypervisor and the nested VM remain the same as with two

levels of virtualization, as discussed in Section 3.2.1. The only difference when using more

levels of nested virtualization is how the multiple levels of guest hypervisors are configured,

as shown in Figure 3.4.

…

I/O Device

L0 Hypervisor

L1 Hypervisor

Ln VMbuffer

Ln-2 Hypervisor

Ln-1
Hypervisor

L2 virtual IOMMU

Ln-1 virtual IOMMU

L1 VM

L1 virtual IOMMU

Virtual I/O Device

Device Access

DMA

Legend

buffer

Figure 3.4: Recursive Virtual-passthrough

The guest hypervisors are configured in exactly the same way for recursive virtual-

passthrough as they would be for using recursive passthrough. In both cases, the role of the

guest hypervisors is to pass through the I/O device, regardless of whether the I/O device

70

is physical or virtual, from the Lk to Lk+1 VM. For that purpose, each guest hypervisor

except the last one provides a virtual IOMMU to the next level hypervisor so that the latter

hypervisor can pass through the device to the next level VM. The last level Ln-1 hypervisor,

which is equivalent to the guest hypervisor for two levels of virtualization, only assigns the

virtual I/O device to its VM, the Ln VM. The Ln-1 hypervisor does not need to provide a

virtual IOMMU since the VM does not need it to use the assigned I/O device.

Although multiple virtual IOMMUs are needed to configure recursive virtual-

passthrough, only the L1 virtual IOMMU is used when the virtual I/O device accesses

Ln memory. This is because the L1 virtual IOMMU manages the shadow page tables that

contain the combined mappings from Ln VM physical addresses to L1 VM physical ad-

dresses. The shadow page tables are built using the same principles as used for building

shadow page tables for (non-)recursive passthrough. For example, having more levels of

nested virtualization does not change the limited number of steps necessary to send a packet

using virtual-passthrough, as shown in Table 3.1. This property is also true for passthrough

but is not true for the virtual I/O model. This results in the overhead of using virtual I/O be-

coming substantially worse than either virtual-passthrough or passthrough with more levels

of virtualization.

3.2.4 Migration

Because virtual-passthrough uses I/O interposition with virtual I/O devices, it allows the

host hypervisor to encapsulate the state of the L1 VM and decouple it from physical devices

to support migration. From the perspective of the host hypervisor, migrating an L1 VM that

71

contains or does not contain a nested VM is essentially the same. The nested VM using

virtual-passthrough does not introduce additional hardware dependencies on the host and is

completely encapsulated by the host hypervisor. Migration for virtual-passthrough works

on any system that already supports migration of VMs that use virtual I/O devices.

The only difference from the perspective of the host hypervisor between virtual-

passthrough and virtual I/O is that the former uses a virtual IOMMU while the latter does

not. Migration using virtual-passthrough requires that the state associated with the virtual

IOMMU is also migrated. However, this is no different than migrating any VM using

any other virtual device in which the device state must be properly saved and restored.

The virtual IOMMU is software only and is not coupled to any physical device, making it

straightforward for the hypervisor to encapsulate its state for migration, just like any other

device emulation implementation.

While it is straightforward to migrate a nested VM along with its guest hypervisor with-

out any additional implementation effort, migrating a nested VM alone without the guest

hypervisor requires some additional support when using virtual-passthrough. Migration

requires transferring the I/O device and VM memory state to the destination. Since copy-

ing all memory pages to the destination can take a while, live migration allows a VM to

continue executing while the pages are copied, then if some memory pages change, those

dirty pages will be re-copied to the destination. When there are not many dirty pages left

to re-copy, the VM can be stopped, the remaining dirty pages can be copied over, and the

VM can be resumed at the destination, minimizing VM downtime. Migrating a nested VM

would be the responsibility of the guest hypervisor, but the challenge when using virtual-

passthrough is that the guest hypervisor does not know about what the virtual I/O device

72

is doing because it does not interpose on I/O operations. As a result, the guest hypervisor

does not know about the I/O device state that needs to be migrated. Furthermore, since the

virtual I/O device can do DMA to the nested VM memory without the guest hypervisor’s

intervention, the guest hypervisor does not know which pages are dirtied by the I/O device

and need to be re-copied to the destination.

We can address this problem by leveraging I/O interposition at the host hypervisor to

capture virtual I/O device state and track memory pages dirtied by the virtual I/O device.

Whereas capturing device state and tracking dirty pages for physical I/O devices are diffi-

cult, the host hypervisor can already do this for virtual I/O devices. The guest hypervisor

can then simply ask the host hypervisor to provide it with this information so it can per-

form the VM migration. All that is needed is to provide an interface between the guest and

host hypervisors to deliver the required information about the virtual I/O device and pages

dirtied by it, and to modify the guest hypervisor to use this interface instead of disallowing

migration because (virtual) passthrough is being used. No modifications are needed to the

nested VM.

To provide a standard interface that is hypervisor-independent and device-independent,

we leverage the extensibility of the PCI standard, which provides a mechanism known as

capabilities to define common functionalities of PCI devices in a standard format. Capa-

bilities allow new functionality to be added to any PCI device and be recognized by system

software in a standardized way. Example PCI capabilities include PCI Express and MSI

(Message Signaled Interrupts). We define a new PCI device capability, the migration capa-

bility, which adds control registers to a virtual I/O device that enables the guest hypervisor

to ask the host hypervisor to capture the device state to a specified location and log dirty

73

pages to another specified location. Guest hypervisors that already support PCI devices

can then leverage the migration capability in PCI virtual I/O devices to support nested VM

migration. By leveraging PCI, any guest hypervisor can interoperate with any host hyper-

visor. For example, a Xen guest hypervisor can use the migration capability of the virtual

device implemented in KVM host hypervisor in a standardized way.

Our approach leverages existing host hypervisor functionality. To save device state, we

leave it to the host hypervisor that already has mechanisms to encapsulate its own virtual

I/O device state in its own format. The guest hypervisor simply transfers the device state

to the destination and does not need to interpret it or understand its format. A caveat with

this approach is that it assumes the same type of host hypervisor is used at the source and

destination so that the encapsulated state in the source is interpreted correctly in the des-

tination. While specifying a common device state format might enable migrating a nested

VM across different host hypervisors, this would be unworkable and overly complicated in

practice given the number of different I/O devices and additional hypervisor modifications

that would be required.

To track memory pages dirtied by the I/O device, we again can leverage logging func-

tionality that is already implemented by the host hypervisor since it would need to track

dirty pages from its own virtual I/O devices for non-nested VM migration. Since the guest

hypervisor must interpret the log to determine which pages are dirtied and need to be sent to

the destination, we do presume a standardized format for the log, but this is easy to do since

it is just a log of addresses. We simply use a bit vector starting at the specified memory

location of the log, with each bit representing page. The bit is set if the page is dirtied. The

pages are logged based on guest physical addresses for the nested VM, which are conve-

74

niently the same memory addresses that the guest hypervisor would use to migrate memory

state to the destination, and the same memory addresses that are programmed for use by

the virtual I/O device, before translation by the virtual IOMMU, by the guest OS running

in the nested VM. This is the same approach already used by KVM/QEMU to track I/O

device writes to pages, allowing us to leverage this existing logging functionality without

modifications. Because logging is done as part of the existing I/O interposition done by the

host hypervisor, it does not require additional traps to the host hypervisor and has minimal

impact on performance.

With the new capability, our approach can be easily used with additional levels of vir-

tualization. The L0 hypervisor and the last level Ln-1 hypervisor, need to have the same

changes as in the L0 and L1 hypervisor with two levels of virtualization , respectively.

All intermediate hypervisors basically don’t need any change since they don’t use the ca-

pability. However, based on the hypervisor implementation, it would require to make the

hypervisors aware of the migration capability so that the capability is visible to the next vir-

tualization level as is the case for any new capability. The Ln VM, the VM being migrated,

remains unmodified as before.

Just like we can migrate a VM using virtual I/O model between any virtualization lev-

els, we can also migrate a nested VM using virtual-passthrough between any virtualization

levels when hypervisors at each level have aforementioned changes. The nested VM state at

any level n is completely encapsulated by the Ln-1 guest hypervisor leveraging the migra-

tion capability. The only difference between the virtual I/O model and virtual-passthrough

is that the latter doesn’t support migration between non-nested VM and nested VM. For

example, a nested VM using an assigned virtual I/O device can’t be migrated to a non-

75

nested VM using a virtual I/O device. In principle, migration is only allowed between

VMs created with the same hardware resources, and the assigned device and the virtual I/O

device are not the same devices from the hypervisor’s perspective. It might be possible to

support it with further hypervisor changes such as building virtual I/O device state from

the assigned virtual I/O device state and vice versa. Logging is not an issue since it only

happens in the source transparent to the destination.

Our solution can be used right away in the current cloud infrastructure with the host

and guest hypervisor software update, but the proposed design is not limited to the virtual

I/O devices. Since the solution complies with PCI specification, the same capability can

be implemented in physical I/O devices. With the same hypervisor changes to use the

capability as in the guest hypervisor, it becomes possible to migrate a VM having assigned

physical I/O devices.

3.3 Virtual-passthrough Implementation

Virtual-passthrough is designed to be easy to use with existing virtualization infrastructure,

making it straightforward to deploy. It requires some system configuration but should

require very little if any implementation effort for any system that already has support

for device passthrough and virtual IOMMUs. As an example, we describe the system

configuration changes and patches needed to use virtual-passthrough with KVM/QEMU

hypervisors, Linux guest OSes, and PCI virtual I/O devices.

First, the host hypervisor needs to provide virtualized hardware to the guest hypervi-

sor so that the guest hypervisor thinks it has sufficient hardware support for passthrough.

76

More specifically, the host hypervisor needs to provide a virtual IOMMU and virtual I/O

device, and needs to ensure that memory accesses from the virtual I/O device are going

through the virtual IOMMU. For this purpose, we simply use QEMU’s architecture-specific

IOMMU emulation implementations, specifically Intel VT-d on x86 and Arm SMMUv3

on Arm [14]. The implementations provide support for PCI virtual I/O devices, including

architecture-agnostic virtio [92] network devices implemented as PCI devices as speci-

fied in Virtio specification [102], and can leverage vhost-net [101, 52], an in-kernel virtio

network device implementation in Linux that provides better performance. The IOMMU

implementations don’t have the direct interrupt injection feature. QEMU patches were re-

quired for Arm because the QEMU IOMMU emulation implementations were non-existent

in the mainline distribution for Arm.

Second, the guest hypervisor needs to have a way to pass through the virtual I/O de-

vice to its nested VM. Linux provides a framework for passthrough, Virtual Function I/O

(VFIO) [113]. VFIO is a platform-agnostic framework and exposes PCI and platform de-

vices to userspace [111]. We simply configured VFIO to expose the virtual I/O device to

QEMU in the guest hypervisor, which can then program nested VM physical address (PA)

to GPA mappings to the virtual IOMMU, and map nested VM PA to the GPA of the device

control registers in MMU. The former allows the device to access nested VM’s memory,

and the latter allows the nested VM to program the device without trapping to the guest

hypervisor.

Third, the nested VM needs to have a device driver configured for the assigned virtual

I/O device. Any guest OS that supports regular PCI devices is sufficient. For example,

Linux running as a guest OS is configured to use virtio PCI devices. As the virtio PCI de-

77

vices do not appear any different from regular PCI devices, the nested VM OS can discover

the assigned virtio device without any problem.

Finally, although virtual-passthrough should support migrating a nested VM along with

its guest hypervisor without any further changes, the KVM and QEMU migration imple-

mentations were incomplete and did not properly capture virtual CPU state for nested VMs.

We applied KVM patches [78] and introduced some additional code in QEMU to fix this

problem. To support migrating a nested VM alone, we modified L0 OS and QEMU to

implement the PCI migration capability and allow capturing the device state for only a spe-

cific device instead of all devices. We then modified the L1 guest OS and L1 QEMU to use

the capability. We modified the L1 guest OS to make the PCI migration capability visible

to L1 QEMU as the L1 guest OS does not make an otherwise unknown capability visible

to userspace, i.e. L1 QEMU, to avoid unexpected usage from userspace. We then modified

L1 QEMU to allow migration if all directly assigned I/O devices have the migration capa-

bility. the L1 QEMU programs the PCI control registers to obtain the I/O device state and

logs memory pages dirtied by the I/O device. The actual device state capture and dirty page

logging do not need to be reimplemented since it is already part of L0 OS and QEMU’s

existing functionality. All changes in the guest hypervisor are completely device-agnostic.

3.4 Experimental Results

We present some experimental results that quantify the impact of virtual-passthrough on

nested virtualization performance. We used both x86 and Arm hardware to demonstrate

virtual-passthrough works across different hardware platforms. Experiments were con-

78

ducted using server hardware in CloudLab [41].

x86 measurements were done using Cisco UCS SFF C220 M4 servers, each with two

Intel E5-2630 v3 8-core 2.4 GHz CPUs. Hyperthreading was disabled on the nodes to

provide a similar hardware configuration to the Arm servers. Each node has 128 GB of

ECC memory (8x16 GB DDR4 1866 MHz dual-rank RDIMMs), a 2x1.2 TB 10K RPM

6G SAS SFF HDD for storage, and a Dual-port Cisco UCS VIC1227 VIC MLOM 10 GbE

NIC. The x86 hardware includes VMCS Shadowing [55] for nested virtualization, APICv

for virtual interrupt support and posted interrupts from CPUs, and VT-d IOMMU support

for direct device assignment without the posted interrupts support from devices.

Arm measurements were done using HP Moonshot m400 servers, each with a 64-bit

Armv8-A 2.4 GHz Applied Micro Atlas SoC with 8 physical CPU cores. Each m400

node had 64 GB of RAM, a 120 GB SATA3 SSD for storage, and a Dual-port Mellanox

ConnectX-3 10 GbE NIC. The Arm hardware includes GICv2 for virtual interrupt support,

which has no direct interrupt injection support, and it doesn’t have IOMMU. All x86 and

Arm servers were connected via 10 GbE, and the interconnecting network switch easily

handles multiple sets of nodes communicating with full 10 Gb bandwidth.

To provide comparable measurements, we kept the software environments across all

hardware platforms and hypervisors the same as much as possible. All hosts and VMs used

Ubuntu 14.04 with the same Linux 4.15 kernel and software configuration unless otherwise

indicated. For the host and guest hypervisors, we used KVM with QEMU 2.11.0, with

additional patches and modifications to QEMU to correctly support passthrough for nested

VMs [122, 123, 121, 112], virtual IOMMUs, and migration, as described in Section 3.3.

When using virtual I/O devices with KVM, with or without virtual-passthrough, we used

79

the standard virtio network device with vhost-net and the cache=none setting for virtual

block storage devices [66, 99, 51]. We also provide measurements using Xen 4.10.1 as an

x86 guest hypervisor.

We use the same x86 and Arm hardware as the experiments in Chapter 2 but use up-

to-date KVM and QEMU versions. This is to leverage ongoing work, such as IOMMU

implementation on Arm, and to apply various bug fixes that are based on the up-to-date

software versions.

Because Arm hardware support for nested virtualization is not yet available in hard-

ware [21, 49], we paravirtualize the guest hypervisors to trap to the host hypervisor based

on the Arm nested virtualization specification to mimic Arm architectural support for

nested virtualization as we discussed in depth in Chapter 2. This is done by essentially

replacing instructions that do not trap on existing hardware with hypercalls to trap to the

host hypervisor according to the Arm nested virtualization architecture specification. We

modified both the host and guest hypervisors to support Armv8.4 nested virtualization,

measuring the impact of virtual-passthrough for the upcoming Arm architecture. The

guest hypervisor was configured in all cases to run with Virtualization Host Extension

(VHE) [30] support.

We used three different configurations for our measurements. We use 4 cores and 12 GB

RAM for the native server or VM where we ran workloads. Unless otherwise indicated, we

add two more cores and 12 GB more RAM for the hypervisor at each virtualization level:

(1) native: running natively on Linux capped at 4 cores and 12 GB RAM, (2) VM: running

in a 4-way SMP guest OS with 12 GB RAM using KVM as a hypervisor with 6 cores and

24 GB RAM, and (3) nested VM: running in a 4-way SMP nested guest OS with 12 GB

80

Netperf netperf v2.6.0 [60] server running with default parameters on the client in
three modes: TCP RR, TCP STREAM, and TCP MAERTS, measuring la-
tency and throughput, respectively.

Apache Apache v2.4.7 Web server running ApacheBench [100] v2.3 on the remote
client, measuring requests handled per second serving the 41 KB file of the
GCC 4.4 manual using 10 concurrent requests.

Memcached memcached v1.4.14 using the memtier benchmark v1.2.3 with its default
parameters.

MySQL MySQL v14.14 (distrib 5.5.41) running SysBench v.0.4.12 using the default
configuration with 200 parallel transactions.

Table 3.2: Application Benchmarks

RAM using KVM as the guest hypervisor, which is capped with 6 cores with 24 GB RAM,

while the host KVM hypervisor has 8 cores and 36 GB RAM. For benchmarks that involve

clients interacting with the server, the client ran on a separate dedicated machine, and the

server ran on the configuration being measured, ensuring that clients were never saturated

during any of our experiments. Clients ran natively on Linux with the same kernel version

as the server and were configured to use the full hardware available. For each architecture,

we evaluated performance using widely-used I/O intensive application workloads, as listed

in Table 3.2.

For each architecture and system configuration, we considered all possible I/O con-

figurations for network. For native, we used physical I/O devices, the only configuration

possible. For VM, we measured both paravirtual I/O and passthrough, the latter only on

x86 since the Arm hardware used lacked support for passthrough. For nested VM, we mea-

sured paravirtual I/O, passthrough, and virtual-passthrough, with passthrough again only

for x86 due to Arm server hardware limitations.

Figure 3.5 shows performance measurements on x86 for five different VM configura-

tions. Since we are more interested in overhead rather than absolute performance, VM and

81

Application Unit Baseline L1 L2 L2 + VP L3 L3 + VP
Netperf RR trans/sec 39,478 27,217 8,666 10,691 537 534
Netperf Stream Mbits/sec 9,413 9,413 9,401 9,410 2,258 9,239
Netperf Maerts Mbits/sec 9,412 9,413 5,051 9,407 N/A 9,176
Apache trans/sec 18,202 11,957 4,418 9,814 268 1,170
Memcached trans/sec 424,321 424,504 147,070 418,126 4,141 91,234
MySQL sec 7.0 14.2 18.0 16.2 64.5 35.8

Table 3.3: Application Benchmark Raw Performance on x86
(VP stands for virtual-passthrough.)

nested VM performance are normalized relative to x86 native execution, with lower mean-

ing less overhead. Table 3.3 shows the non-normalized results from the measurements.

Note that the numbers are slightly different from Table 2.9 because of differences in the

Linux kernel and QEMU versions used.

For the VM case, both paravirtual I/O and passthrough provide mostly similar perfor-

mance, with passthrough having somewhat better performance for both Netperf TCP RR

and Apache. The virtual I/O device model overall provides sufficient performance for the

VM case so that passthrough provides only marginal gains for these application work-

loads. One workload, MySQL, has noticeable overhead using paravirtual I/O, but using

passthrough instead provides no real performance benefit.

For the nested VM case, the performance differences among the different I/O config-

urations are substantial. Paravirtual I/O performs significantly worse than passthrough for

the nested VM case for most of the application workloads, more than 3 times worse than the

VM case for Apache and Netperf TCP RR. In contrast, virtual-passthrough delivers nested

VM performance comparable to passthrough and almost as good as the VM case for all

application workloads except Netperf TCP RR. The performance gains of using virtual-

passthrough instead of the virtual I/O device model are substantial, more than doubling

82

Netperf RR

Netperf STREAM

Netperf MAERTS
Apache

Memcached
Mysql

0

1

2

3

4

5

6

7

P
er

fo
rm

an
ce

O
ve

rh
ea

d

VM
VM + passthrough
fake

nested VM
nested VM + passthrough
nested VM + virtual-passthrough

Figure 3.5: Application Performance on x86

performance for Apache and almost tripling performance for Memcached.

The one workload that virtual-passthrough does not help that much is Netperf TCP -

RR, in which only one byte of data is transferred back and forth between the server and

the client. Passthrough does not help much either. The reason is that this is a latency-

sensitive workload that does not involve much data transfer and results in the VM and

nested VM idle waiting for responses from the client and therefore going to sleep. Waking

up the nested VM from the idle state on responses involves expensive switches between

the guest hypervisor and the nested VM, as described in steps 14 to 16 in Table 3.1 but

for all I/O configurations. Direct interrupt injection to the nested VM does not mitigate

83

this problem because that only helps when the nested VM is running. Virtual-passthrough

and passthrough show somewhat better performance than paravirtual I/O since the send

operation is cheaper, as discussed in Section 3.2.2.

TCP RR has another source of overhead on x86 for all I/O configurations. By default,

the Linux kernel runs using tickless mode [63], which makes idle CPUs not receive peri-

odic timer interrupts (i.e., ticks), to save power. This involves programming the timer when

the kernel enters and exits the idle state [79]. This is on the critical path because the timer

is programmed when the VM exits the idle state after getting an interrupt for an incoming

network packet. Accessing the timer register to program the timer is a simple and cheap op-

eration on native machines, but is emulated by KVM, making it a very expensive operation

for nested VMs. We confirmed that changing the kernel to use periodic tick mode, thereby

avoiding timer programming when exiting from the idle state, greatly reduces overhead for

all I/O configurations.

Figure 3.6 shows the same performance measurements on x86 as Figure 3.5, but with

one more level of nesting by running the nested virtualization workloads in an L3 VM.

These measurements show that adding an additional level of nesting makes paravirtual

I/O performance much worse overall compared to passthrough, but virtual-passthrough

continues to offer similar performance to passthrough even with an additional level of

nesting.

Figure 3.7 shows the same performance measurements on x86 as Figure 3.5, but us-

ing Xen instead of KVM. However, because nested virtualization support does not work

properly in recent Xen versions, including the version we used [116], we ran Xen only

as the guest hypervisor for the nested VM cases while using KVM as the host hypervi-

84

Netperf RR

Netperf STREAM

Netperf MAERTS
Apache

Memcached
Mysql

0

10

20

30

40

50

60

70

P
er

fo
rm

an
ce

O
ve

rh
ea

d

102.5

VM
VM + passthrough
fake

L3 VM
L3 VM + passthrough
L3 VM + virtual-passthrough

Figure 3.6: Application Performance on x86 in L3 VM

sor. Just as in Figure 3.5, the performance differences among the different I/O config-

urations are substantial for the nested VM case. Paravirtual I/O performs significantly

worse than passthrough for the nested VM case for most of the application workloads.

Virtual-passthrough is able to provide performance similar to passthrough for all work-

loads and provide substantial gains over the virtual I/O device model, almost doubling

performance for Apache and quadrupling performance for Memcached. For MySQL,

virtual-passthrough does not provide much performance gain over the virtual I/O device

model, but its performance is still similar to passthrough, so the limited performance ben-

efit here is due to the limited gains of using passthrough with Xen. A surprising result is

85

Netperf RR

Netperf STREAM

Netperf MAERTS
Apache

Memcached
Mysql

0

1

2

3

4

5

6

7

P
er

fo
rm

an
ce

O
ve

rh
ea

d

10.2 7.8 8.4

VM
VM + passthrough
fake

nested VM
nested VM + passthrough
nested VM + virtual-passthrough

Figure 3.7: Application Performance on x86, Xen on KVM

that virtual-passthrough provides even better performance than the non-nested VM case for

Memcached. For the VM case, Figure 3.7 shows that Xen’s paravirtual I/O device does not

perform as well as passthrough, with substantial overhead for Netperf TCP RR, Apache,

and Memcached. This is in contrast to the good paravirtual I/O performance in the VM

case for KVM in Figure 3.5. With virtual-passthrough, KVM is the host hypervisor so the

nested VM running on the Xen guest hypervisor is using KVM’s paravirtual I/O device.

The nested VM, therefore, benefits from the better performance of KVM’s paravirtual I/O

device and outperforms the non-nested VM using Xen’s paravirtual I/O device.

Figure 3.8 shows performance measurements for three different VM configurations on

86

Application Unit Baseline L1 L2 L2 + VP
Netperf RR trans/sec 26,754 15,486 4,565 7,171
Netperf Stream Mbits/sec 9,410 8,488 6,478 9,146
Netperf Maerts Mbits/sec 9,403 9,407 8,211 7,941
Apache trans/sec 5,958 5,546 2,534 3,294
Memcached trans/sec 160,222 138,812 35,774 83,753
MySQL sec 13.9 17.9 25.5 25.3

Table 3.4: Application Benchmark Raw Performance on Arm
(VP stands for virtual-passthrough.)

Armv8.4, respectively, with performance normalized to Arm native execution, lower mean-

ing less overhead. Table 3.4 shows the non-normalized results from the measurements.

Note that the numbers are slightly different from Table 2.9 because of differences in the

Linux kernel and QEMU versions used.

Unlike x86, blank measurements are shown for passthrough configurations since it was

not possible to run them on Arm due to a lack of hardware support. In contrast, virtual-

passthrough measurements show good performance on Arm despite the lack of IOMMU

hardware. For the VM case, performance is generally quite comparable to native execution

with only modest overhead, indicating that the virtual I/O device model overall provides

good enough performance, just as with x86. Normalized performance is actually somewhat

better than x86, as MySQL no longer incurs much overhead when comparing VM versus

native execution.

Although we showed in Chapter 2 that NEVE significantly improves the performance

of nested virtualization compared to Armv8.3, it still incurs high overhead for some ap-

plication workloads, including Memcached that runs roughly four times slower for the

nested VM versus the VM case when using paravirtual I/O. Virtual-passthrough reduces

the performance overhead in all cases even further, including reducing the overhead of

87

Netperf RR

Netperf STREAM

Netperf MAERTS
Apache

Memcached
Mysql

0

1

2

3

4

5

6

7

P
er

fo
rm

an
ce

O
ve

rh
ea

d

VM
VM + passthrough
fake

nested VM
nested VM + passthrough
nested VM + virtual-passthrough

Figure 3.8: Application Performance on Arm

Memcached by more than two times. The one case in which performance overhead still

remains high is with Netperf TCP RR, just like for x86 and for the same reasons. Nev-

ertheless, these measurements across multiple architectures show that virtual-passthrough

can make a significant performance improvement for nested virtualization.

Figure 3.9 and 3.11 show the total migration time for VM and nested VM respectively

in seconds for running the same workloads on x86 as used in Figure 3.5. Live migration

was done between two identical x86 servers on the same subnet. The default transfer

bandwidth configuration was used for QEMU for migration, which was 268 Mbps, to avoid

interference with the running workload.

88

Netperf RR

Netperf STREAM

Netperf MAERTS
Apache

Memcached
Mysql

0

10

20

30

40

50

60

T
ot

al
M

ig
ra

ti
on

T
im

e
(s

ec
)

VM
VM + passthrough
fake

nested VM
nested VM + passthrough
nested VM + virtual-passthrough

Figure 3.9: Total VM Migration Time on x86

Figure 3.9 shows that both paravirtual I/O and virtual-passthrough provide similar mi-

gration performance in terms of total migration time, while none of the passthrough con-

figurations provide any migration capability, as represented by the blank measurements for

those configurations. We confirmed that total migration time was bandwidth limited and

can be reduced further by increasing the QEMU transfer bandwidth configuration.

Figure 3.9 shows that migration with the VM configuration is faster than with the nested

VM configuration. This is primarily because we added more memory for each virtualiza-

tion level, so there is substantially more memory state to migrate with the nested VM

configuration. There is also more state to migrate because we added more cores for each

89

Netperf RR

Netperf STREAM

Netperf MAERTS
Apache

Memcached
Mysql

0

200

400

600

800

1000

1200

1400

1600

T
ot

al
T

ra
n

sf
er

re
d

S
iz

e
(M

B
)

VM
VM + passthrough
fake

nested VM
nested VM + passthrough
nested VM + virtual-passthrough

Figure 3.10: Total Transferred Size on x86

virtualization level, resulting in more CPU state, and running the workload in the nested

VM on top of the VM results in more dirty pages. Figure 3.10 shows the transferred size

in megabytes during migration for each measurement in Figure 3.9. Nested VM configura-

tions indeed have more data to transfer compared to the VM configuration. Changing the

VM virtual hardware configuration to have the same total memory and number of cores as

the nested VM configuration would result in VM migration times much closer to nested

VM migration times.

Most of the workloads have similar migration times, except for MySQL, because it

creates many dirty pages due to caching database changes before flushing them to disk.

90

Although total migration time requires tens of seconds in all cases, actual downtime of

the VM being migrated ranged between 15 and 35 ms for both paravirtual I/O and virtual-

passthrough, showing that migration can be done with very little impact on application

availability.

Figure 3.11 shows the VM migration times for just migrating the nested VM without

migrating the underlying VM. For comparison, Figure 3.11 also shows the VM migration

time for the non-nested VM configuration from Figure 3.9. Nested VM migration config-

urations with paravirtual I/O and virtual-passthrough show similar migration times, while

the empty bars show that migration does not work with the passthrough configuration. In

contrast to Figure 3.9, the migration times for nested VM configurations are similar to the

VM migration time because migrating the nested VM no longer involves also migrating the

underlying VM. As a result, the amount of state migrated is similar, with similar amounts

of virtual CPU and memory state. Similar to the non-nested VM migration results, the

downtime for migrating the nested VM took less than 35 ms for both paravirtual I/O and

virtual-passthrough. These results show that virtual-passthrough provides a unique combi-

nation of superior I/O performance for nested virtualization while supporting migration, a

key virtualization feature for cloud computing deployments.

3.5 Related Work

Much work has been done on analyzing and improving the I/O performance of VMs, in-

cluding using I/O emulation [98], paravirtualization [80, 94, 88, 47, 120, 50, 81, 53, 64],

and direct device assignment [77, 115, 87, 114, 46, 7, 103, 38, 76, 31]. While none of these

91

Netperf RR

Netperf STREAM

Netperf MAERTS
Apache

Memcached
Mysql

0

10

20

30

40

T
ot

al
M

ig
ra

ti
on

T
im

e
(s

ec
)

VM
fake
fake

nested VM
nested VM + passthrough
nested VM + virtual-passthrough

Figure 3.11: Total Nested VM Migration Time on x86

proposed optimizations is specifically for nested virtualization, they are complementary to

our approach and, in some cases, can be used to further optimize I/O performance when

using virtual-passthrough.

vIOMMU [6] was the first to evaluate non-nested VM performance using a virtual

IOMMU on x86. They introduced using virtual IOMMUs along with the physical IOMMU

to provide protection for VMs running unmodified guest OSes when using direct device as-

signment. A virtual IOMMU was exposed to the guest OS to provide a virtualized view of

the physical IOMMU, and various techniques were explored to optimize its performance.

Virtual-passthrough leverages virtual IOMMUs but for a completely different purpose, as-

92

signing virtual devices to a nested VM, and doing so without requiring a physical IOMMU.

The virtual IOMMU does not need to be exposed to the nested VM for this purpose and

mappings are created only once when launching the nested VM, avoiding the performance

costs associated with direct control of the IOMMU by the guest OS. It is still possible to

expose the virtual IOMMU if desired to the nested VM, in which case the optimizations

presented would help performance for virtual-passthrough.

Turtles [19] mentions that nested VM I/O support can be done in nine possible com-

binations of emulation, paravirtualization, and direct device assignment by picking any

approach for I/O virtualization between host hypervisor and VM, and between guest hy-

pervisor and nested VM. They evaluated the combinations they considered interesting with

device passthrough performing the best but did not recognize the idea or benefits of directly

assigning virtual devices to a nested VM, as we introduce with virtual-passthrough. We

show for the first time the power of this previously dismissed approach, its ability to pro-

vide performance comparable to direct physical device assignment for many I/O workloads

without requiring additional hardware support, and its ability to provide I/O interposition

benefits such as migration.

We have introduced NEVE, hardware extensions on Arm to improve nested virtual-

ization performance, in Chapter 2. While I/O application performance improved by an

order of magnitude over Armv8.3, the end result showed that overhead is still significant

compared to bare-metal performance when using paravirtual I/O. Our results show that

virtual-passthrough can further improve Arm nested virtualization performance such that

many application workloads are now much closer to native Arm performance.

Various efforts have tried to compensate for the lack of I/O interposition with

93

passthrough to support live migration. Most of the previous works took software-only ap-

proaches [85, 61, 124, 125] since changing hardware is often not easy or feasible. Without

hardware support, software-only mechanisms are indirect and complex such as keeping

monitoring the device ring buffer with a high frequency to identify dirty pages. Those

software-only approaches either do not support unmodified guest OSes or may lose data

due to incomplete tracking of I/O operations. Our approach, however, leverages the virtual

hardware capability, which is easier to add compared to the physical counterpart, to simply

and directly get the device state and the dirty pages. No nested VM change is required.

There are approaches proposing new hardware functionalities. ReNIC [36] proposed to

extend SR-IOV device functionality for device state migration and IOMMU functionality

for dirty page logging. Despite the similarities to our work leveraging hardware extensions,

there are at least three key differences. The migration capability in our design is formally

defined hence can be applied to any PCI I/O devices. On the other hand, ReNIC hardware

extensions are limited to the SR-IOV capable devices, which is not the case for many

virtual I/O devices, while it’s also not clear how ReNIC SR-IOV specific extensions can

be applied to different I/O devices. Secondly, we implemented the device extensions in

the exactly the same device that the nested VM used to use, the virtual I/O device, for

the realistic evaluation while ReNIC hardware extensions are emulated in CPUs instead of

implemented in the I/O device, which resulted in less realistic evaluations as only a fraction

of the full bandwidth of the underlying I/O device is used. Lastly, the dirty page tracking

mechanism is different. We added the dirty page logging functionality to the I/O device

while ReNIC did it to IOMMU. While it is possible to log dirty pages in both devices,

doing it in IOMMU may slow down the I/O performance during migration. For example,

94

to log dirty pages, IOMMU forces the I/O devices to request the address translation for

each access, which otherwise can be cached in the I/O device for the faster translations [86]

while the I/O device still can log the accesses.

vDPA(vhost Data Path Acceleration) [72] introduced a hybrid approach for virtio de-

vices [92] to keep the control plane in the hypervisor for I/O interposition as before but to

offload the data plane to the hardware accelerator for enhanced performance. Using vDPA

alone for nested virtualization with virtual I/O model, however, wouldn’t improve the per-

formance much. The performance bottleneck, the nested VM using the virtual device pro-

vided by the guest hypervisor, still exists while the guest hypervisor may get better vir-

tual I/O performance with vDPA. Using the same configuration described in Section 3.2.1,

vDPA can be used with virtual-passthrough for the enhanced performance. Since using

vDPA is transparent to the guest hypervisor allowing no I/O interposition as other assigned

devices, adding the proposed migration capability to the virtual I/O device with vDPA helps

the guest hypervisor to support the nested VM migration using virtual-passthrough.

To support VM migration running applications using DPDK [39], the userspace net-

working stack, DPDK allows user applications to directly use a selected set of virtual

I/O devices instead of physical I/O devices [40]. It shares some similarities to virtual-

passthrough in that virtual I/O device is directly accessible from a less privileged CPU

mode in a VM, but there are significant differences. First, using DPDK requires rewriting

applications to use poll mode drivers while virtualization supports unmodified software

stacks in a VM, which is the whole point of using virtualization in the first place. Second,

DPDK would not perform well for additional levels of nested virtualization without the

technique we propose. For example, when running DPDK with the virtual I/O device in

95

the nested VM without virtual-passthrough, it would suffer from a performance drop since

the given device is emulated by the guest hypervisor. With virtual-passthrough, however,

the DPDK application in nested VM can use the virtual device provided by the host hyper-

visor, which would help to achieve much better performance like showed in Section 3.4.

Lastly, DPDK does not allow multiple applications in a VM to use the same device. Run-

ning multiple DPDK applications typically involves running one VM per each application,

which requires more management effort, and is not very scalable. Our approach only needs

to launch one nested VM with one virtual device to run an arbitrary number of applications

in it.

3.6 Summary

We introduced virtual-passthrough, a novel yet simple technique for boosting I/O perfor-

mance when using nested virtualization. Virtual-passthrough is similar to direct phys-

ical device assignment but instead assigns virtual I/O devices to nested VMs. Virtual

devices provided by the host hypervisor can be assigned to nested VMs directly with-

out delivering data and control through multiple layers of virtual I/O devices. Therefore,

virtual-passthrough reduces exit multiplication by eliminating the need for guest hypervi-

sor execution when the nested VM interacts with the assigned virtual I/O devices. The

approach leverages the existing direct device assignment mechanism and implementation,

so it only requires virtual machine configuration changes. Virtual-passthrough preserves

I/O interposition in the host hypervisor different from physical device passthrough while

virtual-passthrough also can easily support important I/O interposition benefits such as mi-

96

gration in the hypervisors at intermediate layers. Scalability is not a problem as many

virtual devices can be supported by a single physical device. Supporting both paravirtual

and emulated I/O devices is straightforward. The technique is platform agnostic, does not

require hardware support such as physical IOMMUs or SR-IOV. We have applied virtual-

passthrough in KVM for both x86 and Arm hardware, and show that it can provide more

than an order of magnitude improvement in performance over current KVM virtual device

support on real application workloads.

97

Chapter 4

Optimizing Nested Virtualization Performance Using Direct

Virtual Hardware

In Chapter 3, we presented virtual-passthrough to improve performance of I/O intensive

workloads running in nested VMs by eliminating the need for guest hypervisor execu-

tion when the nested VM interacts with the assigned virtual I/O devices. While we show

that virtual-passthrough is effective for many application workloads, there remain many

applications that still do not perform well compared to native execution, such as latency-

sensitive applications. Furthermore, virtual-passthrough does not help much for applica-

tions that are not I/O intensive.

To address this problem, we introduce Direct Virtual Hardware (DVH), a new approach

that enables a host hypervisor to directly provide virtual hardware to nested VMs with-

out the intervention of multiple levels of hypervisors. DVH is a generalization of virtual-

passthrough and does not limit virtual hardware to I/O devices. The virtual hardware ap-

pears to intervening layers of hypervisors as additional hardware capabilities provided by

the underlying system even though, in actuality, the capabilities are provided by the host

hypervisor in software. Like virtual-passthrough, DVH reduces exit multiplication by elim-

inating the need for guest hypervisor execution when the nested VM accesses the virtual

hardware. DVH makes it possible to support novel virtualization optimizations only in

98

software, and even introduce new virtual hardware capabilities that are not natively sup-

ported by hardware. Like other real hardware mechanisms, virtual hardware requires guest

hypervisors to be aware of these capabilities to use them but is transparent to nested VMs.

DVH can be realized on a range of different architectures. Beyond virtual-passthrough, we

present three additional DVH mechanisms: virtual timers, virtual inter-processor interrupts

(IPIs), and virtual idle.

We have implemented DVH in the Linux KVM hypervisor and evaluated its perfor-

mance. Our results show that combining the four DVH mechanisms can provide even

greater performance than virtual-passthrough alone and provide near-native execution

speeds on real application workloads even for multiple levels of recursive virtualization.

We also show that DVH can provide better performance than device passthrough while at

the same time enabling migration of nested VMs, thereby providing a combination of both

good performance and key virtualization features not possible with device passthrough.

4.1 Design

DVH mitigates the exit multiplication problem of nested virtualization by having the host

hypervisor directly provide virtual hardware to nested VMs, which reduces the need for

forwarding nested VM exits to the guest hypervisor. Virtual hardware appears to guest

hypervisors as additional hardware capabilities provided by the underlying system, even

though the virtual hardware is in actuality provided in software by the host hypervisor. Be-

cause guest hypervisors don’t need to use virtual hardware for their own execution, nested

VMs can be allowed to access, configure, and manipulate virtual hardware without the need

99

L0 hypervisor

L1 hypervisor L2 VM

1. Trap2. Emulate
the trap

3. Emulate
hardware for L2

4. Return
to L2

5. Emulate
the return

…

L1 VM

(a) L2 hardware access without DVH causing exit multiplication

 L0 hypervisor

L1 hypervisor L2 VM

1. Trap

2. Emulate hardware for L2

3. Return
to L2

L1 VM

0. Configure DVH
for L2 use

Direct Virtual
Hardware (DVH)

(b) L2 hardware access with DVH

Figure 4.1: Hardware Access from Nested VM

to exit to guest hypervisors for emulating the respective hardware behavior as shown in Fig-

ure 4.1b. DVH is designed to be transparent to nested VMs. The host hypervisor maps the

virtual hardware to what the nested VM perceives is the physical hardware, requiring no

changes to nested VMs.

Directly providing virtual hardware to VMs does require exits from the VM to the host

hypervisor because virtual hardware is not real hardware, so the host hypervisor needs to

emulate the hardware behavior for the VM. DVH, therefore, trades exits to guest hypervi-

100

sors for exits to the host hypervisor. For non-nested virtualization, DVH provides no real

benefit because it still requires exits to the hypervisor. However, for nested virtualization,

the potential benefit is significant because exits to just the host hypervisor are much less

expensive than exits to guest hypervisors. On modern hardware with single-level architec-

tural support for virtualization, all exits always go first to the host hypervisor. If the exit

needs to be handled by a guest hypervisor, the host hypervisor then forwards the exit to the

guest hypervisor. Fundamentally, an exit to a guest hypervisor is more expensive than an

exit to the host hypervisor by at least a factor of two because it also requires at least one exit

to the host hypervisor. In practice, an exit to a guest hypervisor is much more expensive

than a factor of two because it often requires many additional exits to the host hypervisor

to perform guest hypervisor’s operations that are not allowed to execute natively. By trad-

ing potentially many exits due to switching to guest hypervisors for one exit to the host

hypervisor, DVH can potentially bring the cost of nested virtualization down to non-nested

virtualization, in which exit multiplication does not exist.

DVH differs from previous approaches such as a hypervisor providing virtual hardware

to its guests or architecture extensions for nested virtualization. In the first approach, the

hypervisor providing the virtual hardware is the same as the hypervisor responsible for

managing the VM itself. In contrast, DVH provides virtual hardware from a hypervisor

layer different from the one responsible for managing the VM, thereby providing the hy-

pervisor managing the VM with an abstraction that appears to be real hardware. For nested

virtualization, DVH gains its advantages by providing virtual hardware directly from the

host hypervisor, not from the guest hypervisor. Unlike previous approaches, DVH provides

virtual hardware directly to the nested VM, so there is no longer a need to exit to the guest

101

hypervisor. In the second approach, which includes VMCS shadowing on x86 [55] and

NEVE on Arm introduced in Chapter 2, architecture extensions defer unnecessary traps

from the guest hypervisor, resulting in less number of traps to the host hypervisor in step

3 in Figure 4.1a. However, the number of exits from nested VMs to the guest hypervisor,

which is the root cause of the nested virtualization overhead, does not change. In contrast,

DVH directly addresses the root cause and reduces the number of exits from the nested

VM to the guest hypervisor. This completely removes steps 2, 3, and 4 in Figure 4.1a when

virtual hardware is supported. Architectural support for nested virtualization and DVH

are complementary, optimizing different aspects of nested virtualization. For cases where

DVH cannot avoid exiting to the guest hypervisor, for example, due to a hypercall from a

nested VM, the architectural support can help to reduce overhead.

DVH provides at least two other benefits for nested virtualization. First, it preserves the

host hypervisor’s ability to interpose on virtual hardware accesses, allowing it to transpar-

ently observe, control, and manipulate those accesses. Second, because virtual hardware

is just software, it is not limited by physical hardware. Virtual hardware can be designed

to be the same as an existing physical hardware specification, regardless of the existence

of the physical hardware on the system. Virtual hardware can also be designed to extend

the existing hardware to provide more powerful and efficient hardware to the VMs. No

physical hardware support is required.

While the guest hypervisor no longer needs to emulate hardware accesses from nested

VMs with DVH, it does need to configure and manage the virtual hardware. The guest

hypervisor needs to check if virtual hardware is available on the system, and configure the

virtual hardware for use by nested VMs, as shown in step 0 in Figure 4.1b. An important

102

aspect of the guest hypervisor’s configuration is to enable the host hypervisor to obtain

any information it needs from the guest hypervisor to emulate the virtual hardware for the

nested VM. This can include information internal to how the guest hypervisor manages

its nested VM, which would not be accessible to the host hypervisor unless it is provided

by the guest hypervisor. The information can be passed to the host hypervisor via either

existing architectural support for virtualization or new virtual hardware interfaces designed

for this purpose.

DVH is essentially a system design concept, which can be applied to and realized on

different architectures with single-level virtualization hardware support. We introduce sev-

eral DVH mechanisms for the x86 architecture, as discussed in Sections 4.1.1 to 4.1.4.

DVH can be easily used with additional levels of nested virtualization and supports key

virtualization features such as live migration, as discussed in Sections 4.1.5 and 4.1.6.

4.1.1 Virtual-passthrough

Virtual-passthrough, as we discussed in Chapter 3, is a technique for a nested VM to trans-

parently interact with virtual I/O devices provided by the host hypervisor without the inter-

ventions from guest hypervisors. Virtual-passthrough is, in fact, a perfect example of the

DVH design; the host hypervisor provides additional virtual I/O devices, and the guest hy-

pervisor passes the additional virtual I/O devices to nested VMs for direct access, as shown

in Figure 4.1b.

103

4.1.2 Virtual Timers

Guest OSes in VMs make use of CPU hardware timers that can be programmed to raise

timer interrupts, such as the local Advanced Programmable Interrupt Controller (LAPIC)

timer built into Intel x86 CPUs. Because the LAPIC timer may also be used by hypervisors,

when the guest OS programs the timer, this causes an exit to the hypervisor to emulate the

timer behavior. Emulation can be done by using software timer functionality, such as Linux

high-resolution timers (hrtimers), or by leveraging architectural support for timers, such as

the VMX-Preemption Timer that is part of Intel’s Virtualization Technology (VT). For

nested virtualization, the guest hypervisor is responsible for emulating the timer behavior

for a nested VM. However, because of exit multiplication, exiting to the guest hypervisor

to emulate the timer behavior is expensive.

We introduce virtual timers, a DVH technique for reducing the latency of programming

timers in nested VMs. A per virtual CPU virtual timer is software provided by the host

hypervisor that appears to guest hypervisors as an additional hardware timer capability.

For example, for x86 CPUs, the virtual timer appears as an additional LAPIC timer so that

guest hypervisors see two different LAPIC timers, the regular LAPIC timer and the virtual

LAPIC timer. Like the LAPIC timer, the virtual LAPIC timer has its own set of config-

uration registers. Although x86 hardware provides APIC virtualization (APICv), APICv

only provides a subset of APIC functionality mostly related to interrupt control; there is no

such notion as virtual timers in APICv. As typically done when adding a new virtualiza-

tion hardware capability, we add one bit in the VMX capability register and one in the VM

execution control register to enable the guest hypervisor to discover and enable/disable the

104

virtual timer functionality, respectively.

The guest hypervisor can let nested VMs use the virtual timer by setting the bit in

the VM execution control register, which is also visible to the host hypervisor. The guest

hypervisor sets the virtual timer when first entering the nested VM, either to initialize it

after creating the nested VM or to restore the previous timer state when running the nested

VM. No further guest hypervisor intervention is needed while the nested VM is running.

When the guest hypervisor switches from running a nested VM to running another one, it

saves the currently running nested VM state by reading the virtual timer and restores the

next nested VM state to the virtual timer.

Virtual timers are designed to be transparent to nested VMs and require no changes to

nested VMs. Hardware timers used by nested VMs are transparently remapped by the host

hypervisor to virtual timers. When a nested VM programs the hardware timer, it causes an

exit to the host hypervisor, which confirms that virtual timers are enabled via the VM ex-

ecution control register. Rather than forwarding the exit to the respective guest hypervisor

to emulate the timer, the host hypervisor handles the exit by programming the virtual timer

directly. This can be done either by using software timer functionality or architectural timer

support, similar to regular LAPIC timer emulation. Our KVM implementation uses Linux

hrtimers to emulate virtual timer functionality. With virtual timers, no guest hypervisor in-

tervention is needed for nested VMs to program timers, avoiding the high cost of existing

to the guest hypervisor on frequent programming of the timer by the guest OS in a nested

VM.

In emulating the timer, the host hypervisor needs to account for the time difference

between the nested VM and the host hypervisor. However, this is already done by existing

105

hypervisors. On x86 systems, a hypervisor keeps the time difference between a VM and

itself in a Timestamp Counter (TSC) offset field in the Virtual Machine Control Structure

(VMCS). Hardware can access the offset during a VM’s execution so that the guest OS

can get the correct, current time without a trap. For the same reason, the host hypervisor

maintains the time difference between a nested VM and itself in the VMCS for a nested

VM. When running a nested VM, the host hypervisor accesses the timer offset the guest

hypervisor programmed to a VMCS, combines it with the time difference between itself

and the guest hypervisor, and keeps it in the VMCS for a nested VM. Therefore, the host

hypervisor can handle the timer operation from a nested VM with the correct offset that it

already saved.

Virtual timers provide other timer related operations in a similar way to timer support

without DVH. For example, timer interrupts are delivered first from the host hypervisor

to the guest hypervisor, which in turn causes timer interrupts to the nested VM. However,

unlike regular timers emulated by guest hypervisors, virtual timer support can be further

optimized to deliver timer interrupts to the nested VM directly from the host hypervisor

using posted interrupts [56]. When the virtual timer for a nested VM is expired, and the

host hypervisor gets the control back from the nested VM, the host hypervisor can program

hardware through the posted interrupt descriptor to raise an interrupt to the nested VM and

return back to the nested VM instead of going back to the guest hypervisor. The only

additional information needed for the direct timer interrupt delivery is the interrupt vector

number the nested VM programmed for timer interrupts. On the nested VM’s programming

the interrupt vector number through one of the regular timer configuration registers, the

guest hypervisor can pass this information to the host hypervisor via corresponding the

106

virtual timer configuration register.

4.1.3 Virtual IPIs

Guest OSes in VMs send IPIs from one CPU to another. The CPUs controlled by the guest

OS are not the physical CPUs, but virtual CPUs which the hypervisor in turn decides when

and where to run by scheduling them on physical CPUs. On x86 systems, sending an IPI

involves writing the Interrupt Command Register (ICR) with the identifier of the destination

CPU. Writing to this register in a VM causes an exit to the hypervisor. The guest OS only

knows about virtual CPUs, so the hypervisor determines the physical CPU identifier and

does the actual write to the ICR to send the IPI between physical CPUs. Receiving an IPI

also causes an exit to the hypervisor, which in turn delivers the IPI to the VM. For nested

virtualization, multiple levels of hypervisors must be involved in sending and receiving an

IPI. While CPU posted interrupts [56] are available on x86 systems which enable IPIs to be

received directly by a VM without exiting to the hypervisor, posted interrupts do not help

with the IPI sending side, which still must exit to the guest hypervisor and subsequently

through multiple layers until the actual IPI is sent by the host hypervisor.

Figure 4.2 illustrates the seven steps for sending an IPI between virtual CPUs (VCPUs)

of an L2 VM, specifically from its VCPU 2 to VCPU 3. Dotted lines indicate what is

perceived by each VCPU, while solid lines indicate what actually happens. The guest OS

running on the L2 VCPU 2 writes the interrupt number and destination VCPU (VCPU 3)

to the ICR and thinks that an IPI is delivered to VCPU 3. Instead, writing to the ICR

traps to the L0 hypervisor, which forwards the trap to the L1 hypervisor to emulate the ICR

107

Legend

Physical CPU 0 Physical CPU 1

L0 hypervisor L0 hypervisor

L2
VCPU 2

L1
VCPU 1

1. Trap

3. Update
interrupt information

4. Trap
2. Enter L1

for ICR
emulation

5. Ask physical cpu 1
to send a posted interrupt

L1
VCPU 0

L2
VCPU 3

7. Raise
the interrupt

to the L2 VCPU 3

Ask L1 VCPU 0 to send a posted interrupt

Send an IPI to L2 VCPU 3

Intention of a hypervisor or OS

Actual control flow

PI descriptor
for L2 VCPU 3

Pending IRQs
…

…

6. Get interrupt
information

Figure 4.2: Nested VM IPI Delivery

behavior. The L1 hypervisor gets the interrupt number and destination VCPU number from

the ICR. Assuming that CPU posted interrupts are supported, the L1 hypervisor writes the

interrupt number to the posted-interrupt descriptor (PI descriptor) of the destination VCPU.

It then asks the L1 VCPU that runs the L2 VCPU 3, the L1 VCPU 0, to raise a posted

interrupt to the L2 VCPU 3. This traps to the L0 hypervisor because CPU posted interrupts

for the L1 hypervisor are provided by the L0 hypervisor. The L0 hypervisor asks the

physical CPU 1 on behalf of the L1 VCPU to raise a posted interrupt. Finally, the physical

CPU 1 gets the original IPI information from the PI descriptor and raises an interrupt to

the L2 VCPU 3 directly. No hypervisor intervention is necessary on the receiving side, but

multiple hypervisors are involved on the sending side.

We introduce virtual IPIs, a DVH technique for reducing the latency of sending IPIs

for nested VMs. Virtual IPIs involve two mechanisms, a virtual ICR and a virtual CPU

interrupt mapping table. A per virtual CPU virtual ICR is software provided by the host

108

hypervisor that appears to guest hypervisors as an additional hardware capability. We also

add one bit in the VMX capability register and one in the VM execution control register

to enable the guest hypervisor to discover and enable/disable the virtual IPI functionality,

respectively. The guest hypervisor can let nested VMs use virtual IPIs by setting the bit in

the VM execution control register, which is also visible to the host hypervisor.

Virtual IPIs are designed to be transparent to nested VMs and require no changes to

nested VMs. The hardware ICR used by nested VMs is transparently remapped by the

host hypervisor to the virtual ICR. When a nested VM sends an IPI by writing the ICR,

it causes an exit to the host hypervisor, which confirms that virtual IPIs are enabled via

the VM execution control register. Rather than forwarding the exit to the respective guest

hypervisor, the host hypervisor handles the exit by emulating the IPI send operation and

writing the hardware ICR directly. Using virtual IPIs, no guest hypervisor intervention is

needed for nested VMs to send IPIs.

To send the IPI, the host hypervisor must know the destination physical CPU that runs

the IPI destination virtual CPU of the nested VM. A hypervisor, however, typically only

knows how virtual CPUs of its own VMs are distributed on physical CPUs; it does not

know the information for nested VMs. Unlike virtual-passthrough and virtual timers, the

host hypervisor cannot get the nested VM virtual CPU distribution information through

existing hardware interfaces provided to the guest hypervisor.

To address this problem, we add new virtual hardware interfaces for guest hypervi-

sors, the virtual CPU interrupt mapping table and the virtual CPU interrupt mapping table

address register (VCIMTAR). This table is a per VM global structure in memory that pro-

vides mappings from virtual CPUs to the physical CPUs maintained by the guest hypervi-

109

sors. The guest hypervisor can share the mapping information with the host hypervisor by

programming the table’s base memory address to the VCIMTAR, which enables the host

hypervisor to find the destination physical CPU running the IPI destination nested VM’s

virtual CPU. On x86, each table entry has a mapping from virtual CPU number to the cor-

responding PI descriptor, which includes a physical CPU number, to fully leverage posted

interrupts for nested VMs on the receiving side.

Figure 4.3 shows the same nested VM IPI delivery example from Figure 4.2, but using

virtual IPIs. The guest OS running on the L2 VCPU 2 writes to the ICR as before, but the

trap is handled by the L0 hypervisor directly with virtual IPIs. The L1 hypervisor is not

involved. The L0 hypervisor gets the interrupt number and destination VCPU number from

the ICR. However, it does not know the location of the PI descriptor for the destination L2

VCPU; it can only access the PI descriptor of the currently running VCPU on the current

physical CPU, the L2 VCPU 2 in this example. With virtual IPIs, the L0 hypervisor looks

up the correct destination PI descriptor in the virtual CPU interrupt mapping table using

the destination VCPU number (L2 VCPU 3) as the key. It then can update the PI descriptor

in the same way as the L1 hypervisor would do, then asks the physical CPU 1 to raise a

posted interrupt. Finally, the physical CPU 1 gets the original IPI information from the PI

descriptor and raises an interrupt to the L2 VCPU 3 directly. No hypervisor intervention

is necessary on the receiving side, and only host hypervisor intervention is needed on the

sending side.

110

Physical CPU 0 Physical CPU 1

L0 hypervisor L0 hypervisor

PI descriptor
for L2 VCPU 3

L2
VCPU 2

L1
VCPU 1

1. Trap

3. Update
interrupt information

4. Ask physical cpu 1
to send a posted interrupt

L1
VCPU 0

L2
VCPU 3

6. Raise
the interrupt

to the L2 VCPU 3

Send an IPI to L2 VCPU 3

5. Get interrupt
information

Pending IRQs
…

…

Virtual CPU interrupt
mapping table

vcpu 3 PI desc
…

…

2. Get
PI desc for
L2 VCPU 3

Legend

Intention of a hypervisor or OS

Actual control flow

Figure 4.3: Nested VM IPI Delivery with Virtual IPIs

4.1.4 Virtual Idle

OSes execute idle instructions, such as the HLT (halt) instruction on x86, to enter CPU low-

power mode when possible. When an idle instruction is executed in a VM, the hypervisor

will typically trap the instruction to retain control of the physical CPU. The hypervisor then

can switch to other tasks of its own or enter the real low-power mode if it does not have

jobs to run. The hypervisor will return to the VM later when the VM receives new events

to handle. For nested virtualization, multiple levels of hypervisors are involved in entering

and exiting low-power mode, resulting in increased interrupt delivery latencies for nested

VMs.

We introduce virtual idle, a DVH technique for reducing the latency of switching to and

from low-power mode in nested VMs. Virtual idle leverages existing architectural support

for configuring whether to trap the idle instruction, but uses it in a new way. We configure

the host hypervisor to trap the idle instruction as before, but all guest hypervisors to not

111

trap it. The host hypervisor knows not to forward the idle instruction trap to the guest

hypervisor since it can access the guest hypervisor’s configuration for nested VMs through

the VMCS as discussed for virtual timers in Section 4.1.2. A nested VM executing the

idle instruction will only trap to the host hypervisor, and the host hypervisor will return

to the nested VM directly on a new event. As a result, the cost of switching to and from

low-power mode for nested VMs using virtual idle will be similar to that for non-nested

VMs, avoiding guest hypervisor interventions.

Currently available options such as disabling traps [71] in all hypervisors or using a

guest kernel option to poll [103] instead of executing the idle instruction can also reduce

latency similar to virtual idle. The key difference is that those options simply consume and

waste physical CPU cycles when the nested VM does nothing. With virtual idle, the host

hypervisor only runs the nested VM when it has jobs to run.

Virtual idle can be used whenever desired by a guest hypervisor. However, instead of

enabling virtual idle all the time when running a nested VM, we enable it only when the

guest hypervisor knows it has no other nested VMs that it can run. When there is nothing

else to run if the running virtual CPU of the nested VM goes idle, it is best to allow the

host hypervisor to handle the idle instruction since returning to the guest hypervisor has no

benefit. However, when there are other nested VMs that can be run by the guest hypervisor,

it is useful to return to the guest hypervisor to allow it to schedule another nested VM to

execute. Otherwise, the host hypervisor will schedule the CPU to run other VMs that

it knows about and may not include any other nested VMs managed by the respective

guest hypervisor because it thinks the idle instruction execution indicates that the guest

hypervisor has no other jobs to run.

112

4.1.5 Recursive DVH

DVH can be easily used with additional levels of nested virtualization. Guest hypervisors

that used to use virtual hardware transparently for its VMs for two levels of virtualization

now need to expose the virtual hardware to the next level guest hypervisors recursively.

Only the last level guest hypervisor uses virtual hardware for its VM transparently as be-

fore. Once guest hypervisors at any level k provide virtual hardware to the next level,

the guest hypervisors get information from the next level guest hypervisors at level k+1,

translate the information valid at level k, and program the information to virtual hardware

provided so that hypervisors at level k-1 can access the information in turn. In that way,

the host hypervisor will have all the necessary information to emulate nested VMs. The

currently running guest OS in a nested VM can always use the virtual hardware without

trapping to guest hypervisors.

For example, recursive virtual timers can be achieved with the support from the guest

hypervisors. Each guest hypervisor except the last one provides a virtual timer, including

bits in the VMX capability and VM execution control registers, to the next level hypervisor.

The last level hypervisor, which is equivalent to the guest hypervisor for two levels of

virtualization, does not provide a virtual timer for its VM, but transparently allows it to

use the virtual timer provided to the last level hypervisor. The last level hypervisor can

decide whether to enable or disable the virtual timer feature for its VM, but all other guest

hypervisors will only enable the virtual timer for its nested VMs if its respective next level

hypervisor enables it. For example, the L1 hypervisor will only enable virtual timers for

an L3 VM if both the L1 and the L2 hypervisors enable it for their respective VMs. In

113

this way, the enable bits of all guest hypervisors are combined using an and operation into

the single enable bit that the L1 hypervisor sets for an Ln VM. The L0 hypervisor would

use the virtual timer for the Ln VM if the L1 hypervisor enabled the virtual timer, which

means all other guest hypervisors also enabled it. If the L1 hypervisor disabled the virtual

timer, then the Lk hypervisor will forward the Ln VM timer access to the Lk+1 hypervisor

recursively, where k starts from 0, until a hypervisor Li finds a hypervisor Li+1 with the

enable bit set or control reaches to the Ln-1 hypervisor. For both cases, the respective

hypervisor emulates timer functionality for the Ln VM.

4.1.6 DVH Migration

Because DVH provides virtual hardware, including virtual I/O devices, in software, it al-

lows the host hypervisor to encapsulate the state of the L1 VM and decouple it from physi-

cal devices to support migration. From the perspective of the host hypervisor, migrating an

L1 VM that contains or does not contain a nested VM is essentially the same. The nested

VM using DVH does not introduce additional hardware dependencies on the host and is

completely encapsulated by the host hypervisor. For example, a hypervisor supporting mi-

gration of VMs that use virtual I/O devices naturally supports migration of VMs that use

virtual-passthrough.

The only difference from the perspective of the host hypervisor between a VM with and

without DVH is that the former provides more virtual hardware to a VM, such as a virtual

IOMMU and virtual timer, while the latter does not. Migration using DVH requires that the

state associated with the additional virtual hardware is also migrated. This is no different

114

than migrating any VM using any other virtual hardware in which the hardware state must

be properly saved and restored. DVH is software only and is not coupled to any physical

device, making it straightforward for the hypervisor to encapsulate its state for migration.

When migrating a nested VM, without its L1 VM, the level of virtual hardware support

required depends on the DVH technique. For all of the DVH techniques discussed other

than virtual-passthrough, the level of support needed is minimal. Virtual timers, virtual

IPIs, and virtual idle do not introduce any additional virtual hardware state that needs to be

migrated compared to what would be required if the guest hypervisor itself were emulating

that state without DVH. For virtual IPIs and virtual idle, the techniques are stateless, and

there is no additional state that needs to be saved for nested VM migration. For virtual

timers, the guest hypervisor needs to save the timer value for nested VM migration, just

as it would if it were handling timer emulation itself without DVH. This simply involves

getting the timer value from the virtual hardware instead of from the guest hypervisor’s

emulated hardware. The timer offset also needs to be saved, but that is already saved as

part of the VM state stored in VMCS, with or without DVH. For virtual-passthrough, we

have already discussed migrating a nested VM in Section 3.2.4.

4.2 Evaluation

We implemented the four DVH mechanisms in KVM and evaluated their performance.

Experiments used x86 server hardware in CloudLab [41], each with two Intel Xeon Silver

4114 10-core 2.2 GHz CPUs (hyperthreading disabled), 192 GB ECC DDR4-2666 RAM,

an Intel DC S3500 480 GB 6G SATA SSD, and a dual-port Intel X520-DA2 10Gb NIC

115

(PCIe v3.0, 8 lanes). The servers include VMCS Shadowing [55] for nested virtualization,

APICv for virtual interrupt support and posted interrupts from CPUs, and VT-d IOMMU

support for direct device assignment with posted interrupt support from devices.

To provide comparable measurements, we kept the software environments the same as

much as possible. All hosts and VMs used Ubuntu 14.04 with the same Linux 4.18 kernel

and software configuration unless otherwise indicated. We fixed a KVM hypervisor bug

related to using virtualization support for accessing segment registers, which has since been

incorporated into later versions of KVM [25]; all our measurements included this fix for

a fair comparison. For the host and guest hypervisors, we used KVM with QEMU 3.1.0.

When using virtual I/O devices with KVM, with or without virtual-passthrough, we used

the standard virtio network device with vhost-net and the cache=none setting for virtual

block storage devices [66, 99, 51].

We use newer x86 servers having posted interrupt support from devices to fully leverage

virtualization hardware support, which is missing in servers we used in Chapter 2 and

Chapter 3. We also use up-to-date KVM and QEMU versions to keep up with upstream

changes and improvements.

We used four different configurations for our measurements: (1) native: running na-

tively on Linux with 4 cores and 12 GB RAM, (2) VM: running in a VM with 4 cores and

12 GB RAM on a hypervisor with 6 cores and 24 GB RAM, (3) nested VM: running in

an L2 VM with 4 cores and 12 GB RAM on an L1 hypervisor with 6 cores with 24 GB

RAM on an L0 hypervisor with 8 cores and 36 GB RAM, (4) L3 VM: running in an L3

VM with 4 cores and 12 GB RAM on an L2 hypervisor with 6 cores with 24 GB RAM

on an L1 hypervisor with 8 cores and 36 GB RAM on an L0 hypervisor with 10 cores and

116

Name Description
Hypercall Switch from VM to hypervisor and immediately back to VM without doing any work

in the hypervisor.
DevNotify Device notification via MMIO write from VM virtio device driver to virtual I/O de-

vice.
ProgramTimer Program LAPIC timer in TSC-Deadline mode.
SendIPI Send IPI to CPU that is idle which needs to wakeup and switch to running destination

VM vCPU to receive IPI.

Table 4.1: Virtualization Microbenchmarks

48 GB RAM. Two cores and 12 GB RAM were added for the hypervisor at each virtual-

ization level similar to previous work [109, 105] on nested virtualization using multicore

processors. We pinned each virtual CPU to a specific physical CPU following the best

measurement practices [30, 96, 117]. For benchmarks that involve clients interacting with

the server, the server ran on the configuration being measured while the clients ran on a

separate dedicated machine, ensuring that clients were never saturated during our experi-

ments. Clients ran natively on Linux with the same kernel version as the server and were

configured to use the full hardware available.

We evaluated performance using microbenchmarks and widely-used application work-

loads, as listed in Table 4.1 and Table 4.2, respectively. Other than DVH, no changes were

required to the hypervisors except the KVM bugfix, which was used for all configurations.

DVH required changes in the hypervisors to provide and use the virtual hardware. We

also implemented posted interrupt support in the virtual IOMMU for DVH measurements,

which is missing in QEMU, to fully leverage the benefits of the DVH design.

Table 4.3 shows performance measurements from running the microbenchmarks in a

VM, nested VM, nested VM using DVH, L3 VM, and L3 VM using DVH. Additional

virtualization levels are not supported by KVM [59]. Measurements were run using par-

avirtual I/O, though only DevNotify uses the I/O device. The measurements show more

117

Name Description
Netperf netperf v2.6.0 [60] server running with default parameters on the client in

three modes: TCP RR, TCP STREAM, and TCP MAERTS, measuring latency and
throughput, respectively.

Apache Apache v2.4.7 Web server running ApacheBench [100] v2.3 on the remote client,
measuring requests handled per second serving the 41 KB file of the GCC 4.4 manual
using 10 concurrent requests.

Memcached memcached v1.4.14 using the memtier benchmark v1.2.3 with its default parame-
ters.

MySQL MySQL v14.14 (distrib 5.5.41) running SysBench v.0.4.12 using the default config-
uration with 200 parallel transactions.

Hackbench hackbench [93] using Unix domain sockets and 100 process groups running with
500 loops.

Table 4.2: Application Benchmarks

than an order of magnitude increase in cost when running in a nested VM versus a VM.

Hypercall is much more expensive in a nested VM than in a VM as it takes much longer to

exit to the guest hypervisor from a nested VM than to exit from a VM to its hypervisor with-

out nested virtualization. As expected, DVH does not improve nested VM performance for

Hypercall as it always requires exiting to the guest hypervisor.

DVH substantially improves nested VM performance for the other microbenchmarks as

each of them exercises one of the DVH mechanisms to avoid exits to the guest hypervisor.

Compared to vanilla KVM running the nested VM, DVH provides more than 3 times better

performance on DevNotify due to virtual-passthrough, 13 times better performance on

ProgramTimer due to virtual timers, and 8 times better performance on SendIPI due to

virtual IPI and virtual idle. SendIPI measures the total time to send and receive an IPI

when the VM is idle on the destination CPU.

Although DVH performs much better than vanilla KVM in all cases, it incurs noticeably

more overhead running a nested VM than running a VM for DevNotify. The extra cost is

a result of the host hypervisor needing to walk the extended page table (EPT) of the VM

to check if a fault occurred because the mapping does not exist at the faulting address in

118

VM nested VM nested VM
+ DVH L3 VM L3 VM

+ DVH
Hypercall 1,575 37,733 38,743 857,578 929,724
DevNotify 4,984 48,390 13,815 1,008,935 15,150
ProgramTimer 2,005 43,359 3,247 1,033,946 3,304
SendIPI 3,273 39,456 5,116 787,971 5,228

Table 4.3: Microbenchmark Performance in CPU Cycles

the EPT. Once the host hypervisor confirms that the mapping is valid, it handles the fault

directly. Note that no data is transferred in this microbenchmark and more realistic I/O

device usage that accesses data would have much less overhead for running a nested VM

with DVH compared to just running a VM.

L3 VM measurements show more than a 200 times increase in cost compared to VM

due to excessive exit multiplication with further virtualization levels. DVH again substan-

tially improves L3 VM performance for all microbenchmarks other than Hypercall, more

than 150 times on average. More importantly, using DVH resulted in similar performance

for both L3 and L2 VMs, an expected outcome since DVH removes guest hypervisor inter-

ventions. Our results show how DVH significantly improves nested virtualization perfor-

mance. By resolving the exit multiplication problem, DVH achieves performance close to

non-nested virtualization performance regardless of the nested virtualization level.

Figure 4.4 shows performance measurements from running the application workloads

in six different VM configurations. We considered all possible network I/O configurations.

For VM, we measured both paravirtual I/O and passthrough. For nested VM, we measured

paravirtual I/O, passthrough, DVH, and DVH with only the virtual-passthrough mechanism

enabled, denoted as DVH-VP, to provide a conservative comparison against passthrough.

DVH-VP did not require any hypervisor changes to support virtual hardware; it did not

119

Netperf RR

Netperf STREAM

Netperf MAERTS
Apache

Memcached

MySQL

Hackbench
0

1

2

3

4

5

6

7

P
er

fo
rm

an
ce

O
ve

rh
ea

d

VM
VM + passthrough
fake
fake

Nested VM
Nested VM + passthrough
Nested VM + DVH-VP
Nested VM + DVH

Figure 4.4: Application Performance

include posted interrupt support in the virtual IOMMU. Since we are more interested in

overhead than absolute performance, VM and nested VM performance are normalized rel-

ative to native execution, with lower meaning less overhead. Table 4.4 shows the non-

normalized results from the measurements. Note that the numbers are slightly different

from Table 3.3 because of differences in hardware and the Linux kernel/QEMU versions

used.

For the VM case, both paravirtual I/O and passthrough provide mostly similar per-

formance, with passthrough having better performance for both Netperf RR and Apache.

120

Application Unit Baseline L1 L2 L2 + DVH L3 L3 + DVH
Netperf RR trans/sec 45,578 21,208 5,843 17,058 361 15,392
Netperf Stream Mbits/sec 9,413 9,414 9,411 9,229 3,969 9,162
Netperf Maerts Mbits/sec 9,414 9,412 3,700 9,329 294 9,273
Apache trans/sec 15,469 10,940 3,534 9,409 157 7,720
Memcached trans/sec 354,132 358,547 129,118 352,606 3,282 293,087
MySQL sec 4.4 4.4 8.5 5.1 96.2 7.2
Hackbench sec 10.4 11.8 18.0 11.2 143.7 14.1

Table 4.4: Application Benchmark Raw Performance

The virtual I/O device model overall provides sufficient performance for the VM case with

passthrough providing only marginal gains for most of the application workloads. Since

Hackbench does not use I/O, it shows no performance difference between different I/O

models.

For the nested VM case, performance differences among the different VM configu-

rations are substantial. Only DVH is able to provide nested virtualization performance

almost as good as the VM case for all application workloads. DVH performance can be

more than 3 times better than just using paravirtual I/O, and more than 2 times better than

passthrough. While paravirtual I/O performs much worse than passthrough for most ap-

plication workloads, more than 3 times worse than the VM case for Apache, Memcached,

Netperf RR, and Netperf MAERTS, DVH-VP alone delivers nested VM performance com-

parable to passthrough for most application workloads. Performance gains using DVH-VP

instead of the virtual I/O device model are substantial, more than doubling performance

for Apache and almost tripling performance for Memcached. Note that the virtual I/O de-

vice emulation done by the host hypervisor using DVH-VP is almost identical to that using

virtual I/O model; it relays data between the physical I/O device and (nested) VM address

space. The performance gain using DVH-VP is a result of removing the guest hypervisor’s

121

Netperf RR

Netperf STREAM

Netperf MAERTS
Apache

Memcached

MySQL

Hackbench
0

1

2

3

4

5

6

7

P
er

fo
rm

an
ce

O
ve

rh
ea

d
Nested VM
Nested VM + DVH-VP
+ posted interrupts

+ virtual IPIs
+ virtual timers
+ virtual idle (= DVH)

Figure 4.5: Application Performance Breakdown

intervention on physical CPUs that run the nested VM.

Figure 4.5 provides a finer granularity breakdown of the nested virtualization perfor-

mance in Figure 4.4 to show how incrementally applying each DVH technique affects per-

formance. Starting with DVH-VP, we show how performance changes by adding posted

interrupt support in the virtual IOMMU, virtual IPIs, virtual timers, and virtual idle, respec-

tively, the latter including all DVH techniques. Different DVH techniques improve perfor-

mance to varying degrees for different application workloads. Virtual IPIs most improve

performance for Apache, MySQL, and Hackbench. Virtual timers improve performance

122

most for Netperf RR, and help some with Apache and MySQL. Virtual idle improves per-

formance for Netperf RR as the workload often goes idle. The different DVH techniques

also have performance interactions. For example, for Memcached, each of the individual

DVH techniques except virtual idle improves performance significantly when used by it-

self, but once one technique is used, the other techniques do not help much further because

there is not much overhead left. On the other hand, virtual idle helps significantly with

Netperf RR, but only when used in combination with the other DVH techniques, not by

itself.

Figure 4.6 shows measurements using three levels of virtualization. Only DVH is able

to provide nested virtualization performance almost as good as the VM case for all ap-

plication workloads. DVH performance is up to two orders of magnitude better than just

using paravirtual I/O and can be more than 30 times better than passthrough. In contrast,

these measurements show that adding an additional level of virtualization makes paravir-

tual I/O performance practically unusable, showing more than two orders of magnitude

overhead for multiple workloads such as Memcached and Apache, and much worse than

the passthrough model. DVH-VP alone again continues to offer similar performance as

passthrough, though it still performs multiple times worse than native execution and not as

well as DVH. Table 4.4 shows the non-normalized results from the measurements.

Figure 4.7 and Figure 4.8 show total migration time for VM and nested VM, respec-

tively, in seconds for running the same workloads on x86 as used in Figure 4.4. To provide

a baseline for comparison, we also measured the time to migrate VM and nested VM when

not running any workload, denoted as Idle. Live migration was done between two iden-

tical x86 servers on the same subnet. We set the transfer bandwidth to 32 Gbps, which

123

Netperf RR

Netperf STREAM

Netperf MAERTS
Apache

Memcached

MySQL

Hackbench
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

P
er

fo
rm

an
ce

O
ve

rh
ea

d

126 32 99 108 22
98
101

VM
VM + passthrough
fake
fake

L3
L3 + passthrough
L3 + DVH-VP
L3 + DVH

Figure 4.6: Application Performance in L3 VM

effectively imposes no limit on the bandwidth available for migration. We used a different

configuration from the default transfer bandwidth used in Chapter 3 for migration mea-

surements because Hackbench, which we did not use in Chapter 3, could not be migrated

with the default transfer bandwidth because it generated dirty pages faster than the default

transfer bandwidth.

Figure 4.7 shows that paravirtual I/O, DVH-VP, and DVH have similar migration per-

formance in terms of total migration time when migrating a VM running a nested VM in

it. In contrast, none of the passthrough configurations provide any migration capability,

124

Idle

Netperf RR

Netperf STREAM

Netperf MAERTS
Apache

Memcached
Mysql

Hackbench
0

1

2

3

4

5

6

T
ot

al
M

ig
ra

ti
on

T
im

e
(s

ec
)

VM
VM + passthrough
fake
fake

nested VM
nested VM + passthrough
nested VM + DVH-VP
nested VM + DVH

Figure 4.7: Total VM Migration Time on x86

as represented by the blank measurements for those configurations. In general, DVH-VP

and DVH take more time than paravirtual I/O due to QEMU taking longer to identify zero

pages for DVH-VP and DVH compared to paravirtual I/O. For example in the Idle case,

the migration time for DVH was about .6 s longer than for paravirtual I/O and almost all of

that difference was just due to the extra time to identify zero pages.

DVH takes slightly more time than DVH-VP since DVH has more states to migrate

because of additional virtual hardware. Although total migration time shows modest

differences between paravirtual I/O, DVH-VP, and DVH, the actual downtime took less

than 300 ms for all configurations, showing that migration can be done with very little

125

impact on application availability.

Note that migration with the VM configuration is faster than with the nested VM con-

figuration since the latter has substantially more state to migrate because we added more

memory and CPU for each virtualization level. Running the workload in the nested VM on

top of the VM also results in more dirty pages to migrate.

Figure 4.8 shows the VM migration times for just migrating the nested VM without

migrating the underlying VM. For comparison, Figure 4.8 also shows the VM migration

time for the non-nested VM configuration from Figure 4.7. In contrast to Figure 4.7, the

time for migration with the nested VM configuration is much closer to that of the VM con-

figuration since migrating the nested VM no longer involves also migrating the underlying

VM, resulting in migrating a similar amount of state as non-nested VM migration. Just

like Figure 4.7, none of the passthrough configurations provide any migration capability,

as represented by the blank measurements for those configurations. DVH-VP and DVH

show increased migration time compared to paravirtual I/O due to the same zero page is-

sue. For example in the Idle case, the migration time for DVH was about .7 s longer than

for paravirtual I/O and almost all of that difference was just due to the extra time to identify

zero pages. Note that while Figure 4.8 shows that percentage increase in migration time

for DVH and DVH-VP versus paravirtual I/O is higher than in Figure 4.7, this is because

the total migration time in Figure 4.8 for nested VM configurations is much less than in

Figure 4.7. As a result, the overhead due to zero pages accounts for a relatively larger

percentage of the migration time in Figure 4.8 even though the actual time difference for

DVH and DVH-VP versus paravirtual I/O is similar to Figure 4.7.

In contrast to Figure 4.7, DVH-VP and DVH show almost the same migration time for

126

Idle

Netperf RR

Netperf STREAM

Netperf MAERTS
Apache

Memcached
Mysql

Hackbench
0

1

2

3

4

T
ot

al
M

ig
ra

ti
on

T
im

e
(s

ec
)

VM
VM + passthrough
fake
fake

nested VM
nested VM + passthrough
nested VM + DVH-VP
nested VM + DVH

Figure 4.8: Total Nested VM Migration Time on x86

each workload in Figure 4.8. The additional virtual hardware DVH introduced other than

virtual I/O devices is not part of the nested VM state, resulting in DVH-VP and DVH hav-

ing a a similar amount of state to migrate. Like the non-nested VM migration results, the

downtime for migrating the nested VM took less than 300 ms for paravirtual I/O, DVH-VP,

and DVH. These results show that DVH provides a unique combination of superior perfor-

mance for nested virtualization while supporting migration, a key virtualization feature for

cloud computing deployments.

Although the paravirtual I/O nested VM configuration has the fastest migration times in

Figure 4.8 for many workloads, this is in part due to the nested VM configuration having the

127

worst performance as shown in Figure 4.4. It has the worst performance in part because the

workloads experience longer idle periods, resulting in the CPU being less busy running the

workloads and having more time available to perform the migration itself, which reduces

migration time. It also has the worst performance in part because the workloads run slower,

resulting in less data being written to memory and therefore fewer dirty pages that need to

be migrated, also reducing migration time. For example for Hackbench, the nested VM

migration time is much faster than the non-nested VM because it runs much slower and so

does not generate dirty pages as fast, resulting in less state to migrate.

4.3 Related Work

Modern architectures such as x86 and Arm have been adding more powerful virtualization

extensions to enhance VM and nested VM performance [56, 55, 9, 12, 70, 31, 33, 34,

24]. Hardware extensions such as APICv on x86 [56] and VGIC on Arm [9, 12] provide

additional hardware state that can be dedicated for use by VMs and nested VMs. DVH

provides additional virtual hardware, but as a software solution that does not require ad-

ditional hardware. DVH can be deployed in addition to and in the absence of hardware

extensions to improve nested virtualization performance. It can also be used to evaluate

future hardware extensions. Hardware extensions specific to nested virtualization such as

VMCS shadowing on x86 [55] and NEVE on Arm, as introduced in Chapter 2, reduce the

cost of guest hypervisor execution, but they do not avoid guest hypervisor interventions for

nested VMs. In contrast, DVH removes multiple levels of guest hypervisor interventions

and replaces them with much less expensive host hypervisor interventions. DVH and ar-

128

chitectural support for nested virtualization are complementary; DVH works on top of the

hardware extensions, as shown in Section 4.2.

Denali [108] proposed a different virtual interface from the underlying hardware to

VMs, provided by the software running directly on the hardware to improve virtualization

scalability. Fluke [44] provided a different interface to VMs to support OS extensibility.

These approaches do not support legacy OSes and hypervisors. In contrast, DVH shows

how virtual hardware can be provided directly through multiple layers of hypervisors to

improve nested virtualization performance, in a way that is transparent and does not require

changes to the nested VMs.

Dichotomy [109] proposed migrating nested VMs from the guest hypervisor to the host

hypervisor to reduce the overhead of nested virtualization, then migrating them back when

guest hypervisor intervention is required. While this approach provides marginal perfor-

mance gain, virtual I/O migration across different hypervisors would require significant

implementation or even not be possible. Virtual-passthrough provides virtual I/O devices

in the host hypervisor to nested VMs directly without migration, enabling it the work re-

gardless of virtual I/O device types guest hypervisors support.

DID [103] proposed an x86 mechanism to allow VMs to program physical timers with-

out trapping for single-level virtualization by restricting hypervisors to use a timer on a

designated core. This mechanism is based on their design that all interrupts are delivered

to the VM natively but does not fully leverage posted-interrupt hardware support com-

monly used by x86 hypervisors. DVH, in contrast, takes a different approach to provide

an additional timer for VMs and is designed to work on hypervisors leveraging modern

architectural support for virtualization.

129

4.4 Summary

We introduced DVH, a new approach for directly providing virtual hardware to nested

virtual machines without the intervention of multiple levels of hypervisors, extending the

idea of virtual-passthrough. Beyond virtual-passthrough, we introduce three additional

DVH mechanisms, virtual timers to transparently remap timers used by nested VMs to

virtual timers provided by the host hypervisor, virtual inter-processor interrupts that can

be sent and received directly from one nested virtual processor to another, and virtual idle

that enables nested VMs to switch to and from low-power mode without guest hypervi-

sor interventions. DVH provides virtual hardware for these mechanisms that mimics the

underlying hardware and, in some cases, adds new enhancements that leverage the flexi-

bility of software without the need for matching physical hardware support. Like virtual-

passthrough, DVH reduces exit multiplication by eliminating the need for guest hypervisor

execution when the nested VM accesses the virtual hardware. We have implemented DVH

in KVM. Our experimental results show that combining the four DVH mechanisms can

provide even greater performance than virtual-passthrough alone and provide near-native

execution speeds on real application workloads even for multiple levels of recursive virtu-

alization. We also show that DVH can provide better performance than device passthrough

while at the same time enabling migration of nested VMs, thereby providing a combi-

nation of both good performance and key virtualization features not possible with device

passthrough.

130

Chapter 5

Conclusions and Future Work

This dissertation explored new approaches to enhance nested virtualization performance

and showed that simple changes to hardware, software, and virtual machine configuration

that are transparent to nested virtual machines can provide near-native execution speed for

real application workloads.

First, we presented the first in-depth study of Arm nested virtualization. We intro-

duce a novel paravirtualization technique to evaluate the performance of new architectural

features before hardware is readily available. Using this technique, we evaluate Armv8.3

nested virtualization support and find that its performance is prohibitively expensive com-

pared to normal virtualization, despite its similarities to x86 nested virtualization. We show

how differences between Arm and x86 in non-nested virtualization support end up causing

significant exit multiplication on Arm. To address this problem, we introduce NEVE, sim-

ple architecture extensions that provide register redirection, and coalesce and defer traps by

logging system register accesses from the guest hypervisor to memory and only copying

the results of those accesses to hardware system registers when necessary. This reduces

exit multiplication by batching the handling of multiple hypervisor instructions on one exit

instead of exiting for each individual hypervisor instruction executed by the guest hyper-

visor. We evaluate the performance of NEVE and show that NEVE can improve nested

131

virtualization performance by an order of magnitude on real application workloads com-

pared to the Armv8.3 architecture, and can provide up to three times less virtualization

overhead than x86. NEVE is straightforward to implement in Arm and is included the

Armv8.4 architecture.

Second, we presented virtual-passthrough, a novel yet simple technique for boosting

I/O performance when using nested virtualization. Virtual-passthrough is similar to direct

physical device assignment but instead assigns virtual I/O devices to nested VMs. Virtual

devices provided by the host hypervisor can be assigned to nested VMs directly with-

out delivering data and control through multiple layers of virtual I/O devices. Therefore,

virtual-passthrough reduces exit multiplication by eliminating the need for guest hypervi-

sor execution when the nested VM interacts with the assigned virtual I/O devices. The

approach leverages the existing direct device assignment mechanism and implementation,

so it only requires virtual machine configuration changes. Virtual-passthrough preserves

I/O interposition in the host hypervisor different from physical device passthrough while

virtual-passthrough also can easily support important I/O interposition benefits such as mi-

gration in the hypervisors at intermediate layers. Scalability is not a problem as many

virtual devices can be supported by a single physical device. Supporting both paravirtual

and emulated I/O devices is straightforward. The technique is platform agnostic, does not

require hardware support such as physical IOMMUs or SR-IOV. We have applied virtual-

passthrough in KVM for both x86 and Arm hardware, and show that it can provide more

than an order of magnitude improvement in performance over current KVM virtual device

support on real application workloads.

Third, we introduced DVH, a new approach for directly providing virtual hardware

132

to nested virtual machines without the intervention of multiple levels of hypervisors, ex-

tending the idea of virtual-passthrough. Beyond virtual-passthrough, we introduce three

additional DVH mechanisms, virtual timers to transparently remap timers used by nested

VMs to virtual timers provided by the host hypervisor, virtual inter-processor interrupts that

can be sent and received directly from one nested virtual processor to another, and virtual

idle that enables nested VMs to switch to and from low-power mode without guest hyper-

visor interventions. DVH provides virtual hardware for these mechanisms that mimics the

underlying hardware and, in some cases, adds new enhancements that leverage the flexi-

bility of software without the need for matching physical hardware support. Like virtual-

passthrough, DVH reduces exit multiplication by eliminating the need for guest hypervisor

execution when the nested VM accesses the virtual hardware. We have implemented DVH

in KVM. Our experimental results show that combining the four DVH mechanisms can

provide even greater performance than virtual-passthrough alone and provide near-native

execution speeds on real application workloads. We also show that DVH can provide better

performance than device passthrough while at the same time enabling migration of nested

VMs, thereby providing a combination of both good performance and key virtualization

features not possible with device passthrough.

In general, there are three different optimization points to reduce exit multiplication: 1)

to reduce the cost of individual exit to the host hypervisor, 2) to reduce the number of exits

from the guest hypervisor to the host hypervisor, 3) to reduce the number of exits from

the nested VM to the guest hypervisor. The performance gain of optimizing the first point

is limited since the cost of an individual exit is important for non-nested virtualization as

well and is already highly optimized in software and hardware. The performance gain of

133

optimizing the third point can deliver the highest benefit since eliminating exits to the guest

hypervisor avoids running the guest hypervisor and therefore also eliminates exits from the

guest to host hypervisor.

This dissertation presents mechanisms optimizing the second and the third points to re-

duce the number of exits unique for nested virtualization. The mechanisms involve simple

changes to hardware, software, and VM configuration. NEVE introduces simple hardware

changes to reduce the number of exits from the guest to host hypervisor; it supports running

completely unmodified guest hypervisors and OS software. Virtual-passthrough introduces

simple VM configuration changes to reduce the number of exits to the guest hypervisor for

I/O operations executed by the nested VM; it requires no hardware or software changes.

DVH introduces simple software changes to reduce the number of exits to the guest hyper-

visor for a broader range of instructions executed by the nested VM; it requires software

changes in the host hypervisor to provide virtual hardware and in the guest hypervisor

to use the virtual hardware. This dissertation has shown that the three mechanisms are

transparent to nested VMs and can provide near-native execution speed for real application

workloads.

This dissertation also introduces powerful new ways of thinking about and using vir-

tual hardware. For NEVE, to avoid long hardware development and deployment cycles,

we introduce virtual hardware to mimic the new architectural features on existing hard-

ware. This makes it possible to evaluate architecture extensions for virtualization using

existing hardware in ways that were not previously possible. For virtual-passthrough, we

introduce virtual hardware in the form of virtual I/O devices directly provided to nested

VMs in a new way resulting in substantial performance gains without needing additional

134

actual hardware features. For DVH, we generalize the idea of virtual hardware to provide

hardware features to VMs in software without requiring any hardware changes, resulting

in even greater performance gains. While this dissertation has focused on using virtual

hardware to improve performance, I believe there are many other opportunities for using

virtual hardware, including potentially improving the security of computing systems.

135

Bibliography

[1] Keith Adams and Ole Agesen. “A Comparison of Software and Hardware Tech-
niques for x86 Virtualization.” In: Proceedings of the 12th International Confer-
ence on Architectural Support for Programming Languages and Operating Systems
(ASPLOS 2006). San Jose, CA, 2006, pp. 2–13.

[2] Ole Agesen, Jim Mattson, Radu Rugina, and Jeffrey Sheldon. “Software Tech-
niques for Avoiding Hardware Virtualization Exits.” In: Proceedings of the 2012
USENIX Annual Technical Conference (USENIX ATC 2012). Boston, MA, June
2012, pp. 373–385.

[3] Irfan Ahmad, Ajay Gulati, and Ali Mashtizadeh. “vIC: Interrupt Coalescing for
Virtual Machine Storage Device IO.” In: Proceedings of the 2011 USENIX Annual
Technical Conference (USENIX ATC 2011). Portland, OR, June 2011, pp. 45–58.

[4] Alexander Graf, Joerg Roedel. “Nesting the Virtualized World.” In: Linux Plumbers
Conference. Sept. 2009.

[5] AMD Corporation. AMD I/O virtualization technology (IOMMU) specification.
Revision 3.00. Dec. 2016.

[6] Nadav Amit, Muli Ben-Yehuda, Dan Tsafrir, and Assaf Schuster. “vIOMMU: Effi-
cient IOMMU Emulation.” In: Proceedings of the 2011 USENIX Annual Technical
Conference (USENIX ATC 2011). Portland, OR, June 2017, pp. 105–121.

[7] Nadav Amit, Muli Ben-Yehuda, and Ben-Ami Yassour. “IOMMU: Strategies for
Mitigating the IOTLB Bottleneck.” In: 6th Annual Workshop on the Interaction
between Operating Systems and Computer Architecture (WIOSCA 2010). Saint-
Malo, France, 2010, pp. 256–274.

[8] Jeremy Andrus, Christoffer Dall, Alex Van’t Hof, Oren Laadan, and Jason Nieh.
“Cells: A Virtual Mobile Smartphone Architecture.” In: Proceedings of the 23rd
ACM Symposium on Operating Systems Principles (SOSP 2011). Cascais, Portugal,
Oct. 2011, pp. 173–187.

[9] ARM Ltd. ARM Generic Interrupt Controller Architecture version 2.0 ARM IHI
0048B. June 2011.

136

[10] Arm Ltd. Arm Architecture Reference Manual Armv8-A DDI 0487F.b. Mar. 2020.

[11] Arm Ltd. Arm Architecture Reference Manual Armv8-A DDI 0487F.b, D5.7.2 En-
hanced support for nested virtualization. Mar. 2020.

[12] Arm Ltd. Arm Generic Interrupt Controller Architecture Specification GIC archi-
tecture version 3 and version 4 ARM IHI 0069F. Feb. 2020.

[13] Arm Ltd. Arm System Memory Management Unit Architecture Specification ver-
sion 3.0, 3.1 and 3.2. July 2019.

[14] Eric Auger. [PATCH v8 00/14] ARM SMMUv3 Emulation Support. QEMU Mailing
List. Feb. 2018. URL: http://lists.gnu.org/archive/html/qemu-
arm/2018-02/msg00034.html (Accessed: Oct. 12, 2020).

[15] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex Ho,
Rolf Neugebauer, Ian Pratt, and Andrew Warfield. “Xen and the Art of Virtualiza-
tion.” In: Proceedings of the 19th ACM Symposium on Operating Systems Princi-
ples (SOSP 2003). Bolton Landing, NY, Oct. 2003, pp. 164–177.

[16] Jeff Barr. Now Available – Compute-Intensive C5 Instances for Amazon EC2.
AWS News Blog. Nov. 2017. URL: https://aws.amazon.com/blogs/
aws/now-available-compute-intensive-c5-instances-for-
amazon-ec2/ (Accessed: Oct. 12, 2020).

[17] Ken Barr, Prashanth Bungale, Stephen Deasy, Viktor Gyuris, Perry Hung, Craig
Newell, Harvey Tuch, and Bruno Zoppis. “The VMware Mobile Virtualization
Platform: Is That a Hypervisor in Your Pocket?” In: ACM SIGOPS Operating Sys-
tems Review 44.4 (Dec. 2010), pp. 124–135.

[18] Dina Bass and Ian King. Microsoft Pledges to Use ARM Server Chips, Threatening
Intel’s Dominance. Bloomberg. Mar. 2017. URL: https://www.bloomberg.
com/news/articles/2017-03-08/microsoft-pledges-to-use-
arm-server-chips-threatening-intel-s-dominance (Accessed:
Oct. 12, 2020).

[19] Muli Ben-Yehuda, Michael D. Day, Zvi Dubitzky, Michael Factor, Nadav Har’El,
Abel Gordon, Anthony Liguori, Orit Wasserman, and Ben-Ami Yassour. “The Tur-
tles Project: Design and Implementation of Nested Virtualization.” In: Proceedings
of the 9th Symposium on Operating Systems Design and Implementation (OSDI
2010). Vancouver, Canada, Oct. 2010, pp. 423–436.

[20] Paolo Bonzini. Re: Migration with directly assigned devices is possible? KVM
Mailing List. Apr. 2018. URL: https : / / marc . info / ?l = kvm & m =
152459004513285&w=2 (Accessed: Oct. 12, 2020).

137

http://lists.gnu.org/archive/html/qemu-arm/2018-02/msg00034.html
http://lists.gnu.org/archive/html/qemu-arm/2018-02/msg00034.html
https://aws.amazon.com/blogs/aws/now-available-compute-intensive-c5-instances-for-amazon-ec2/
https://aws.amazon.com/blogs/aws/now-available-compute-intensive-c5-instances-for-amazon-ec2/
https://aws.amazon.com/blogs/aws/now-available-compute-intensive-c5-instances-for-amazon-ec2/
https://www.bloomberg.com/news/articles/2017-03-08/microsoft-pledges-to-use-arm-server-chips-threatening-intel-s-dominance
https://www.bloomberg.com/news/articles/2017-03-08/microsoft-pledges-to-use-arm-server-chips-threatening-intel-s-dominance
https://www.bloomberg.com/news/articles/2017-03-08/microsoft-pledges-to-use-arm-server-chips-threatening-intel-s-dominance
https://marc.info/?l=kvm&m=152459004513285&w=2
https://marc.info/?l=kvm&m=152459004513285&w=2

[21] David Brash. ARMv8-A Architecture - 2016 Additions. arm Community. Oct. 2016.
URL: https://community.arm.com/groups/processors/blog/
2016/10/27/armv8-a-architecture-2016-additions (Accessed:
Oct. 12, 2020).

[22] Edouard Bugnion, Jason Nieh, and Dan Tsafrir. Hardware and Software Sup-
port for Virtualization. Synthesis Lectures on Computer Architecture. Morgan and
Claypool Publishers, Feb. 2017.

[23] Cesare Cantu. Network Interface Card Device Pass-Through with Multiple Nested
Hypervisors. US Patent 20140310704A1. Apr. 2013.

[24] Christopher Dall. “The Design, Implementation, and Evaluation of the Linux ARM
Hypervisor.” PhD thesis. Columbia University, Feb. 2018.

[25] Sean Christopherson. KVM: nVMX: Disable intercept for FS/GS base
MSRs in vmcs02 when possible. Linux Kernel Source Tree. 2019. URL:
https : / / github . com / torvalds / linux / commit /
d69129b4e46a7b61dc956af038d143eb791f22c7 (Accessed: Oct. 12,
2020).

[26] Citrix. Citrix and AWS partner to enable application elasticity and scale. 2020.
URL: https://www.citrix.com/global-partners/amazon-web-
services/ (Accessed: Oct. 12, 2020).

[27] CloudShare. Easily create nested virtualization in CloudShare. 2020. URL:
https : / / www . cloudshare . com / technology / nested -
virtualization/ (Accessed: Oct. 12, 2020).

[28] Bob Cmelik and David Keppel. “Shade: A Fast Instruction-set Simulator for Ex-
ecution Profiling.” In: Proceedings of the ACM International Conference on Mea-
surement and Modeling of Computer Systems (SIGMETRICS 1994). Nashville, TN,
May 1994, pp. 128–137.

[29] Wim Coekaerts. Linux mainline contains all the Xen code bits for Dom0 and DomU
support. Oracle blog. May 2011. URL: https://blogs.oracle.com/wim/
linux- mainline- contains- all- the- xen- code- bits- for-
dom0-and-domu-support (Accessed: Oct. 12, 2020).

[30] Christoffer Dall, Shih-Wei Li, Jintack Lim, Jason Nieh, and Georgios Koloventzos.
“ARM Virtualization: Performance and Architectural Implications.” In: Proceed-
ings of the 43rd International Symposium on Computer Architecture (ISCA 2016).
Seoul, South Korea, June 2016, pp. 304–316.

138

https://community.arm.com/groups/processors/blog/2016/10/27/armv8-a-architecture-2016-additions
https://community.arm.com/groups/processors/blog/2016/10/27/armv8-a-architecture-2016-additions
https://github.com/torvalds/linux/commit/d69129b4e46a7b61dc956af038d143eb791f22c7
https://github.com/torvalds/linux/commit/d69129b4e46a7b61dc956af038d143eb791f22c7
https://www.citrix.com/global-partners/amazon-web-services/
https://www.citrix.com/global-partners/amazon-web-services/
https://www.cloudshare.com/technology/nested-virtualization/
https://www.cloudshare.com/technology/nested-virtualization/
https://blogs.oracle.com/wim/linux-mainline-contains-all-the-xen-code-bits-for-dom0-and-domu-support
https://blogs.oracle.com/wim/linux-mainline-contains-all-the-xen-code-bits-for-dom0-and-domu-support
https://blogs.oracle.com/wim/linux-mainline-contains-all-the-xen-code-bits-for-dom0-and-domu-support

[31] Christoffer Dall, Shih-Wei Li, and Jason Nieh. “Optimizing the Design and Imple-
mentation of the Linux ARM Hypervisor.” In: Proceedings of the 2017 USENIX
Annual Technical Conference (USENIX ATC 2017). Santa Clara, CA, July 2017,
pp. 221–234.

[32] Christoffer Dall and Jason Nieh. “KVM for ARM.” In: Proceedings of the 12th
Annual Linux Symposium. Ottawa, Canada, July 2010, pp. 45–56.

[33] Christoffer Dall and Jason Nieh. KVM/ARM: Experiences Building the Linux ARM
Hypervisor. Technical Report CUCS-010-13. Department of Computer Science,
Columbia University, June 2013.

[34] Christoffer Dall and Jason Nieh. “KVM/ARM: The Design and Implementation
of the Linux ARM Hypervisor.” In: Proceedings of the 19th International Confer-
ence on Architectural Support for Programming Languages and Operating Systems
(ASPLOS 2014). Salt Lake City, UT, Mar. 2014, pp. 333–347.

[35] Jiun-Hung Ding, Chang-Jung Lin, Ping-Hao Chang, Chieh-Hao Tsang, Wei-Chung
Hsu, and Yeh-Ching Chung. “ARMvisor: System Virtualization for ARM.” In: Pro-
ceedings of the 14th Annual Linux Symposium. Ottawa, Canada, July 2012, pp. 93–
107.

[36] Yaozu Dong, Yu Chen, Zhenhao Pan, Jinquan Dai, and Yunhong Jiang. “ReNIC:
Architectural Extension to SR-IOV I/O Virtualization for Efficient Replication.” In:
ACM Transactions on Architecture and Code Optimization 8.4 (Jan. 2012), 40:1–
40:22.

[37] Yaozu Dong, Dongxiao Xu, Yang Zhang, and Guangdeng Liao. “Optimizing net-
work I/O virtualization with efficient interrupt coalescing and virtual receive side
scaling.” In: Proceedings of the IEEE International Conference on Cluster Com-
puting. Austin, TX, Sept. 2011, pp. 26–34.

[38] Yaozu Dong, Xiaowei Yang, Jianhui Li, Guangdeng Liao, Kun Tian, and Haibing
Guan. “High Performance Network Virtualization with SR-IOV.” In: Journal of
Parallel and Distributed Computing 72.11 (Nov. 2012), pp. 1471–1480.

[39] DPDK. Data Plane Development Kit. 2019. URL: https://dpdk.org/ (Ac-
cessed: Oct. 12, 2020).

[40] DPDK. Poll Mode Driver for Emulated Virtio NIC. 2015. URL: https://doc.
dpdk.org/guides/nics/virtio.html (Accessed: Oct. 12, 2020).

[41] Dmitry Duplyakin et al. “The Design and Operation of CloudLab.” In: Proceedings
of the 2019 USENIX Annual Technical Conference (USENIX ATC 2019). Renton,
WA, July 2019, pp. 1–14.

139

https://dpdk.org/
https://doc.dpdk.org/guides/nics/virtio.html
https://doc.dpdk.org/guides/nics/virtio.html

[42] Paul Durrant. Windows PV Drivers. Xen Project. 2018. URL: https : / /
xenproject.org/developers/teams/windows-pv-drivers/ (Ac-
cessed: Oct. 12, 2020).

[43] Joy Fan. Nested Virtualization in Azure. Azure Blog. July 2017. URL: https://
azure.microsoft.com/en-us/blog/nested-virtualization-
in-azure/ (Accessed: Oct. 12, 2020).

[44] Bryan Ford, Mike Hibler, Jay Lepreau, Patrick Tullmann, Godmar Back, and
Stephen Clawson. “Microkernels Meet Recursive Virtual Machines.” In: Proceed-
ings of the 2nd Symposium on Operating Systems Design and Implementation
(OSDI 1996). Seattle, WA, 1996, pp. 137–151.

[45] Google Cloud. Enabling Nested Virtualization for VM Instances. Apr. 2018. URL:
https : / / cloud . google . com / compute / docs / instances /
enable-nested-virtualization-vm-instances (Accessed: Oct. 12,
2020).

[46] Abel Gordon, Nadav Amit, Nadav Har’El, Muli Ben-Yehuda, Alex Landau, Assaf
Schuster, and Dan Tsafrir. “ELI: Bare-metal Performance for I/O Virtualization.”
In: Proceedings of the 17th International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS 2012). London, Eng-
land, UK, 2012, pp. 411–422.

[47] Abel Gordon, Nadav Har’El, Alex Landau, Muli Ben-Yehuda, and Avishay
Traeger. “Towards Exitless and Efficient Paravirtual I/O.” In: Proceedings of the
5th Annual International Systems and Storage Conference (SYSTOR 2012). Haifa,
Israel, June 2012, 10:1–10:6.

[48] Green Hills Software. INTEGRITY Secure Virtualization. Jan. 2014. URL: http:
//www.ghs.com/products/rtos/integrity_virtualization.
html (Accessed: Oct. 12, 2020).

[49] Matthew Gretton-Dann. Introducing 2017’s extensions to the Arm Architectures.
arm Community. Nov. 2017. URL: https : / / community . arm . com /
processors/b/blog/posts/introducing-2017s-extensions-
to-the-arm-architecture (Accessed: Oct. 12, 2020).

[50] HaiBing Guan, YaoZu Dong, RuHui ma, Dongxiao Xu, Yang Zhang, and Jian Li.
“Performance Enhancement for Network I/O Virtualization with Efficient Interrupt
Coalescing and Virtual Receive-Side Scaling.” In: IEEE Transactions on Parallel
and Distributed Systems 24.6 (June 2013), pp. 1118–1128.

[51] Stefan Hajnoczi. “An Updated Overview of the QEMU Storage Stack.” In: Linux-
Con Japan 2011. Yokohama, Japan, June 2011.

140

https://xenproject.org/developers/teams/windows-pv-drivers/
https://xenproject.org/developers/teams/windows-pv-drivers/
https://azure.microsoft.com/en-us/blog/nested-virtualization-in-azure/
https://azure.microsoft.com/en-us/blog/nested-virtualization-in-azure/
https://azure.microsoft.com/en-us/blog/nested-virtualization-in-azure/
https://cloud.google.com/compute/docs/instances/enable-nested-virtualization-vm-instances
https://cloud.google.com/compute/docs/instances/enable-nested-virtualization-vm-instances
http://www.ghs.com/products/rtos/integrity_virtualization.html
http://www.ghs.com/products/rtos/integrity_virtualization.html
http://www.ghs.com/products/rtos/integrity_virtualization.html
https://community.arm.com/processors/b/blog/posts/introducing-2017s-extensions-to-the-arm-architecture
https://community.arm.com/processors/b/blog/posts/introducing-2017s-extensions-to-the-arm-architecture
https://community.arm.com/processors/b/blog/posts/introducing-2017s-extensions-to-the-arm-architecture

[52] Stefan Hajnoczi. QEMU Internals: vhost architecture. Sept. 2011. URL: http:
/ / blog . vmsplice . net / 2011 / 09 / qemu - internals - vhost -
architecture.html (Accessed: Oct. 12, 2020).

[53] Nadav Har’El, Abel Gordon, Alex Landau, Muli Ben-Yehuda, Avishay Traeger,
and Razya Ladelsky. “Efficient and Scalable Paravirtual I/O System.” In: Proceed-
ings of the 2013 USENIX Annual Technical Conference (USENIX ATC 2013). San
Jose, CA, June 2013, pp. 231–242.

[54] Joo-Young Hwang, Sang-Bum Suh, Sung-Kwan Heo, Chan-Ju Park, Jae-Min Ryu,
Seong-Yeol Park, and Chul-Ryun Kim. “Xen on ARM: System Virtualization us-
ing Xen Hypervisor for ARM-based Secure Mobile Phones.” In: Proceedings of
the 2008 5th IEEE Consumer Communications and Networking Conference. Las
Vegas, NV, Jan. 2008, pp. 257–261.

[55] Intel Corporation. 4th Generation Intel Core vPro Processors with Intel VMCS
Shadowing. 2013. URL: http : / / www . intel . com / content / dam /
www/public/us/en/documents/white-papers/intel-vmcs-
shadowing-paper.pdf (Accessed: Oct. 12, 2020).

[56] Intel Corporation. Intel 64 and IA-32 Architectures Software Developer’s Manual,
325462-044US. Aug. 2012.

[57] Intel Corporation. Intel Virtualization Technology for Directed I/O, D51397-011,
Rev. 3.1. June 2019.

[58] Jeffrey Fulmer. Siege Home. Joe Dog Software. Jan. 2012. URL: https://www.
joedog.org/siege-home/ (Accessed: Oct. 12, 2020).

[59] Richard WM Jones. Super-nested KVM. 2014. URL: https : / / rwmj .
wordpress.com/2014/07/03/super-nested-kvm/ (Accessed: Oct.
12, 2020).

[60] Rick Jones. Netperf. Dec. 2010. URL: https : / / github . com /
HewlettPackard/netperf (Accessed: Oct. 12, 2020).

[61] Asim Kadav and Michael M. Swift. “Live Migration of Direct-access Devices.” In:
Proceedings of the 1st Workshop on I/O Virtualization. WIOV 2008. San Diego,
CA, 2008.

[62] Bernhard Kauer, Paulo Verissimo, and Alysson Bessani. “Recursive Virtual
Machines for Advanced Security Mechanisms.” In: Proceedings of the 2011
IEEE/IFIP 41st International Conference on Dependable Systems and Networks
Workshops (DNSW 2011). Hong Kong, China, June 2011, pp. 117–122.

141

http://blog.vmsplice.net/2011/09/qemu-internals-vhost-architecture.html
http://blog.vmsplice.net/2011/09/qemu-internals-vhost-architecture.html
http://blog.vmsplice.net/2011/09/qemu-internals-vhost-architecture.html
http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/intel-vmcs-shadowing-paper.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/intel-vmcs-shadowing-paper.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/intel-vmcs-shadowing-paper.pdf
https://www.joedog.org/siege-home/
https://www.joedog.org/siege-home/
https://rwmj.wordpress.com/2014/07/03/super-nested-kvm/
https://rwmj.wordpress.com/2014/07/03/super-nested-kvm/
https://github.com/HewlettPackard/netperf
https://github.com/HewlettPackard/netperf

[63] KernelNewbies. Linux 3.10 Change log - Timerless multitasking. Dec. 2017. URL:
https://kernelnewbies.org/Linux_3.10 (Accessed: Oct. 12, 2020).

[64] Yossi Kuperman, Eyal Moscovici, Joel Nider, Razya Ladelsky, Abel Gordon, and
Dan Tsafrir. “Paravirtual Remote I/O.” In: Proceedings of the 21st International
Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS 2016). Atlanta, Georgia, USA, Apr. 2016, pp. 49–65.

[65] KVM contributors. KVM-unit-tests. Aug. 2020. URL: https://www.linux-
kvm.org/index.php?title=KVM-unit-tests&oldid=174016
(Accessed: Oct. 12, 2020).

[66] KVM contributors. Tuning KVM. June 2018. URL: https://www.linux-
kvm.org/index.php?title=Tuning_KVM&oldid=173911 (Accessed:
Oct. 12, 2020).

[67] KVM contributors. Virtio. Oct. 2016. URL: https://www.linux-kvm.org/
index.php?title=Virtio&oldid=173787 (Accessed: Oct. 12, 2020).

[68] KVM contributors. WindowsGuestDrivers/Download Drivers. Nov. 2018. URL:
https : / / www . linux - kvm . org / index . php ? title =
WindowsGuestDrivers/Download_Drivers&oldid=173940 (Ac-
cessed: Oct. 12, 2020).

[69] Joshua LeVasseur, Volkmar Uhlig, Matthew Chapman, Peter Chubb, Ben Leslie,
and Gernot Heiser. Pre-Virtualization: Slashing the Cost of Virtualization. Tech-
nical Report 2005-30. Fakultat fur Informatik, Universitat Karlsruhe (TH), Nov.
2005.

[70] Shih-Wei Li, John S. Koh, and Jason Nieh. “Protecting Cloud Virtual Machines
from Commodity Hypervisor and Host Operating System Exploits.” In: Proceed-
ings of the 28th USENIX Security Symposium (USENIX Security 2019). Santa
Clara, CA, Aug. 2019, pp. 1357–1374.

[71] Wanpeng Li. KVM: X86: Provide a capability to disable HLT intercepts. Linux
Kernel Source Tree. 2018. URL: https : / / github . com / torvalds /
linux / commit / caa057a2cad647fb368a12c8e6c410ac4c28e063
(Accessed: Oct. 12, 2020).

[72] Cunming Liang and Tiwei Bie. “vdpa: vhost-mdev as a New vhost Protocol Trans-
port.” In: KVM Forum 2018. Edinburgh, Scotland, UK, 2018.

[73] Jin Tack Lim and Jason Nieh. “Optimizing Nested Virtualization Performance Us-
ing Direct Virtual Hardware.” In: Proceedings of the 25th International Conference

142

https://kernelnewbies.org/Linux_3.10
https://www.linux-kvm.org/index.php?title=KVM-unit-tests&oldid=174016
https://www.linux-kvm.org/index.php?title=KVM-unit-tests&oldid=174016
https://www.linux-kvm.org/index.php?title=Tuning_KVM&oldid=173911
https://www.linux-kvm.org/index.php?title=Tuning_KVM&oldid=173911
https://www.linux-kvm.org/index.php?title=Virtio&oldid=173787
https://www.linux-kvm.org/index.php?title=Virtio&oldid=173787
https://www.linux-kvm.org/index.php?title=WindowsGuestDrivers/Download_Drivers&oldid=173940
https://www.linux-kvm.org/index.php?title=WindowsGuestDrivers/Download_Drivers&oldid=173940
https://github.com/torvalds/linux/commit/caa057a2cad647fb368a12c8e6c410ac4c28e063
https://github.com/torvalds/linux/commit/caa057a2cad647fb368a12c8e6c410ac4c28e063

on Architectural Support for Programming Languages and Operating Systems (AS-
PLOS 2020). Lausanne, Switzerland, Mar. 2020, pp. 557–574.

[74] Jintack Lim. [RFC 00/55] Nested Virtualization on KVM/ARM. Linux Kernel Mail-
ing List. Jan. 2017. URL: https://lore.kernel.org/patchwork/
cover/748963/ (Accessed: Oct. 12, 2020).

[75] Jintack Lim, Christoffer Dall, Shih-Wei Li, Jason Nieh, and Marc Zyngier. “NEVE:
Nested Virtualization Extensions for ARM.” In: Proceedings of the 26th ACM
Symposium on Operating Systems Principles (SOSP 2017). Shanghai, China, Oct.
2017, pp. 201–217.

[76] Jiuxing Liu. “Evaluating standard-based self-virtualizing devices: A performance
study on 10 GbE NICs with SR-IOV support.” In: Proceedings of the 2010 IEEE
International Symposium on Parallel Distributed Processing (IPDPS 2010). Apr.
2010, pp. 1–12.

[77] Jiuxing Liu, Wei Huang, Bulent Abali, and Dhabaleswar K. Panda. “High Per-
formance VMM-bypass I/O in Virtual Machines.” In: Proceedings of the 2006
USENIX Annual Technical Conference (USENIX ATC 2006). Boston, MA, May
2006, pp. 29–42.

[78] Jim Mattson. [PATCH v5 2/2] kvm: nVMX: Introduce KVM CAP NESTED -
STATE. Linux Kernel Mailing List. July 2018. URL: https://patchwork.
kernel.org/patch/10516673/ (Accessed: Oct. 12, 2020).

[79] Paul E. McKenney. NO HZ: Reducing Scheduling-Clock Ticks. Linux Kernel
Source Tree. May 2017. URL: https : / / www . kernel . org / doc /
Documentation/timers/NO_HZ.txt (Accessed: Oct. 12, 2020).

[80] Aravind Menon, Jose Renato Santos, Yoshio Turner, G. (John) Janakiraman, and
Willy Zwaenepoel. “Diagnosing Performance Overheads in the Xen Virtual Ma-
chine Environment.” In: Proceedings of the 1st ACM/USENIX International Con-
ference on Virtual Execution Environments (VEE 2005). Chicago, IL, June 2005,
pp. 13–23.

[81] Aravind Menon, Simon Schubert, and Willy Zwaenepoel. “TwinDrivers: Semi-
automatic Derivation of Fast and Safe Hypervisor Network Drivers from Guest OS
Drivers.” In: Proceedings of the 14th International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS 2009).
Washington, DC, Mar. 2009, pp. 301–312.

[82] Microsoft. Virtualization-based Security (VBS). Oct. 2017. URL: https : / /
docs . microsoft . com / en - us / windows - hardware / design /
device-experiences/oem-vbs (Accessed: Oct. 12, 2020).

143

https://lore.kernel.org/patchwork/cover/748963/
https://lore.kernel.org/patchwork/cover/748963/
https://patchwork.kernel.org/patch/10516673/
https://patchwork.kernel.org/patch/10516673/
https://www.kernel.org/doc/Documentation/timers/NO_HZ.txt
https://www.kernel.org/doc/Documentation/timers/NO_HZ.txt
https://docs.microsoft.com/en-us/windows-hardware/design/device-experiences/oem-vbs
https://docs.microsoft.com/en-us/windows-hardware/design/device-experiences/oem-vbs
https://docs.microsoft.com/en-us/windows-hardware/design/device-experiences/oem-vbs

[83] Microsoft. Windows XP Mode. 2009. URL: https://www.microsoft.com/
en-us/download/details.aspx?id=8002 (Accessed: Oct. 12, 2020).

[84] Timothy Prickett Morgan. Azure Stack Gives Microsoft Leverage Over AWS,
Google. The Next Platform. Jan. 2016. URL: https://www.nextplatform.
com/2016/01/26/azure-stack-gives-microsoft-leverage-
over-aws-google/ (Accessed: Oct. 12, 2020).

[85] Zhenhao Pan, Yaozu Dong, Yu Chen, Lei Zhang, and Zhijiao Zhang. “CompSC:
Live Migration with Pass-through Devices.” In: Proceedings of the 8th ACM SIG-
PLAN/SIGOPS International Conference on Virtual Execution Environments (VEE
2012). London, England, UK, 2012, pp. 109–120.

[86] PCI-SIG. Address Translation Services Revision 1.1. Dec. 2009.

[87] Himanshu Raj and Karsten Schwan. “High Performance and Scalable I/O Virtu-
alization via Self-virtualized Devices.” In: Proceedings of the 16th International
Symposium on High Performance Distributed Computing (HPDC 07). Monterey,
CA, June 2007, pp. 179–188.

[88] Kaushik Kumar Ram, Jose Renato Santos, Yoshio Turner, Alan L. Cox, and Scott
Rixner. “Achieving 10 Gb/s Using Safe and Transparent Network Interface Virtual-
ization.” In: Proceedings of the 2009 ACM SIGPLAN/SIGOPS International Con-
ference on Virtual Execution Environments (VEE 2019). Washington, DC, 2009,
pp. 61–70.

[89] Ravello Community. Nested virtualization: How to run nested KVM on AWS or
Google Cloud. Ravello Blog. Jan. 2016. URL: https://blogs.oracle.
com/ravello/run-nested-kvm-on-aws-google (Accessed: Oct. 12,
2020).

[90] Reuters. Cloud companies consider Intel rivals after security flaws found. CNBC
News. Jan. 2018. URL: https://www.cnbc.com/2018/01/10/cloud-
companies-consider-intel-rivals-after-security-flaws-
found.html (Accessed: Oct. 12, 2020).

[91] RISC-V International. RISC-V. 2020. URL: http://www.riscv.org (Ac-
cessed: Oct. 12, 2020).

[92] Rusty Russell. “Virtio: Towards a De-facto Standard for Virtual I/O Devices.” In:
ACM SIGOPS Operating Systems Review 42.5 (July 2008), pp. 95–103.

[93] Rusty Russell, Yanmin Zhang, Ingo Molnar, and David Sommerseth. Improve
hackbench. Linux Kernel Mailing List. Jan. 2008. URL: http://people.

144

https://www.microsoft.com/en-us/download/details.aspx?id=8002
https://www.microsoft.com/en-us/download/details.aspx?id=8002
https://www.nextplatform.com/2016/01/26/azure-stack-gives-microsoft-leverage-over-aws-google/
https://www.nextplatform.com/2016/01/26/azure-stack-gives-microsoft-leverage-over-aws-google/
https://www.nextplatform.com/2016/01/26/azure-stack-gives-microsoft-leverage-over-aws-google/
https://blogs.oracle.com/ravello/run-nested-kvm-on-aws-google
https://blogs.oracle.com/ravello/run-nested-kvm-on-aws-google
https://www.cnbc.com/2018/01/10/cloud-companies-consider-intel-rivals-after-security-flaws-found.html
https://www.cnbc.com/2018/01/10/cloud-companies-consider-intel-rivals-after-security-flaws-found.html
https://www.cnbc.com/2018/01/10/cloud-companies-consider-intel-rivals-after-security-flaws-found.html
http://www.riscv.org
http://people.redhat.com/mingo/cfs-scheduler/tools/hackbench.c
http://people.redhat.com/mingo/cfs-scheduler/tools/hackbench.c

redhat.com/mingo/cfs-scheduler/tools/hackbench.c (Ac-
cessed: Oct. 12, 2020).

[94] Jose Renato Santos, Yoshio Turner, G. Janakiraman, and Ian Pratt. “Bridging the
Gap Between Software and Hardware Techniques for I/O Virtualization.” In: Pro-
ceedings of the 2008 USENIX Annual Technical Conference (USENIX ATC 2008).
Boston, MA, June 2008, pp. 29–42.

[95] Simon Sharwood. AWS adopts home-brewed KVM as new hypervisor. The Regis-
ter. Nov. 2017. URL: https://www.theregister.co.uk/2017/11/07/
aws_writes_new_kvm_based_hypervisor_to_make_its_cloud_
go_faster/ (Accessed: Oct. 12, 2020).

[96] Paul Sim. KVM Performance Optimization. 2013. URL: https : / /
www . slideshare . net / janghoonsim / kvm - performance -
optimization-for-ubuntu (Accessed: Oct. 12, 2020).

[97] Standard Performance Evaluation Corporation. SPECjvm2008. Aug. 2020. URL:
https://www.spec.org/jvm2008 (Accessed: Oct. 12, 2020).

[98] Jeremy Sugerman, Ganesh Venkitachalam, and Beng-Hong Lim. “Virtualizing I/O
Devices on VMware Workstation’s Hosted Virtual Machine Monitor.” In: Pro-
ceedings of the 2001 USENIX Annual Technical Conference (USENIX ATC 2001).
Boston, MA, June 2001, pp. 1–14.

[99] SUSE. Disk Cache Modes. SUSE Product Documentation. Sept. 2020. URL:
https://documentation.suse.com/sles/12-SP4/html/SLES-
all/cha-cachemodes.html (Accessed: Oct. 12, 2020).

[100] The Apache Software Foundation. ab - Apache HTTP server benchmarking tool.
Apr. 2015. URL: http://httpd.apache.org/docs/2.4/programs/
ab.html (Accessed: Oct. 12, 2020).

[101] Michael S. Tsirkin. vhost net: a kernel-level virtio server. Linux Kernel Mailing
List. Aug. 2009. URL: https://lwn.net/Articles/346267/ (Accessed:
Oct. 12, 2020).

[102] Michael S. Tsirkin, Cornelia Huck, and Pawel Moll. Virtual I/O Device (VIRTIO)
Version 1.0 virtio-v1.0-cs04. Mar. 2016.

[103] Cheng-Chun Tu, Michael Ferdman, Chao-tung Lee, and Tzi-cker Chiueh. “A Com-
prehensive Implementation and Evaluation of Direct Interrupt Delivery.” In: Pro-
ceedings of the 11th ACM SIGPLAN/SIGOPS International Conference on Virtual
Execution Environments (VEE 2015). Istanbul, Turkey, Mar. 2015, pp. 1–15.

145

http://people.redhat.com/mingo/cfs-scheduler/tools/hackbench.c
http://people.redhat.com/mingo/cfs-scheduler/tools/hackbench.c
https://www.theregister.co.uk/2017/11/07/aws_writes_new_kvm_based_hypervisor_to_make_its_cloud_go_faster/
https://www.theregister.co.uk/2017/11/07/aws_writes_new_kvm_based_hypervisor_to_make_its_cloud_go_faster/
https://www.theregister.co.uk/2017/11/07/aws_writes_new_kvm_based_hypervisor_to_make_its_cloud_go_faster/
https://www.slideshare.net/janghoonsim/kvm-performance-optimization-for-ubuntu
https://www.slideshare.net/janghoonsim/kvm-performance-optimization-for-ubuntu
https://www.slideshare.net/janghoonsim/kvm-performance-optimization-for-ubuntu
https://www.spec.org/jvm2008
https://documentation.suse.com/sles/12-SP4/html/SLES-all/cha-cachemodes.html
https://documentation.suse.com/sles/12-SP4/html/SLES-all/cha-cachemodes.html
http://httpd.apache.org/docs/2.4/programs/ab.html
http://httpd.apache.org/docs/2.4/programs/ab.html
https://lwn.net/Articles/346267/

[104] Prashant Varanasi and Gernot Heiser. “Hardware-supported Virtualization on
ARM.” In: Proceedings of the 2nd Asia-Pacific Workshop on Systems (APSys
2011). Shanghai, China, July 2011, 11:1–11:5.

[105] Lluis Vilanova, Nadav Amit, and Yoav Etsion. “Using SMT to Accelerate Nested
Virtualization.” In: Proceedings of the 46th International Symposium on Computer
Architecture (ISCA 2019). Phoenix, Arizona, June 2019, pp. 750–761.

[106] VMware. VMware Tools Device Drivers. VMware Docs. May 2019. URL: https:
//docs.vmware.com/en/VMware-Tools/10.1.0/com.vmware.
vsphere.vmwaretools.doc/GUID-6994A5F9-B62B-4BF1-99D8-
E325874A4C7A.html (Accessed: Oct. 12, 2020).

[107] Carl Waldspurger and Mendel Rosenblum. “I/O Virtualization.” In: Communica-
tions of the ACM 55.1 (Jan. 2012), pp. 66–73.

[108] Andrew Whitaker, Marianne Shaw, and Steven D. Gribble. “”Scale and Perfor-
mance in the Denali Isolation Kernel”.” In: Proceedings of the 5th Symposium on
Operating Systems Design and Implementation (OSDI 2002). Boston, MA, 2002,
pp. 195–209.

[109] Dan Williams, Yaohui Hu, Umesh Deshpande, Piush K. Sinha, Nilton Bila, Kar-
tik Gopalan, and Hani Jamjoom. “Enabling Efficient Hypervisor-as-a-Service
Clouds with Ephemeral Virtualization.” In: Proceedings of the 12th ACM SIG-
PLAN/SIGOPS International Conference on Virtual Execution Environments (VEE
2016). Atlanta, GA, Apr. 2016, pp. 79–92.

[110] Dan Williams, Hani Jamjoom, and Hakim Weatherspoon. “The Xen-Blanket: Vir-
tualize Once, Run Everywhere.” In: Proceedings of the 7th ACM European Confer-
ence on Computer Systems (EuroSys 2012). Bern, Switzerland, Apr. 2012, pp. 113–
126.

[111] Alex Williamson. “VFIO: A user’s perspective.” In: KVM Forum 2012. Feb. 2012.

[112] Alex Williamson. vfio/pci: Improve extended capability comments, skip masked
caps. QEMU Source Tree. Feb. 2017. URL: https://github.com/qemu/
qemu / commit / d0d1cd70d10639273e2a23870e7e7d80b2bc4e21
(Accessed: Oct. 12, 2020).

[113] Alex Williamson, Alexey Kardashevskiy, Linus Torvalds, Zi Shen Lim, Gavin
Shan, and Mauro Carvalho Chehab. VFIO - ”Virtual Function I/O”. Linux Ker-
nel Documentation. May 2017. URL: https://www.kernel.org/doc/
Documentation/vfio.txt (Accessed: Oct. 12, 2020).

146

https://docs.vmware.com/en/VMware-Tools/10.1.0/com.vmware.vsphere.vmwaretools.doc/GUID-6994A5F9-B62B-4BF1-99D8-E325874A4C7A.html
https://docs.vmware.com/en/VMware-Tools/10.1.0/com.vmware.vsphere.vmwaretools.doc/GUID-6994A5F9-B62B-4BF1-99D8-E325874A4C7A.html
https://docs.vmware.com/en/VMware-Tools/10.1.0/com.vmware.vsphere.vmwaretools.doc/GUID-6994A5F9-B62B-4BF1-99D8-E325874A4C7A.html
https://docs.vmware.com/en/VMware-Tools/10.1.0/com.vmware.vsphere.vmwaretools.doc/GUID-6994A5F9-B62B-4BF1-99D8-E325874A4C7A.html
https://github.com/qemu/qemu/commit/d0d1cd70d10639273e2a23870e7e7d80b2bc4e21
https://github.com/qemu/qemu/commit/d0d1cd70d10639273e2a23870e7e7d80b2bc4e21
https://www.kernel.org/doc/Documentation/vfio.txt
https://www.kernel.org/doc/Documentation/vfio.txt

[114] Paul Willmann, Scott Rixner, and Alan L. Cox. “Protection Strategies for Direct
Access to Virtualized I/O Devices.” In: Proceedings of the 2008 USENIX Annual
Technical Conference (USENIX ATC 2008). Boston, MA, June 2008, pp. 15–28.

[115] Paul Willmann, Jeffrey Shafer, David Carr, Aravind Menon, Scott Rixner, Alan L.
Cox, and Willy Zwaenepoel. “Concurrent Direct Network Access for Virtual Ma-
chine Monitors.” In: Proceedings of the 2007 IEEE 13th International Symposium
on High Performance Computer Architecture (HPCA 2007). Scottsdale, AZ, Feb.
2007, pp. 306–317.

[116] Xen Project Wiki. Nested Virtualization in Xen. July 2018. URL: https : / /
wiki.xenproject.org/wiki/Nested_Virtualization_in_Xen
(Accessed: Oct. 12, 2020).

[117] Xen Project Wiki. Network Throughput and Performance Guide. Apr. 2014. URL:
http : / / wiki . xen . org / wiki / Network _ Throughput _ and _
Performance_Guide (Accessed: Oct. 12, 2020).

[118] Xen Project Wiki. Xen ARM with Virtualization Extensions. June 2020. URL:
http : / / wiki . xenproject . org / wiki / Xen _ ARM _ with _
Virtualization_Extensions (Accessed: Oct. 12, 2020).

[119] Xen Project Wiki. Xen PCI Passthrough. Nov. 2019. URL: https://wiki.
xen.org/wiki/Xen_PCI_Passthrough (Accessed: Oct. 12, 2020).

[120] Cong Xu, Sahan Gamage, Hui Lu, Ramana Kompella, and Dongyan Xu. “vTurbo:
Accelerating Virtual Machine I/O Processing Using Designated Turbo-sliced
Core.” In: Proceedings of the 2013 USENIX Annual Technical Conference
(USENIX ATC 2013). San Jose, CA, 2013, pp. 243–254.

[121] Peter Xu. [PATCH v3 0/2] iommu/vt-d: Fix mapping PSI missing for iommu -
map(). Linux Kernel Mailing List. May 2018. URL: https : / / lists .
linuxfoundation.org/pipermail/iommu/2018-May/027479.
html.

[122] Peter Xu. [PATCH v4 0/9] intel-iommu: nested vIOMMU, cleanups, bug fixes.
QEMU Mailing List. May 2018. URL: http : / / lists . nongnu . org /
archive/html/qemu-devel/2018-05/msg04291.html (Accessed:
Oct. 12, 2020).

[123] Peter Xu. intel-iommu: rework the page walk logic. QEMU Source Tree.
May 2018. URL: https : / / github . com / qemu / qemu / commit /
63b88968f139b6a77f2f81e6f1eedf70c0170a85 (Accessed: Oct. 12,
2020).

147

https://wiki.xenproject.org/wiki/Nested_Virtualization_in_Xen
https://wiki.xenproject.org/wiki/Nested_Virtualization_in_Xen
http://wiki.xen.org/wiki/Network_Throughput_and_Performance_Guide
http://wiki.xen.org/wiki/Network_Throughput_and_Performance_Guide
http://wiki.xenproject.org/wiki/Xen_ARM_with_Virtualization_Extensions
http://wiki.xenproject.org/wiki/Xen_ARM_with_Virtualization_Extensions
https://wiki.xen.org/wiki/Xen_PCI_Passthrough
https://wiki.xen.org/wiki/Xen_PCI_Passthrough
https://lists.linuxfoundation.org/pipermail/iommu/2018-May/027479.html
https://lists.linuxfoundation.org/pipermail/iommu/2018-May/027479.html
https://lists.linuxfoundation.org/pipermail/iommu/2018-May/027479.html
http://lists.nongnu.org/archive/html/qemu-devel/2018-05/msg04291.html
http://lists.nongnu.org/archive/html/qemu-devel/2018-05/msg04291.html
https://github.com/qemu/qemu/commit/63b88968f139b6a77f2f81e6f1eedf70c0170a85
https://github.com/qemu/qemu/commit/63b88968f139b6a77f2f81e6f1eedf70c0170a85

[124] Xin Xu and Bhavesh Davda. “A Hypervisor Approach to Enable Live Migration
with Passthrough SR-IOV Network Devices.” In: ACM SIGOPS Operating Systems
Review 51.1 (Sept. 2017), pp. 15–23.

[125] Edwin Zhai, Gregory D. Cummings, and Yaozu Dong. “Live Migration with Pass-
through Device for Linux VM.” In: Proceedings of the 10th Linux Symposium.
Ottawa, Canada, July 2008, pp. 261–267.

[126] Fengzhe Zhang, Jin Chen, Haibo Chen, and Binyu Zang. “CloudVisor: Retrofitting
Protection of Virtual Machines in Multi-tenant Cloud with Nested Virtualization.”
In: Proceedings of the 23rd ACM Symposium on Operating Systems Principles
(SOSP 2011). Cascais, Portugal, Oct. 2011, pp. 203–216.

[127] Marc Zyngier. [PATCH v2 00/94] KVM: arm64: ARMv8.3/8.4 Nested Virtualiza-
tion support. Linux Kernel Mailing List. Feb. 2020. URL: https://lore.
kernel.org/linux- arm- kernel/20200211174938.27809- 1-
maz@kernel.org/ (Accessed: Oct. 12, 2020).

148

https://lore.kernel.org/linux-arm-kernel/20200211174938.27809-1-maz@kernel.org/
https://lore.kernel.org/linux-arm-kernel/20200211174938.27809-1-maz@kernel.org/
https://lore.kernel.org/linux-arm-kernel/20200211174938.27809-1-maz@kernel.org/

	List of Figures
	List of Tables
	Acknowledgements
	Introduction
	NEVE: Nested Virtualization Extensions for Arm
	Architectural Support for Arm Nested Virtualization
	Paravirtualization for Architecture Evaluation
	KVM/ARM Nested Virtualization for Armv8.3
	Evaluation of Armv8.3 Nested Virtualization
	NEVE: NEsted Virtualization Extensions
	Architecture Specification
	Recursive Virtualization
	Architectural Impact
	Implementation
	Performance Impact

	Evaluation of NEVE Nested Virtualization
	Microbenchmark Results
	Application Benchmark Results

	Enhanced Support for Nested Virtualiztion
	Related Work
	Summary

	Virtual-passthrough: Boosting I/O Performance for Nested Virtualization
	I/O Virtualization for Nested Virtualization
	Virtual-passthrough Design
	System Configuration
	Example
	Recursive Virtual-passthrough
	Migration

	Virtual-passthrough Implementation
	Experimental Results
	Related Work
	Summary

	Optimizing Nested Virtualization Performance Using Direct Virtual Hardware
	Design
	Virtual-passthrough
	Virtual Timers
	Virtual IPIs
	Virtual Idle
	Recursive DVH
	DVH Migration

	Evaluation
	Related Work
	Summary

	Conclusions and Future Work
	Bibliography

