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ABSTRACT

Stucture and Feedback in Cloud Service API Fuzzing

Evangelos Atlidakis

Over the last decade, we have witnessed an explosion in cloud services for hosting

software applications (Software-as-a-Service), for building distributed services (Platform-

as-a-Service), and for providing general computing infrastructure (Infrastructure-as-a-

Service). Today, most cloud services are programmatically accessed through Applica-

tion Programming Interfaces (APIs) that follow the REpresentational State Trans-

fer (REST) software architectural style and cloud service developers use interface-

description languages to describe and document their services. My thesis is that we

can leverage the structured usage of cloud services through REST APIs and feedback

obtained during interaction with such services in order to build systems that test cloud

services in an automatic, efficient, and learning-based way through their APIs.

In this dissertation, I introduce stateful REST API fuzzing and describe its imple-

mentation in RESTler: the first stateful REST API fuzzing system. Stateful means

that RESTler attempts to explore latent service states that are reachable only with

sequences of multiple interdependent API requests. I then describe how stateful REST

API fuzzing can be extended with active property checkers that test for violations of

desirable REST API security properties. Finally, I introduce Pythia, a new fuzzing

system that augments stateful REST API fuzzing with coverage-guided feedback and

learning-based mutations.
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Chapter 1

Introduction

Over the last decade, we have witnessed an explosion in cloud services for hosting soft-

ware applications (Software-as-a-Service), for building distributed services (Platform-

as-a-Service), and for providing general computing infrastructure (Infrastructure-as-

a-Service). Thousands of new cloud services have been deployed by cloud platform

providers, such as Amazon Web Services [10], Google Cloud [22], and Microsoft Azure [12],

and support customers who are modernizing their processes by switching from the com-

plexity of owning and maintaining their own, on-premise Information Technology (IT)

infrastructure to instead simply access and pay on demand cutting edge technologies.

According to a recent study, in 2020, the public cloud services market is expected to

reach around 266 billion U.S. dollars in size and by 2022, its market revenue is forecast

to exceed 350 billion U.S. dollars [18].

Today, most cloud services are programmatically accessed by third-party appli-

cations [38] and other services [143] through Application Programming Interfaces (APIs)

that follow the REpresentational State Transfer (REST) software architectural style [84].

Cloud services that conform to the REST architectural style are called RESTful cloud

services and their APIs are called REST APIs. REST APIs are implemented on top of

the ubiquitous HTTP and HTTPS protocols, and provide requesting systems (clients)

with a uniform and predefined set of stateless operations in order to create, monitor,

manage, and delete cloud resources. By using a predefined set of stateless operations,
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RESTful cloud services aim for fast performance and the ability to grow by reusing com-

ponents that can be managed and updated without affecting the system as a whole.

Lately, RESTful cloud service developers use interface-description languages to

describe and document their services. Interface-description languages, such as the

OpenAPI Specification (OAS) [29], provide an implementation-agnostic way to describe

how a client can access a cloud service through its REST API, including what re-

quests the service can handle through its REST API and the format of those requests,

what responses may be received, and the respective response format [13;23;11]. Interface-

description languages can be used by documentation generation tools to describe cloud

service APIs and to automatically generate sample client code for testing purposes.

The fact that the vast majority of cloud services are accessed through REST APIs

that are well-documented with interface-specification languages presents a unique op-

portunity to build systems that automatically test cloud services through their APIs.

When is a RESTful cloud service reliable and secure to be publicly deployed? What

kinds of software errors may be hiding behind REST APIs? And how critical these

errors may be? Automatically answering such questions for production-scale, cloud

services still remains an open research challenge and is of paramount importance in

a multibillion-dollar market where competing cloud providers seek to avoid reliability

and security incidents that will attract negative publicity.

Indeed, despite the rapidly evolving cloud ecosystem, systems for automatically

testing cloud services through their REST APIs are still in their infancy. The most

sophisticated testing systems currently available for REST APIs capture live API traf-

fic, and then fuzz and replay the recorded traffic with the hope of finding software

errors [8;34;6]. Since these fuzzing systems do not explicitly capture API request depen-

dencies when generating new test cases, unfortunately, end up testing shallow service

states reached by individual API requests and fail to uncover errors that require se-
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quences of multiple API requests in order to be exposed.

Thesis. My thesis is that we can leverage the structured usage of cloud services through

REST APIs and feedback obtained during interaction in order to build systems that test

cloud services in an automatic, efficient, and learning-based way through their APIs.

My dissertation describes systems that are automatic in that they require minimal

manual intervention to test target cloud services; efficient in that they find within

a reasonable time-frame (e.g., in few hours) previously-unknown software errors that

were beyond the reach of past systems; and learning-based in that they learn without

predefined rules or heuristics how to test target cloud services. Test automation is

achieved by leveraging the common structure present in the ecosystem of cloud services

that are accessed through well-documented REST APIs. Efficiency is achieved by

careful consideration of the semantics of the RESTful architectural design style, which

allows to generate test sequences that consist of multiple API requests and test target

services deeply, and by utilizing feedback obtained from the target services during

testing in order to prune large search spaces. Finally, the systems described in my

dissertation pursue the avenue of learning-based program analysis in order to learn

from past tests common usage patterns of target cloud services and generate new tests.

Chapter 3 describes RESTler, the first stateful REST API fuzzing system. Stateful

REST API fuzzing is the cornerstone of this dissertation. Stateful means that RESTler

attempts to explore latent service states which are reachable only with sequences of

multiple API requests. Unlike past REST API testing systems that issue individual

API requests and test shallow service states, RESTler performs a lightweight static

analysis on the target cloud service API specification and infers dependencies among

API requests (e.g., inferring that a resource included in the response of a request A

is necessary as input argument of another request B). RESTler then generates test

cases that consist of multiple interdependent API requests and thoroughly test the
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corresponding cloud service. Experimental evaluation shows that RESTler is efficient

in testing production-scale open-source and proprietary cloud services: RESTler has

found tens of previously-unknown software errors (unhandled exceptions detected as

“500 Internal Server Errors”) that have all been fixed.

Chapter 4 describes how stateful REST API fuzzing can be extended to capture er-

rors beyond unhandled exceptions. It introduces four security rules that define desirable

properties of cloud services and describes the implementation of active property check-

ers that generate API request sequences to specifically test for violations of these rules.

By construction, active property checkers can find security rule violations beyond “500

Internal Server Errors” that can be detected by baseline stateful REST API fuzzing.

Experimental evaluation shows that these checkers can report previously-unknown er-

rors in production Azure and Office-365 [28] cloud services.

Finally, Chapter 5 describes Pythia, a new fuzzing system that augments state-

ful REST API fuzzing with coverage-guided feedback and learning-based mutations.

In baseline stateful REST API fuzzing, the automatically-generated fuzzing rules in-

clude few, predefined values for each primitive type in order to limit the combinatorial

explosion of the possible fuzzing rules and values. These values remain static over

time and lead to many redundant test cases (i.e., exercising identical functionality),

which are also not prioritized in any way. Pythia augments stateful REST API fuzzing

with learning-based mutations and coverage-guided feedback. Pythia uses a statisti-

cal model to learn common usage patterns of target cloud service APIs from seed test

cases, and then generates new test cases with learning-based mutations. Additionally,

coverage-guided feedback helps prioritize the test cases that are more likely to increase

coverage coverage and find errors. Experimental evaluation shows that Pythia can

report previously-unknown errors on production-scale open-source cloud services that

were beyond the reach of baseline stateful REST API fuzzing.

4



Chapter 2

Related Work

The theme of this dissertation is testing of cloud services using fuzzing. Testing is a pro-

cess used “to show the presence, not the absence, of software errors” [79] and. Therefore,

software verification approaches using formal methods to prove the correctness of soft-

ware with respect to a certain formal specification or property [126;155;72;74;71;49;96;180;181;139]

are beyond the scope of this dissertation. Instead, the focus is on dynamic test input

generation using fuzzing. Fuzzing [171] means automatic test input generation and ex-

ecution with the goal of finding security vulnerabilities. Approaches based on static

program analysis that automatically inspect source code and flag unexpected code pat-

terns [82;85;83;60;114;113] are also orthogonal to the material presented in this dissertation,

which relates to dynamic test input generation.

In the remainder of this chapter, we discuss the broader literature of test input

generation approaches using fuzzing (Chapter 2.1), symbolic execution (Chapter 2.2),

model-based testing (Chapter 2.3), and combinatorial test generation (Chapter 2.4).

2.1 Fuzzing

Traditionally, fuzzing has been used—with great success [4]—to test input-parsing pro-

grams written in low-level languages, such as C and C++. This dissertation is the first

to introduce systems that use fuzzing to test complex distributed applications, such
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as cloud services, through their APIs in a stateful manner (i.e., by constructing tests

with multiple interdependent API requests instead of individual API requests that test

shallow service states.)

Conceptually, there are two main perspectives to categorize fuzzing approaches:

based on how (and if) they use feedback from the target under test (e.g., in the form

of code coverage or status codes returned) and based on how they generate new test

inputs (e.g., by alternations of well-formed inputs or by using domain-specific rules).

First, based on how feedback from the fuzzing target is being used, there is blackbox

fuzzing, greybox fuzzing, and fully whitebox fuzzing. Second, based on how new inputs

are being generated, there is random fuzzing, mutation-based fuzzing, and grammar-

based fuzzing. Additionally, there are various combinations of the above approaches,

some of which have also been augmented with learning-based capabilities.

Blackbox Fuzzing

Blackbox is the simplest appoach to fuzzing. A blackbox fuzzer is a client program

which generates test inputs for a target program without any insight regarding the

target’s internal program structure. In that sense, the fuzzer treats the target under test

as a “black box” which may only be monitored by a diagnostic tool [9;142;51;7] that could

detect memory corruption errors (e.g., access violation exceptions and extreme memory

consumption) when executing test inputs. The literature discussed in the remainder

of this section includes random, mutation-based, grammar-based, and learning-based

blackbox fuzzing.

Random Blackbox Fuzzing

The term “fuzzing” was originally introduced by Miller et al. in 1990 to refer to a

client program that “generates a stream of random characters to be consumed by a
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target program.” [136] One of the authors, while logged on to his workstation through

a dial-up line, noticed that the rain had affected the phone lines leading to spurious

characters which were causing basic operating systems utilities to crash (“core dump”).

This observation motivated Miller et al. [136] to conduct a systematic testing on 90 utility

programs, running on seven versions of the UNIX operating system [162], using what,

today, is commonly referred to as random blackbox fuzzing.

The basic components involved in random blackbox fuzzing have remained largely

unchanged until today, and include a module that generates random test inputs and a

module that executes these test inputs on the target and identifies potential crashes.

Miller et al.’s testing uncovered errors in 24% of UNIX utility programs, including errors

in versions of UNIX that had underwent commercial product testing.

Since then, fuzzing has become standard in the software development life-cycle and

is required at every untrusted public interface of commercial products [111]. Despite its

simplicity and its ease of adoption, random blackbox fuzzing has limited effectiveness.

For instance, a trivial program with a 32-bit integer input, which is examined in a

conditional, and when a specific value is supplied the taken branch triggers a memory

exception error. Randomly generating the specific value that will uncover the error

requires approximately 232 trials. This trivial example highlights the main caveat of

random blackbox fuzzing: random test input generation produces too many redundant

test cases that exercise the same code paths without uncovering any errors. Mutation-

based blackbox fuzzing has evolved as a promising alternative to harness this limitation.

Mutation-based Blackbox Fuzzing

In mutation-based blackbox fuzzing, an initial set of well-formed inputs, called seeds, is

used for alternations, called mutations, which leads to new test inputs, called mutants.

HTTP-fuzzers like Burp [16], AppSpider [8], Qualys’ WAS [34], and others [36;6], are

representative examples of mutation-based blackbox fuzzers. These tools capture, and

7



then randomly fuzz and replay HTTP traffic, hoping to find errors. Since all these tools

use well-formed input seeds (live traffic) in order to produce new mutants, the new test

inputs are relatively well-formed (instead of completely random). Hence, mutation-

based blackbox fuzzing approaches have a higher probability to exercise a more varied

set of code paths and find unexpected errors.

However, when testing programs that process structured, non-binary input formats,

such as XML parsers [37], language compilers or interpreters [17;21;33], and cloud service

APIs [13;23;11], the effectiveness of mutation-based fuzzing techniques (blackbox, greybox,

or whitebox) is typically limited, and grammar-based fuzzing is a better alternative.

Grammar-based Blackbox Fuzzing

In grammar-based blackbox fuzzing, new test inputs are generated according to a gram-

mar which describes the format of a target input domain. The use of input grammars for

test case generation is not a new idea. In fact, it can be traced back to the 70s [107;133;154]

and the use of Context-Free Grammars (CFG). Test generation from a grammar is usu-

ally either done using random traversals of the production rules of the grammar [107] or

is exhaustive and covers all available production rules [121].

Today, the grammars used are not necessarily CFGs; yet, the basic idea remains

the same since the 70s: grammar rules describe how to generate new test inputs that

conform to a domain-specific format. Such test inputs satisfy complex structural con-

straints and exercise deep code paths because they are not rejected, early on, by syntac-

tic lexers and semantic checkers. Typical examples of blackbox grammar-based fuzzers

are HTTP testing tools, such as Sulley [35;15], Peach [2], and SPIKE [3]; network protocol

testing tools such as Quivid [42], the PROTOS Test-Suite [32], and the Yagg test gen-

erator [77]; and URL parser testing tools [140]. In all these tools, sequences of messages

are fed to the application under test and the user provides a grammar specifying the

desired request format, what parts of each request are to be fuzzed, and with what
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values.

The main caveat of grammar-based blackbox fuzzing is that the compilation of

a domain-specific fuzzing grammars is usually a non-trivial manual task. Recently,

grammar-based fuzzing has been automated in the domain of cloud service API testing

by RESTler [44;46] (described in Chapter 3). RESTler processes a REST API specifi-

cation and automatically compiles a grammar describing how to test a target cloud

service through its REST API. However, unlike REST APIs that are well-documented

with interface-specification languages, in input domains where no specification is avail-

able, or where the specification is not machine-interpretable, automatically producing

such fuzzing grammars is still infeasible. For instance, the Portable Document Format

(PDF) input format is described in a 1, 300−pages document [30] and automatically de-

riving a fuzzing grammar is unrealistic. In such domains, learning-based approaches

that learn how model a target input domain from corpora of existing test inputs have

been shown more applicable.

Learning-based Blackbox Fuzzing

Given a testing target which processes inputs from a domain D (usually non-binary,

structured input domain such as XML, PDF, or JavaScript), the main idea of learning-

based blackbox fuzzing is two-fold: first, use a modelM to approximate the structure

of the target input domain D; and then, sample the learnt modelM to obtain new test

inputs which are further alternated with mutations and then executed on the testing

target, hoping to uncover unknown errors.

The models used are usually either formal grammars, such as CFGs, or statistical

models, such as Recurrent Neural Networks [67;170]. In GLADE [50], the authors use

an two-step algorithm involving a set of heuristic rules and counterexamples [41] to

query a target program and incrementally built an oracle describing acceptable XML

input formats. Ultimately, they synthesize a set of CFG rules. Godefroid et al. [102]
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investigated the use generative RNNs [67;170] to model valid PDF formats. In Skyfire [177],

the authors mine open-source repositories in order to compile Probabilistic Context

Sensitive Grammars (PCSG) describing valid input formats for XML and JavaScript

language interpreters.

All these blackbox learning-based approaches loosely relate to RESTler [44] (dis-

cussed in Chapter 3) since RESTler also follows an automatic process to learn from

past tests how to prune invalid request sequences by analyzing service responses at

specific states. However, the way RESTler utilizes service feedback more closely re-

lates to feedback-directed test case generation [147;87;5] rather than to the learning-based

approaches which model input domains.

Overall, the key benefit of blackbox fuzzing is its ease of adoption since there is

no requirement for target source code availability. Moreover, grammar-based blackbox

approaches have been shown effective in uncovering non-trivial errors in domains with

complex input structure. However, the main questions that remain unanswered when

using blackbox fuzzing are: (i) how much fuzzing is enough? and (ii) how can one steer

the search towards test inputs that are more likely to trigger errors? Both limitations

emanate from the fact that blackbox testing is completely agnostic to the internal

program structure of the testing target. Greybox approaches discussed next attempt

to address some of these limitations.

Greybox Fuzzing

In greybox fuzzing, the testing target is not perceived as a complete “black box.”.

Instead, there is some insight regarding the target’s internal structure, usually in the

form of code coverage feedback. The conventional wisdom is that if feedback is used

to steer the search towards test cases that increase code coverage, this will increase the

likelihood of uncovering unknown errors.
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In principal, in greybox fuzzing, test case generation can be viewed as a search and

optimization problem [134;73] (e.g., with respect to code coverage). Various heuristics

and search techniques have been proposed and investigated for similar seach and opti-

mization problems, including the “Hill Climbing“ search algorithm [163], the “Simulated

Annealing” search algorithm [118], and evolutionary algorithms [137;48;103;150;119] which are

the foundation of greybox mutation-based fuzzing.

Mutation-based Greybox Fuzzing

American Fuzzy Lop (AFL) [20] and LibFuzzer [25] are representative candidates of mutation-

based greybox fuzzing. These tool require source code availability in order to perform a

light-weight static analysis and instrument the fuzzing target to produce code coverage

information. During fuzzing, test inputs that produce execution traces with unseen

code paths are preserved and routed for further mutations; while inputs that do not

trigger new execution traces are discarded. This is an evolutionary search trying to

optimize (increase) code coverage without any computationally intensive comparisons.

Such tools are very successful and have found hundreds of CVEs [4] domains with rel-

ative simple input formats, such as audio, image, or video processing applications [24;26;27],

ELF parsers [19], and binary utilities [14]. However, as explained earlier, when testing ap-

plications with complex inputs the effectiveness of mutation-based fuzzing techniques

is limited and grammar-based fuzzing is preferable.

Grammar-based Greybox Fuzzing

In grammar-based greybox fuzzing, the new test inputs adhere to some domain-specific

structure and, in addition, feedback is used to steer the search towards inputs that

increase code coverage.

Greybox grammar-based fuzzers, like Superion [178] and AFLSmart [152], combine

code coverage feedback and domain-aware heuristics that assert syntactic validity of
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new test inputs, or allow the user to define domain-aware fuzzing rules [149], or perform

mutation of the Abstract Syntax Tree (AST) level of test cases [127]. Alternatively,

Zent [148], uses code coverage feedback to guide grammar-based testing tools [70;167] for

XML and JavaScript interpreters.

The main strength of grammar-based greybox tools is that, due to domain aware-

ness, they can generate highly-structured inputs that go beyond syntax parsing and

semantic checking and, at the same time, code coverage feedback helps prioritize test

inputs that are more likely to uncover errors hidden in the implementation of core ap-

plication logic. Like the above tools, Pythia (discussed in Chapter 5) also uses code

coverage feedback to guide its search. However, unlike these tools that depend on user-

provided domain rules, Pythia uses a statistical model to learn common usage patterns

of target REST APIs from seed inputs.

Learning-based Greybox Fuzzing

Learning-based greybox fuzzing approaches [53;157;166;144;123;122] use machine learning to

automatically model various program properties. The key benefit is that, such ap-

proaches, can automatically identify latent patterns [52] without domain-specific rules.

NEUZZ [166] uses feed-forward neural networks to model the branching behaviour

of a target program given a corpus of seed inputs, and then leverages the gradients of

the learn representation to mutate only a small subset of input locations that mostly

affect target branches. A relevant approach, from Rajpal et al. [157], uses an RNN

to predict mutations that are more likely to increase code coverage and select them

while vetoing redundant ones. Similarly, AFLFast [53] and uses a Hidden Markov Model

(HMM) to model the probability that mutating a certain seed will lead to new inputs

that exercise a certain code path. With this information, AFLFast gravitates its search

towards mutations that exercise less common paths and avoids generating redundant

new inputs that repeatedly exercise the same “frequent” paths.
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Nichols et el. [144] investigated the use of Generative Adversarial Networks (GAN) [104]

to produce a diverse set of seeds which was, in turn, given to AFL for better code

coverage. Similarly, Le et al. [122] used Markov Chain Monte Carlo methods [115] to

promote diverse programs to more thoroughly exercise compilers. Finally, AFLNet [153]

is a greybox fuzzer for network protocol implementations which learns from recorded

server-client message exchanges variations that are effective at increasing the coverage.

All the above approaches relate to the material discussed in Chapter 5, where a

statistical model is used to learn common usage patterns of target REST APIs from

seed inputs. In general, learning-based approaches have at their core an inherent tension

between learning and fuzzing which influences various design choices. On the one hand,

the purpose of “learning” is to approximate as well as possible observed behaviours.

While, on the other hand, the purpose of “fuzzing” is to confuse as much as possible,

hoping to trigger unexpected, erroneous behaviours.

Whitebox Fuzzing

All the blackbox and greybox approaches discussed so far are easy to adopt and impose

a relatively low performance overhead. However, when testing complex programs that

process very long inputs and execute millions, or even billions, of instructions [55], simple

code coverage feedback is not sufficient to guide the search towards test cases that will

uncover errors. In such cases, more sophisticated program analysis techniques, such

as dynamic taint analysis, symbolic execution, and constraint solving, are leveraged to

improve test case generation precision.

The approaches discussed in this subsection are called whitebox because they utilize

insights obtained from the testing target and convert a black box (or a grey box) into a

white box. Furthermore, they borrow ideas from fuzzing (e.g., operate on well-formed

initial inputs). Thus, we put them under the umbrella of whitebox fuzzing.
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Mutation-based Whitebox Fuzzing

Mutation-based whitebox fuzzing systems, such as SAGE [100], collect symbolic taints

at the x86 instruction level of a testing target which executes initially well formed

inputs and then systematically solve symbolic path constraints in order to derive new

concrete test inputs that will force new execution paths. TaintScope [179], BuzzFuzz [88],

Angora [65] employ symbolic taint tracing to identify which input bytes of well-formed

inputs are used in branch conditionals and then focus on modifying specifically those

bytes. Others systems, such as T-Fuzz [151], Steelix [125], and VUzzer [159], use static and

dynamic taint analysis to detect input checks that the fuzzer-generated inputs fail, and

then transform the testing target by removing these checks to increase code coverage.

Grammar-based Whitebox Fuzzing

The use of mutation-based whitebox fuzzing approaches have been very successful in

testing programs that process inputs with relatively simple structure [55]. However,

mutation-based whitebox fuzzing, like its blackbox and greybox counterparts, is limited

when testing programs that process with highly-structured inputs. Although tracing is

more precise due to the use of symbolic taints, the granularity of the taints is too fine-

grained (e.g., at the byte-level). This leads to an enormous number of control flow paths

in an early processing stage and many redundant mutations that produce mutants which

cannot reach deep parts of the target program, beyond lexers and syntactic parsers.

To tackle this problem, grammar-based whitebox fuzzing approaches [99;130] combine

symbolic execution and grammar-based specifications of valid inputs formats to greatly

reduce the set of new test inputs generated. These approaches either use grammars

to pre-generate strings and then, starting from those pre-generated strings, leverage

symbolic execution (treating grammar primitives as symbolic) to generate new test

inputs [130], or involve custom grammar-based constraint solvers that exploit the gram-
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mar for solving constraints and generate new test inputs which are, by construction,

grammatically valid [99].

Overall, it is still largely unclear how to adopt whitebox fuzzing approaches—which

have at their core symbolic execution, and more specifically, a synergy between symbolic

and concrete execution—in the domain of cloud service testing which is the theme of

this dissertation. However, symbolic execution has been extensively used to test systems

written in low-level languages and the relevant literature is described next.

2.2 Symbolic Execution

Symbolic execution of programs was first introduced in the 70s by EFFIGY [116] and

SELECT [56]. Instead of supplying normal, concrete inputs to a program (e.g., integer

numbers), one supplies symbols representing arbitrary values and the execution pro-

ceeds arriving at expressions in terms of those symbols and constraints encoding the

possible outcomes of each conditional branch. In essence, symbolic execution summa-

rizes classes of inputs of a path into a boolean formula. Eventually, symbolic execution

partitions the space of program inputs into classes of inputs that follow the same path.

Initially, symbolic execution was tout as a program verification technique but till

today this goal remains elusive for large, complex software. Instead, symbolic execution

and symbolic execution engines are primarily used for dynamic, high-coverage test case

generation [62;63;64;173;39;124].

Unfortunately, dynamic symbolic execution has some fundamental limitations when

testing large, complex software: first, the path explosion problem: the number of fea-

sible paths can be exponential in the program size, or even infinite if the program

has a single loop whose number of iterations may depend on some unbounded input.

Second, the environment modeling problem: the symbolic execution engine must me-

diate between the program and its environment (e.g., external libraries and various OS
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components). Existing approaches usually incomplete because they either concretize

calls to the environment or use abstract abstract models of the environment. Third,

unsupported path constrains: pure symbolic execution engines cannot reason on the

feasibility of paths that depend on constraints outside the theories supported by the

solver (e.g., non-linear) or that depend on unknown or non-invertible operations (e.g.,

hash functions). Furthermore, there is significant engineering effort involved in build-

ing symbolic execution engines and the performance overhead incurred (due to tracing

and solving complex path constraints) is also non-negligible.

Over the last decades, especially after significant progress on constraint solvers [80],

many attempts have arisen trying to harness some of these limitations. For example,

various works have investigated heuristics to alleviate the path explosion [54;158;59] and

the environment problems [64;66]. Others have investigated parallelization of symbolic

execution on clusters of commodity hardware [58] or have exploited the compositionality

of test cases [97;112], state merging [47;40], targeted program transformations [61], and loop

handling optimizations [164]. Indeed, all these ideas have largely improved the appli-

cability of symbolic execution to test real software. However, the ability for full and

complete symbolic execution remains elusive on complex software. In practice, today

many systems built upon a synergy between concrete and symbolic execution.

When dealing with complex software, symbolic reasoning may be impossible for

some inputs (e.g., due path contains outside the reasoning scope of the solver). In such

cases, dynamic symbolic execution can leverage runtime information and use concrete

values of inputs can be used instead. For example, image a conditional checking the

values of two inputs, one of which is fed to a hash-function. Since the constraint solver

cannot solve the respective path constraint, there is no way to symbolically reason

about both outcomes of the branch in question. Nevertheless, concrete values can be

used to simplify the constrain and allow dynamic test case generation to proceed.

16



The key design choice is to sacrificing completeness (i.e., concretize symbolic inputs)

in favor of precision of test case generation. This idea was first presented in DART [98]

and was later extended with symbolic memory pointers in CUTE [165]. The synergy be-

tween concrete and symbolic execution, also known as concolic execution, is at the core

of mutation-based whitebox fuzzing systems, such as SAGE [100]. Concolic execution

has also motivated various hybrid approaches that combine symbolic execution with

random testing [129] or fuzzing [169;183;146], and active property checking [101;138].

Despite the undeniable success of whitebox approaches using symbolic execution

to test software (especially written in low-level languages), the material presented in

this dissertation regards testing of cloud services. It remains currently unclear how

to employ symbolic execution to test complex software conglomerates, such as cloud

services. Nonetheless, it is an interesting avenue to further investigate.

2.3 Model-based Testing

In model-based testing, an abstraction of a target system, called model, and its envi-

ronment are used to produce test cases. Model-based testing is not to be confused with

traditional model checking which is a formal formal method to test if the computations

of a system are “models” with respect to temporal logic formulas. Model-based testing

approaches to test Finite State Machines (FSM) [110;174;105;156;182] appeared in the 90s.

Compared to material discussed in this dissertation, model-based testing is closer

to blackbox grammar-based fuzzing. The difference between model-based testing and

grammar-based fuzzing is that the former generates test inputs to test an abstraction

of a system, whereas the latter uses grammar rules describing how inputs conforming

to a specific domain can be generated. Recently, model-based testing has been used to

test file systems [106], operating system device drivers [161;68], and systems on chip [81;141].
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2.4 Combinatorial Test Generation

Given a program and a set of input parameters, combinatorial test generation aims at

efficiently generating test inputs which cover as many combinations of input parameters

as possible [75;160;120;78;128;76]. The input parameter combinations exercised can be pair-

wise [120] or n-way [78;128;76]. In practice, these techniques are today used to test system

configuration parameters, where the number of distinct input parameters is sufficiently

small. The material discussed in the next chapters shares some common ideas with

combinatorial test generation. Specifically, in grammar-based fuzzing, the number of

distinct values used to fuzz each primitive type needs to be small in order to avoid

combinatorial explosions.
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Chapter 3

Stateful REST API Fuzzing

In this chapter, we describe RESTler, the first stateful REST API fuzzing system.

Stateful REST API fuzzing is the cornerstone of this dissertation. It was first introduced

by RESTler [44] and was then extended with active checkers capturing desirable REST

API security properties [46] (see Chapter 4) and with learning-based mutations and

coverage-guided feedback [45] (see Chapter 5).

3.1 Background and Motivation

Today, most cloud services are programmatically accessed by third-party applications [38]

and other services [143] through Application Programming Interfaces (APIs) that follow

the REpresentational State Transfer (REST) software architectural style [84]. Mean-

while, cloud service developers increasingly use interface-description languages, such as

the OpenAPI Specification (OAS) [29], to describe and document their REST APIs [13;23;11]

or to automatically generate sample client code in various programming languages.

Despite the rapid evolution of cloud services, systems to automatically test cloud

services through their REST APIs are still in their infancy. The most sophisticated

testing systems currently available, capture live traffic, and then fuzz and replay the

recorded traffic with the hope of finding unknown errors [8;34;6]. Such systems do not

explicitly capture dependencies among multiple API requests and, unfortunately, test
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only shallow service states reached by individual requests.

In contrast, RESTler performs stateful REST API fuzzing. Stateful means that

RESTler generates test cases which consist of multiple interdependent API requests

that explore subtle states and thoroughly test the target cloud service. To accomplish

this, RESTler first carries out a lightweight static analysis of an entire OpenAPI spec-

ification, and then generates (and executes) test cases that exercise the target cloud

service in a stateful manner. The static analysis performed by RESTler on API speci-

fications of target cloud services is described next.

3.2 Processing API Specifications

An interface-description language, such as OpenAPI [29], describes what requests a cloud

service can handle through its REST API and what responses may be expected. Given

such a specification (e.g., in JSON or YAML format), open-source tools automatically

generate web User Interfaces (UI) that allow users to view the documentation and

interact with the API a service via a web browser.

A sample OpenAPI specification, in its web-UI form, is shown in Figure 3.1. This

specification describes the API of a simple blog posts hosting service, which consists

of five request types to query, create, delete, access, and update, and delete blog posts

respectively. Each request type specifies the endpoint (i.e., HTTP path), the method

(i.e., HTTP verb), and required parameters (i.e., HTTP body).

Clicking on any of these five request types in a web browser expands the description

of the request type. For instance, selecting the second (POST) request in Figure 3.1

reveals text similar to the left of Figure 3.2. This text describes (in YAML format) the

expected syntax for the specific request and its response: the definition part of the

specification indicates that an object named body of type string is required and that

an object named id of type integer is optional (since it is not required); the path part
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Figure 3.1: Sample OpenAPI specification of blog posts service. Shows the
OpenAPI specification of a sample blog posts service.

of the specification describes the HTTP-syntax for this POST request and the format

of the expected response.

From such a specification, RESTler automatically constructs the test-generation

grammar shown on the right of Figure 3.2. RESTler’s test generation (fuzzing) grammar

is encoded in executable python code. It consists of code to generate an HTTP request

(of type POST in this case) and of code to process the expected response of this request

(which produces a post id in this case).

Each function restler_static simply appends the string it takes as argument

without modifying it. In contrast, the function restler_fuzzable takes as argument

a value type (like string in this example) and replaces it by one value of that type

taken from a small dictionary of values for that type. How dictionaries are defined

and how values are selected is discussed in the next subsection of this chapter. The

specific response is expected to return a new dynamic object (a dynamically created

resource id) named id of type integer. Using the schema shown on the left, RESTler

automatically generates the function parse_posts shown on the right.

Furthermore, by leveraging the semantics of the RESTful architectural design style

(i.e., the naming conventions and the placement of resource hierarchies in paths),

RESTler automatically infers all request dependencies globally available in an API spec-
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basePath: ’/api’
swagger: ’2.0’
definitions:
”Blog Post”:
properties:
body:
type: string
id:
type: integer

required:
−body
type: object

paths:
”/blog/posts/”
post:
parameters:
−in: body
name: payload
required: true
schema:
ref: ”/definitions/Blog Post”

from restler import requests
from restler import dependencies

def parse_posts(data):
post_id = data[”id”]
dependencies.set_var(post_id)

request = requests.Request(
restler_static(”POST”),
restler_static(”/api/blog/posts/”),
restler_static(”HTTP/1.1”),
restler_static(”{”),
restler_static(”body:”),
restler_fuzzable(”string”),
restler_static(”}”),
’post_send’: {
’parser’: parse_posts,
’dependencies’: [

post_id.writer(),
]

}
)

Figure 3.2: OpenAPI specification and automatically-generaterd RESTler
grammar. Shows a snippet of OpenAPI specification in YAML format (left) and
the corresponding grammar automatically generated by RESTler (right).

ification. For instance, in the particular example, RESTler will infer that the ids “pro-

duces” in the response of the second request are necessary to generate well-formed paths

for the last three requests whose path “consume” such ids. Such producer-consumer

dependencies extracted by RESTler, are used by the core test case generation algorithm

to create sequences of interdependent request (i.e., requests with producer-consumer

dependencies) which thoroughly test target cloud services in a stateful manner.
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3.3 Test Case Generation for Stateful REST API

Fuzzing

The main algorithm used by RESTler for test generation is shown in Figure 3.3 in

python-like notation. It starts (line 3) by processing an OpenAPI specification as

discussed in the previous section. The result of this processing is a set of request types,

denoted reqSet, and of their dependencies.

The algorithm operates on a set of request sequences, denoted seqSet, which ini-

tially only contains empty sequence ϵ (line 5). A request sequence is valid if every

response in the sequence has a valid return code (defined as HTTP status codes in

the 200 range). At each iteration of the main loop (line 8), starting with n = 1, the

algorithm generates and executes all valid request sequences of length n before moving

on to length n+ 1, and so on, until a user-specified maxLength is reached. Generating

valid request sequences and adding them in seqSet is done in two steps.

First, the set of valid request sequences of length n−1 is extended (line 9) to create a

set of new sequences of length n by appending each request with satisfied dependencies

at the end of each sequence, as described in the EXTEND function (line 13). The

function DEPENDENCIES (line 36) checks if all dependencies of the specified request

are satisfied. This is true when every dynamic object that is a required parameter

of the request, denoted by CONSUMES(req), is produced by some response to the

request sequence preceding it, denoted by PRODUCES(seq). If all the dependencies

are satisfied, the new sequence of length n is retained (line 18); otherwise it is discarded.

Second, each newly-extended request sequence whose dependencies are satisfied is

rendered (line 10) one by one as described in the RENDER function (line 21). For

every newly-appended request (line 24), the list of all fuzzable primitive types in the

request is computed (line 25) (those are identified by restler_fuzzable in the code
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1 Inputs: openapi_spec, maxLength
2 # Set of requests parsed from the OpenAPI spec
3 reqSet = PROCESS(openapi_spec)
4 # Set of sequences (initially an empty sequence)
5 seqSet = {ϵ}
6 # Main loop: iterate up to a given maximum sequence length
7 n = 1
8 while (n <= maxLength):
9 seqSet = EXTEND(seqSet, reqSet)

10 seqSet = RENDER(seqSet)
11 n += 1
12 # Extend all sequences in seqSet by appending new requests
13 def EXTEND(seqSet, reqSet):
14 newSeqSet = {}
15 for seq in seqSet:
16 for req in reqSet:
17 if DEPENDENCIES(seq, req):
18 newSeqSet = newSeqSet + concat(seq, req)
19 return newSeqSet
20 # Concretize all newly appended requests using dictionary values
21 def RENDER(seqSet):
22 newSeqSet = {}
23 for seq in seqSet:
24 req = last_request_in(seq)
25 V⃗ = tuple_of_fuzzable_types_in(req)
26 for v⃗ in V⃗ :
27 newReq = concretize(req, v⃗)
28 newSeq = concat(seq, newReq)
29 response = EXECUTE(newSeq)
30 if response has a valid code:
31 newSeqSet = newSeqSet + newSeq
32 else:
33 log error
34 return newSeqSet
35 # Check that all objects used in req are produced by seq
36 def DEPENDENCIES(seq, req):
37 if CONSUMES(req) ⊆ PRODUCES(seq):
38 return True
39 return False
40 # Objects required in a request
41 def CONSUMES(req):
42 return object_types_required_in(req)
43 # Objects produced in the responses of a sequence of requests
44 def PRODUCES(seq):
45 dynamicObjects = {}
46 for req in seq:
47 newObjs = objects_produced_in_response_of(req)
48 dynamicObjects = dynamicObjects + newObjs
49 return dynamicObjects

Figure 3.3: Main test case generation algorithm used by RESTler. Shows the
implementation of the test case generation algorithm used by RESTler.
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shown on the right of Figure 3.2). Then, each fuzzable primitive type in the request

is concretized, which substitutes one concrete value of that type taken out of a finite,

user-configurable dictionary of values.

For instance, for fuzzable type integer, RESTler might use a small dictionary with

the values 0, 1, and -10, while for fuzzable type string, a dictionary could be defined

with the values “sampleString”, the empty string, and a very long fixed string. The

function RENDER generates all possible such combinations (line 26). Each combi-

nation thus corresponds to a fully-defined request newReq (line 27) which is HTTP-

syntactically correct. The function RENDER then executes this new request sequence

(line 29), and checks its response: if the response has a valid status code, the new re-

quest sequence is valid and retained (line 31); otherwise, it is discarded and the received

error code is logged for analysis and debugging.

More precisely, the function EXECUTE executes each request in a sequence one by

one, each time checking that the response is valid, extracting and memoizing dynamic

objects (if any), and providing those in subsequent requests in the sequence if needed, as

determined by the dependency analysis; the response returned by function EXECUTE

in line 29 refers to the response received for the last, newly-appended request in the

sequence. Note that if a request sequence produces more than one dynamic object of a

given type, the function EXECUTE will memoize all of those objects, but will provide

them later when needed by subsequent requests in the exact order in which they are

produced; in other words, the function EXECUTE will not try different ordering of

such objects. If a dynamic object is passed as argument to a subsequent request and is

“destroyed” after that request, i.e., it becomes unusable later on, RESTler will detect

this by receiving an invalid status code, outside the 200 range (e.g., a 400 or a 500

status code) when attempting to reuse that unusable object, and will then discard that

request sequence.

25



By default, the function RENDER of Figure 3.3 generates all possible combinations

of dictionary values for every request with several fuzzable types (see line 26). For large

dictionaries, this may result in astronomical numbers of combinations. In that case, a

more scalable option is to randomly sample each dictionary for one (or a few) values,

or to use combinatorial-testing algorithms [75] for covering, say, every dictionary value,

or every pair of values, but not every k-tuple. In the experiments reported later, we

used small dictionaries and the default RENDER function shown in Figure 3.3.

Optimizations

The function EXTEND of Figure 3.3 generates all request sequences of length n + 1

whose dependencies are satisfied. Since n is incremented at each iteration of the main

loop of line 8, the overall algorithm performs a complete breadth-first search (BFS) in

the search space defined by all possible request sequences. To harness the combinatorial

explosion of a complete BFS we investigate two optimization.

BFS-Fast. In function EXTEND, instead of appending every request to every se-

quence, every request is appended to at most one sequence. This results in in a smaller

set newSeqSet which covers (i.e., includes at least once) every request but does not gen-

erate all valid request sequences. Like BFS, BFS-Fast still exercises every executable

request type at each iteration of the main loop in line 8: it still provides full grammar

coverage with respect to all possible rendering of each individual request but does not

explore all possible request sequence combinations for a given sequence length. This

allows BFS-Fast to scale better than BFS and to generate longer request sequences.

RandomWalk. In function EXTEND, the two loops of line 15 and line 16 are elim-

inated; instead, the function now returns a single new sequence of requests whose

dependencies are satisfied and which is generated by randomly appending one req from

reqSet to the current (one) seq in seqSet. (The function always chooses a req that
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satisfies all dependencies of seq.) Once a seq of length n has been constructed, the

main loop of line 8 will proceed to construct a sequence of length n + 1 while main-

taining a seqSet with exactly one sequence (of the previous iteration). Furthermore,

in function RENDER, when the condition of line 30 is satisfied (i.e., a valid rendering

of the last request has been found), the loop of line 26 will stop.

In essence, RandomWalk sacrifices full grammar coverage both with respect to all

possible renderings of individual requests and with respect to all possible request combi-

nations for a given sequence length. This design choice allows RandomWalk to explore

the search space of possible request sequences deeper more quickly than BFS or BFS-

Fast in a random, non-systematic manner. When RandomWalk can no longer extend

the current request sequence, it restarts from scratch from an empty seqSet and re-

peats the same process, trying to construct a new sequence. Since RandomWalk does

not memoize past request sequences between restarts, it might regenerate the same

request sequence multiple times.

In Chapter 3.6, we report experiments performed on three production-scale open-

source services comparing the scalability of BFS, BFS-Fast, and RandomWalk in term

of code coverage achieved and new bugs found. Next, we discuss some implementation

details of RESTler.

3.4 Implementation of Stateful REST API Fuzzing

in RESTler

We have implemented RESTler in 3, 151 lines of modular python code split into: the

parser and compiler module, the core fuzzing runtime module, and the garbage collector

(GC) module.

The parser and compiler module is used to parse an OpenAPI specification and to
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generate the RESTler grammar describing how to fuzz a target service. (In the absence

of an OpenAPI specification, the user could directly provide the RESTler grammar.)

The core fuzzing runtime module implements the algorithm of Chapter 3.3 and its

variants. It renders API requests, processes service-side responses to retrieve values of

the dynamic objects created, and analyzes service-side feedback to decide which requests

should be reused in future generations while composing new request sequences. Finally,

the GC runs as a separate thread that tracks the creation of the dynamic objects over

time and periodically deletes aging objects that exceed some user-defined limit.

RESTler is currently a command-line tool that takes as input an OpenAPI speci-

fication, service access parameters (e.g. IP, port, authentication), the mutations dic-

tionary, and the search strategy to use during fuzzing. After compiling the OpenAPI

specification, RESTler displays the number of endpoints discovered and the list of re-

solved and unresolved dependencies, if any. In case of unresolved dependencies, the user

may provide additional annotations or resource-specific mutations (see Section 3.5) and

re-run this step to resolve them. Alternatively, the user may choose to start fuzzing

right away and RESTler will treat unresolved dependencies in consumer parameters as

restler_fuzzable string primitives.

During fuzzing, RESTler treats each 500 status code (500 “Internal Server Error”)

received after executing a request sequence as a bug and uses a bucketization scheme

to cluster similar 500 “Internal Server Error” incidents.

Bug Bucketization

When fuzzing, different instances of a same bug are often found repeatedly. Since all

the bugs found have to be inspected by the user, it is therefore important in practice

to aid this analysis by identifying likely-redundant instances of a same unique bug.

Since we define a bug to be a 500 HTTP status code received after executing a
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request sequence, each bug found is associated with the request sequence that was exe-

cuted to uncover it. Given this property, we use the following bucketization procedure

for bugs found by RESTler:

Whenever a new bug is found, we compute all non-empty suffixes of its
non-rendered request sequence1 (starting with the smallest one) and check
whether some suffix is a previously-recorded sequence leading to a bug found
earlier. If there is a match, the new bug is added to the bucket of that
previous bug. Otherwise, a new bucket is created with the new bug and its
request sequence.

In the above procedure, requests in sequences are identified by their type, not by how

they are rendered: fuzzable primitive types are not taken into account and different

renderings of the same request are equivalent. When using BFS or BFS-Fast, This

bucketization scheme will identify bugs by the shortest sequence necessary to find it.

Baseline stateful REST API fuzzing described so far, can only find bugs manifested

as 500 “Internal Server Errors.” However, in Chapter 4, we describe how stateful REST

Fuzzing can be extended with active checkers that capture desirable REST API security

properties and detect errors beyond 500 “Internal Server Errors.”

3.5 Experiences with RESTler in Proprietary

Cloud Services

In this section, we describe our experiences running RESTler to test proprietary Azure [12]

and Microsoft Office365 [28] cloud services performing resource management and real-

time data aggregation. RESTler found several bugs (that have now been fixed) in all

four services tested. However, we also faced a number of challenges unique to pro-

prietary services, including resource quota limitations, short-lived access tokens, and

1A request sequence of length n has n suffixes of length 1, 2, . . . , n.
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complex API dependencies beyond the canonical REST API structure with application-

specific resource values and naming schemes. We describe the extensions made to

address these challenges.

Resource Quotas. Proprietary services that run in public clouds are deployed with

default resource quotas. Once the specific resource quotas are reached, RESTler’s test

generation algorithm will repeatedly attempt to execute request sequences containing

requests that can no longer succeed due to exceeded quotas (since these requests were

valid in prior tests and generated lots of new resources). This impedes test case gen-

eration progress. This challenge is unique to proprietary cloud deployments, contrary

to self-contained deployments where one can easily control and reconfigure resource

quotas. To address this problem, RESTler includes a garbage collector (GC). The GC

runs as a separate thread that monitors the creation of dynamic resources over time and

periodically deletes dynamic objects that are no longer used in order to avoid exceeding

resource quotas. This allows RESTler to continuously test new sequences for hours or

days without hitting resource-quota-related errors.

Short-lived Access Tokens. Unlike in self-contained deployments where an admin

can pre-populate static or long-lived authentication tokens, public cloud services use

short-lived, refreshable authentication tokens. Usually, a public endpoint, accessible

with some type of static credentials (e.g., a username-password pair or a master to-

ken) and service-specific logic, generates fresh, short-lived access tokens. The latter are

added in the header of HTTPS requests. Since different services may require custom

logic to access their public authentication endpoints, RESTler provides an authentica-

tion hook which periodically executes a user-provided piece of code (e.g., a script) and

propagates fresh values in the pool of refreshable authentication tokens.

Application-specific Naming Schemes. As discussed in Chapter 3.2, RESTler per-

forms a light-weight static analysis of a OpenAPI specification to infer dependencies
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among requests of the target REST API. However, part of a target API may not be fully

REST compliant, or the specification may be incomplete, and consequently the inferred

dependencies will also be incomplete. To address this challenge, RESTler supports an-

notations, which can be added directly to the specification (as OpenAPI extensions), in

order to explicitly declare dependencies, as well as resource-specific mutations, which

can be used for the creation of resources that require some custom format (e.g., an IP

address). These two features have proven useful in practice because, unlike the typi-

cal design of REST APIs, Azure services use PUT requests to create resources whose

user-provided names are passed as URL parameters and, after successful creation, are

also returned in the response. For this scenario, one can use resource-name-specific

mutations to indicate that a PUT request should create a resource named in a cus-

tom format, and then use that name to identify the corresponding dynamic object in

subsequent requests.

3.6 Evaluation

In this section, we present experimental results obtained with RESTler that answer the

following questions:

Q1: Are both inferring dependencies among request types and analyzing dynamic

feedback necessary for effective automated REST API fuzzing?

Q2: Are tests generated by RESTler exercising deeper service-side logic as sequence

length increases?

Q3: How do the three search strategies implemented in RESTler compare across var-

ious APIs in terms of code coverage?

Q4: How do the three search strategies implemented in RESTler compare across var-

ious APIs in terms of new bugs found?
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Experimental Setup

We answer the first question (Q1) using a simple blog posts service with a REST API.

We answer (Q2), (Q3), and (Q4) using three open-source, production-scale web services

with REST APIs.

Blog posts service. To answer (Q1) we use a simple blog posts service, written

in 189 lines of python code using the Flask web framework [86]. Its functionality is

exposed over a REST API with a OpenAPI specification shown in Figure 3.1. The

API contains five request types: (i) GET on /posts: returns all blog posts currently

registered; (ii) POST on /posts: creates a new blog post (body: the text of the blog

post); (iii) DELETE /posts/id: deletes a blog post; (iv) GET posts/id: returns the

body and the checksum of an individual blog post; and (v) PUT /posts/id: updates

the contents of a blog post (body: the new text of the blog post and the checksum of

the older version of the blog post’s text).

In order to model an imaginary subtle bug, at every update of a blog post (PUT

request with body text and checksum) the service checks if the checksum provided in

the request matches the recorded checksum for the current blog post, and if it does, an

uncaught exception is raised. Thus, this bug will be triggered only if dependencies on

dynamic objects shared across requests are taken into account during test generation.

Production-scale cloud services. To answer (Q2), (Q3), and (Q4) we use three

open-source, production-scale cloud services; namely GitLab, Mastodon, and Spree.

First, we use GitLab enterprise version 11.11 and test API families related to com-

mon version control operations. GitLab is an open-source web service for self-hosted

Git, its back-end is written in over 376K lines of ruby code using ruby-on-rails, and its

functionality is exposed through REST APIs. It is used by more than 100, 000 organi-

zations, has millions of users, and has currently a 2/3 market share of the self-hosted

Git market [95]. We configure GitLab to use Nginx HTTP web server and 20 Unicorn
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Target Service API Family Total Requests

GitLab Commits 15 (*11)
Brances 8 (*2)
Issues & Notes 25 (*20)
User Groups 53 (*2)
Projects 54 (*5)
Repos & Files 12 (*22)

Mastodon Accounts & Lists 26 (*3)
Statuses 18 (*19)

Spree Storefront Cart 8 (*11)

Table 3.1: Target Cloud Service APIs. Shows the number of distinct request types
in each API family and the average number of primitive value combinations that are
available for each request type (*).

workers with 4GB of physical memory. We use postgreSQL with 20 workers and the de-

fault GitLab configuration for sidekiq queues and redis workers. According to GitLab’s

recommendations, such configuration scales up to 4, 000 concurrent users [94].

Second, we use Mastodon version 3.1.1, an open-source, self-hosted social network-

ing service with more than 4.4M users [132]. We follow the same configuration, as in

GitLab, regarding Unicorn workers and persistent storage.

Third, we use Spree, an open-source e-commerce platform for Rails 6 with over

1M downloads [168]. We test the default sandbox configuration of version 4.0. All the

experiments discussed in this evaluations were run on Ubuntu 18.04 Google Cloud

VMs [22] with 8 logical CPU cores and 52GB of physical memory. Each fuzzing client is

used to test a target service deployment running on the same machine

Table 3.1 shows characteristics of the target service APIs, such as the total number

of requests in each API family and the average number of different values available to

fuzz each request. The total number of requests in each API family and the average

number of values available per request indicate the size of the respective fuzzing space.
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Fuzzing dictionaries. To maintain the size of the search space small and, at the

same time, perform some meaningful fuzzing we use a small, predifined dictionary of

values available for each primitive type. string fuzzable types have possible values

“sampleString” and “” (empty string); integer fuzzable types have possible values “0”

and “1”; boolean fuzzable types have possible values “true” and “false”.

Techniques for effective REST API fuzzing (Q1)

In this section, we report results with our blog posts service to determine whether both

(1) inferring dependencies among request types and (2) analyzing dynamic feedback

are necessary for effective automated REST API fuzzing (Q1). We choose a simple

service in order to clearly measure and interpret the testing capabilities of the two core

techniques being evaluated. Those capabilities are evaluated by measuring service code

coverage and client-visible HTTP status codes.

Specifically, we compare results obtained when exhaustively generating all possible

request sequences of length up to three, with three different test-generation algorithms:

1. RESTler ignores dependencies among request types and treats dynamic objects –

such as post id and checksum – as fuzzable primitive type string objects, while

still analyzing dynamic feedback.

2. RESTler ignores service-side dynamic feedback and does not eliminate invalid

sequences during the search, but still infers dependencies among request types

and generates request sequences satisfying those.

3. RESTler uses the algorithm of Figure 3.3 using both dependencies among request

types and dynamic feedback.

Figure 3.4 shows the number of tests, i.e., request sequences, up to maximum length

3, generated by each of these three algorithms, from left to right. The top plots show

the cumulative code coverage measured in lines of code over time, as well as when the
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Figure 3.4: Blog posts service code coverage and HTTP status codes over
time. Shows the increase in code coverage over time (left) and the respective cumulative
number of HTTP status codes received over time (right). Top: RESTler utilizes both
dependencies among request types and dynamic feedback. Middle: RESTler ignores
dynamic feedback. Bottom: RESTler ignores dependencies among request types. When
leveraging both techniques, RESTler achieves the best code coverage and finds the
planted 500 “Internal Server Error” bug with the least number of tests.

sequence length increases. The bottom plots show the cumulative number of HTTP

status codes received.

Code Coverage. First, we observe that without considering dependencies among
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request types (Figure 3.4, bottom left), code coverage is limited to up to 130 lines and

there is no increase over time, despite increasing the length of request sequences. This

illustrates the limitations of using a naive approach to test a service where values of

dynamic objects like id and checksum cannot be randomly guessed or picked among

values in a small predefined dictionary. In contrast, by inferring dependencies among

requests and by processing service responses RESTler achieves an increase in code

coverage up to 150 lines of code (Figure 3.4, middle left and top left).

Second, we see that without considering dynamic feedback to prune invalid request

sequences in the search space (Figure 3.4, middle) the number of tests generated grows

quickly, even for a simple API. Specifically, without considering dynamic feedback

(Figure 3.4, middle right), RESTler produces more than 4, 600 tests that take 1, 750

seconds and cover about 150 lines of code. In contrast, by considering dynamic feed-

back (Figure 3.4, top), the state space is significantly reduced and RESTler achieves

the same code coverage with less than 800 test cases and only 179 seconds.

HTTP Status Codes. We make two observations. First, focusing on 40X status

codes, we notice a high number of 40X responses when ignoring dynamic feedback

(Figure 3.4, middle right). This indicates that without considering service-side dynamic

feedback, the number of possible invalid request sequences grows quickly. In contrast,

considering dynamic feedback dramatically decreases the percentage of 40X status codes

from 60% to 26% without using dependencies among request types (Figure 3.4, bottom

right) and to 20% with using dependencies among request types (Figure 3.4, top right).

Moreover, when using dependencies among request types (Figure 3.4, bottom right), we

observe the highest percentage of 20X status codes (approximately 80%), indicating that

RESTler then exercises a larger part of the service logic – also confirmed by coverage

data (Figure 3.4, top left).

Second, when ignoring dependencies among request types, we see that no 500 status
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API Total
Requests

Sequence
Length

Coverage
Increase

Tests seqSet
Size

Dynamic
Objects

Commits 15 (*11) 1 598 1 1 1
2 1108 7 5 10
3 1196 250 46 521
4 1760 2220 1341 6577
5 1760 3667 20679 12518

Branches 8 (*2) 1 598 1 1 1
2 1089 8 6 11
3 1172 58 44 107
4 1182 576 387 1279
5 1185 3644 5528 9336

Issues 25 (*20) 1 816 37 37 37
2 1163 2444 1839 4245
3 1163 4156 15658 8870

User Groups 53 (*2) 1 887 39 39 38
2 1177 3508 3360 5204
3 1177 4817 79518 8946

Projects 54 (*5) 1 934 42 41 38
2 1192 1870 1781 3343
3 1203 3226 18173 7374

Repos & Files 12 (*22) 1 598 1 1 1
2 1117 97 65 206
3 1181 5153 2194 15472

Accounts & Lists 26 (*3) 1 4 30 8 8
2 215 470 424 544
3 656 30229 24300 42199

Statuses 18 (*19) 1 4 60 8 8
2 333 5908 416 6272
3 631 28926 5192 55376

Storefront Cart 8 (*11) 1 10 1 1 1
2 208 2 6 2
3 1473 47 98 62
4 1943 6380 6201 21309

Table 3.2: Testing common GitLab, Mastodon, and Spree APIs with
RESTler. Shows the increase in sequence length, code coverage, tests executed,
seqSet size, and the number of dynamic objects being created using BFS for 5 hours.
Longer request sequences gradually increase service-side code coverage.
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codes are detected (Figure 3.4, bottom right), while RESTler finds a handful of 500

status codes when using dependencies among request types (see Figure 3.4, top right

and middle right). These 500 responses are triggered by the unhandled exception

we planted in our blog posts service after a PUT blog update request with a checksum

matching the previous blog post’s body (see Chapter 3.6). When ignoring dependencies

among request types, RESTler misses this bug (Figure 3.4, bottom right). In contrast,

when analyzing dependencies across request types and using the checksum returned by

a previous GET /posts/id request in a subsequent PUT /posts/id update request

with the same id, RESTler does trigger the bug. Furthermore, when additionally using

dynamic feedback, the search space is pruned while preserving this bug, which is then

found with the least number of tests (Figure 3.4, bottom right).

Overall, these experiments illustrate the complementarity between utilizing depen-

dencies among request types and using dynamic feedback, and show that both are

needed for effective REST API fuzzing.

Deeper service exploration (Q2)

In this section, we present experiments to determine whether the tests generated by

RESTler exercise deeper service-side logic as sequence length increases (Q2). We per-

form individual experiments on the nine API families using 5h fuzzing sessions with the

default test-generation algorithm of RESTler (i.e., BFS). For each experiment, we limit

the number of fuzzable primitive-type combinations to maximum 1, 000 combinations

per request. Between experiments, we force the entire GitLab, Mastodon, or Spree

service to restart from the same initial state.

Table 3.2 shows the increase (going down) in the sequence length, the increase in

code coverage (new lines after boot), the total number of tests executed, the seqSet size

(see Figure 3.3), and the number of dynamic objects created until the 5-hours timeout.
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API BFS BFS-Fast RandomWalk

SeqSet Len Req SeqSet Len Req SeqSet Len Req
Commits 64579 5 15/15 20 27 15/15 1 9 (2850) 10/15
Branches 44805 6 8/8 8 100 8/8 1 14 (3392) 8/8
Issues &
Notes

58332 3 6/25 99 17 25/25 1 17 (376) 24/25

User
Groups

31621 3 28/53 93 33 50/53 1 40 (1341) 51/53

Projects 50541 3 36/54 16 48 54/54 1 13 (2047) 52/54
Repos
& Files

77666 4 11/12 121 19 11/12 1 8 (3352) 12/12

Accounts
& Lists

142124 4 24/26 24 75 24/26 1 3 (17652) 24/26

Statuses 288448 4 18/18 40 39 18/18 1 2 (13672) 15/18
Storefront
Cart

98571 5 8/8 45 100 8/8 1 24 (1481) 7/8

Table 3.3: Comparison of BFS, BFS-Fast and RandomWalk after 48 hours.
Shows the seqSet size for each search strategy, the maximum sequence length (Ran-
domWalk restarts in parenthesis), and the request coverage (i.e., requests that have
been executed at least once) after 48 hours in GitLab, Mastodon, and Spree. BFS-
Fast and RandomWalk maintain a much smaller seqSet compared to BFS, and usually
construct longer request sequences and achieve better request coverage.

Code Coverage. The fourth column of Table 3.2 shows the cumulative code cover-

age achieved after executing all the request sequences generated by RESTler for each

sequence length, or until the 5-hours timeout expires. The results are incremental on

top of the initial lines of code executed, by default, during booting each service (i.e.,

16, 836 lines for GitLab, 6, 434 for Mastodon, and 3, 359 for Spree). Later on, we com-

plement these results, in the next subsection, with graphs showing how coverage evolves

over time 48h in Figure 3.5. However, here, our purpose is not to compare RESTler’s

code coverage against developers’ test cases code coverage or how it evolves over time.

Instead, the focus is to demonstrate that RESTler test-cases exercise deeper states of

server-side logic as sequence length increases.

From Table 3.2, we can clearly see that longer sequence lengths consistently increase
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service-side code coverage across all nine APIs and all three services. This is the desired

and expected behaviour which demonstrates the key strength of stateful REST API

fuzzing: the test sequences generated by stateful REST API fuzzing successfully test

functionality that can be exercised only by sequences of interdependent requests.

As an example, consider the GitLab functionality of “selecting a commit”. According

to GitLab’s specification, selecting a commit requires two dynamic objects, a project-

id and a commit-id, and the following dependency of requests is implicit: (1) a user

needs to create a project, (2) use the respective project-id to post a new commit, and

then (3) select the commit using its commit-id and the respective project-id. Clearly,

this operation can only be performed by sequences of three requests or more. For the

Commit APIs, note the gradual increase in coverage from 598 to 1, 108 to 1, 196 lines

of code for sequence lengths of one, two, and three, respectively. Most notably, for the

Branches API, service-side code coverage keeps gradually increasing for sequences of

length up to five, and reaches 1, 185 lines when the 5-hours limit expires. Similarly,

for the Storefront Cart APIs, service-side code coverage keeps gradually increasing for

sequences of length up to four, and reaches 1, 943 lines when the 5-hours limit expires.

Tests, Sequence Sets, and Dynamic Objects. In addition to code coverage, Table

3.2 also shows the increase in the number of tests executed, the size of seqSet after the

RENDER function returns in line 10 of Figure 3.3, and the number of dynamic objects

created by RESTler. One test here means, one stateful sequence of requests of length

depending on the value of n in line 7 of Figure 3.3.

We observe, in the last three columns of Table 3.2 that the number of tests, the

size of the seqSet, and the number of dynamic objects created rapidly increases with

sequence length across all APIs due to the exhaustive nature of the BFS search strategy.

Nevertheless, we emphasize that without the two key techniques evaluated in Chapter

3.6 this growth would be much worse.
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For instance, for the Commit API, the SeqSet size is 20, 679 and there are 12, 518

dynamic objects created by RESTler for sequences of length up to five. By comparison,

since the Commits API has 15 request types with an average of 11 rendering combi-

nations, the number of all possible rendered request sequences of up to length four is

already more than 741 millions and a naive brute-force enumeration of those would

clearly be intractable. Similarly, for the Storefront Cart API, the SeqSet size is 6, 201

and there are 21, 309 dynamic objects created by RESTler for sequences of length up to

four. By comparison, since the API has 8 request types with an average of 11 rendering

combinations, the number of all possible rendered request sequences of up to length

four is already more than 59 millions. Still, even with the two core techniques used in

RESTler, the search space explodes quickly. Next, we evaluate two BFS optimizations.

Search strategies: Code coverage (Q3)

We now present results of experiments comparing the BFS, BFS-Fast, and RandomWalk

search strategies defined in Chapter 3.3 (Q3). For each search strategy, Table 4.1 shows

the maximum sequence length achieved after 48 hours, the respective request coverage

(i.e., the number of requests that have been used in at least one test case), and the size of

the seqSet when the 48-hours timeout is reached. For the RandomWalk search strategy

the total number of restarts is also shown in parenthesis. Additionally, Figure 3.5 shows

the cumulative service-side code coverage increase (on top of the boot coverage) for the

three search strategies over 48 hours. We compare the search strategies.

First, we examine BFS. From Table 4.1 we observe that across all APIs BFS

maintains the largest seqSet size, compared to BFS-Fast and RandomWalk. This is

inevitable since BFS provides full grammar coverage both with respect to all possible

value combinations of each individual request and with respect to all possible request

type combinations given a sequence length (see Chapter 3.3) and, therefore, explores a
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Figure 3.5: Comparison of BFS, BFS-Fast and RandomWalk code coverage
over 48 hours in GitLab, Mastodon, and Spree. Shows the percentage code cov-
erage increase (on top of the initial boot coverage) for BFS, BFS-Fast and RandomWalk
over 48 hours in GitLab, Mastodon, and Spree. BFS-Fast and RandomWalk perform
evidently better than BFS in API families with many requests or many possible value
combinations per request.

considerably larger search space. Consequently, BFS does not scale well: it constructs

shorter sequences than BFS-Fast and RandomWalk, especially in APIs with relatively

many possible value combinations per request (e.g., Issues: 3 versus 17 and 17; Repos

& Files: 4 versus 19 and 8) and in APIs with relatively many request types (e.g., User

Groups: 3 versus 33 and 40; Projects: 3 versus 16 and 13). Notable exceptions are the

APIs of Mastodon (Accounts & Lists and Statuses), in which RandomWalk performs

worst in terms of maximum sequence length achieved.
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To understand the reason behind this differentiation we explain how these two

API families differ from all the rest. All APIs have a base parent request. That is, a

producer of dynamic resources which are a necessary dependencies for all other requests.

For example, in GitLab, the base parent is a request type which produces a project-id

correlated with some user that can perform various actions. Similarly, in Spree, the

base parent is a request type which constructs a fresh user-id correlated with some user

that can then perform various actions. These base parent request types have exactly

one possible value combination both in GitLab and in Spree. However, the respective

base parent request type in Mastodon (which creates a fresh user account) has thirty

possible value combinations, out of which, only one is valid. To make matters worse,

RandomWalk does not memoize request renderings between restarts (see Chapter 3.3).

Therefore, RandomWalk has a relatively low probability of randomly selecting the one

valid value combination compared to all other APIs of GitLab and Mastodon (i.e., 1 out

of 30 versus 1 out of 1). This forces RandomWalk to perform many restarts. Specifically,

there are 17, 652 restarts for Accounts & Lists and 13, 672 restarts for Statuses, which

is an order of magnitude more than all other APIs.

Finally, from Table 4.1, we see that BFS provides the worst request coverage and

in various API families (such as Issues & Notes, User Groups, and Projects) there are

many requests than have never been executed after 48h. For example, in Issues &

Notes, out of the 25 total requests, only 6 have been covered after 48h. To understand

the exact size of the state space explored by BFS in Issues after 48h, consider that for

sequence length three the most complex test case creates a project (one possible value

combination), then creates an issue (108 value combinations), and then edits an issue

(324 value combinations). Fully exploring the search space of this single one test case,

using BFS, leads to approximately 35K value combinations. (Let alone exploring the

search space defined by all sequences in seqSet after multiple hours.) The conclusions
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drawn from Table 4.1, with respect to request coverage, are also in line with what can

be observed in Figure 3.5, regarding service-side code coverage. In particular, Figure

3.5 shows that BFS performs worst in Issues & Notes, User Groups, and Projects, which

is exactly what was discussed above.

Second, we examine BFS-Fast. We observe, in Table 4.1, that BFS-fast main-

tains a considerably smaller seqSet than BFS (in fact many orders of magnitude)

across all APIs. This is expected because, by design, BFS-Fast sacrifices full grammar

coverage with respect to all possible request combinations for a given sequence length,

and instead, given a sequence length, it appends each request exactly once per gener-

ation. Specifically, the largest seqSet for BFS-Fast is 121 (for Repos & Files), while

the largest seqSet for BFS is 288, 448 (for Statuses). In comparison with BFS-Fast,

only RandomWalk (discussed next) maintains a smaller seqSet which always consists

of exactly one sequence. Additionally, BFS-Fast always constructs longer sequences

than BFS after 48h. In Branches and in Storefront Chart BFS-Fast it even reaches

length 100, which is the maximum, user-defined allowed sequence length. Furthermore,

from Table 4.1, we observe that BFS-Fast achieves considerably better request coverage

than BFS and similar to RandomWalk. Indeed, after 48h, BFS-Fast covers all requests

in most API families, except User Groups, Repos & Files, and Accounts & Lists where

it covers 50 out of 53, 11 out of 12, and 24 out of 26 requests respectively.

The better coverage in API requests is also reflected in service-side code coverage.

Figure 3.5 shows that BFS-Fast performs better (or at least as good) compared to BFS

and RandomWalk across all API families and always reaches its plateau faster than all

other search strategies reache theirs – usually in just few hours. As explained earlier,

the difference between BFS-Fast and BFS is more apparent in API families with many

requests or many possible value combinations per request because BFS-Fast sacrifices

full grammar coverage to scale better.
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Third, we examine RandomWalk. RandomWalk always maintains the smallest

seqSet of exactly one sequence. By construction, RandomWalk sacrifices full grammar

coverage both with respect to all possible request combinations for a given sequence

length and with respect to all posible value renderings of individual requests, and just

tries to incrementally extend the current sequence in seqSet with one random request

from reqSet until no other request can be used because there are no valid dependen-

cies (see Chapter 3.3). After 48 hours, RandomWalk usually explores deeper request

sequences compared to BFS and less deep compared to BFS-Fast. Indeed, in APIs that

contain requests with relatively more value combinations (such as Commits, Issues &

Notes, and Repos & Files) randomly selecting valid values and constructing longer se-

quences than BFS-Fast is unlikely, especially because RandomWalk does not memoize

valid/invalid value combinations after restarts and may produce many duplicate test

cases. By contrast, in User Groups there are 53 requests with only 2 possible value

combinations when, in comparison, in Projects there are 54 requests but with 5 pos-

sible renderings. Consequently, the probability of randomly generating valid and long

sequences is higher in Projects (despite the high number of API requests) and, indeed,

after 1, 341 restarts RandomWalk produces longer sequences than BFS-Fast (sequence

length 40 versus 33).

Regarding RandomWalk request coverage, we observe that it behaves similarly with

BFS-Fast (and better than BFS) in most APIs, except, most notably, for Commits API.

In the later, RandomWalk covers only 10 out of 15 API requests, whereas both BFS

and BFS-Fast cover 15 out of 15 API requests. To understand why RandomWalk

underperforms in the specific API family, we need to analyze the dependencies across

the requests of Commits APIs, model the probability RandomWalk has to cover all

request types in the specific API family, and compare this probability with other APIs.

We clarify that the five request types which have never been covered by Ran-
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domWalk in Commits are all requests that consume three dynamic resource types:

A project-id, a branch-id, and a commit-id, and we will model the probability Ran-

domWalk has to generate at least one sequence that satisfies the dependencies of these

five requests: (1) The producer for project-id is a base parent and has a probability

one to be selected when the sequence length is one; (2) the producer for a branch-

id consumes a project-id and can be selected only after sequence length is two, with

probability 0.25 because three other requests (i.e., create project, delete project, query

project) have valid dependencies when the sequence length is two; (3) the producer

for commit-id consumes a branch-id and can be selected only after sequence length

is three, with probability 0.16 because six other requests (i.e., create project, delete

project, query project, create branch, delete branch, query branch) have valid depen-

dencies when the sequence length is three; (4) finally, each one of the five requests,

that have never been rendered, may be selected when sequence length is four with

probability 0.06 since all fifteen requests now have valid dependencies.

From (1), (2), (3), and (4), the probability to cover render one of the five uncovered

requests using RandomWalk is 0.25*0.16*0.06 or approximately 0.2%. However, the

actual probability in the given time frame of 48 hours is much less than 0.2% because the

above analysis did not consider the time spend—since RandomWalk does not memoize

between restarts—until a valid value combination for each request is found. The same

rationale can be applied to other APIs with uncovered API requests, such as Issues &

Notes or Mastodon Statuses. For example, in Issues & Note (one out of 25 requests

uncovered), with a similar analysis we get that the uncovered request for posting a note

on an issue of a project may be selected with probability 0.05% (without considering the

time spent until valid value combinations are found). Finally, the regarding service-side

code coverage shown in Figure 3.5), we observe that RandomWalk behaves like BFS-

Fast across most APIs. The only expected exception is in Commits (top-left corner)
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where clearly the service-side code coverage achieved with RandomWalk is less than

BFS and BFS-Fast.

Overall, both controlling the size of seqSet when facing broad search spaces due to

large APIs with many requests or when reaching greater depths as well as controlling

the size of seqSet when facing broad search spaces due to complex APIs with request

that have many possible value combinations are both key to delivering good code cov-

erage quickly. However, as shown in Figure 3.5, when running long fuzzing sessions

(e.g., as long as 48 hours) all search strategies plateau in relatively similar incremental

code coverage. In order to go beyond such plateaus when performing stateful REST

API fuzzing, one needs to investigate other types of mutations which are discussed

extensively in Chapter 5. Nevertheless, the ultimate goal of testing is to find bugs

as quickly as possible, and maximizing code coverage should always be perceived as

heuristic towards reaching that goal. Therefore, next, we investigate the performance

of the three search strategies explicitly with respect to the number of bugs found in a

limited time frame.

Search strategies: Bugs found (Q4)

Lastly, we discuss the number of uniques bugs found by each search strategy across

each API family of three cloud services. We cosider as bug each 500 “Internal Server

Error” incident triggered after executing a sequence and we cluster similar instances

according to the bucketization scheme described in Chapter 3.4. Table 3.4 shows the

sets of bug buckets found by each search strategy after 5 hours and it also shows the

union and intersection of the respective sets to obtain a perspective of complementarity

(and of overlap) regarding the bug-finding capability of each search strategy.

Although previously in this section we reported experiments with longer fuzzing

sessions (up to 48h), here we report experiments with shorter sessions in order to
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Target API Family BFS BFS- Random- Intersection Union
Service Fast Walk

GitLab Commits 5 1 5 1 5
Brances 7 7 7 5 8
Issues & Notes 0 1 1 0 1
User Groups 0 0 2 0 2
Projects 2 1 3 1 3
Repos & Files 2 3 3 2 3

Mastodon Accounts & Lists 0 0 0 0 0
Statuses 1 1 0 0 1

Spree Storefront Cart 1 1 1 1 1
Total 18 15 22 10 24

Table 3.4: Bug buckets found by BFS, BFS-Fast, and RandomWalk. Shows
the the number of bug buckets found by each search strategies after 5h.

demonstrate the effectiveness of each search strategy in a limited time-frame. After

running each search strategy for 5 hours on each API family, RESTler found 24 new

unique bugs accross all services and APIs.

RandomWalk stands out in Table 3.4 by finding the most bugs: 22 compared to 18

and 15 for BFS and BFS-Fast respectively. However, it is particularly intriguing that

service-side code coverage, as shown in Figure 3.5 for each search strategy in the first

five hours, is not always on par with the respective total nummber of bug buckets found

by each search strategy. There are two cases.

First, there are APIs where service-side code coverage and number of bug buckets

found are largely on par. In specific, in Branches all search strategies have almost

identical code coverage and find the same total number of bug buckets; in Issues & Notes

BFS-Fast and RandomWalk find one bug, while BFS finds zero, which is consistent with

the service-side code coverage of the three strategies; in Repos & Files both BFS-Fast

and RandomWalk find three bugs versus two bugs of BFS, which is inline with service-

side code coverage because both BFS-Fast and RandomWalk outperform BFS code
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coverage in the first five hours; in Accounts & Lists all search strategies also have

identical code coverage and find the same number (zero) of bug buckets; in Statuses

BFS and BFS-Fast find one bug bucket, while RandomWalk finds zero. This is also

consistent with service-side code coverage because in the first five hours RandomWalk

underperforms and catchs up with BFS and BFS-Fast after approximately 20 hours;

finally, in Storefront Cart all search strategies find the same number of bug buckets and

their service-side coverage identical as well.

On the other hand, there are APIs where service-side code coverage and number of

bug buckets found are not on par and we explain why. In Commits, it is particularly

intriguing that RandomWalk and BFS find the highest number of bugs compared to

BFS-Fast (five versus one) which is inconsistent with service-side code coverage (see

Figure 3.5, top-left, for the first five hours) where RandomWalk never achieves the

same code-coverage increment with BFS or with BFS-Fast. In addition, we can see

from Table 3.4 that RandomWalk and BFS find exactly the same bug buckets because

the number of the union of bug buckets (five) equals the size of the individual sets

for RandomWalk and BFS. Although this inversion is counter-intuitive at first sight,

it is informative regarding the impact of the trade-off followed by BFS-Fast (which

systematically sacrifices full grammar coverage with respect to all possible requests

combinations for a given sequence length in order to construct longer sequences).

The fact that BFS-Fast covers more API requests and also produces longer se-

quences than RandomWalk (see first row of Table 4.1) but still RandomWalk finds

more bugs, indicates that particularly in Commit APIs sacrificing full grammar cov-

erage with respect to all possible request combinations has a negative impact on the

bug-finding capability of BFS-Fast. To understand why, recall the scenario discussed

earlier, where a user edits (e.g., cherry-pick) a commit on a branch of a project (re-

quired sequence lenght is four). In this scenario, because BFS-Fast attempts to prune
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the search space by appending each request to at most one sequence in SetSeq for

a given sequence length, it ends up discarding all test cases whose third request can

create a commit and therefore it fundamentally cannot exercise functionality related

to editing commits (nor discover any related bugs). One such Commits bug, found by

BFS and RandomWalk but not by BFS-Fast, is discussed in Example 1 of Chapter 3.7.

Similar conclusions regarding the BFS-Fast trade-off can be drawn in User Groups and

Projects where RandomWalk achieves almost identical service-side code coverage with

BFS-Fast (see second row of Figure 3.5) but finds more bugs buckets (two versus zeros

for User Groups and three versus one for Projects).

Overall, within the 5-hours time-frame of our experiments, RandomWalk finds more

bugs than BFS or BFS-Fast despite the fact that it does not always deliver the best

coverage. In the same spirit, although BFS delivers worse coverage than BFS-Fast

Projects, the former still finds more bugs (two versus one). Such inversions stress out

the fact that code coverage increase should not always dictate the selection of a search

strategy: code coverage is a indication of the progress of a search strategy; yet, different

search strategies may have complementary value, especially within large search spaces.

Additionally, it becomes apparent that pruning the search space early on, by sacrificing

grammar coverage with respect to possible request combinations for a given sequence

length, may fundamentally limit bug-finding capability, although it benefits scalability

and allows for greater sequence length.

Indeed, when testing APIs that have never been fuzzed before, exploring a relatively

small depth of the search space (i.e., generating tests cases that consist of a only handful

of API requests) while, at the same time, systematically exploring the breadth of the

search space defined by the possible API request combinations for the given depth (i.e.,

not pruning the breadth of the search space early on) is sufficient to achieve non-trivial

code coverage, exercise rare service-side code paths, and eventually uncover previously-
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unknown errors. Armed with this realization, in Chapter 4.4 we present a new search

strategy (called BFS-Cheap) which combines the best of both worlds and provides a

middle-ground between BFS-Fast and RandomWalk.

3.7 New Bugs Found

During all our fuzzing experiments with RESTler on our local GitLab, Mastodon, and

Spree deployments we found 30 previously-unknown, unique bugs that have now been

fixed. Furthermore, RESTler found handful of bugs in each of the four proprietary

Azure and Office365 cloud services discussed in Chapter 3.5. These bugs range from

mis-handled invalid inputs (e.g., using a wrong ID or enum value), executing operations

in invalid states (e.g., updating a resource that no longer exists), and inconsistent

parameter validations (e.g., using a valid request body with incorrect metadata) and

have all been fixed. To give the reader a flavor of the nature of those bugs, here, we

describe two representative examples. (See [90;91;92;1] for other examples of bugs found.)

Example 1: Bug in Commits API of GitLab. One of the bugs found by RESTler

in the Commits API is triggered when a user tries to cherry-pick a commit to a branch

with an empty name. Due to incomplete input validation, an invalid branch name

can be passed between two different layers of abstraction as follows: The ruby code

that checks if a target branch exists, invokes a native C function whose return value

is expected to be either NULL or an existing entry. However, if an unmatched entry

type (e.g., an empty string) is passed to the native function, an exception is raised.

This exception is unhandled by the higher-level ruby code, and therefore it causes a

500 “Internal Server Error”. The bug can be reproduced by (1) creating a project,

(2) creating a new branch (in addition to master branch which is created by default),

(3) posting a valid commit with action “create” in the branch created in (2), and (4)

cherry-picking the commit to a branch whose name is set to the empty string.
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Example 2: Bug in Branches API of GitLab. Another bug, found by RESTler in

the Branches API, is triggered when a user tries to edit a branch of a recently deleted

project. The bug is due to invalid serialization of operations which results in an database

entry update using an invalid foreign key of a deleted project. Since the project-id (for-

eign key) is not present in the respective “projects” table, a PG::ForeignKeyViolation

exception causes a 500 “Internal Server Error”. The bug can be reproduced by (1)

creating a project, (2) creating a branch, (3) deleting the project created in (1), and

(4) quickly editing the branch of the deleted project.

From the above bug descriptions, we see a two-fold pattern. First, RESTler pro-

duces a sequence that exercises the target service deep enough so that it reaches a

particular valid “state”. Second, while the service is in such a state, RESTler produces

an additional request with an unexpected fuzzed value (e.g., an empty string) or an

unexpected action (e.g., edit a branch of a recently deleted project). Most bugs found

by RESTler require a combination of these two features in order to be found.

3.8 Summary

RESTler is the first automatic tool for stateful fuzzing of cloud services through their

REST APIs. RESTler analyzes a OpenAPI specification of a REST API, and generates

tests by inferring dependencies among request types and by learning invalid request

combinations from the service’s responses. We presented empirical evidence showing

that these techniques are necessary to thoroughly exercise a service while pruning its

large search space of possible request sequences. We also evaluated three different

search strategies on three open-source, production-scale cloud services and found tens

of bugs and several bugs in each of the four proprietary Azure and Office365 cloud

services tested.
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Chapter 4

Checking Security Properties of

Cloud Service REST APIs

In this chapter, we describe how stateful REST API fuzzing can be extended to capture

errors beyond the generic class of unhandled exceptions. We introduce four security

rules that define desirable properties of cloud services and describe how RESTler can

be extended with active checkers that generate API request sequences to specifically

test for violations of these rules.

4.1 Background and Motivation

As explained earlier, the target of this dissertation is cloud services accessible through

REST APIs. A REST API is defined as a finite set of requests and each request r is a

tuple of the form ⟨a, t, p, b⟩ where

• a is an authentication token,

• t is the request type,

• p is a resource path, and

• b is the request body.

A request type t is any of the following five REST-allowed values: PUT (create or up-
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date), POST (create or update), GET (read, list or query), DELETE (delete), PATCH

(update). The resource path p is a string identifying a cloud resource and its parent

hierarchy. Typically, p is a (non-empty) sequence matching the regular expression

(/⟨resourceType⟩/⟨resourceName⟩/)+

where resourceType denotes the type of a cloud resource and resourceName is the

specific name of the resource of that type. The last resource named in the path is

typically the specific resource that the request tries to create, access, or delete. The

request body bmay include additional parameters and their values that may be required

or optional for the request to be executed successfully.

For instance, here is a request to get the properties of a specific Azure DNS zone [135]

(shown on multiple lines):

⟨ User-auth-token ⟩ GET
https://management.azure.com/
subscriptions/{subscriptionId}/
resourceGroups/{resourceGroupName}/
providers/Microsoft.Network/
dnsZones/{zoneName}
?api-version=2018-03-01 { }

This request is of type GET, its path requires three resource names, namely a subscriptionID,

a resourceGroupName, and a zoneName, and its body denoted by { } is empty.

REST API requests of type PUT or POST typically create new resources, while

DELETE requests destroy existing resources. A request whose execution creates a new

resource of type T is called a producer for the resource type T . A newly created resource

is represented by its identifier, or id for short. Because resources are dynamically

created, we will sometimes call them dynamic objects. A request which requires a

resource name of type T in its path or in its body is called a consumer for the resource

type T . We will sometimes refer to the resource name of type T as the dynamic object

type. In the Azure DNS zone example above, the GET request shown consumes three
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resources of type subscriptions, resourceGroups, and dnsZones respectively, but

does not produce any new resource.

Inside resource paths or request bodies of individual requests, the user is allowed

to specify that some specific values, called fuzzable values, are to be chosen randomly

among a (small finite) set of specific values. For instance, a user might specify that

a given integer value in the body of a request may be, say, either 0, 10, 1000000, or

-10. Such a set of values is called a fuzzing dictionary. Given a request with fuzzable

values, a rendering of that request denotes a mapping of each fuzzable value to a single

concrete value selected in its fuzzing dictionary. Thus, a request with n fuzzable values

which can each take k possible values results in nk possible renderings. A rendering

is called valid if the execution of the corresponding request returns a valid response

(defined in the next paragraph). Users are responsible for identifying values they want

to fuzz and their associated fuzzing dictionaries.

We define the state space of a service as a directed graph where nodes represent

service states and edges are transitions between these. Given a state s of the service,

executing a single request r leads to a successor state s′: this execution is denoted

by s
r→ s′. The execution of a request r in a state s is either valid if it triggers a

2xx response, invalid if it triggers a 3xx or 4xx response, or a bug if it triggers a 5xx

response. Given an initial state where no resources exist, the state space of the service

reachable from that initial state can be explored by executing sequences of requests.

Such an exploration is stateful when it attempts to explore service states that are

reachable only using sequences of multiple requests: earlier requests in a sequence may

produce resources that are consumed in subsequent requests in that sequence in order

to exercise more requests and reach deeper service states. State-space exploration can

be performed using various search strategies, e.g., a systematic Breadth First Search

(BFS) or a random search, as explained earlier in Chapter 3. We wil call the default
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BFS state-space exploration algorithm the main driver of stateful REST API fuzzing.

In addition to the generic 5xx-related bugs that can be detected by baseline stateful

REST API fuzzing, in this chapter we also introduce four security rules that capture

desirable properties of REST APIs and services. We treat violations of these rules as

new classes of bugs. Briefly, these rules are:

• Use-after-free rule. A resource that has been deleted must no longer be acces-

sible.

• Resource-leak rule. A resource that was not created successfully must not be

accessible and must not “leak” any side-effect in the backend service state.

• Resource-hierarchy rule. A child resource of a parent resource must not be

accessible from another parent resource.

• User-namespace rule. A resource created in a user namespace must not be

accessible from another user namespace.

Violations of such rules might allow an attacker to hijack cloud resources or bypass quo-

tas (Elevation-of-Privilege attack), or to steal information from other users (Information-

Disclosure attack), or to corrupt the backend service state so that it no longer operates

properly (Denial-of-Service attack). These rules and the ramifications of such viola-

tions are discussed in detail in Chapter 4.2. Furthermore, in Chapter 4.3 we show how

RESTler can be extended with active property checkers that est and detect violations

of such rules.

4.2 REST API Security Properties

We introduce four security rules that capture desirable properties of REST APIs and

services. We illustrate each rule with an example and discuss its security implications.

All four rules are inspired by past real bugs in deployed cloud services, which were
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found either by manual penetration testing or by root cause analysis of customer-visible

incidents. Examples of new, previously-unknown bugs we found as rule violations in

deployed production Azure and Office-365 services are presented later in Chapter 4.6.

Use-after-free rule. A resource that has been deleted must not be accessible. In

other words, after a successful DELETE operation on any resource, any subsequent

operation – like read, update, or delete – on that resource must fail.

For example, after issuing a DELETE request to URI /users/user-id1 in order to

delete the account with identifier user-id1, all subsequent attempts to use user-id1

must fail and thus return a “404 Not Found” HTTP status code in their response.

A use-after-free violation occurs when a resource that has been deleted still remains

accessible through the API. This must never happen. It is a clear bug that may lead

to bypassing resource quotas and corrupting the service backend state.

Resource-leak rule. A resource that was not successfully created must not be ac-

cessible, and must not “leak” any associated resources in the backend service state.

In other words, if the execution of a PUT or POST request to create a new resource

fails (for any reason), any subsequent operation on that resource must also fail with a

4xx response. Furthermore, no side-effects associated with successful creation of that

resource type must occur in the backend service state and be visible to the user. For

instance, a failed-to-be-created resource must not be counted in the user’s resource

counter towards service quotas, and the name of the failed-to-be-created resource must

be reusable by the user.

As an example, after issuing a malformed PUT request to create URI /users/user-id1,

a 4xx response must be received. Any subsequent request to access (read, update, or

delete) this URI must also fail.

A resource-leak violation occurs when a resource that was not successfully created

nevertheless “leaks” some side-effect in the backend service state. For instance, the
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resource may be listed by a subsequent GET request, yet it cannot be deleted with a

DELETE request, or subsequent attempts to re-create this resource return “409 Con-

flict” responses. Such violations must never happen, as they may have unintended

consequences on the capacity for that resource type (e.g., if resource quota limits are

reached and no new resources can be created) and on the performance of the service

(e.g., due to unnecessarily large database tables).

Resource-hierarchy rule. A child resource of a parent resource must not be accessible

from another parent resource. In other words, if a resource child is successfully created

from a resource parent and identified as such in service resource paths of the form

⟨parentType⟩/parent/⟨childType⟩/child/, the child resource must not be accessible

(i.e., must not be successfully read, updated or deleted) when substituting the parent

resource by any other parent resource.

For example, after issuing POST requests to URIs /users/user-id1,

/users/user-id2, and /users/user-id1/reports/report-id1 to create users

user-id1, user-id2, and then add report report-id1 to user user-id1, subsequent

requests to URI /users/user-id2/reports/report-id1 must fail since, according to

the resource-hierarchy rule, report report-id1 belongs to user user-id1 but not to

user user-id2.

A resource-hierarchy violation occurs when a sub-resource originally created from

a parent resource is accessible from a different parent resource with no parent-child

relationship. When such violations are possible, an attacker might be able to provide

an unauthorized parent object identifier (e.g., user-id3), and then steal (read) or hijack

(write) an unauthorized child object (e.g., report-id1). Resource-hierarchy violations

are clear bugs, are potentially dangerous, and must never happen.

User-namespace rule. A resource created in a user namespace must not be acces-

sible from another user namespace. In the context of REST APIs, we consider user
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namespaces defined by the user token used to interact with the API (e.g., OAUTH

token-based authentication [145]).

For example, after issuing a POST request to create URI /users/user-id1 using

token token-of-user-id1, resource user-id1 must not be accessible using another

token token-of-user-id2 of another user.

A user namespace violation occurs when a resource created within the namespace of

one user is accessible from within the namespace of another user. If such a violation ever

occurs, an attacker might be able to execute REST API requests using an unauthorized

authentication token, and perform unauthorized operations on resources belonging to

another (victim) user.

4.3 Active Checkers for REST API Security

Properties

Ideally, the desired property for any REST API is that none of the violations defined

in Chapter 4.2 occur. In practice, however, there may be violations and we implement

active checkers to monitor for those violations. An active checker monitors the state

space exploration performed by the main driver of stateful REST API fuzzing and

suggests new tests to assert that specific rules are not violated. Thus, an active checker

augments the search space by executing new tests targeted at violating specific rules. In

contrast, a passive checker monitors the search performed by the main driver without

executing new tests. Hence, a passive checker does not augment the state space explored

by stateful REST API fuzzing.
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1 Inputs: seq, global_cache, reqCollection
2 # Retrieve the object types consumed by the last request and
3 # locally store the most recent object id of the last object type.
4 n = seq.length
5 req_obj_types = CONSUMES(seq[n])
6 # Only the id of the last object is kept, since this is the
7 # object actually deleted.
8 target_obj_type = req_obj_types[−1]
9 target_obj_id = global_cache[target_obj_type]
10 # Use the latest value of the deleted object and execute
11 # any request that type−checks.
12 for req in reqCollection:
13 # Only consider requests that typecheck.
14 if target_obj_type not in CONSUMES(req)
15 continue
16 # Restore id of deleted object.
17 global_cache[target_obj_type] = target_obj_id
18 # Execute request on deleted object.
19 EXECUTE(req)
20 assert ’’HTTP status code is 4xx’’
21 if mode != ’exhaustive’:
22 break

Figure 4.1: Use-after-free checker. Shows the implementation of the use-after-free
checker.

We design active checkers following a modular style, based on two principles:

1. Checkers are independent from the main driver of stateful REST API fuzzing and

do not affect its state space exploration.

2. Checkers are independent from each other and generate tests by analyzing the

requests executed by the main driver, excluding those executed by other checkers.

We enforce the first principle by running all the checkers whenever the main driver has

finished executing a new test case. We enforce the second principle by prioritizing the

order of applying checkers based on their semantics, so that they operate on different

test cases and do not interfere with each other (more on this later in this section). In

what follows, we present implementation details of each checker as well as optimizations

to limit state-space explosion.
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1 Inputs: seq, global_cache, reqCollection
2 # Retrieve the object types produced by the whole sequence and by
3 # the last request separately to perform type checking later on.
4 seq_obj_types = PRODUCES(seq)
5 target_obj_types = PRODUCES(seq[−1])
6 for target_obj_type in target_obj_types:
7 for guessed_value in GUESS(target_obj_type):
8 global_cache[target_obj_type] = guessed_value
9 for req in reqCollection:
10 # Skip consumers that don’t consume the target type.
11 if CONSUMES(req) != target_obj_type:
12 continue
13 # Skip requests that don’t typecheck.
14 if CONSUMES(req) − seq_obj_types:
15 continue
16 # Execute the request accessing the ’’guessed’’ object id.
17 EXECUTE(req)
18 assert ’’HTTP status code in 4xx class’’
19 if mode != ’exhaustive’:
20 break

Figure 4.2: Resource-leak checker. Shows the implementation of the resource-
leakage checker.

Use-after-free checker. The implementation of the use-after-free rule checker is

described in Figure 4.1 in python-like notation. The algorithm is called after the main

driver executes a DELETE request (see Figure 3.3) and takes three inputs: a sequence

seq of requests, which is the latest test case executed by the main driver; the global

cache of dynamic objects, denoted global_cache, which contains the most recent object

types and ids for the dynamic objects created so far; and the request collection, denoted

reqCollection, which is the set of all available API requests.

First, the types of the dynamic objects consumed by the last request are retrieved

(line 5) and the id of the last object type, denoted target_obj_type, is stored in

a temporary variable, denoted target_obj_id. Although the last request may be

consuming more than one object type, we consider the last type in req_object_types

as the actual type of the deleted object. (For example, a DELETE request on the URI

/users/userId1/reports/reportId1 consumes two object types (users and reports)

but only deletes report objects.) After this initial setup, the for-loop (line 12) iterates
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over all requests available in reqCollection and skips those that do not consume the

target object type (line 14). Once a request, req, that consumes the target object type

is found, the target object id is restored in the global cache of dynamic objects (line 17)

and is therefore used by the function EXECUTE (line 19) which executes request

req. Note that the target object id is repeatedly restored in the global cache because

the function EXECUTE uses object ids available in global_cache when executing a

request. If any of these requests succeeds, line 20 will trigger a use-after-free violation

(see Chapter 4.2). or assert that no such violation occurs for the given request sequence

.

Finally, in order to limit the number of additional tests generated for each request

sequence, the inner loop (optionally) terminates when one request for each target object

type is found (line 21). This option is used if the variable mode is not set to value

exhaustive. We present detailed experimental results regarding the impact of this

optimization in Chapter 4.5.

Resource-leak checker. The resource-leak rule checker is described in Figure 4.2.

The algorithm takes the same three inputs as the use-after-free checker. This checker

operates on request sequences executed by the main driver whose last request led to an

invalid HTTP status code in the response (see Figure 3.3).

The intuition behind this design decision is that when an invalid status code is

returned and the last request was attempting to create one or several new resources

(i.e., the last request is a resource producer), the requested dynamic objects must not

be created in the backend state; otherwise, a leak occurs: (some of these) dynamic

objects may have been created in the backend state yet the user may not have access

to these through the API.

Initially, the algorithm identifies the dynamic object types produced by the

whole sequence, denoted seq_obj_types, and produced by the last request, denoted
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1 Inputs: seq, global_cache
2 # Record the object types consumed by the last request
3 # as well as those of all predecessor requests.
4 n = seq.length
5 last_request = seq[n]
6 target_obj_types = CONSUMES(seq[n])
7 predecessor_obj_types = CONSUMES(seq[:n])
8 # Retrieve the most recent id of each child object consumed
9 # only by the last request. These are the objects whose
10 # hierarchy we will try to violate.
11 local_cache = {}
12 for obj_type in target_obj_types − predecessor_obj_types:
13 local_cache[obj_type] = global_cache[obj_type]
14 # Render sequence up to before the last request
15 EXECUTE(seq, n−1)
16 # Restore old children object ids that do NOT belong to
17 # the current parent ids and must NOT be accessible from those.
18 for obj_type in local_cache:
19 global_cache[obj_type] = local_cache[obj_type]
20 EXECUTE(last_request)
21 assert ’’HTTP status code is 4xx’’

Figure 4.3: Resource-hierarchy checker. Shows the implementation of the resource-
hierarchy checker.

target_obj_types (lines 4 and 5). The main logic of the algorithm is implemented in

three nested for loops. The first loop (line 6) iterates over all object types produced

by the last request. The second loop (line 7) iterates over object ids “guessed” for the

current object type for which an invalid HTTP status code was received. The function

GUESS takes as argument an object type and returns a set of possible object ids match-

ing this type and which were not created successfully. For instance, if the creation of

a dynamic object with object type “x” and object id “objx1” fails through the API

(according to the response received), the checker will attempt to execute any request

that consumes the object type “x” and assert it fails when using the object id “objx1”.

Note that the total number of guessed values per object id is limited to a user-provided

parameter value in order to avoid an explosion in the number of additional tests.

In line 8, a guessed object-id value is temporarily added to the global cache of

properly-created dynamic objects. Then the inner loop (line 9) iterates over all requests
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in reqCollection to find requests that are executable (given the object types produced

by the current sequence) and that consume the given target object type. These requests

are executed (line 17) using the “guessed” object ids previously registered in the global

cache. This way, the algorithm tries to trigger a resource-leak violation (see Chapter

4.2) or asserts that no such violation occurs for the given sequence (line 18).

Finally, in order to limit the number of additional tests generated for each input

sequence, the inner loop (optionally) terminates when one request for each guessed

object is found (line 19). We evaluate this optimization in Chapter 4.5.

Resource-hierarchy checker. The implementation of the resource-hierarchy rule

checker is described in Figure 4.3. The algorithm takes two inputs: a sequence of

requests, denoted seq, which is the latest test case executed by the main driver and

the current global cache of dynamic objects, denoted global_cache.

First, the algorithm records the object types consumed by the last request of the cur-

rent sequence, denoted target_obj_types (line 6), and the object types consumed by

all other requests of the sequence before the last request, denoted predecessor_obj_types

(line 7). Afterwards, the ids of the objects consumed only by the last request are stored

locally (lines 12 and 13). These are the child objects whose hierarchy the checker will

try to violate by executing requests that try to access them using invalid parent objects.

To this end, in line 15, the current sequence is executed up to (and not including) the

last request. Finally, the old child object ids are restored (lines 18 and 19) and the

last request is executed using the old child object ids on top of new parent object ids

(line 20). These parent object ids are not proper parent objects of the restored child

object ids. This way, the algorithm tries to trigger a resource-hierarchy violation (see

Chapter 4.2) or asserts that no such violation occurs for the given request sequence

(line 21).

User-namespace checker. The implementation of the user namespace rule checker
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1 Inputs: seq, global_cache
2 # Because this checker is applied last, we need to re−render the
3 # current sequence in order to propagate proper object ids.
4 EXECUTE(seq)
5 # Retrieve the object types consumed by the whole sequence and
6 # locally store the most recent object ids of those objects.
7 target_obj_types = CONSUMES(seq)
8 local_cache = {}
9 for obj_type in target_obj_types:
10 local_cache[obj_type] = global_cache[obj_type]
11 for i, req in enumerate(seq):
12 # If not in exhaustive mode, render only the last request.
13 if mode != ’exhaustive’ and i != seq.length:
14 continue
15 # Skip requests that are not consumers.
16 if not CONSUMES(req):
17 continue
18 # Reset global cache of object ids and use an alternate (attacker)
19 # token to execute the sequence up to before the last request.
20 global_cache.reset()
21 EXECUTE(seq − req, use_attacker_token)
22 # Restore the object ids belonging to the benign user and try to hijack
23 # them by executing the last request using an attacker token which is
24 # not authorized for those object ids.
25 for obj_type in local_cache:
26 global_cache[obj_type] = local_cache[obj_type]
27 EXECUTE(req, use_attacker_token)
28 assert ’’HTTP status code is 4xx’’

Figure 4.4: User-namespace checker. Shows the implementation of the user-
namespace checker.

is described in Figure 4.4, in python-like notation. The algorithm takes three inputs:

a sequence of requests, denoted seq, which is the latest test case executed by the main

driver; the global cache of dynamic objects, denoted global_cache, which contains

the most recent object types and ids for the dynamic objects created so far; and an

attacker token (an alternate token representing the attacker’s identity, which must not

have access to the same resources as the token used by the main driver), denoted

attacker_token.

First, since the user namespace checker is applied last, and it may be affected by

other checkers applied previously, the input sequence is re-rendered (line 4) to prevent

interference with previously applied checkers, and, in particular, ensure that consistent
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object ids exist in global_cache. Then, the algorithm records the object types pro-

duced by the last request of the current sequence, denoted target_obj_types (line 7).

The object ids of the dynamic objects produced by the current sequence are then stored

locally (lines 9 and 10). Afterwards, the outer loop (line 11) iterates over the current

sequence until the first request, denoted req, which consumes some object type is found

(lines 16 and 17).

Note the usual optimization to limit the size of the additional test cases generated

for each input sequence (line 14). Once a request req that consumes some object type

is found, the global cache of object ids is reset (line 20) and the current sequence is

executed up to before req using the attacker_token (line 21). This constructs an

attacker namespace containing predecessor dynamic objects. Afterwards, the object

ids belonging to the victim user are restored (lines 25 and 26) and req is executed

using the attacker’s identity (line 27).

To hijack the objects belonging to a victim user, req is then executed with the

attacker’s identity after restoring the victim’s object ids. If the request succeeds, a user

namespace violation (see Chapter 4.2) has occurred for the current sequence (line 28).

Combining All Checkers

The four checkers defined in the previous section are executed as follows. Whenever

the stateful REST API fuzzer reaches a new state (as defined in Chapter 4.1), its main

driver calls the code shown in Figure 3.3. Depending on the last request executed, this

code activates the checkers that are applicable to the current state. We now discuss

important properties of these checkers and of their combination.

Extending stateful REST API fuzzing. The checkers extend the main driver of

baseline stateful REST API fuzzing in two ways: (1) they extend the state space by

executing additional tests and (2) they check for responses other than 5xx and can
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1 Inputs: seq, global_cache, reqCollection
2 # Execute the checkers after the main driver.
3 n = seq.length
4 if seq[n].http_type == ’’DELETE’’:
5 UseAfterFreeChecker(seq, global_cache, reqCollection)
6 else:
7 if seq[n].http_response == ’’4xx’’:
8 ResourceLeakChecker(seq, global_cache, reqCollection)
9 else:
10 ResourceHierarchyChecker(seq, global_cache)
11 UserNamespaceChecker(seq, global_cache)

Figure 4.5: Checkers dispatcher. Shows the implementation of the checkers dis-
patcher.

flag unexpected 2xx responses as rule-violation bugs. Thus, they clearly increase the

bug-finding capabilities of the main driver: they can find bugs that the main driver

alone would not find.

Active property checking versus passive monitoring. As discussed earlier, the

checkers we define extend the search space explored by the main driver with additional

test cases aimed at triggering and detecting specific rule violations. In contrast, passive

runtime monitoring of these rules in conjunction with the main driver, i.e., without

executing those new tests, would likely be unable to detect rule violations. Specifically,

use-after-free and resource-leak rule violations would likely not be detected with passive

monitoring alone because the default state space exploration, performed by the main

driver, would likely not attempt to re-use deleted resources or resources after a failure,

respectively. Similarly, resource-hierarchy and user-namespace rule violations would

not be detected by passive monitoring either because the baseline main driver does not

attempt to substitute object identifiers or authentication tokens, respectively. In other

words, the additional test cases generated by the checkers are necessary to find rule

violations and are not redundant with respect to non-checker tests.

Complementarity among the checkers. The four checkers we define complement

each other: no two checkers will ever generate the same new tests, by construction,
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because their preconditions are all mutually exclusive. First, the use-after-free checker

is the only checker activated by request sequences that end in a DELETE request.

Second, the resource-leak checker is the only checker activated when the last request

executed returns an invalid HTTP status code. Third, the resource-ownership checker

is the only checker activated on request sequences with valid renderings that do not

end in a DELETE request. Fourth and last, the user-namespace checker executed tests

using an attacker token different from the authentication token used by the main driver

and all other checkers, so it clearly extends the state space in an orthogonal dimension.

4.4 Search Strategies for Active Checkers

The main search strategy used for test generation in stateful REST API fuzzing is a

Breadth First Search (BFS) in the state space defined by all possible request sequences.

This search strategy provides full grammar coverage both with respect to all possible

renderings of each individual request and with respect to all possible request sequence

combinations of up to a given sequence length. However, since the search space explored

by BFS is typically enormous, the search does not scale well as the sequence length

increases. On the other hand, RandomWalk and BFS-Fast (discussed in Chapter 3.3)

scale better than BFS (as shown in Chapter 3.6) but do not explore all request sequences

of a given sequence length. Unfortunately, this limits the number of violations the

security checkers can actively check for . To alleviate this, we introduce a new search

strategy, called BFS-Cheap.

BFS-Cheap follows the inverse trade-off of BFS-Fast: it sacrifices full coverage of all

possible request renderings at every state but explores all possible request sequences for

a given sequence length, albeit not with all possible renderings. Specifically, given a set

of sequences of length n, called seqSet, and a set of requests, called reqCollection,

BFS-Cheap appends each req ∈ reqCollection at the end of seq, executes the new
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sequence while considering the possible renderings of req, and adds to seqSet at most

one valid (if any) and one invalid (if any) sequence renderings.

Valid renderings are used by the use-after-free, resource-hierarchy, and user-namespace

checkers, while invalid renderings are used by the resource-leak checker. In practive,

BFS-Cheap corresponds to one simple change in the algorithm of Figure 3.3: In line 31

of function RENDER we add a break statement that will stop the continuous rendering

as soon as the last request of each test sequence has been executed with one valid and

one invalid rendering.

BFS-Cheap thus provides a middle-ground between BFS and BFS-Fast (see Chapter

4.5 for experimental evaluation). It explores all possible request sequences up to a given

sequence length (like BFS) and adds at most two new renderings for each sequence in

order to avoid an enormous seqSet (like BFS-Fast). Two new renderings per sequence

explored allow for active checking of all the security rules defined in Chapter 4.2 while

maintaining a tractable number of sequences in seqSet as sequence length increases.

The suffix “cheap” comes from the fact BFS-Cheap is a cheaper version of BFS

where at most one valid rendering is added to the BFS “frontier” setSeq for each

new sequence. This leads to the creation of fewer resources than those created when

all valid renderings of each request sequence are explored, as in BFS. For instance,

imagine a request definition with an enum type describing ten different flavours of the

same resource type. BFS-Cheap will stop creating resources once one resource of one

flavour is successfully created. In contrast, BFS and BFS-Fast, will create ten resources

of the same type with ten different flavours.

Bug Bucketization

In the context of active checkers, we define “bugs” as rule violations. Each bug is asso-

ciated with the request sequence that was executed to trigger it. Given this property,
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we use the following procedure to create per-checker bug buckets:

Whenever a new bug is found, compute all non-empty suffixes of the re-
quest sequence that triggers the bug, starting with the smallest one. If a
suffix exists in a previously-recorded bug bucket, add the new sequence to
that existing bug bucket. Otherwise, create a new bug bucket for the new
sequence.

This bug bucketization scheme is the same as the one in Chapter 3 but, here, we

maintain separate, per-checker bug buckets because the failure conditions are defined

differently for each rule. Each bug will always be triggered by one checker for a specific

sequence length (because of checker complementarity), except for “500 Internal Server

Error” bugs which may be triggered by both the main driver and checkers. For 500

bugs, each sequence will be added only once to the bug bucket of either the main driver

or checker that triggered it first.

4.5 Evaluation

In this section, we report results of experiments with three proprietary and there open-

source cloud services. First, we compare the three search strategies described in Chapter

4.4 and then we present results showing the number of rule violations reported by

each checker on the three proprietary cloud services as well as the impact of various

optimizations introduced in Chapter 4.3.

Experimental Setup

We experiment with two kinds of services, described next: three proprietary Azure and

Office365 services, and three open-source cloud services.

Proprietary cloud services. We report results of experiments performed with three

cloud services, whose names are anonymized (to avoid targeting them): Azure A and
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Azure B are two Azure [12] resource management services, and O-365 C is an Office365 [28]

messaging service. The number of requests in the REST API of each of these three

services ranges from 13 to 19 requests. We selected those three services because their

size and complexity are representative among the cloud services we analyzed. So far,

we have performed similar experiments with about a dozen production services, and

our general experience with these other services is summarized in Chapter 4.6.

Every service discussed here has a publicly-available OpenAPI specification [13]. For

each service, we compile its specification to produce a RESTler test-generation gram-

mar. For a given service and API, the same grammar and fuzzing dictionaries were

used across all the experiments reported in this section. There is no randomness in the

renderings generated. Each fuzzing session lasts one hour and we use a PC connected

to the internet and a valid service subscription that allows access to each service API.

No other special test setup or service knowledge was required. As in Chapter RESTler-

sec:restler:evaluation, we use a garbage-collector that deletes no-longer-used resources

(dynamic objects) in order to avoid exceeding service quota limits.

Since we fuzz production services already deployed and accessible to anyone with

a valid subscription, we have no visibility to what happens inside the backend of each

service. Our fuzzing 1-h fuzzing sessions only observe the HTTP status codes of the

responses it receives. All client-side requests are sent over the internet to the target

services, and responses are parsed when received. We do not control the deployment

of these services. Hence, the experiments reported are not fully controlled. Yet, we

performed these experiments several times and the results did not vary significantly.

Open-source cloud services. We also report results on APIs of three open-source

cloud services, namely GitLab, Mastodon, and Spree. The characteristics of these APIs

are show in Table 3.1 of the previous chapter. Since these services are open-source, we

use local deployments whose configuration is described in detail in Chapter 3.6 and we
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API Total
Req

Search
Strategy

Max
Len Tests Main Checker Stats

UseAftFr Leak Hier NameSp
Azure A 13 BFS 3 3255 48.1% 11.5% 1.5% 0.1% 38.8%

BFS-Chp 4 4050 55.0% 10.0% 0.8% 2.4% 31.8%
BFS-Fast 9 4347 59.2% 15.5% 0.2% 0.1% 25.1%

Azure B 19 BFS 5 7721 46.4% 3.6% 0.4% 0.2% 49.4%
BFS-Chp 5 7979 46.2% 3.5% 0.4% 0.2% 49.7%
BFS-Fast 40 17416 65.3% 0.3% 0.0% 0.1% 34.3%

O-365 C 18 BFS 3 11693 89.4% 0.0% 1.0% 0.1% 9.5%
BFS-Chp 4 10982 95.9% 0.0% 0.0% 0.1% 4.0%
BFS-Fast 33 18120 66.9% 0.0% 0.0% 0.1% 33.0%

Table 4.1: Comparison of BFS, BFS-Fast and BFS-Cheap on proprietary
cloud services. Shows the maximum sequence length (Max Len.), the number of
requests sent (Tests), and the percentage of tests generated by the main driver (Main)
and by the four checkers individually with each search strategy after 1 hour of fuzzing.
The second column shows the total number of requests in each API family.

fuzz each one for one hour. Although we have not yet found any violations of security

properties on the above open-source cloud services, we present experimental evaluation

regarding various performance optimizations of active checkers in order to gain a more

comprehensive insight across both proprietary and open-source services.

Comparing Search Strategies

In this subsection, we compare BFS-Cheap against and BFS-Fast. First, we report

results on proprietary cloud services, and then, we complement these results with similar

experiments on open-source cloud services.

Proprietary cloud services. Table 4.1 shows individual experiments with the three

search strategies on each service, over a fixed time budget of one hour per experiment.

For each experiment, we report the total number of requests in the API (Total Req.),

the maximum sequence length generated (Max Len.), the total number of requests sent

(Tests), the percentage of the requests sent by the main driver (Main) as well as the

individual contribution of each checker.
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API Total
Req

Search
Strategy

Max
Len Tests Main Checker Stats

UseAftFr Leak Hier NmSp
Commits 15 (*11) BFS 4 8300 26.2% 45.7% 11.7% 2.6% 13.6%

BFS-Chp 5 4867 55.5% 17.0% 7.47% 0.8% 19.0%
BFS-Fast 7 3964 45.9% 11.2% 0.98% 15.1% 26.6%

Branches 8 (*2) BFS 5 5848 42.2% 7.98% 11.3% 2.4% 35.9%
BFS-Chp 5 5545 53.9% 4.47% 11.0% 1.7% 28.7%
BFS-Fast 21 4657 54.5% 1.07% 0.27% 0.25% 43.8%

Issues/Nts 25 (*20) BFS 2 1711 30.2% 6.31% 50.4% 0.0% 12.9%
BFS-Chp 4 5519 18.8% 70.6% 0.41% 0.5% 9.58%
BFS-Fast 3 3255 37.3% 3.3% 25.4% 9.03% 24.9%

Groups 53 (*2) BFS 2 957 65.7% 0.10% 0.0 % 0.0% 34.1%
BFS-Chp 3 1314 57.0% 1.90% 0.0 % 0.0% 41.0%
BFS-Fast 4 1230 60.8% 0.48% 0.0 % 1.7% 36.9%

Projects 54 (*5) BFS 2 856 99.1% 0.11% 0.0 % 0.0% 0.70%
BFS-Chp 3 1379 57.3% 7.75% 0.0 % 0.0% 34.8%
BFS-Fast 4 3173 55.0% 0.37% 0.0 % 6.7% 37.8%

Repos/Files 12 (*22) BFS 3 16637 16.1% 8.76% 71.0% 0.0% 4.03%
BFS-Chp 5 7219 65.7% 23.4% 2.46% 0.2% 8.13%
BFS-Fast 4 2167 28.8% 11.8% 24.3% 4.9% 30.0%

Acc./Lists 26 (*3) BFS 3 62322 21.3% 0.0 % 78.6% 0.0% 0.0 %
BFS-Chp 5 22443 77.9% 0.10% 19.7% 2.2% 0.0 %
BFS-Fast 14 28007 66.6% 0.06% 11.5% 21.% 0.0 %

Statuses 18 (*19) BFS 2 96640 10.6% 0.0 % 89.3% 0.0% 0.0 %
BFS-Chp 4 18247 96.1% 0.07% 2.93% 0.8% 0.0 %
BFS-Fast 8 69280 24.1% 0.00% 75.3% 0.48% 0.0 %

Cart 8 (*11) BFS 4 11673 98.3% 0.0 % 0.0 % 1.6% 0.0 %
BFS-Chp 5 4527 92.0% 2.38% 0.0 % 5.5% 0.0 %
BFS-Fast 6 1702 72.1% 9.51% 0.0 % 18.3% 0.0 %

Table 4.2: Comparison of BFS, BFS-Fast and BFS-Cheap on open-source
cloud services. Shows the maximum sequence length (Max Len.), the number of
requests sent (Tests), and the percentage of tests generated by the main driver (Main)
and by the four checkers individually with each search strategy after 1 hour of fuzzing.
The second column shows the total number of requests in each API family as well as
the average number of primitive value combinations for the requests of each API family.

Table 4.1 clearly shows that, for all services, BFS reaches the smallest depth, BFS-

Fast reaches the largest depth, and BFS-Cheap provides a trade-off between these

two extremes, while being closer to BFS than BFS-Fast. The total number of tests

generated varies across services, depending on the speed of the responses received from
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each service. For any given service, this number remains roughly similar except for BFS-

FAST with Azure B and O-365 C where the total number of tests increases significantly.

For O-365 C, this increase seems to be due to a significantly lower number of failed

requests generated by BFS-FAST for these two services compared to BFS and BFS-

Cheap. Such failed requests are sent back to the client (our fuzzer) with larger time

delays. Delaying responses to failed requests is a well-known mechanism used by services

to throttle future requests (i.e., to try to slow them down). On Azure B, BFS-Fast

executes more tests because its request sequences are deeper but include many DELETE

requests which are faster to execute (their responses are received almost instantly):

BFS-Fast executes about 9 times more DELETE requests than BFS or BFS-Cheap.

The total percentage of checker tests (Checkers) is the highest for BFS and the

lowest for BFS-FAST, while BFS-Cheap is again in between. Indeed, while BFS-Fast

generates the largest number of tests, its search space is pruned and activates checkers

less often, as discussed in Chapter 4.4—this is the precise motivation for introducing

BFS-Cheap in that section. An exception is the 33% spike in checker-generated tests

by BFS-FAST for O-365 C. This spike seems to be due to a larger number of successful

requests (see the previous paragraph), which in turn led to more checker tests.

From the individual checker statistics in Table 4.1, we observe that the number of

tests they each generate varies from service to service. This number depends on the

number of DELETE requests executed for the use-after-free checker, the number of failed

resource-creation requests for the resource-leak checker, and the depth of the object

hierarchy for the resource-hierarchy checker. In contrast, the user-namespace checker

is triggered more consistently more often and contributes the largest percentage of

checker-generated tests.

Open-source cloud services. Table 4.2 shows experiments with nine API families of

GitLab, Mastodon, and Spree for the three search strategies over a fixed time budget of
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one hour per experiment. For each experiment, we report the total number of requests

in the API (Total Req.) as well as the average number of available primitive value

combinations for each request, the maximum sequence length generated (Max Len.),

the total number of requests sent (Tests), the percentage of the requests sent by the

main driver (Main) and the individual contribution of each checker.

First, across most APIs BFS-Cheap provides a middle-ground between BFS and

BFS-Fast, except for Issues & Notes and Repos & Files. This is expected because of

the design trade-off the two optimizations follow. Recall from Chapter 3.3 that BFS-

Fast provides full grammar coverage with respect to all possible value renderings of

each individual request but sacrifices full grammar coverage with respect to all possible

request combinations of a given sequence length. Whereas, BFS-Cheap follow the in-

verse trade-off. The two particular APIs (i.e., Issues & Notes and Repos & Files) where

BFS-Cheap manages to construct deeper sequences than BFS-Fast have one common

characteristic: they both have a relatively higher average number of possible value

combinations for each individual request type. Consequently, BFS-Fast, which pro-

vides full grammar coverage with respect to primitive value combinations of individual

requests, ends up exercising a broader space and lacks in depth achieved. By contrast,

the breadth of BFS-Cheap for each individual request is limited to two (one valid and

one invalid rendering), and thus, a relative better depth is achieved.

Second, we compare the three search strategies regarding the total number of tests

generated from the main driver versus from the checkers. BFS-Cheap, in comparison

with BFS, allows for relatively more checker tests in Issues & Notes, User Groups,

Projects, and Storefront Cart. In Issues & Notes BFS-Cheap leads to more use-after-

free tests (70% versus 6%); in User Groups BFS-Cheap lead to more namespace tests

(41% versus 34%); in Projects it leads to more use-after-free and more namespace tests

(7% versus 0.1% and 34% versus 0.7% respectively); and in Storefront Cart it leads to
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API Total
Req Mode Statistics Bug Buckets

Tests Main Main UseAftFr Leak Hier NmSp
Azure A 13 optimized 4050 55.0% 4 3 0 0 0

exhaustive 2174 44.5% 4 3 0 0 0
Azure B 19 optimized 7979 46.2% 0 0 1 0 0

exhaustive 9031 36.1% 0 0 1 0 0
O-365 C 18 optimized 10982 95.9% 1 0 0 1 0

exhaustive 11724 88.6% 0 0 0 1 0

Table 4.3: Comparison of modes optimized and exhaustive of BFS-Cheap on
proprietary cloud services. Shows the number of requests sent in 1 hour (Tests)
with BFS-Cheap, the percentage of tests generated by the main driver, and the number
of bug buckets found by the main driver and each of the four checkers. Optimized finds
all the bugs found by exhaustive but its main driver explores more states faster given a
fixed test budget (1 hour).

more use-after-free and hierarchy tests (2% versus 0% and 5% versus 1% respectively).

BFS-Cheap, in comparison with BFS-Fast, allows for relatively more checker tests in

Branches, Issues & Notes, and User Groups. In Branches BFS-Cheap leads to more

use-after-free and leakage checks (4% versus 1% and 11% versus 0.2% respectively); in

Issues & Notes BFS-Cheap leads to more use-after-free checks (70% versus 3%); and

in User Groups BFS-Cheap leads to more use-after-free and namespace checks (1.9%

versus 0.4% and 41% versus 36% respectively);

Overall, the number of additional tests generated by the checkers is non-trivial since

the checkers actively extend the state space explored by stateful REST API fuzzing.

Yet, these numbers would have been much more imbalanced (more checker tests) with-

out the optimizations discussed at the end of Chapter 3.3. Next, we present experi-

mental results regarding the impact of these optimizations on the total number of tests

produces by each checker versus the main driver.
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API Total
Req

Search
Strategy Tests Main Checker Stats

UseAftFr Leak Hier NmSp
Commits 15 (*11) optimized 4867 55.5% 17.0% 7.4% 0.8% 19.0%

exhaustive 6144 43.4% 15.3% 11.0% 0.6% 29.5%
Branches 8 (*2) optimized 5545 53.9% 4.47% 11.0% 1.7% 28.7%

exhaustive 6614 33.3% 6.1% 25.9% 0.5% 33.9%
Issues/Nts 25 (*20) optimized 5519 18.8% 70.6% 0.4% 0.5% 9.5%

exhaustive 6853 11.9% 78.2% 0.3% 0.4% 9.1%
Groups 53 (*2) optimized 1314 57.0% 1.9% 0.0 % 0.0% 41.0%

exhaustive 1426 45.8% 6.1% 0.0 % 0.0% 48.0%
Projects 54 (*5) optimized 1379 57.3% 7.7% 0.0 % 0.0% 34.8%

exhaustive 5072 15.0% 67.6% 0.0 % 0.0% 17.3%
Repos/Files 12 (*22) optimized 7219 65.7% 23.4% 2.4% 0.2% 8.1%

exhaustive 9363 41.1% 33.1% 8.1% 0.4% 17.1%
Acc./Lists 26 (*3) optimized 22443 77.9% 0.1% 19.7% 2.2% 0.0%

exhaustive 56900 26.7% 0.1% 72.1% 0.8% 0.0%
Statuses 18 (*19) optimized 18247 96.1% 0.0% 2.9% 0.8% 0.0%

exhaustive 21986 84.2% 0.8% 14.2% 0.7% 0.0%
Cart 8 (*11) optimized 4527 92.0% 2.3% 0.0 % 5.5% 0.0%

exhaustive 4527 92.0% 2.3% 0.0 % 5.5% 0.0%

Table 4.4: Comparison of modes optimized and exhaustive of BFS-Cheap
on open-source cloud services. Shows the number of requests sent in 1 hour
(Tests) with BFS-Cheap, the percentage of tests generated by all four checkers com-
bined (Checkers), and the number of bug buckets found by the main driver and each of
the four checkers. The second column shows the total number of requests in each API
family as well as the average number of primitive value combinations for the requests
of each API family. Overall, across all API families, in mode optimized the propor-
tion of tests generated by the checkers decreases compared to the respective exhaustive
explorations.

Comparing Checker Optimizations

Finally, We now compare the performance of the checker optimizations (two modes:

optimized and exhaustive) discussed in Chapter 4.3. We report results on proprietary

cloud services and on open-source cloud services.

Proprietary cloud services. Table 4.3 shows how many requests were sent in one

hour of fuzzing with BFS-Cheap in the Tests column, and what percentage of those

requests were generated by either the main driver of Chapter 3.3. The table also shows

how many unique bugs (bug buckets) were found in one hour of search by the main
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driver and by each of the checkers. Results are presented for both the optimized and

the exhaustive modes previously discussed.

We observe that the number of tests varies for different services and checker modes.

However, the percentage of tests generated by the checkers is always higher with the

exhaustive mode, as expected. Since in the optimized mode the checkers produce

fewer tests per visited state, the main driver is allowed to explore more states faster.

Yet, despite the lower number of checker tests per visited state, for all three services

considered, the optimized mode finds all the unique bugs (bug buckets) found by the

exhaustive mode. Also, for the O-365 C service, the main driver finds one more bug

with the optimized mode compared to the exhaustive mode within one hour of search.

Table 4.3 reveals an interesting inversion that further demonstrates the value of the

optimized checkers mode. In Azure A, we observe that the optimized mode produces

almost twice as many tests than than the exhaustive mode (4050 versus 2174). At

first sight, this is counter-intuitive. After a deeper investigation, we discovered that

some of the tests produced by the exhaustive mode of the user-namespace checker have

significantly larger response times for service Azure A. Indeed, this specific checker in

exhaustive mode executes additional tests compared to the optimized mode, but con-

taining expensive operations (i.e., high latency) that slow down the overall throughput.

During the course of all experiments with these three services, we found and reported

a total of 7 unique bugs to the developers of those services, including 4 500 bugs found

by the main driver and 3 bugs found by each of the checkers except the user-namespace

checker. In the next section, we discuss several interesting bugs found thanks to the

checkers introduced in this paper.

Open-source cloud services. Table 4.4 shows how many requests were sent in one

hour of fuzzing with BFS-Cheap in the Tests column, and what percentage of those

requests were generated by either the main driver of Chapter 3.3 or by any of the
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four checkers. Unlike Table 4.3 of proprietary cloud service, Table 4.4 shows no bug

buckets because the checkers found no confirmed bugs within one hour in none of the

three cloud services. We make the following observations, regarding the impact of the

optimizations on the number of additional tests generated by the checkers.

First, across all APIs, the optimized version of the use-after-free, the resource leak-

age, and the user-namespace checkers consistently lead to a lower percentage of addi-

tional tests generated by the checkers compared to the exhaustive exploration. This

is the desired behaviour and is also expected. Recall from Chapter 4.3, that only the

use-after-free, the resource leakage, and the user-namespace checkers have optimized

versions, while there is no optimization performed on the resource-hierarchy checker.

Therefore, as shown in the second column from the end, the difference between the two

versions of the experiments (optimized versus exhaustive checkers) for the resource-

hierarchy checker is either insignificant or there are some inversions that highlight the

complementarity among checkers.

For example, in Commits the optimized version of the resource-hierarchy checker

leads to more tests compared to the exhaustive one (0.8% versus 0.6%). Similarly, in

Branches the optimized version of the resource-hierarchy checker again leads to more

tests compared to the exhaustive one (1.7% versus 0.5%) and in Accounts & Lists the

optimized version of the resource-hierarchy checker leads to more tests compared to

the exhaustive one (2.2% versus 0.8%). This inversion, specifically for the resource-

hierarchy checker (less tests in the exhaustive mode for some of the experiments) is a

side-effect of the complementarity among checkers: less pressure added by one checker

(i.e., less additional tests), more capacity for additional tests given to another checker

in a given time frame.

Second, focusing on Table 4.4 and specifically on the use-after-free checker (first

column of checker stats), we observe that the impact of the optimizations is more
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evident in API families with many requests, such as User Groups (from 6.1% to 1.9%)

and Projects (from 67.6% to 7.7%). This happens because in the exhaustive mode of

the use-after-free checker Figure 4.1, after deletion of a dynamic resource, each request

available in reqCollection which consumes the same dynamic resource type (as the

deleted resource), is invoked on the deleted request (line 12 to 19). Inevitably, more

requests available in reqCollecctin will lead to more additional test. By contrast,

in the optimized mode the use-after-free checker, the loop of lines 12 to 19 stops, in a

partial search, once one request which consumes a matching resource type is executed.

Third, focusing on the resource-leakage checker (second column of checker stats),

we observe the overall decrease in the number of test when using the optimized mode

(Figure 4.2). However, it is more difficult to identify a more specific pattern based on

the characteristics of each API. This is partially due to the nature of the BFS-Cheap

search strategy used: the search stops once a valid and an invalid rendering has been

found. This scheme makes the number of additional new tests generated from the

leakage checker dependent on the ordering of the value combinations rendered for each

grammar of each API. Obviously, such ordering is not consistent and comparable across

APIs. That is, if the ordering of values is such that 1000 invalid renderings precede

a valid one, then the leakage checker will be invoked 1000 additional times (see line 8

of Figure 4.5). On the other hand, if the ordering of values is such that 1 invalid

renderings follows a valid one, then the leakage checker will be invoked 1 additional

times. Therefore, fine-grained comparisons between APIs are inconsistent.

Finally, regarding the user-namespace checker (last column of checker stats), we

observe that the specific property was not applicable on Accounts & Lists, Statuses,

and Cart APIs since the checker never kicked in. Furthermore, we observe a relatively

similar decrease in the number of checker tests when using the optimized mode across

all APIs, excluding Projects. This inversion, on Projects API is, again, a side-effect of
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the complementarity between the checkers. In particular observe that in the optimized

mode, the total number of tests fall from 5072 to 1379 and that, at the same time, the

percentage drop in the use-after-free tests is from 67% to 7% while the user-namespace

tests increase from 17% to 34%. Clearly, the exhaustive mode of the use-after-free

checker was saturating the user-namespace checker (as well as the main driver) by

creating too many additional tests.

4.6 New Bugs Found

At the time of this writing, we have used stateful REST API fuzzing extended with

active checkers to test nearly a dozen production Azure and Office-365 cloud services

of size and complexity similar to the three services used in the previous section. In

almost all cases, our fuzzing was able to find about a handful of new bugs in each of

these services. About two thirds of those bugs are “500 Internal Server Errors”, and

about one third are rule violations reported by our security checkers. We have reported

all these bugs to the respective service owners and all have been fixed.

We emphasize that, even when the security checkers do not find any bugs, they

increase confidence that the rules they check cannot be violated and therefore they

increase confidence in the overall service reliability and security.

This section presents examples of real bugs found in deployed Azure and Office-

365 services and discusses their security relevance. We anonymize the name of those

services and key details to avoid targeting any specific service.

Use-after-free violation in Azure. In an Azure service, we found the following

use-after-free violation.

1. Create a new resource R (with a PUT request).

2. Delete resource R (with a DELETE request).
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3. Create a new child resource of the deleted resource R and of a specific type (with

another PUT request).

This sequence of requests results in a “500 Internal Server Error”. The Use-after-free

checker catches this as (1) it attempts to re-use in Step 3 the deleted resource in Step 2

and (2) the response of Step 3 is different from the expected “404 Not Found” response.

Resource-hierarchy violation in Office365. In an Office365 messaging service

where users can post messages and then reply and edit these, the resource-hierarchy

checker detected the following bug.

1. Create a first message msg-1 (with a request POST /api/posts/msg-1).

2. Create a second message msg-2 (with a request POST /api/posts/msg-2).

3. Create a reply reply-1 to the first message (with a request POST /api/posts/msg-

1/replies/reply-1).

4. Edit the reply reply-1 with a PUT request using msg-2 as message identifier

(with a request PUT /api/posts/msg-2/replies/reply-1).

Surprisingly, the last request in Step 4 returns a “200 Allowed” response while it must

have returned a “404 Not Found” response. This rule violation reveals that the im-

plementation of the API that posts a reply does not analyze the full hierarchy when

checking permissions for a reply. Missing hierarchy validation checks are potential se-

curity vulnerabilities: an attacker might be able to exploit them to access child objects

by bypassing the parent hierarchy.

Resource-leak violation in Azure. In another Azure service, the resource-leak

checker triggered the following bug.

1. Create a new resource of type CM and of name X with a specific malformed

body (with a PUT request). This returns a “500 Internal Server Error”, which is

already a bug.
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2. Get a list of all resources of type CM: the returned list is empty.

3. Create a new resource of type CM with the same name X as in Step 1 with a

well-formed body but in a different region (e.g., US-West versus US-Central) with

a PUT request.

Unexpectedly, the last request in Step 3 returns a response “409 Conflict” instead

of an expected “200 Created”. This behavior means that the service has reached an

inconsistent state: the failed request in Step 1 has left unintended side-effects on the

service state. Indeed, the GET request in Step 2 shows that the user view is correct: the

CM resource named X attempted to be created in Step 1 has not been created. However,

the second PUT request in Step 3 proves that the service still remembers the failed

creation of the CM resource named X attempted in the first PUT request of Step 1. This

bug is potentially dangerous: an attacker could create an unbounded number of such

“zombie” resources by repeating Step 1 using many different names, and exceed his/her

official quota since such failed resource creations are (correctly) not counted towards

the user’ resource quota. Yet, they are clearly remembered (incorrectly) somewhere in

the backend service.

Anecdotal Experiences: Eager Resource-Accounting DoS Attack. During the

course of our experiments, we found another type of cloud-service security vulnerability

by accident. Specifically, we planned to fuzz an Azure service overnight. However,

after fuzzing that service for about five hours, we were contacted by the Azure team

owning that service: they had detected unusual traffic created by our fuzzing tests and

asked us to stop those tests immediately. Indeed, they told us our experiments had

unintentionally caused serious health issues to this service. We summarize the security

and reliability vulnerability that was determined to be the root cause of the incident

which we accidentally triggered.

Our fuzzing system uses a garbage collector to avoid exceeding quotas for the cloud
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resources created during fuzzing. For instance, if the default quota for a resource type

Y is 100, at most 100 resources of that type can be created at any time, and our garbage

collector makes sure that the number of live resources never exceeds such quotas by

deleting (using a DELETE request) resources that are no longer used. Without garbage

collection, our fuzzing tool would typically reach quota limits in minutes and would not

be able to continue its state-space exploration.

In the case of the specific Azure service, it turns out that any PUT request to

create a resource of a specific type, let us call it IM, returns a response quickly (nearly

instantaneously) but actually also triggers other tasks that take minutes to complete in

the service backend. Similarly, a DELETE request for a resource of that same type IM

also returns quickly but also trigger delete tasks that also take minutes to complete.

The health issue we triggered was due to the way internal service counters, track-

ing resource usage, were updated when creating and deleting resources of type IM.

Specifically, PUT and DELETE requests that create and delete resources of type IM

updated counters towards quotas eagerly (i.e., without waiting for the several minutes

actually needed to fully complete these actions). As a result, an attacker could create-

then-delete quickly many resources of type IM without exceeding his/her quota while

triggering a huge number of backend tasks—orders-of-magnitude more than the official

quota—hence, literally flooding the backend service with an enormous number of tasks.

Such a Denial-of-Service attack was accidentally triggered by our fuzzing tool and its

garbage collector and is relevant to the intuition behind the Use-after-free checker:

that is, once a resource is deleted no side-effect should impact the state of the backend

service. However, since such delete operations must usually be asynchronous, similar

errors, that can even lead to security vulnerabilities, are difficult to foresee.

A fix to this vulnerability is to update usage counters towards quotas for DELETE

requests only when all delete backend operations have been completed i.e., minutes later
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in the case of IM resources. This way, the amount of backend tasks is still linearly

bounded by the official quota, since subsequent IM resource-creation PUT requests will

be blocked until preceding DELETE requests have been fully completed.

4.7 Summary

We introduced four security rules that capture desirable properties of REST APIs and

services, and showed how stateful REST API fuzzing can be extended with active prop-

erty checkers that automatically test and detect violations of these rules. We imple-

mented active checkers following a modular design and evaluated various performance

optimization on three open-source and three proprietary cloud services. Using active

property checkers we reported bugs related to rules violations of security properties on

proprietary Azure and Office365 services, which were all fixed. Indeed, violations of

the four security rules, introduced earlier, are clearly potential security vulnerabilities.

So far, all reports have been taken seriously by corresponding service owners.
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Chapter 5

Learning-based Mutations and

Coverage-guided Feedback for

Stateful REST API Fuzzing

In the previous chapters, we described systems that automate stateful REST API

fuzzing and extended it with checkers that detect violations of desirable security prop-

erties. These systems, in principal, implement grammar-based fuzzing and inherit some

of its limitations. In particular, the automatically generated fuzzing grammar rules usu-

ally include few values for each primitive type, like strings and numeric values, in order

to limit the combinatorial explosion of the fuzzing space. These primitive-type values

are either obtained from the API specification itself or from a user-defined dictionary

of values. Furthermore, all these values remain static over time, and are not prioritized

in any way. These limitations (fuzzing rules with predefined sets of values and lack of

feedback) are typical of grammar-based fuzzing beyond REST API fuzzing.

In this chapter, we introduce Pythia1, a new fuzzer that augments grammar-based

fuzzing with coverage-guided feedback and a learning-based mutation strategy for stateful

REST API fuzzing. Pythia’s mutation strategy helps generate grammatically-valid test

1 Pythia was an ancient Greek priestess who served as oracle, commonly known as the Oracle of
Delphi, and was credited for various prophecies.
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� �
1 POST /api/projects HTTP/1.1
2 Content−Type: application/json
3 PRIVATE−TOKEN: DRiX47nuEP2AR
4 {”name”:”21a8fa”}
5
6 HTTP/1.1 201 Created
7 {”id”:1243, ”name”:”21a8fa”, created_at”:”2019−11−23T20:57:15”,
8 ”creator_id”:1, ”forks_count”:0, ”owner”:{”state”:”active”}}
9

10 POST /api/projects/1243/repository/branches HTTP/1.1
11 Content−Type: application/json
12 PRIVATE−TOKEN: DRiX47nuEP2AR
13 {”branch”:”feature1”}
14
15 HTTP/1.1 201 Created
16 {”branch”:”feature1”, ”commit”:{”id”:”33c42b”, ”parent_ids”:[],
17 ”title”:”Add README.md”, ”message”:”Add README.md”,
18 ”author_name”:”admin”, ”authored_date”:”2019−11−23T20:57:18”}
19
20 POST /api/projects/1243/repository/commits HTTP/1.1
21 Content−Type: application/json
22 PRIVATE−TOKEN: DRiX47nuEP2AR
23 {”branch”:”feature1”, ”commit_message”:”testString”,
24 ”actions”:[{”action”:”create”, ”file_path”:”admin\xd7@example.com”}]}
25
26 HTTP/1.1 500 Internal Server Error
27 {”message”:”internal server error”}� �

Figure 5.1: Pythia test case and bug found. The test case is a sequence of three
API requests testing commit operations on GitLab. After creating a new project (first
request) and a new branch (second request), a commit with an invalid file path triggers
an unhandled exception.

cases and coverage-guided feedback helps prioritize the test cases that are more likely

to find bugs.

5.1 Background and Motivation

To motivate the benefit of Pythia over the purely grammar-based systems discussed

earlier, we present a sample REST API test case which, in fact, uncovers a previously-
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unknown bug in GitLab and explain why such test cases are beyond reach for the tools

discussed earlier

Example REST API test case and detected bug. Figure 5.1 shows a sample

Pythia test case for GitLab. The test case consists of three request-response pairs and

exercises functionality related to version control commit operations. The first request of

type POST (line 1) creates a new GitLab project. It has a path without any resources

and a body dictionary with a parameter specifying the desired name of the requested

project (“21a8fa”). In response, it receives back metadata describing the newly created

project, including its unique id (line 6). The second request, also of type POST, creates

a repository branch in an existing project (line 10). It has a path using the previously

created resource of type “project” and id “1243”, and a body dictionary setting the

target branch name (“feature1”), such that, the branch can be created within the

previously created project. In response (line 15), it receives back metadata describing

the newly created branch, including its designated name. Finally, the last request

(line 20) uses the latest branch (in its body) and the unique project id (in its path) and

creates a new commit. The body of this request contains a set of parameters specifying

the name of the existing target branch, the desired commit message (“testString”), and

the actions related to the new commit (i.e., creation of a file). However, the relative

path of the target file contains an unexpected value “admin\xd7@example.com”, which

triggers a 500 Internal Server Error (line 26) because the unicode ‘x7’ is unhandled in

the ruby library trying to detokenize and parse the relative file path. We treat “500

Internal Server Errors” as bugs. To generate similar test cases, with unexpected values,

one has to decide which requests of a test case to mutate, what parts of each individual

request to mutate, and what new values to inject in the mutated parts.

Complexity of REST API testing. The example of Figure 5.1 shows the sequence of

events that need to take place before uncovering an error. It highlights the complexity
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of REST API testing due to the structured format of each API request and because

of producer-consumer dependencies between API requests. For example, the second

request of Figure 5.1 (line x) must include a properly structured body payload and also

use the project id “1243” created by the first request. Similarly, the third request (line x)

must include a properly structured body payload and use resources produced by the

two preceding requests (one in its path and one in its body). Overall, a REST API test

case is syntactically valid regarding the syntax of internal parts of individual requests

(i.e., request type, path, header, and body) and semantically valid regarding producer-

consumer dependencies across requests. A syntactically and semantically valid test case

is a grammatically valid, or just valid, test case. Furthermore, each valid test case is

a stateful sequence of requests, since resources produced by preceding requests may be

used by subsequent requests.

Limitations of stateful REST API fuzzing. Stateful REST API fuzzing, intro-

duced in Chapter 3, is a grammar-based fuzzing approach that statically analyzes the

documentation of a REST API and generates a fuzzing grammar for testing a target

service through its REST API. A RESTler fuzzing grammar contains rules describ-

ing (i) how to fuzz each individual API request; (ii) what the dependencies are across

API requests and how can they be combined in order to produce longer and longer

test cases; and (iii) how to parse each response and retrieve ids of resources created

by preceding requests in order to make them available to subsequent requests. Dur-

ing fuzzing, each request is executed with various value combinations depending on

its primitive types, and the values available for each primitive type are specified in a

user-provided fuzzing dictionary. In the example of Figure 5.1, the value of the field

“action” in the last request (line 24) will be one of “create”, “delete”, “move”, “up-

date”, and “chmod” (i.e., the available mutations for this enum type) and the value of

the field “commit_message” will be one of “testString” or “nil” (the default available
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mutations for string types). In contrast, the value of the field “branch,” which is a

producer-consumer dependency, will always have the value “feature1” created by the

previous request. By construction, the set of grammar rules driving stateful REST API

fuzzing leads to grammatically valid test cases.

However, stateful REST API fuzzing, and more broadly grammar-based fuzzing,

has two limitations. First, the available mutation values per primitive type are limited

to a small, fixed number in order to bound an inevitable combinatorial explosion in

the number of possible fuzzing rules and values. Second, these static values remain

constant over time and are not prioritized in any way.

In the next section, we introduce Pythia, a new fuzzer that augments grammar-

based fuzzing with coverage-guided feedback and a learning-based mutation strat-

egy for stateful REST API fuzzing. Pythia’s mutation fuzzing strategy generates

grammatically-valid new test cases and coverage-guided feedback is used to prioritize

test cases that are more likely to find new bugs.

5.2 Overview of Pythia

Pythia is a grammar-based fuzzing engine to test cloud services through their REST

APIs. Since these APIs are structured (see Chapter 5.1), generating meaningful test

cases (a.k.a. mutants) is a non-trivial task—the mutants should be grammatically valid

to bypass initial syntactic and semantic checks; yet, they must contain some ill-formed

inputs to uncover errors. Randomly mutating seed inputs often results in invalid test

cases, as we will see in Chapter 5.6. One potential solution is to sample the mutants

from the large state space defined by the fuzzing grammar and inject errors to them.

However, for complex grammars, like those defined for REST APIs, exhaustively enu-

merating all valid mutants is infeasible. As a workaround, Pythia first uses a statistical

model to learn common usage patterns of target REST APIs from valid seed inputs.
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Figure 5.2: Pythia architecture. The steps inside the dotted box show optional,
add-on features.

Then, it generates new mutants by injecting a small amount of noise causing the learnt

model to deviate from the common usage patterns. This small noise results in mutants

that deviate from common usage pattens, yet are mostly grammatically valid.

Figure 5.2 presents a high-level overview of Pythia. It iteratively operates in three

phases: parsing, learning-based mutations, and execution. Initially, the parsing phase

(Chapter 5.3), parses the input test cases using a regular grammar and outputs the

corresponding Abstract Syntax Trees (ASTs). Initial input test cases can be generated

either by using RESTler to fuzz the target service or by using actual production traffic of

the target service. Next, the learning-based mutations phase (Chapter 5.4), operates on

ASTs. The training engine trains a sequence-to-sequence (seq2seq) autoencoder [67;170]

in order to learn common AST structures of seed test cases. This includes the syntax

of individual requests (i.e., primitive types and values) and the dependencies across

requests of a given test case. Then, the mutation engine generates new test cases by

injecting a small amount of random noise in the trained autoencoder causing it to

slightly deviate from common patterns and generate new test cases.

Finally, in the execution phase (Chapter 5.5), new test cases are executed by the
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S = sequence
Σ = Σhttp−methods ∪ Σresource−ids ∪ Σenum

∪ Σbool ∪ Σstring ∪ Σint ∪ Σstatic

N = {request, method, path, header, body, β1, β2, β3,
producer, consumer, fuzzable, enum,
bool, string, int, static}

R = {sequence→ request+ sequence | ε,
request→ method+ path+ header + body,
method→ Σhttp−methods , path→ β1 + path | ε,
header → β1 + header | ε, body → β1 + body | ε,
β1 → β2 | β3, β2 → producer | consumer,
producer → Σresource−ids, consumer → Σresource−ids,
β3 → static | fuzzable, static→ Σstatic,
fuzzable→ string | int | bool | enum | uuid,
string → Σstring, . . . }

Figure 5.3: Regular Grammar G for REST API test case generation. The
production rules of G with non-terminal symbols capture the properties of any REST
API specification, while the alphabet of terminal symbols is API-specific since different
APIs may contain different values for strings, integers, enums, and so on.

target service. Pythia uses a simple oracle (tracking “500 Internal Server Errors”)

to identify which test cases trigger bugs and retain them to facilitate further manual

inspection. Moreover, code coverage feedback (when available) obtained by the coverage

monitor is used to distinguish test cases that activate unique code paths and prioritize

them for further mutations and to augment the initial corpus of seed test cases. Yet,

when coverage feedback is not available, Pythia operates as a blackbox fuzzer and all

test cases are treated equally.

5.3 Parsing REST API Test Cases

In this phase, Pythia infers the syntax of the seed inputs by parsing them with a

user-provided Regular Grammar (RG) with tail recursion. Such an RG is defined by

a 4-tuple G = (N,Σ, R, S), where N is a set of non-terminal symbols, Σ is a set of

terminal symbols, R is a finite set of production rules of the form α → β1β2 . . . βn,
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   = < R1,R2, R3, R4, R5, R6, R7, R8, R9, R10, R11, R12 >

R1:	sequence	->	request	+	sequence
R2:	request	->	method	+	path
																						+	header	+	body
R3:	method	->	"GET"
R4:	path	->	static	+	path
R5:	static	->	"/projects"
R6:	path	->	consumer	+	path
R7:	consumer	->	"1243"	
R8:	path	->	static	+	path
R9:	static	->	"/repo/branches"
R10:	header	->	
R11:	body	->	
R12:	sequence	->	

GET	/projects/1243/repo/branches	

G	=	(N,	Σ,	R,	S)

sequence

"1243"

request

path

consumer

method header body

static static

"/projects" "/repo/branches"

"GET"

Figure 5.4: Parsing RESTler seed test case into an AST. Show how Pythia parses
an RESTler seed test case (left) into an AST (right) following rules from grammar G.

where α ∈ N,n ≥ 1, βi ∈ (N ∪ Σ),∀1 ≤ i ≤ n, and S ∈ N is a distinguished start

symbol. The syntactic definition of G looks like a Context Free Grammar, but because

recursion is only allowed on the right-most non-terminal and no other cycles are allowed,

the grammar is actually regular. Figure 5.3 shows a template G for REST API test

case generation. A test case that belongs to the language defined by G is a sequence

starting with the symbol sequence followed by a successions of production rules (R)

with non-terminal symbols (N) and terminal symbols (Σ).

Theorem 1. The language described by grammar G (Figure 5.3) is regular.

Proof. We will prove Theorem 1 by writing a regular expression. We see that G is

equivalent to the regular expression (⟨A⟩ ⟨B⟩ ⟨B⟩ ⟨B⟩∗)+, where

• ⟨A⟩ = (POST | PUT | GET | DELETE | PATCH)

• ⟨B⟩ = (Σstatic | Σstring | Σint | Σbool | Σenum | Σuuid | Σresource−ids)

⟨A⟩ corresponds to all available HTTP request type values; the first ⟨B⟩ corresponds

to all primitive type values available request headers of the target API; the second ⟨B⟩

corresponds to all primitive type values available request paths of the target API; and
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POST	/api/user_token
{"user":"admin@test.com",
		"grant_type":"password"}

Seed test case A

PUT	/api/user_token
{"user":"admin@test.com",
		"product_id":"password"}

POST	/api/user_token
{"user":"admin@test.com",
"grant_type":"admin@test.com"}

Mutated test case A1
(rules from current seed)

All leaf rules in grammar 

...
Rules in current seed Rules in other seeds

Mutated test case A2
(rules from other seeds)

... ... ... ...... ...

Figure 5.5: Seed test case and new test cases with mutations using values
from other seeds (center) or from the original seed (right). Shows the two
cases of learning-based mutations performed by Pythia.

the last (optional) ⟨B⟩ corresponds to all primitive type values available request bodies

of the target API. Therefore, the language described by G is indeed regular.

Figure 5.4 shows how seed RESTler test cases are parsed by Pythia’s parsing engine.

A successions of production rules in G are applied to infer the corresponding ASTs; the

tree internal nodes are non-terminals and the leaves are terminals of G. Pythia then

traverses the tree in Depth First Search (DFS) order and obtains a sequence of grammar

rules. For example, a simple test case X=``GET /projects/1243/repo/branches" will

be represented as a sequence of grammar production rules X =< R1, R2, . . . , R12 >

shown at the bottom of the Figure. Given a set of seed inputs, the output of this phase

is a set of abstracted test cases, D = {X1,X2, . . . ,XN}, which correspond to ASTs of

the respective seed inputs. Ultimately, the set of abstracted seed test cases, D, is passed

to the training and mutation engines.
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 = <R1, R2,..,R'
k, Rk+1,..,Rn>

Figure 5.6: Overview of Pythia mutation engine. Shows an overview of Pythia’s
mutation engine

5.4 Learning-based REST API Mutations

The goal of this phase is first to use the abstracted seed test cases X ∈ D and learn com-

mon AST structures of the target APIs, and then to mutate these common structures

and generate new test cases. An autoencoder type of neural network is particularly

suitable for this purpose, as it can learn embedded representations of the input AST

structures. Then, we can add random noise to the learnt representations, decode them

back to the original AST formats, and get new test cases.

Pythia uses an autoencoder model M, which is trained on D. The autoencoder

model M consists of an encoder and a decoder (see Figure 5.6). Mencoder represents

each abstracted test case X to an embedded representation Z which captures the latent

dependencies of X . Mdecoder decodes Z back to X ′. To generate learning-based mu-

tations, Pythia minimally perturbs the embedded representation Z of X and decodes

it back to X ′. Our key insight is that, since the autoencoder is initially trained on
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Algorithm 1: Learning-based Pythia mutations
Input: seeds D, grammar G, model Mθ,D, batch N

1 while time_budget do
2 X ← get_next_seed(D)
3 Z ←Mθ,D.encoder(X )
4 new_sequences← ∅

// Perturbation: Exponential search on random noise scale
5 for j ← 0 to N do

// Noise draw from normal distribution
6 δj ← random.normal(Z.shape, 0)

// Bound and scale random noise
7 δj ← 2j ∗ δj/∥Z∥2

// Add noise on decoder's starting state
8 X ′

j ←Mθ,D.decoder(Z + δj)

9 new_sequences.append(X ′
j)

10 end
// Select the prediction with smallest noise scale

11 X ′
min ← argminscale new_sequences

// Case 1: Grammar rules from current seed
12 rules← terminals(X )
13 foreach index in get_different_leaves(X , X ′

min) do
14 foreach rule in rules do
15 mutation← rule+ random_bytes
16 X [index]← mutation
17 EXECUTE(X )
18 end
19 end

// Case 2: Grammar rules from other seeds
20 rules← terminals(G)− terminals(X )
21 foreach index in get_common_leaves(X , X ′

min) do
22 foreach rule in rules do
23 mutation← rule+ random_bytes
24 X [index]← mutation
25 EXECUTE(X )
26 end
27 end
28 end

grammatically valid test cases, most of the generated ASTs will remain grammatically

valid even after adding small perturbations on Z. Furthermore, the generated output

ASTs will have fewer discrepancies (i.e., differ less) from the respective input ASTs

at places where the structure is common across many training inputs and, conversely,

more discrepancies (i.e., differ more) from the respective input ASTs at places where

the structure is less common across training inputs. Next, we explain how we leverage
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this insight to generate API-specific learning-based mutations that lead to new gram-

matically valid new test cases, with sufficiently ill-formed parts which exercise rare code

paths and uncover bugs.

Training engine.

Given the abstracted test cases in D, the training engine learns their encoded vector

representations using an autoencoder type of neural network [108], which is realized with

a simple seq2seq model MD trained over D. Usually, a seq2seq model is trained to

map variable-length sequences of one domain to another (e.g., English to French). By

contrast, we trainM only on sequences of domain D such thatMD captures the latent

characteristics of test cases.

A typical seq2seq model consists of two Recurrent Neural Networks (RNNs): an

encoder RNN and a decoder RNN. The encoder RNN consists of a hidden state h and an

optional output y, and operates on a variable length input sequence x =< x1, . . . , xn >,

augmented with two auxiliary tokens <SOS> and <EOS> marking the beginning and the

ending of each sequence respectively. At each time t (which can be thought of as position

in the sequence), the encoder reads sequentially each symbol xt of input x, updates its

hidden state ht by ht = f(ht−1, xt), where f is a non-linear activation function, such as

a simple REctified Linear Unit (ReLU) or a more complex a Long Short-Term Memory

LSTM) unit [109], and calculates the output yt by yt = ϕ(ht), where ϕ is an activation

function producing valid probabilities [57]. At the end of each input sequence, the hidden

state of the encoder is a summary z of the whole sequence. Conversely, the decoder

RNN generates an output sequence y =< y1, . . . , yn′ > by predicting the next symbol

yt given the hidden state ht, where both yt and ht are conditioned on yt−1 and on the

summary z of the input sequence. Hence, the hidden state of the decoder at time t is

computed by ht = f(ht−1, yt−1, z), and the conditional distribution of the next symbol
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is computed by yt = ϕ(ht, yt−1, z), given functions f and ϕ.

We train the seq2seq model M on D to maximize the conditional log-likelihood

argmaxθ
1
N

∑N
i=1 logpθ(yi|xi), where θ is the set of the learnt model parameters and

each xi,yi ∈ D. As explained earlier,Mθ,D is trained on sequences of one domain (i.e.,

y = x) and is then used by the mutation engine.

Mutation engine.

For each test case X ∈ D, the goal of the mutation engine is to decide how to mutate

each input location of X . Since X is a sequence of grammar rules < R1, R2, . . . , Rn >

(see Chapter 5.4), the mutation strategy determines how to mutate each rule. Our

learning-based mutation engine sees a rule Ri (in its context) in one of the following

ways: either it has or has not seen Ri’s alternatives in the training corpus. In the first

case, Pythia mutates Ri with alternative rules from the context of the current seed

(Chapter 5.5; center); otherwise, Pythia mutates Ri with randomly selected new rules

from other seeds in the training corpus (Chapter 5.5; right). Both cases lead to mutants

that are grammatically valid as Pythia operates on the leaf nodes of AST structures.

This mutation strategy is realized by the auto-encoder. To mutate a seed test

X , Pythia perturbs its embedded vector representation (Z) by iteratively adding ran-

dom noise of increasing scale, and then decodes it back to a new test case X ′ =<

R′
1, R

′
2, . . . , R

′
n >. The minimum perturbation that creates differences between X and

X ′ is selected, and the respective differences determine how to mutate each rule of the

seed test case X as follows:

1. Rules where R′
i and Ri differ indicate locations where the model has seen more

variance during training and mutations with the rules from the context of the

current seed should be used (Figure 5.5; center).

2. Rules where R′
i and Ri are the same after the perturbation indicate locations
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where the model has not seen many variations in those rules and their context

during training, and thus, mutations with new rules, not in the original in in-

put/output sequences, should be used (Figure 5.5; right).

Algorithm 1 implements Pythia’s learning-based mutation strategy and Chapter 5.6

pictorially illustrates it. The algorithm takes a set of abstracted test cases D, a regular

grammar G, a trained autoencoder model Mθ,D and its batch size N as inputs, and

iterates over D until the time budget expires (Line 1). At a high level, the algorithm

operates in 2 steps: perturbations and comparison-mutations.

• Perturbations (lines 5 to 11): For each test case X , the encoder of model Mθ,D

obtains its embedding Z and Pythia perturbs it with random noise. Pythia draws N

noise-values {δ0, δ1, . . . , δN−1} from a normal distribution, bounded by 2−norm of Z

and scaled exponentially in the range {20, 21, . . . , 2N−1}. The N noise values are used

to perturb Z independently N times and get different perturbed vectors {Z + δ0, Z +

δ1, . . . , Z + δN−1}, which serve as N different starting states of the decoder. In turn,

they lead to N different outputs {X ′
0, X ′

i , . . . , X ′
N−1} for each input X . From these

N outputs, Pythia selects X ′
min which differs from X and is obtained by the smallest

(2-norm) perturbation δmin on Z.

The N -step exponential search for the smallest perturbation that leads to a new

output X ′
min helps avoid pervasive changes that completely destroy the embedded rep-

resentation Z of X . In fact, perturbing the embedded representation Z of X with noise

and decoding it back to X ′
min forces the model to act as a denoising autoencoder [176].

Such models are robust to partial noise destructions, since the learnt representation

is expected to capture stable structures of common dependencies in the observed in-

puts [175]. Hence, the outputs X ′
min will be close to the respective inputs X , and many

will remain grammatically valid because the model is trained on grammatically valid in-

puts. Furthermore, because of the variance-bias trade-off [89], the recovered output ASTs

99



will have less discrepancies (lower error) from the respective input ASTs at places where

the structure is common across many training inputs (low variance); and conversely,

the recovered output ASTs will have more discrepancies (higher error) at places where

the structure is less common across training inputs (high variance). We leverage these

insights and generate learning-based mutations by comparing X with X ′
min for each test

case X ∈ D.

• Comparison & Mutations (lines 12 to 27): The two groups of nested for-loops in

Algorithm 1 implement the two different mutation cases explained earlier. The first

group of nested for-loops (lines 13 to 19) targets leaf locations where X and X ′
min

differ (high variance, case 1). In such locations of X , new mutations are generated

by iteratively applying leaf grammar rules (i.e., terminal symbols) in X . The second

group of nested for-loops (lines 21 to 27) targets leaf locations where X ′
min and X are

the same (low variance, case 2). In such locations of X , new mutations are generated

by iteratively applying leaf grammar rules originally not in X . In both cases, the new

grammar rules are augmented with auxiliary random byte alternations on the byte

representation of rule terminals to avoid repeatedly exercising identical rule payloads.

5.5 Execution Phase

In this phase, the execution engine takes as input new test cases generated by the

mutation engine and executes them to the target service. Executing a test case includes

sending its requests to the target service over http(s) and receiving the respective

responses back. During such interactions, Pythia uses a simple oracle. to identify

which test cases lead to responses indicating bugs to retain them for further manual

inspection. Currently, Pythia uses a simple oracle that captures 500s, which are a

generic class of errors indicating internal server errors. Yet, in principle, Pythia could

replace its oracle with recent tools that capture other types of failures [46].
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During testing, Pythia leverages code coverage information, obtained by the cover-

age monitor, to distinguish test cases that activate unique code paths. To track covered

code, Pythia first statically analyzes the target service and extracts basic block loca-

tions. Then, the target service is configured to produce code coverage information,

which is collected by the coverage monitor. Given the basic block locations extracted

and the coverage information collected by the coverage monitor during testing, each

test case is mapped to a bitmap describing the respective code path activated. Such

code coverage information (feedback) helps distinguishing test cases that reach new

code paths and ultimately minimize an initially large corpus of many likely-redundant

test cases to a smaller set that entirely consists of test cases activating unique code

paths. Yet, if it is infeasible to collect code coverage information for a target service,

Pythia operates as a purely blackbox fuzzer and still outperforms prior approaches both

in code coverage achieved and in bugs found (see Chapter 5.6).

Implementation of Pythia

Pythia follows a single-threaded Python implementation. Although a multi-threaded

implementation may increase testing throughput, Pythia targets server-side code and

in a multi-threaded environment it would be challenging to disentangle requests from

concurrent sequences and reconstruct the exact test cases triggering a bug. We use an

off-the-shelf seq2seq RNN with input embedding, implemented in tensorflow [172]. The

model has one layer of 256 Gated Recurrent Unit (GRU) [69] cells in both encoder and

decoder. Dynamic input unrolling is performed using tf.nn.dynamic RNN APIs and

the encoder is initialized with a zero state. We train the model by minimizing the

weighted cross-entropy loss for sequences of logits using the Adam optimizer [117]. We

use batches of 32 sequences, iterate for 2k training steps with a learning rate of 0.001,

and initial embedding layer of size 100. The vocabulary of the model depends on the
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number of production rules in the fuzzing grammar of each API family and ranges in

couple of hundred “words”. Training such a seq2seq model in a CPU-only machine takes

no more than two hours. All the experiments discussed in our evaluations were run on

Ubuntu 18.04 Google Cloud VMs [22] with 8 logical CPU cores and 52GB of physical

memory. Each fuzzing client is used to test a target service deployment running on the

same machine with the fuzzing client.

5.6 Evaluation

In this section, we report results of experiments obtained with Pythia on there open-

source cloud services. We answer the following questions:

Q1: How do the three baselines compare with Pythia in terms of code coverage increase

over time?

Q2: How does initial seed selection impact the code coverage achieved by Pythia?

Q3: How does code coverage feedback impact the code coverage achieved by Pythia?

Q4: Can Pythia detect new bugs in production-scale cloyud services?

Experimental setup.

In total, we tested six API families of GitLab [93], two of Mastodon [131], and one of

Spree [168]. These API families and services are the same with the ones used the previous

chapters (see Table 3.1). We also use here the same configurations as the ones described

in Chapter 4.5. In principal, the total number of requests in each API family along with

the average number of available primitive value combinations for each request indicate

the size of the state space that needs to be tested.

Monitoring framework & initial seeds. We statically analyze the source code of

each target service to extract basic block locations and configure each service, using
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Figure 5.7: Comparison of Pythia mutations strategies with respect to other
baselines. Seed collection phase: Run RESTler on each API family to generate seed
corpora. Fuzzing phase: Use the seed corpora generated in the seed collection phase
to perform three individual 24h fuzzing sessions per API family. Comparison: Shows
the number of new lines executed during the fuzzing phase, excluding those executed
during the seed collection phase. Pythia performs best compared to all baselines.

Ruby’s Class:TracePoint hooks, to produce stack traces of lines of codes executed

during testing. During testing, all target services are being monitored by Pythia’s

coverage monitor which converts stack traces to bitmaps of basic block activations

corresponding to the test cases executed. In total, our static analysis extracts 11, 413

basic blocks for GitLab, 2, 501 basic blocks for Mastodon, and 2, 616 Spree.

Unless otherwise specified, we obtain initial seed corpora by running RESTler for

24h on each API family using its default Breadth First Search (BFS) fuzzing mode, its

default fuzzing dictionary (i.e., two values for each primitive type), and by turning off its
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Garbage Collector (GC) to obtain deterministic results. We choose BFS mode because

in this mode RESTler conducts a systematic state space exploration and generates

balanced test case sequences, with enough variation and reasonable lengths to train

seq2seq RNNs. Depending on the target API, a test-case length ranges from 3 to 6

requests, or equivalently from 505 to 825 production rules, or from 907 to 1430 raw

bytes. In contrast, RESTler’s BFS-Fast and RandomWalk fuzzing modes lead to test

cases that are unusable to train seq2seq RNNs. (BFS-Fast leads to few, very long test

cases and RandomWalk leads to entirely random test cases.) Yet, when we compare

the number of bugs found by Pythia versus RESTler, we run RESTler in all its fuzzing

modes and report its best numbers.

Baselines. We evaluate Pythia against three blackbox baselines.

(i) RESTler: We use RESTler both for seed test case generation and for comparison.

On each family of target APIs, we run RESTler for 2 days. The first day, seed collection

phase, is used to generate seed test cases. The second day, fuzzing phase, is used for

comparison. We compare the incremental coverage achieved by RESTler versus Pythia

over the initial coverage achieved in the seed collection phase.

(ii) Random byte-level mutations: This is the simplest form of mutations. As suggested

by their name, byte-level mutations are random alternations on the bytes of each seed

test case. In order to produce byte-level mutations, the mutation engine selects a

random target position within the seed sequence and a random byte value (in the

range 0 − 255), and updates the target position to the random byte value. Naturally,

this type of mutations is not designed to generate grammatically valid mutants.

(iii) Random tree-level mutations: In order to produce random tree-level mutations,

the mutation engine selects a random leaf of the respective AST representation and a

random rule from G with a terminal symbol, and flips the target leaf with using the

random rule. The mutations are exclusively performed on the tree leaves, and not in
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Figure 5.8: Impact of initial seed collection. Seed collection: Run RESTler for
12h on each API. Fuzzing: Use each corpus to perform three individual 24h guided
tree-level Pythia mutation sessions. Moreover, let RESTler run for 24h additional hours
(32h in total). Comparison: Shows the number of new lines executed after the initial
12h of seed collection.

internal nodes, in order to largely maintain the grammatical validity of each test case.

Leaves correspond to primitive values and substituting a primitive value with a value of

another type will most likely maintain grammatical validity. However, since the target

leaves and the new rules (mutations) are selected at random for each test case, the

target state space for mutations on realistic tests cases is quite large. For example, the

test case shown in Figure 5.1 corresponds to a tree consisting of 73 leaf nodes and the

grammar used to produce it has 66 rules with terminal rules. This, defines a state space

with approximately 5, 000 feasible mutations only for one seed — let alone the total size

of the state space defined by the complete corpus of seeds. Next, we evaluate Pythia’s

learning-based mutation strategy which considers the intrinsic structure of each test

case and significantly prunes the size of the search space.

Code Coverage Achieved by Pythia (Q1)

We investigate Pythia’s code coverage compared to the three blackbox baselines in-

troduced above. Since all baselines are blackbox, here, we run Pythia without using

code coverage feedback. RESTler is initially run for 24 hours to generate seed corpora

(seed collection phase) across each API family. The seed collection phase is extended
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to 32 hours only in “Issues & Notes” API family due to a late plateau, explained in Q3.

Then, RESTler runs for 24 additional hours for comparison (fuzzing phase), and all

other fuzzers, including Pythia, are only run for the 24h fuzzing phase, as they mutate

seed corpora generated by RESTler. Figure 5.7 shows the results.

In comparison to RESTler, during the 24h fuzzing phase Pythia discovers new lines

of code (LOC) across all APIs and services, ranging from 43 lines (for “Accounts &

Lists”) to 500 lines (for “Cart & Products”). In contrast, RESTler plateaus after the

initial seed collection phase and discovers no new lines during the 24h fuzzing phase.

The only exception is “Cart & Products” where RESTler discovers 30 lines after 16

hours, while Pythia discovers 500 new lines.

Pythia discovers more LOC than RESTler in the fuzzing phase, because the latter

navigates extremely large search spaces. For example, during fuzzing “Commits” API,

RESTler explores a search space of 19K sequences of length five and 11 possible value

combinations each (on average). Such search-space explosion is similar across all APIs

and once RESTler plateaus, it is then challenging to further increase code coverage.

In contrast, Pythia performs learning-based mutations and, as shown in Figure 5.7,

in the fuzzing phase it outperforms RESTler and always finds new LOC across all

APIs. The percentage improvement of Pythia over the initial code coverage achieved

by RESTler in the seed collection phase ranges between 1% and 15% (depending on

the target APIs). This increase, although relatively small is the result of learning-

based mutations performed only by Pythia that allows exercising rare code paths, never

reached by RESTler, and uncovers bugs.

We also compare Pythia with two random baselines. Across all APIs the relative

ordering of all fuzzers remains consistent: Pythia outperforms the random tree-level

baseline, which, in turn, outperforms the random byte-level baseline. Such ordering is

expected. As explained earlier, raw byte-level mutations tend to violate both semantic
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and syntactic validity of the seed test cases and consequently underperform compared

to tree-level mutations that mostly obey grammatical validity. Although the latter

produces syntactically valid mutations, it mutates without API-specific guidance and,

thus, cannot target its mutations to locations that have a higher impact on code cover-

age. In contrast, Pythia produces API-specific learning-based mutations that increase

code coverage faster and higher than random tree-level mutations.

Impact of Seed Selection (Q2)

Previously, we saw that RESTler plateaus in the initial seed collection phase and then

discovers almost no newlines while fuzzing across all API families. In contrast, Pythia

uses RESTler seeds and further increases code coverage in the fuzzing phase. We

will now investigate how RESTler and Pythia compare before RESTler plateaus and

examine the impact of initial seed selection on the line coverage achieved by Pythia. We

consider that RESTler plateaus if it discovers no new lines during the 24h fuzzing phase.

We select “Issues & Notes” because RESTler takes the longest time to plateau among

all API families (discovers new lines up until 32h) and compare three RESTler seed

collection configurations: RESTler run for 12h (generates 5K seeds), for 24h (generates

12K seeds), and for 32h (generates 15K seeds). Figure 5.8 shows the cumulative increase

in the number of lines executed by RESTler and Pythia during the fuzzing phase (on top

of those executed during the seed collection phase) as well as the union and intersection

of lines executed by both tools.

In the 12h setting, the lines discovered by Pythia are a superset of those discovered

by RESTler because the intersection overlaps with RESTler while the union overlaps

with Pythia. By contrast, in the 24h setting, the two tools discover diverging sets of lines

because the intersection remains constant while both tools discover new lines and the

union increases. In the 32h setting, the lines discovered by Pythia are also a superset of
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Target
APIs

New LOC executed by Pythia
Blackbox Greybox Improvement

Commits 457 457 -
Branches 336 340 1%
Issues & Notes 312 384 23%
Groups & Mmbrs 185 220 19%
Projects 209 292 40%
Repos & Files 213 240 13%
Accounts & Lists 38 38 -
Statuses 79 79 -
Storefront Cart 526 614 17%

Table 5.1: Impact of code coverage feedback. Shows the total number of lines
executed by Pythia after 24h of fuzzing each API family without and with using code
coverage feedback.

those discovered by RESTler. As explained in Chapter 5.4, Pythia generates mutations

using many new values for each primitive type (including random payload alternations),

whereas RESTler uses a predefined set of values and conducts a systematic state space

exploration. Because RESTler search spaces are typically large, given few seeds (e.g.,

5K in the 12h settings), Pythia may outperform RESTler and explore new lines faster.

However, Pythia is not designed to perform mutations that extend sequences with

additional requests and instead focuses on targeted AST-leaf-level mutations. Thus, if

the initial seed corpus is large and RESTler has not plateaued (e.g., 12K seeds in the

24h setting), Pythia and RESTler may discover diverging sets of new lines.

Overall, when Pythia is run after RESTler plateaus (few hours in most API families

except “Issues & Notes”), the lines discovered by Pythia are a superset of those discov-

ered by RESTler because the former performs new mutations that exercise new LOC

and discover new bugs. Yet, even when RESTler has not plateaued (e.g., in the 12h

setting RESTler keeps discovering new lines in the fuzzing phase), Pythia still discovers

new LOC, on top of those discovered by RESTler. The conclusions drawn for “Issues

& Notes” generalize across all API families tested so far.
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Impact of Code Coverage Feedback (Q3)

As explained in Chapter 5.5, Pythia can optionally use code coverage feedback to select

only test cases that increase code coverage and prioritize them for further mutations.

When a target service can be instrumented to produce coverage information, Pythia’s

coverage monitor collects this information and selects for further mutations only test

cases that exercise unique code paths Thus, Pythia avoids mutating redundant seeds

that activate identical code paths, and thus, more efficiently increases code coverage.

Table 5.1 shows the total number of new lines executed by Pythia after 24h of

fuzzing each API family without (blackbox) and with (greybox) using code coverage

feedback as well as the respective improvements. We observe that the best percentage

improvement from code coverage feedback is obtained in GitLab’s “Issued & Notes”,

“Groups & Members”, and “Projects” API families (23%, 19%, and 40% respectively).

These improvements are desirable and are more expected in API families with relatively

more requests (see Table 3.1: e.g., 54 for “Projects”) where using code coverage to pri-

oritize test cases (i.e., request combinations) that exercise unique code paths leads

to better improvement. Code coverage also leads to a 17% improvement in Spree’s

Storefront Cart. On the other hand, there is marginal or no improvement in GitLab’s

“Branches” and “Commits” API families that contain relatively less API requests (e.g.,

8 for “Branches”). There is also no improvement in Mastodon’s API families. Partic-

ularly in Mastodon, Pythia’s coverage monitor discovers very few unique basic blocks

activated by the test cases (“32” for “Accounts & Lists” and 4 for “Statuses”), while the

same number ranges in the hundreds of basic blocks for all other API families. Conse-

quently, since the coverage signal is too sporadic, there is no added value when using

coverage feedback in Mastodon. Overall, using code coverage is an optional feature,

which usually helps improve code coverage.
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Target
APIs

RESTler Pythia
Tests 500s Bugs Tests 500s Bugs

Commits 7.3K 0 0 10.7K 132 6
Branches 4.9K 0 0 12.3K 135 3
Issues & Notes 8.1K 0 0 11.1K 246 2
Groups & Mmbrs 9.1K 0 0 15K 234 4
Projects 6.5K 0 0 18.3K 185 3
Repos & Files 7.1K 0 0 14.9K 79 5
Accounts & Lists 10.6K 0 0 63.5K 1307 4
Statuses 26K 336 1 56K 962 2
Storefront Cart 13.7K 2018 1 18.7K 401 4
Total - - 2 - - 33

Table 5.2: New bugs found. Shows the number of test cases generated, “500 Internal
Server Errors” triggered, and new bugs found by RESTler and Pythia after 24h of
fuzzing each API family.

Number of Bugs Found (Q4)

Although code coverage is an indicative proxy to measure the effectiveness of bug

finding tools, the ultimate metric is the number of new bugs found. Pythia finds new

bugs across all the tested APIs. In total, Pythia found 33 new bugs.

During fuzzing, a high number of “500 Internal Server Errors” is usually triggered

by Pythia and different instances of the same bugs may be reported repeatedly. Since

“500 Internal Server Errors” are potential server state corruptions with unknown con-

sequences in the target service health, it is desirable to avoid duplication and report

unique instances of each bug in order to facilitate further manual inspection. We use

code coverage information and group unique bugs according to the following rule: count

as unique bugs the “500 Internal Server Error” instances that emanate from test cases

exercising unique code paths. Nonetheless, if code coverage information is not avail-

able, Pythia can group bugs using the structure of the types of the non-rendered request

sequence (i.e., the same bucketization scheme followed by RESTler).

Table 5.2 compares Pythia with RESTler and shows the total number of test cases

110



generated, 500s errors triggered, and unique bugs found after 24h of fuzzing each API

family. To ensure fair comparison between the two tools, Table 5.2 reports results

where Pythia runs in blackbox mode (i.e., without using code coverage feedback). Fur-

thermore, we cross-checked that total number of 2 bugs reported for RESTler remains

the same for all RESTler configurations (including BFS, BFS-Fast, and RandomWalk)

even after fuzzing for 48h.

We observe that Pythia generates more test cases than RESTler across all APIs—

220K versus 93K respectively. This is because Pythia’s learning-based mutations do

not lead to new request sequence combinations. (i.e., constant number of request

per test case). In contrast, RESTler’s mutations continuously increase the number

of requests per test case by appending new requests. Hence, the target service test

case throughput is better for Pythia than for RESTler. Most importantly, we observe

that Pythia’s learning-based mutations trigger 500s across all API families, whereas

RESTler’s mutations trigger 500s only in two API families. Using the bug grouping

rule described earlier, we group Pythia’s 500s to 33 unique bugs. Independently (i.e.,

using its own bug grouping methodology), RESTler also found 2 unique bugs, which

we do not count in the column reported for Pythia.

New Bugs Found

During our experiments with Pythia on local GitLab, Mastodon, and Spree deployments

we found 33 new bugs. All bugs were easily reproducible and were all confirmed by the

respective service owners. We describe a subset of those bugs to give a flavor of what

they look like and what test cases uncovered them.

Example 1: Bug in Storefront Cart. One of the bugs found by Pythia in Spree is

triggered when a user tries to add a product in the storefront cart using a malformed

request path ``/storefront/|add_item?include=line_items''. Due to erroneous
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input sanitization, the character ``|'' is not stripped from the intermediate path

parts. Instead, it reaches the function split of library uri.rfc3986_parser.rb, which

treats it as a delimiter of the path string. This leads to an unhandled InvalidURIError

exception in the caller library actionpack, and causes a “500 Internal Server Error”

preventing the application from handling the request and returning the proper error, i.e.,

“400 Bad Request”. This bug can be reproduced with a test case with two requests: (1)

creating a user token and (2) adding a product in the chart using a malformed request

path. Bugs related to improper input sanitization and unhandled values passed across

multiple layers of software libraries are usually found when using fuzzing. Pythia found

bugs due to malformed request paths in all the services tested.

Example 2: Bug in Issues & Notes. Another bug found by Pythia in GitLab’s

Issues & Notes APIs is triggered when a user attempts to open an issue on an existing

project, using a malformed request body. The body of this request includes multi-

ple primitive types and multiple key-value pairs, including due_date, description,

confidentiality, title, asignee_id, state_event, and others. A user can cre-

ate an issue using a malformed value for the field title, such as {"title":"DELE\xa2"}

which leads to a “500 Internal Server Error”. The malformed title value is not sani-

tized before reaching the fuction create of <class:Issues> that creates new issues.

This leads to an unhandled ArgumentError exception due to an invalid UTF-8 byte

sequence. This bug can reproduced by (1) creating a project and (2) trying to post an

issue with a malformed title in the project created in (1).

Interestingly, adding malformed values in other fields of the request body does not

necessarily lead to errors. For instance, the fields confidentiality and state_event

belong to different primitive types (boolean and integer) which are properly parsed and

sanitized. Furthermore, mutations that corrupt the json structure of the request body

or that do not use existing project ids lead to no such errors. Brute-forcing all possible
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ways to break similar REST API request sequences is infeasible. Instead, Pythia learns

common usage patterns of the target service APIs and then applies learning-based

mutations breaking these patterns and generating many grammatically valid test cases.

Pythia found such input sanitization bugs, due to malformed request bodies, in all

services tested. A similar bug is also shown in Figure 5.1.

Other examples of unhandled errors found by Pythia are due to malformed headers

and request types. All the bugs found during this work are currently being reported

to the respective service owners, and some of those previously-unknown errors have

already been confirmed.

5.7 Summary

Pythia is the first fuzzer that augments grammar-based fuzzing with coverage-guided

feedback and a learning-based mutation strategy for stateful REST API fuzzing. Pythia

uses a statistical model to learn common usage patterns of target REST APIs from

grammatically valid seed inputs. It then generates mutations by injecting a small

amount of noise in the learnt model, causing it to deviate from common usage patterns.

Pythia’s learning-based mutation strategy helps generate new, grammatically valid test

cases and coverage-guided feedback helps prioritize the test cases that are more likely

to find bugs. We presented detailed experimental evidence—collected across three

productions-scale, open-source cloud services—showing that Pythia outperforms prior

approaches both in code coverage achieved and in new bugs found. Pythia found new

bugs in all services tested so far. In total, Pythia found 33 bugs which were all confirmed

by the respective service owners.
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Chapter 6

Conclusions

Modern cloud services are complex conglomerates: they consist of multiple layers of

software components that are usually written by multiple parties, span different lan-

guages and run-time environments, and continuously interact with each other. This

model of multiple entangled layers of abstraction, which is typical in modern applica-

tions beyond cloud services, inevitably imposes increased complexity with performance,

security, and reliability ramifications [43]. Indeed, many of the bugs discovered in cloud

services in the context of this dissertation were due to invalid inputs that traversed

different layers of abstraction and led to unforeseen errors. A seemingly valid input for

one layer of abstraction, may constitute an invalid input with detrimental consequences

for an underlying layer of abstraction. How to effectively test entire cloud service stacks

for such unforeseen errors is still an open research challenge. This dissertation took a

novel step forward.

We investigated the hypothesis that we can leverage the structured usage of cloud

services through REST APIs and feedback obtained during interaction with such ser-

vices (e.g., in the form of responses and HTTP status codes received or in the form of

service-side code coverage achieved) in order to build systems that test cloud services

in an automatic, efficient, and learning-based way through their APIs.

First, we introduced RESTler, a pioneer system using stateful REST API fuzzing to

test cloud services through their APIs. RESTler statically analyzes the API documen-
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tation of a RESTful cloud service (given in an API specification language, such as Ope-

nAPI [29]) and then generates tests by (1) inferring dependencies among request types,

and by (2) learning invalid request combinations from the service’s past responses.

We presented empirical evidence showing that these two techniques are necessary to

thoroughly test a target cloud service through its REST API, while at the same time

pruning the large search space of possible request sequences. We evaluated various

search strategies on three open-source, production scale cloud services and found tens

of previously-unknown bugs. Moreover, we used RESTler to test four proprietary Azure

and Office365 cloud services, and found several bugs in each of them. All bugs found

by RESTler were confirmed and fixed by the corresponding service owners.

Although these results are encouraging, baseline stateful REST API fuzzing can only

detect the generic class of “500 Internal Server Errors.” Thus, we, then, described how

stateful REST fuzzing can be extended with active checkers capturing desirable REST

API security properties beyond “500 Internal Server Errors.” Specifically, we intro-

duced four security rules that capture desirable properties of REST APIs and services,

and implemented active property checkers that automatically test and detect violations

of these rules. We implemented all active checkers following a modular design and eval-

uated various performance optimizations on three open-source and three proprietary

cloud services. Using active property checkers we reported bugs related to rule viola-

tions of security properties on proprietary Azure and Office365 services, which were all

confirmed and fixed. Our reports were taken seriously by the respective service owners,

since violations of the four security rules were potential security vulnerabilities and it

was safer to fix these bugs rather than risk a live incident with unknown consequences.

Finally, we introduced Pythia, the first fuzzer that augments grammar-based fuzzing

with coverage-guided feedback and a learning-based mutation strategy for stateful

REST API fuzzing. Pythia uses a statistical model to learn common usage patterns of
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target REST APIs from grammatically valid seed inputs. It then generates mutations

by injecting a small amount of noise in the learnt model, causing it to deviate from

common usage patterns. Pythia’s learning-based mutation strategy helps generate new,

grammatically valid test cases and coverage-guided feedback helps prioritize the test

cases that are more likely to find bugs. We presented experimental evidence showing

that Pythia outperforms prior approaches both in code coverage achieved and in new

bugs found. Pythia found new bugs in all services tested so far (33 in total) which were

confirmed by the respective service owners.

Overall, in this dissertation we focused on bugs that were camouflaged behind the

REST APIs of cloud services. This is a new class bugs and unlike buffer overflows

in binary-format parsers, or use-after-free bugs in web browsers, or cross-site-scripting

attacks in web pages, it is still largely unclear how severe these errors are. However,

our work already has significant industrial impact: “Over the last 16 months, RESTler

(including new extensions) has progressively been deployed more broadly inside Mi-

crosoft, and its application directly contributed to finding and fixing several hundred

new bugs in Azure, Office365, and Bing services.” [31]

Our world keeps changing fast. Research organizations, educational institutions,

and other companies are increasingly switching from the complexity of owning and

maintaining their own, on-premise computing infrastructure to instead access and pay

on demand cutting edge cloud technologies. Without a doubt, systems for testing cloud

services will have a broad real-life impact. This dissertation marks a clear path forward

to test cloud services in automatic, efficient, and learning-based way for reliability,

scalability, and performance issues through their APIs.
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