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ABSTRACT 

Emergent Properties of Biomolecular Organization 

Stanislav Tsitkov 

 

The organization of molecules within a cell is central to cellular processes ranging from 

metabolism and damage repair to migration and replication.  Uncovering the emergent properties 

of this biomolecular organization can improve our understanding of how organisms function and 

reveal ways to repurpose their components outside of the cell.  This dissertation focuses on the 

role of organization in two widely studied systems: enzyme cascades and active cytoskeletal 

filaments. 

Part I of this dissertation studies the emergent properties of the spatial organization of 

enzyme cascades.  Enzyme cascades consist of a series of enzymes that catalyze sequential 

reactions: the product of one enzyme is the substrate of a subsequent enzyme.  Enzyme cascades 

are a fundamental component of cellular reaction pathways, and spatial organization of the 

cascading enzymes is often essential to their function.  For example, cascading enzymes 

assembled into multi-enzyme complexes can protect unstable cascade intermediates from the 

environment by forming tunnels between active sites. 

We use mathematical modeling to investigate the role of spatial organization in three specific 

systems.  First, we examine enzyme cascade reactions occurring in multi-enzyme complexes 

where active sites are connected by tunnels.  Using stochastic simulations and theoretical results 

from queueing theory, we demonstrate that the fluctuations arising from the small number of 

molecules involved can cause non-negligible disruptions to cascade throughput.  Second, we 



 

develop a set of design principles for a compartmentalized cascade reaction with an unstable 

intermediate and show that there exists a critical kinetics-dependent threshold at which 

compartments become useful.  Third, we investigate enzyme cascades immobilized on a 

synthetic DNA origami scaffold and show that the scaffold can create a favorable 

microenvironment for catalysis. 

Part II of this dissertation focuses on the organization of active cytoskeletal filaments.  Many 

mechanical processes of a cell, such as cell division, cell migration, and intracellular transport, 

are driven by the ATP-fueled motion of motor proteins (kinesin, dynein, or myosin) along 

cytoskeletal filaments (microtubules or actin filaments).  Over the past two decades, researchers 

have been repurposing motor protein-driven propulsion outside of the cell to create systems 

where cytoskeletal filaments glide on surfaces coated with motor proteins.  The study of these 

systems not only elucidates the mechanisms of force production within the cell, but also opens 

new avenues for applications ranging from molecular detection to computation. 

We examine how microtubules gliding on surfaces coated with kinesin motor proteins can 

generate collective behavior in response to mutualistic interactions between the filaments and 

motors, thereby maximizing the utilization of system components and production.  To this end, 

we used a microtubule-kinesin system where motors reversibly bind to the surface.  In 

experiments, microtubules gliding on these reversibly bound motors were unable to cross each 

other and at high enough densities began to align and form long, dense bundles.  The kinesin 

motors accumulated in trails surrounding the microtubule bundles and participated in 

microtubule transport. 

In conclusion, our study of the emergent properties of the spatial organization of enzyme 

cascades and the mutualistic interactions within active systems of motor proteins and 



 

cytoskeletal filaments provides insight into both how these systems function within cells and 

how they can be repurposed outside of them.
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Introduction 
This dissertation studies the emergent properties of the organization of two biomolecular 

systems: enzyme cascades1 (chapters 1-4) and active cytoskeletal filaments2 (chapters 5-6).  

Enzyme cascades are collections of enzymes that catalyze sequential transformations of substrate 

molecules.  Systems of active cytoskeletal filaments refer to dynamic systems where the 

components of the cellular cytoskeleton, actin filaments or microtubules, are repurposed outside 

of the cell to be propelled on surfaces coated with molecular motor proteins: myosin for actin 

filaments, and kinesin or dynein for microtubules. 

 

Part I: Emergent properties of colocalized enzyme cascades 

In cells, collections of enzymes catalyze the conversion of substrate molecules into product 

molecules via several intermediate molecules in multi-step reaction pathways called enzyme 

cascades.3  An example of this is the glycolysis pathway of cellular respiration,4 where a 

molecule of glucose, the initial substrate, is transformed into two molecules of pyruvate, the 

product, via nine intermediates in a ten-step enzymatic cascade, beginning with the conversion of 

glucose into glucose-6-phosphate catalyzed by hexokinase, and ending with the conversion of 

phosphoenolpyruvate into pyruvate catalyzed by pyruvate kinase.5  

Often times, enzymes in a cascade demonstrate spatial organization.3  The scale of this 

organization extends from the single molecule level, where protein-protein interactions between 

cascading enzymes can generate a favorable microenvironment for catalysis,6, 7 to the cellular 

level, where portions of reaction pathways are compartmentalized into organelles.8-10  For 

example, the subunits of the tryptophan synthase bi-enzyme complex, which is responsible for 
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catalyzing the conversion of indole-3-glycerol phosphate into tryptophan in certain bacteria, 

form a 2.5 nm-long tunnel between active sites to protect the unstable indole intermediate.11  

Alternatively, in the bacterium Salmonella enterica, the two-step reaction pathway responsible 

for the metabolism of propanediol to proponal and propionyl-phosphate is confined to the 

proteinaceous propanediol utilization bacterial microcompartment, which allows for the 

quarantine of the toxic propionaldehyde intermediate.12, 13 

The study of enzyme cascades not only improves our understanding of biological systems, 

but also uncovers new approaches for molecular synthesis outside of the cell.14  The goal is to 

achieve one-pot reactions which could efficiently convert substrate molecules into desired 

products without the need for laborious intermediate steps of filtration. 15-19  To this end, vast 

protein libraries are already available and they are constantly growing with the discoveries of 

new proteins in nature and the design of synthetic proteins via directed evolution.20, 21  Recently, 

a synthetic 9-enzyme cascade was used to synthesize the HIV drug islatravir.22  As the 

complexity of these one-pot reactions grows, it can be expected that they will begin to require an 

organization reminiscent to that of cascading enzymes within cells.  For example, 

compartmentalization could prevent cross-reactivity between portions of synthetic enzyme 

cascades. 19, 23-30 

Despite the numerous experimental advances in work related to spatial organization of 

enzyme cascades, the development of a quantitative theory which explains the role of system 

parameters (i.e. enzyme kinetics, channeling properties, etc.) has only recently begun.31-36   

Developing a quantitative model of spatially organized enzymatic cascade reactions would not 

only improve our understanding of the functioning of the cell, but also aid in the design of 

bioreactors using cascading enzymes outside of the cell. 
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The first goal of this dissertation is to use mathematical modeling of enzyme kinetics to 

determine the role of spatial organization in enzyme cascades.  Chapter 1 will introduce a 

mathematical model for an enzyme cascade reaction.  The model will be used to show that 

assembling cascading enzymes in close proximity, so as to permit substrate channeling, can 

provide two benefits.  First, it can decrease the lag time to reaction steady state.  Second, if the 

cascade intermediate is unstable, it can enhance reaction throughput.  Chapter 2 will extend the 

notion of substrate channeling to include temporary storage of intermediate substrate molecules; 

in this chapter, the model will be expanded to study tunneled enzyme cascade reactions, where 

cascading enzymes are assembled into multi-enzyme complexes and form tunnels of finite 

capacity between active sites to channel unstable intermediates.  Using stochastic simulations 

and analytical results from queueing theory, it will be shown that the fluctuations arising from 

the small number of molecules involved in the tunneled cascade can cause significant disruptions 

to cascade throughput under certain conditions.37  In Chapter 3, we will examine 

compartmentalized cascade reactions, where cascading enzymes are sequestered into 

compartments and pores in compartment boundaries create a diffusion barrier to both substrate 

influx and intermediate outflux.  We will determine the optimal design principles for 

compartmentalized cascade reactions with unstable intermediates and demonstrate that there 

exists a critical threshold at which compartments become useful.38  Finally, in Chapter 4, we will 

demonstrate how synthetic scaffolding for enzyme cascades can enhance cascade throughput by 

generating a favorable microenvironment for catalysis.39 

Part II: Organization in systems of active cytoskeletal filaments 

In cells, microtubules and actin filaments are organized to both provide support for cellular 

structure and serve as rails for force-production by the ATP-fueled motor proteins, kinesin, 
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dynein, and myosin.40  The stepping of motor proteins along filaments drives cellular mechanical 

processes such as cellular replication, intracellular cargo transport, and cellular migration.5  

These motor-filament systems can be reconstituted outside of the cell in in vitro motility assays, 

in either a “native configuration,” where motors step along surface bound filaments, or an 

“inverted” configuration, where filaments glide on motor-coated surfaces.41  The study of motor-

filament interactions in motility assays is of interest to researchers not only because it elucidates 

the force production mechanisms of cells, but also because of the potential for motor proteins to 

provide reliable nanoscale actuation in devices.42  In Chapter 5, we will provide a review on the 

construction, components, and applications of nanoscale devices powered by motor protein-

driven propulsion.  In Chapter 6, we will introduce a dynamic system in the inverted 

configuration in which microtubules and kinesin motors exhibit mutualistic interactions and self-

organize to generate collective behavior.  To do this, we build off of a microtubule-kinesin 

system where motors are reversibly bound to the surface via an interaction between a 

hexahistidine (His6) tag on the motor and a Ni(II) – nitrilotriacetic acid (Ni-NTA) moiety on the 

surface.43, 44  In experiments, microtubules gliding on these reversibly bound motors were unable 

to cross each other and at high enough densities began to align and form long, dense bundles.  In 

turn, the kinesin motors accumulated in trails surrounding the microtubule bundles and 

participated in microtubule transport.  The organization of the microtubules into bundles and the 

kinesin motors into trails surrounding the bundles maximizes the utilization of system 

components and production. 
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Part I 
Emergent Properties of Colocalized Enzyme 

Cascades 
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Chapter 1. Modeling Enzyme Cascades 

Reactions with Substrate Channeling 

 
Introduction 

Molecules undergoing sequential transformations catalyzed by enzymes in an enzyme cascade 

reaction must perform a diffusion-based search for active sites through the bulk solution between 

catalysis events.45  It is reasonable to expect that the colocalization of cascading enzymes on a 

scaffold in close proximity will shorten this diffusive search, allowing a fraction of the molecules 

produced by one enzyme to be directly channeled into the active site of the subsequent enzyme 

in the cascade. 31, 46-48  It has been hypothesized that the result of this “substrate channeling” 

would be an enhanced cascade reaction throughput.48  In experiments, enzyme cascades 

immobilized in close proximity on synthetic scaffolds have been reported to demonstrate 

enhanced cascade reaction throughput when compared to the scaffold-free case. 47, 49, 50   

In this chapter, we will introduce the methods for modeling enzyme cascade reactions with 

substrate channeling.  These models will be used to demonstrate that, in the case of stable 

cascade intermediates, substrate channeling can only enhance the lag time to the steady state of a 

cascade reaction, and not the cascade throughput.  It will also be shown that, in the case of 

unstable cascade intermediates, substrate channeling can enhance cascade throughput.  The 

results of this section are similar to those of Idan and Hess,31 although the approach is slightly 

different; in particular, the approach given here avoids the use of the Michaelis-Menten equation 

(Equation 1.9) for describing the kinetics of the downstream enzyme. 
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Methods 

The Michaelis-Menten model for an enzyme-catalyzed reaction.  The dynamics of enzyme-

catalyzed reactions can be modeled using Michaelis-Menten kinetics, 51, 52 where the reaction is 

approximated by two steps: a reversible binding step between substrate and enzyme into an 

enzyme-substrate complex (with an on-rate constant, kon and an off-rate constant, koff) , and an 

irreversible conversion of enzyme-substrate complex into enzyme and product with rate constant 

kcat: 

𝐸 + 𝑆
𝑘𝑜𝑛
⇌
𝑘𝑜𝑓𝑓

𝐸𝑆 ⟶
𝑘𝑐𝑎𝑡

𝐸 + 𝑃 (1.1) 

The system of ordinary differential equations describing this chemical reaction can be written 

down as follows: 

𝑑[𝑆]

𝑑𝑡
= −𝑘𝑜𝑛[𝐸][𝑆] + 𝑘𝑜𝑓𝑓[𝐸𝑆] (1.2) 

𝑑[𝐸𝑆]

𝑑𝑡
= 𝑘𝑜𝑛[𝐸][𝑆] − 𝑘𝑜𝑓𝑓[𝐸𝑆] − 𝑘𝑐𝑎𝑡[𝐸𝑆] (1.3) 

𝑑[𝐸]

𝑑𝑡
= −𝑘𝑜𝑛[𝐸][𝑆] + 𝑘𝑜𝑓𝑓[𝐸𝑆] + 𝑘𝑐𝑎𝑡[𝐸𝑆] (1.4) 

𝑑[𝑃]

𝑑𝑡
= 𝑘𝑐𝑎𝑡[𝐸𝑆] (1.5) 

The initial conditions are: 

[𝑆](𝑡 = 0) = [𝑆0] (1.6) 

[𝑃](𝑡 = 0) = [𝐸𝑆](𝑡 = 0) = 0 (1.7) 

[𝐸](𝑡 = 0) = [𝐸0] (1.8) 
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In the above equations, [S] denotes substrate concentration, [S0] denotes initial substrate 

concentration, [E] denotes unbound enzyme concentration, [ES] denotes enzyme-substrate 

complex concentration, [E0] denotes total enzyme concentration, and [P] denotes product 

concentration.  It can be shown that for sufficiently high [S0], one can employ the quasi-steady 

state assumption (QSSA), 𝑑[𝐸𝑆]/𝑑𝑡 ≈ 0, and rewrite these equations as: 

[𝐸𝑆] =
[𝐸0][𝑆]

𝐾𝑀 + [𝑆]
(1.9) 

𝑑[𝑆]

𝑑𝑡
= −

𝑘𝑐𝑎𝑡[𝐸0][𝑆]

𝐾𝑀 + [𝑆]
(1.10) 

𝑑[𝑃]

𝑑𝑡
=
𝑘𝑐𝑎𝑡[𝐸0][𝑆]

𝐾𝑀 + [𝑆]
(1.11) 

Where 𝐾𝑀 =
𝑘𝑜𝑓𝑓+𝑘𝑐𝑎𝑡

𝑘𝑜𝑛
 is the Michaelis Menten constant, which is the substrate concentration at 

which the enzyme reaction velocity reaches half of its maximum, and it can be regarded as the 

substrate concentration at which the reaction velocity begins to saturate. 

 

Modeling an enzyme cascade with substrate channeling.  Consider an enzyme cascade consisting 

of two types of enzymes: enzyme 1 converts a substrate molecule, S, into an intermediate 

molecule, I, and enzyme 2 converts the intermediate molecule into a product molecule, P:   

𝐸1 + 𝑆 ⇌ 𝐸1𝑆 ⟶ 𝐸1 + 𝐼 (1.12) 

𝐸2 + 𝐼 ⇄ 𝐸2𝐼 ⟶ 𝐸2 + 𝑃 (1.13) 
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The set of ordinary differential equations describing this set of reactions are written down in 

Appendix Section A.1.  To model substrate channeling, we introduce an additional pathway by 

which the E1S complex can be directly channeled into the E2I complex: 

𝐸1𝑆 ⟶ 𝐸2𝐼 (1.14) 

Channeling is quantified by introducing a parameter, 𝑓𝑐ℎ𝑎𝑛𝑛𝑒𝑙, which describes the fraction of 

intermediate molecules that are directly channeled into forming a complex with the downstream 

enzyme.  The channeling fraction can be written down more explicitly as: 

𝑓𝑐ℎ𝑎𝑛𝑛𝑒𝑙 = 𝑓𝑑𝑖𝑟 ⋅ 𝑝𝑏𝑖𝑛𝑑 = 𝑓𝑑𝑖𝑟 ⋅
𝑘𝑜𝑛,2
𝑘𝑑𝑖𝑓𝑓

(1.15) 

where 𝑓𝑑𝑖𝑟 is the fraction of molecules that are directly positioned to bind to the downstream 

enzyme, 𝑘𝑑𝑖𝑓𝑓 is the diffusion-limited reaction rate, and 𝑝𝑏𝑖𝑛𝑑 = 𝑘𝑜𝑛,2/𝑘𝑑𝑖𝑓𝑓 is the binding 

probability. 

To simplify the system analysis, we will assume that enzyme 1 produces molecules at a 

constant, zeroth-order rate VS.  This assumption is justified in Appendix Section A.2.  Then, the 

system of equations can be written down as: 

𝑑[𝐼]

𝑑𝑡
= 𝑉𝑆 (1 −

([𝐸2,0] − [𝐸2𝐼])

[𝐸2,0]
𝑓𝑐ℎ𝑎𝑛𝑛𝑒𝑙) − 𝑘𝑜𝑛([𝐸2,0] − [𝐸2𝐼])[𝐼] + 𝑘𝑜𝑓𝑓[𝐸2𝐼] (1.16) 

𝑑[𝐸2𝐼]

𝑑𝑡
= 𝑉𝑆

([𝐸2,0] − [𝐸2𝐼])

[𝐸2,0]
𝑓𝑐ℎ𝑎𝑛𝑛𝑒𝑙 + 𝑘𝑜𝑛([𝐸2,0] − [𝐸2𝐼])[𝐼] − 𝑘𝑜𝑓𝑓[𝐸2𝐼] − 𝑘𝑐𝑎𝑡[𝐸2𝐼] (1.17) 

𝑑[𝑃]

𝑑𝑡
= 𝑘𝑐𝑎𝑡[𝐸2𝐼] (1.18) 



10 

The rate constants kon, koff, and kcat are the rate constants for enzyme 2, but the indices in their 

subscripts were removed for brevity of notation.  [𝐸2,0] denotes the total concentration of 

enzyme 2.  There is a prefactor of [𝐸2] [𝐸2,0]⁄  before 𝑓𝑐ℎ𝑎𝑛𝑛𝑒𝑙 to take into account the probability 

that the active site of enzyme 2 is occupied.  From this point on, we will assume 𝑉𝑆 to be a 

constant, and refer to the quasi steady-state throughput as the steady state throughput. 

 

Results 

Substrate channeling does not affect reaction throughput in steady state.  Equations 1.16-17 can 

be solved for steady state by setting 
𝑑[𝐼]

𝑑𝑡
=
𝑑[𝐸2𝐼]

𝑑𝑡
= 0.  With [𝐸2𝐼]

∗ denoting the steady state 

concentration of [𝐸2𝐼], we find: 

𝑘𝑐𝑎𝑡[𝐸2𝐼]
∗ = 𝑉𝑆 (1.19) 

𝑑[𝑃]

𝑑𝑡
= 𝑘𝑐𝑎𝑡[𝐸2𝐼]

∗ = 𝑉𝑆 (1.20) 

The above equation reflects the concept that, if a steady state exists for the intermediate and 

enzyme-intermediate complex concentrations, then the rate of intermediate production (VS) must 

match the rate of intermediate consumption (𝑑[𝑃]/𝑑𝑡).  As a result, the reaction throughput is 

independent of substrate channeling fraction.  The key assumption to this analysis is that steady 

state is reached.  This is not the case if 𝑘𝑐𝑎𝑡[𝐸2,0] < 𝑉𝑆, where enzyme 2 becomes the rate-

limiting enzyme. 

Additionally, the steady state concentration of [I], denoted by [I]*, can be written down as: 

[𝐼]∗ = 𝐾𝑀 ⋅
𝑉𝑆

𝑉𝐼 − 𝑉𝑆
−

𝑉𝑆

𝑘𝑜𝑛[𝐸2,0]
𝑓𝑐ℎ𝑎𝑛𝑛𝑒𝑙 (1.21) 
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The parameter 𝑉𝐼 = 𝑘𝑐𝑎𝑡[𝐸2,0] denotes the maximum reaction velocity of enzyme 2. This 

equation will be used in the next section. 

 

Substrate channeling does not affect the characteristic time to reach steady state. The 

characteristic time scales of a fixed point of a nonlinear system of ordinary differential equations 

are used to determine the stability of a steady state and the relaxation time back to the steady 

state after small perturbations.  They can also be used as a measure for the time to steady state if 

the initial conditions are close enough in the phase space.  In this section, we will show that the 

characteristic time scales of the steady state found in Equations 1.16-17 are independent of the 

channeling fraction, 𝑓𝑐ℎ𝑎𝑛𝑛𝑒𝑙. 

The characteristic times of the steady state can be found by determining the eigenvalues of 

the Jacobian, J, of the nonlinear system in Equations 1.16-17 evaluated at steady state (details in 

Appendix Section A.3): 

𝐽 =

[
 
 
 
 𝑑
[𝐼]̇

𝑑[𝐼]

𝑑[𝐼]̇

𝑑[𝐸2𝐼]

𝑑[𝐸2𝐼]̇

𝑑[𝐼]

𝑑[𝐸2𝐼]̇

𝑑[𝐸2𝐼]]
 
 
 
 

|
|

[𝐼]=[𝐼]∗

[𝐸2𝐼]=[𝐸2𝐼]
∗

(1.22) 

𝐽𝑣⃑ = 𝜆𝑣⃑ (1.23) 

where 𝜆 is the eigenvalue of the Jacobian corresponding to the characteristic time of the steady 

state and 𝑣 is the corresponding eigenvector.  Plugging in the steady state concentrations, [I]* 

from Equation 1.21, and [E2]
* from Equation 1.19, we find: 

𝜆2 + 𝑘𝑜𝑛 (𝐾𝑀
𝑉𝐼

𝑉𝐼 − 𝑉𝑆
+
𝑉𝐼 − 𝑉𝑆
𝑘𝑐𝑎𝑡

) 𝜆 + 𝑘𝑜𝑛(𝑉𝐼 − 𝑉𝑆) = 0 (1.24) 
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Without even solving for an explicit form of λ, it is clear that a change in the value of 

𝑓𝑐ℎ𝑎𝑛𝑛𝑒𝑙 will not affect the value of λ: Equation 1.24 is independent of the channeling fraction.  

This result has the interesting implication that channeling cannot contribute to the robustness of 

the throughput of an enzyme cascade, as fluctuations in intermediate concentrations will be 

relaxed at a time scale independent of the channeling fraction.  The independence of the 

characteristic time scale is confirmed in Figure 1.1a, where we simulate Equations 1.16-18, and 

fit the time-dependent profile of the intermediate concentration with a rate parameter for a first 

order model.  We find that the rate parameter is approximated well with the solution of Equation 

1.24 for both the unchanneled and channeled case, and that channeling does not increase the 

value of the rate parameter. 

This result may appear to contradict the established notion that substrate channeling lowers 

the time to steady state of an enzyme cascade.  In the next section, we will show that channeling 

does indeed enhance the time to steady state; however, it does this by lowering the steady state 

intermediate concentration rather than by changing the rate at which it is reached. 

 

The Michaelis-Menten equation is not valid for the downstream enzyme.  A key tool in the study 

of enzyme kinetics is the quasi steady state assumption (QSSA).  It claims that, during an 

enzymatic reaction, the concentration of the enzyme-substrate complex remains approximately 

constant relative to the substrate concentration.  It will now be shown that the equation for the 

quasi steady state concentration of the enzyme-intermediate complex takes a different form than 

in the single-enzyme case given in Equation 1.9. 
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According to the QSSA, we assume that 
𝑑[𝐸2𝐼]

𝑑𝑡
≈ 0 in Equation 1.17.  Solving for [E2I] in 

terms of [I], we find the following relation: 

[𝐸2𝐼]𝑄𝑆𝑆𝐴 =

𝑉𝑆
𝑘𝑜𝑛

𝑓𝑐ℎ𝑎𝑛𝑛𝑒𝑙 + [𝐸2,0][𝐼]

𝑉𝑆
𝑘𝑜𝑛[𝐸2,0]

𝑓𝑐ℎ𝑎𝑛𝑛𝑒𝑙 + 𝐾𝑀 + [𝐼]
(1.25) 

The extra terms of 
𝑉𝑆

𝑘𝑜𝑛[𝐸2,0]
𝑓𝑐ℎ𝑎𝑛𝑛𝑒𝑙 in the numerator and denominator differentiate this 

expression from the Michaelis-Menten equation (Equation 1.9).  However, if we introduce a 

‘modified’ intermediate concentration, [ℐ] defined by: 

[ℐ] = [𝐼] +
𝑉𝑠

𝑘𝑜𝑛[𝐸2,0]
𝑓𝑐ℎ𝑎𝑛𝑛𝑒𝑙 (1.26) 

Then the quasi steady state enzyme-intermediate complex concentration can be written down in a 

Michaelis-Menten form by substituting in the modified intermediate concentration: 

[𝐸2𝐼]𝑄𝑆𝑆𝐴 =

[𝐸2,0] (
𝑉𝑆

𝑘𝑜𝑛[𝐸2,0]
𝑓𝑐ℎ𝑎𝑛𝑛𝑒𝑙 + [𝐼])

𝑉𝑆
𝑘𝑜𝑛[𝐸2,0]

𝑓𝑐ℎ𝑎𝑛𝑛𝑒𝑙 + 𝐾𝑀 + [𝐼]
=
[𝐸2,0][ℐ]

𝐾𝑀 + [ℐ]
(1.27) 

This equation may appear to imply that substrate channeling enhances the reaction velocity by 

raising the apparent intermediate concentration; however, this is not the case as the intermediate 

concentration is lowered due to the presence of channeling by a value of 
𝑉𝑠

𝑘𝑜𝑛[𝐸2,0]
𝑓𝑐ℎ𝑎𝑛𝑛𝑒𝑙, as we 

can see from Equation 1.21. 

To use Equation 1.27, it is necessary to determine how rapidly it becomes valid relative to 

changes in intermediate concentration.  The details of this analysis are written down in Appendix 
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Section A.4.  The main conclusion is that we can use Equation 1.27 in our analysis as long as 

enzyme concentrations are below the KM of the enzyme 2, and that the intermediate-enzyme 

complex concentration equilibrates relative to the intermediate concentration on a time scale of 

𝜏𝑄𝑆𝑆𝐴 < 𝑘𝑐𝑎𝑡
−1 .   

The rapid approach to steady state for the enzyme-intermediate complex allows us to further 

simplify the dynamics of the channeled enzyme cascade reaction. Plugging in the QSS for the 

enzyme intermediate complex, we have: 

𝑑[𝐼]

𝑑𝑡
= 𝑉𝑆 − 𝑘𝑐𝑎𝑡[𝐸2𝐼]𝑄𝑆𝑆𝐴 = 𝑉𝑆 − 𝑘𝑐𝑎𝑡

[𝐸2,0] (
𝑉𝑆

𝑘𝑜𝑛[𝐸2,0]
𝑓𝑐ℎ𝑎𝑛𝑛𝑒𝑙 + [𝐼])

𝑉𝑆
𝑘𝑜𝑛[𝐸2,0]

𝑓𝑐ℎ𝑎𝑛𝑛𝑒𝑙 + 𝐾𝑀 + [𝐼]
(1.28) 

𝑑[𝑃]

𝑑𝑡
= 𝑘𝑐𝑎𝑡[𝐸2𝐼]𝑄𝑆𝑆𝐴 (1.29) 

In the next section we will use this expression to solve for the lag time to steady state of the 

channeled enzyme cascade reaction.   

 

Lag time reduction in a channeled enzyme cascade reaction.  In experiments, the time to steady 

state of a cascade reaction is determined by calculating the metric known as the lag time.53-57  

Because steady state results in a constant rate of product throughput, the total amount of product 

molecules generated should eventually take a linear shape when plotted against time.  If the 

linear regime of this plot is fit with a line, the lag time may be found by determining the time-

axis intercept of the fit line.  An example is shown in Figure 1.1b.  The lag time can be 

calculated in closed form by considering: 
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[𝑃](𝑡) = ∫ 𝑘𝑐𝑎𝑡[𝐸2𝐼]𝑄𝑆𝑆𝐴𝑑𝜏 = 

𝜏=𝑡

𝜏=0

𝑉𝑆𝑡 − ∫ [𝐼]̇ 𝑑𝜏

𝜏=𝑡

𝜏=0

= 𝑉𝑆 (𝑡 −
[𝐼]∗

𝑉𝑆
) (1.30) 

In the above equation, we substituted in the QSS enzyme-intermediate complex concentration 

from Equation 1.28 and used the expression for intermediate concentration at steady state from 

Equation 1.21.  As a result, the lag time for this system is: 

𝑡𝑙𝑎𝑔 =
[𝐼]∗

𝑉𝑆
=

𝐾𝑀
𝑉𝐼 − 𝑉𝑆

−
1

𝑘𝑜𝑛[𝐸2,0]
𝑓𝑐ℎ𝑎𝑛𝑛𝑒𝑙 (1.31) 

The implication of Equation 1.31 is that the lag time is determined by the time it takes to reach 

the steady state intermediate concentration.  This reveals how substrate channeling enhances the 

time to steady state: it lowers the steady state intermediate concentration in the bulk, allowing it 

to be reached faster. 

The extent to which lag time may be reduced by channeling, Δ𝑡𝑙𝑎𝑔, may be determined from 

the channeling-dependent term in Equation 1.31: 

Δ𝑡𝑙𝑎𝑔 =
1

𝑘𝑜𝑛[𝐸2,0]
𝑓𝑐ℎ𝑎𝑛𝑛𝑒𝑙 (1.32) 

If we plug in the expression for 𝑓𝑐ℎ𝑎𝑛𝑛𝑒𝑙 from Equation 1.15, we get the same result as Idan and 

Hess31: 

Δ𝑡𝑙𝑎𝑔 =
1

𝑘𝑜𝑛[𝐸2,0]
⋅ 𝑓𝑑𝑖𝑟 ⋅

𝑘𝑜𝑛
𝑘𝑑𝑖𝑓𝑓

=
𝑓𝑑𝑖𝑟

𝑘𝑑𝑖𝑓𝑓[𝐸2,0]
(1.33) 

This expression is valid for artificial systems where enzymes may be tethered together.  

However, it returns very small values; for 𝑓𝑑𝑖𝑟 = 1, [𝐸2,0] = 1 nM, and using 𝑘𝑑𝑖𝑓𝑓 = 4𝜋𝐷𝑅 58 

with a diffusion coefficient 𝐷 = 10−9 m2 s-1 and enzyme radius 𝑅 = 3 nm, we find that Δ𝑡𝑙𝑎𝑔 ≈
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40 ms. However, in biology, it is conceivable that tunnels or allosteric regulation between active 

sites in a channeled reaction could raise the value of 𝑓𝑐ℎ𝑎𝑛𝑛𝑒𝑙 by increasing the probability of 

binding to the second active site beyond the value of 𝑘𝑜𝑛/𝑘𝑑𝑖𝑓𝑓.  In this case, channeling would 

effectively eliminate the waiting time for the build up of intermediate in the bulk solution.  The 

extent of channeling could then be quantified by dividing Δ𝑡𝑙𝑎𝑔 by the unchanneled lag time: 

Δ𝑡𝑙𝑎𝑔

𝑡𝑙𝑎𝑔,𝑛𝑜 𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑖𝑛𝑔
=

1

𝑘𝑜𝑛[𝐸2,0]
𝑓𝑐ℎ𝑎𝑛𝑛𝑒𝑙

𝐾𝑀
𝑉𝐼 − 𝑉𝑆

=
𝑘𝑐𝑎𝑡

𝑘𝑐𝑎𝑡 + 𝑘𝑜𝑓𝑓
𝑓𝑐ℎ𝑎𝑛𝑛𝑒𝑙 (1 −

𝑉𝑆
𝑉𝐼
) (1.34) 

In this case, the question of the benefits of channeling is reduced to considering the probability 

that an intermediate molecule, once bound to the enzyme, is more likely to be catalyzed into 

product or released back into the bulk. 
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Figure 1.1: Substrate channeling changes reaction steady states, rather than characteristic 

time scales.  (A) Bulk intermediate concentration plotted against time for a simulation of 

Equations 1.16-18 for a cascade reaction with (red) and without (channeling).  Concentration 

profiles are fit with a one parameter (λ) model, [𝐼](𝑡) = [𝐼]∗(1 − 𝑒−𝜆𝑡) (fits plotted as dashed 

black lines).  The resulting time scales for both the channeled and unchanneled cascade are 

similar to the expected value of 𝜆 = 4.9 ⋅ 10−4 s−1 found by solving Equation 1.24.  The higher 

channeling fraction does not increase the fit value of λ.  (B) Example of lag time calculation for 

the same cascade reaction with substrate channeling.  Parameters used mimic those of the 

experimentally studied glucose oxidase/horseradish peroxidase systems, with [S0]=100 mM, 

KM,1=4 mM, kcat,1=70 s-1, KM,2=0.18 mM, kcat,2=200 s-1, and [E1,0]=[E2,0]=1 nM.31  To emphasize 

the role of substrate channeling, we set the parameter kon,2=1.2 mM-1s-1, and koff,2 accordingly.  

The channeling fraction was set to fchannel=0 for the unchanneled case and fchannel=1 for the 

channeled case. 
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Substrate channeling enhances cascade throughput if the intermediate is unstable.  Often times, 

in cells, cascade intermediates are unstable.59, 60  For example, the indole intermediate produced 

by the tryptophan synthase bi-enzyme complex is hydrophobic; if it escapes the complex before 

being catalyzed into tryptophan, it can cross the cell membrane due to its hydrophobicity and 

escape.61  This section will show that channeling can enhance the throughput of a cascade 

reaction when the intermediate is unstable. 

We can model intermediate instability by adding a first-order elimination to the ODE 

describing intermediate concentration dynamics, as follows: 

𝑑[𝐼]

𝑑𝑡
= 𝑉𝑆 (1 −

[𝐸2]

[𝐸2,0]
𝑓𝑐ℎ𝑎𝑛𝑛𝑒𝑙) − 𝑘𝑜𝑛([𝐸2,0] − [𝐸2𝐼])[𝐼] + 𝑘𝑜𝑓𝑓[𝐸2𝐼] − 𝑘𝑒[𝐼] (1.35) 

Where ke is an elimination rate constant.  The equations describing the dynamics of enzyme-

intermediate complex and product concentrations remain unchanged.  The steady state solutions 

are: 

𝑉𝑠 = 𝑘𝑒[𝐼]
∗ + 𝑘𝑐𝑎𝑡[𝐸2𝐼]

∗ (1.36) 

[𝐸2𝐼]
∗ =

𝑘𝑒
2𝑘𝑐𝑎𝑡

⋅ ((𝐾𝑀 +𝒜 + ℬ) − √(𝐾𝑀 +𝒜 + ℬ)2 − 4𝒜ℬ) (1.37) 

𝒜 =
𝑉𝑆

𝑘𝑜𝑛[𝐸2,0]
(𝑓𝑐ℎ𝑎𝑛𝑛𝑒𝑙 +

𝑘𝑜𝑛[𝐸2,0]

𝑘𝑒
) =

𝑉𝑆

𝑘𝑜𝑛[𝐸2,0]
𝑓𝑐ℎ𝑎𝑛𝑛𝑒𝑙 +

𝑉𝑆
𝑘𝑒

(1.38) 

ℬ =
𝑉𝐼
𝑘𝑒

(1.39) 

As expected, the steady state enzyme-intermediate complex concentration is a monotonic 

increasing function of the channeling fraction.  The term denoted by 𝒜 is the only channeling-
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dependent term in Equation 1.38.  Therefore, a necessary condition for 𝒜 to be significantly 

affected by changes in 𝑓𝑐ℎ𝑎𝑛𝑛𝑒𝑙 is: 

1 > 𝑓𝑐ℎ𝑎𝑛𝑛𝑒𝑙 ≫
𝑘𝑜𝑛[𝐸2,0]

𝑘𝑒
(1.40) 

The on-rate of intermediate-complex formation must be much smaller than the intermediate 

elimination rate.  Combining Equation 1.40 with Equation 1.15 returns the same result as 

determined by Idan and Hess.31 

For very large values of the intermediate elimination rate constant, the product throughput 

approaches the following expression: 

𝑑[𝑃]

𝑑𝑡
= 𝑘𝑐𝑎𝑡[𝐸2𝐼]𝑘𝑒→∞

∗ = 𝑉𝑆 ⋅ 𝑓𝑐ℎ𝑎𝑛𝑛𝑒𝑙
1

1 +
𝑘𝑜𝑓𝑓
𝑘𝑐𝑎𝑡

+
𝑉𝑆
𝑉𝐼
𝑓𝑐ℎ𝑎𝑛𝑛𝑒𝑙

(1.41)
 

This expression is similar to the one determined for the estimate of the lag time to steady state, in 

that it captures the role of the magnitude of the catalytic rate constant as compared to the off-rate 

constant.  The additional term of 𝑉𝑆𝑓𝑐ℎ𝑎𝑛𝑛𝑒𝑙 𝑉𝐼⁄  in the denominator describes the effect of 

saturation of the active sites of the second enzyme.  This expression is also equivalent to 

Equation 1.27 multiplied by a factor of 𝑘𝑐𝑎𝑡 and evaluated with [𝐼] = 0. 

 

Conclusion 

In this section, we have constructed a simple model for a colocalized enzyme cascade by 

modeling the effects of substrate channeling.  In the case of stable intermediate molecules, 

channeling can only provide enhancements to the lag time to steady state.  It is interesting that 

this enhancement in lag time does not originate from a change in the characteristic time scales in 
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the reaction.  Rather, it comes from a rapid, channeling-independent, approach to an initial quasi-

steady state for the enzyme-intermediate complex where the bulk intermediate concentration is 

low, yet the second enzyme is producing at a channeling-dependent rate given in Equation 1.41.   

In the case where cascade intermediates are unstable, channeling can benefit reaction 

throughput if the rate constant of intermediate instability is much greater than the on-rate for 

intermediate-complex formation.  For very high intermediate elimination rate constants, the 

reaction throughput collapses to the QSS throughput found for the second enzyme in Equation 

1.37. 

The limiting factor which prevents substrate channeling from being effective is the low 

binding probability, estimated here as 𝑝𝑏𝑖𝑛𝑑 = 𝑘𝑜𝑛 𝑘𝑑𝑖𝑓𝑓⁄ .  One approach to raising the binding 

probability is to confine intermediate molecules in an “inter-enzyme space” of small volume, 

which would prevent them escaping prematurely and allow for continuous attempts to form a 

complex with the subsequent enzyme.  Examples of such spaces exist in nature.  Researchers 

have discovered several multi-enzyme complexes where active sites participating in cascading 

reactions are connected by physical tunnels.62   The tunnels connecting these active sites have the 

capacity to store several intermediate molecules, and often protect them from the outside cellular 

environment, where they would otherwise be unstable.  In the next chapter, we will expand our 

model of an enzyme cascade with substrate channeling to study the emergent properties of 

tunneled enzyme cascade reactions. 
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Chapter 2.  A Queueing Theory-Based 

Perspective of the Kinetics of “Channeled” 

Enzyme Cascade Reactions 
 

This section follows, “A queueing theory-based perspective of the kinetics of ‘channeled’ 

enzyme cascade reactions,” by Stanislav Tsitkov, Theo Pesenti, Henri Palacci, Jose Blanchet, Henry 

Hess, ACS Catalysis, 8 (11), 10721-10731, 2018. 

 

Introduction 

Cascade reactions catalyzed by enzymes are reminiscent of factory processes where parts are 

transformed and combined as they travel from one workstation to the next.45, 63, 64 The promise of 

nanotechnology is to enable the construction of "molecular assembly lines", where a molecule 

produced by one enzyme is directed straight to the next enzyme, which processes it in order of 

arrival.50, 65-67 Biological systems have already evolved structures enabling such sequential 

transformations of individual molecules.68 Specifically, these structures enable "substrate 

channeling" either via tunnels connecting active sites, or via surface paths which attract 

intermediate substrate molecules and prevent them from leaving the enzyme complex as they travel 

from one active site to the next.69 

Since the sequential transformation of substrates within an enzyme cascade is similar to the 

processing of parts at different work stations in a factory, it is reasonable to expect that natural and 

synthetic enzyme complexes with substrate channeling would exhibit complexities in the 

organization of the workflow reminiscent of a factory, where the description and optimization of 

the production processes has given rise to the engineering discipline of logistics.70, 71 Traditionally, 
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chemical reactions are described by coupled differential equations, whose evolution represents the 

time-varying concentrations of the different molecular species.  It is likely that these differential 

equations are only imperfect approximations of the discrete transformation processes occurring in 

a "molecular assembly line."72 

Therefore, the goal of this chapter is to explore the impact of stochastic effects on an N-step 

reaction cascade catalyzed by N enzymes immobilized on a scaffold using a queueing model.73 

Queueing models have been recently utilized to model a variety of biological systems, including 

multi-site enzymes 74, gene expression and regulation 75, 76, the spread of invasive species 77,  and 

physiological insulin levels.78 The traditional queueing model describes the dynamics of customers 

being served in a waiting room.79  In our analysis, the molecule is the customer, the enzyme is the 

server, and the waiting room is the inter-enzyme space of limited capacity where the molecule is 

held while it is waiting to be processed by the next enzyme (Figure 2.1a).  Examples of this 

interenzyme space can be the tunnel found within the naturally occurring tryptophan synthase 

enzyme complex 61 (Figure 2.1b), or the DNA-origami compartment created to house the synthetic 

glucose-oxidase and horseradish-peroxidase cascade 80 (Figure 2.1c).  Other examples of naturally 

occurring molecular tunnels connecting enzyme active sites include those used in the formation of 

carbamoyl phosphate81, in the activation of glutamine phosphoribosylpyrophosphate 

amidotransferase82, in the formation of asparagine by asparagine synthetase B83, and more.53, 61, 84-

86 

The discrete character of the queueing model captures the stochastic effects and predicts 

significant deviations in throughput from the predictions of a system of differential equations under 

specific circumstances.  
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Figure 2.1. Examples of enzyme cascades exhibiting confinement of intermediate substrates. 

(A) Equivalence between an enzyme cascade and a queueing model.  (B) Substrate channeling 

through a tunnel connecting two active sites in tryptophan synthase.87 Adapted from Dunn87. (C) 

Glucose oxidase and horseradish peroxidase encased in an artificial DNA scaffold. Adapted from 

Zhao et al. 80   
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Methods 

General model for a tunneled enzyme cascade.  Our goal is to construct a model for a tunneled N-

enzyme cascade with partial confinement of intermediate molecules.  We begin with the standard 

model for an enzyme-catalyzed reaction, introduced in Chapter 1: 

S+ E
𝑘𝑜𝑛
⇌
𝑘𝑜𝑓𝑓

 ES 
𝑘𝑐𝑎𝑡
→   P+ E (2.1) 

In the chemical reaction above, S is the substrate, E the (free) enzyme, ES the enzyme-substrate 

complex, P the product, kon the rate constant associated with the forward reaction, koff the rate 

constant associated with the reverse reaction and kcat the enzyme catalytic rate constant. 

 For an N-enzyme cascade with enzymes [E1, E2,…, EN], the intermediate substrates [S1, S2, 

…, SN-1], are produced by the enzyme of the same index, [E1, E2,…, EN-1], and consumed by the 

enzyme of the next index, [E2, E2,…, EN], according to the reaction in Equation 2.1 with 

appropriate rate constants. 

Between production and consumption reactions, the intermediate substrate molecules are 

confined to an accessible inter-enzyme space of small volume between active sites.  From now on, 

we will refer to this inter-enzyme space as the “waiting room.”  We assume the following about 

its properties: 

1. The waiting room has a limit on the number of intermediate substrate molecules that it can 

store.  For example, the tunnel found in tryptophan synthase (Figure 1b), can accommodate 

up to four indole molecules.61 

2. If the waiting room is full, intermediate substrate molecules produced by the preceding 

enzyme will be released into the bulk. 

3. If the waiting room is full, intermediate substrate molecules that unbind from the enzyme-

substrate complex in the reverse reaction will release the substrate to the bulk. 



25 

4. Enzymes in the cascade can only recruit substrate molecules from their waiting rooms and 

not from the bulk solution. This assumption will be justified in the Discussion. 

5. Substrate molecules can escape from the waiting room with a first order rate constant kloss; 

following queueing theory terminology, this loss rate constant will be referred to as the 

“impatience:” 

Si  
𝑘𝑙𝑜𝑠𝑠
→   ø (2.2) 

6. Molecules that have escaped the waiting room into the bulk cannot return into the waiting 

room.  This assumption will also be justified in the discussion. 

 

Modeling the deterministic reaction kinetics. The deterministic model of the cascade reaction will 

employ the Michaelis-Menten (MM) equation51, 88 introduced in Chapter 1:  

𝑑[𝑃]

𝑑𝑡
=  

𝑘𝑐𝑎𝑡[𝑆]

𝐾𝑀 + [𝑆]
⋅ [𝐸]𝑇 (2.3) 

𝐾𝑀 = 
𝑘𝑜𝑓𝑓 + 𝑘𝑐𝑎𝑡

𝑘𝑜𝑛
(2.4) 

where [𝑆] is the substrate concentration, [𝐸]𝑇 = [𝐸] + [𝐸𝑆] the total enzyme concentration, [𝑃] is 

the product concentration, and KM the Michaelis constant. 

 For an N-enzyme cascades, enzyme Ei will produce intermediate substrate molecules Si at a 

rate of rMM,i, given by: 

 𝑟𝑀𝑀,𝑖 = 
𝑘𝑐𝑎𝑡,𝑖[𝑆𝑖−1]

𝐾𝑀,𝑖+[𝑆𝑖−1]
⋅
1

𝑁𝐴𝑉
(2.5)

Where NA is Avogadro's number and V the volume accessible to the confined intermediate 

substrates. 
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 The rate of change of the concentration of intermediate substrate Si is given by the difference 

between its production rate by Ei and its consumption rate by Ei+1.  Therefore, for each substrate 

Si - except S0 -, we would like to express the net production as: 

 

𝑑[𝑆𝑖(𝑡)]

𝑑𝑡
= {

𝑘𝑐𝑎𝑡,𝑖[𝑆𝑖−1(𝑡)]

𝐾𝑀,𝑖+[𝑆𝑖−1(𝑡)]
[𝐸𝑖]𝑇 −

𝑘𝑐𝑎𝑡,𝑖+1[𝑆𝑖(𝑡)]

𝐾𝑀,𝑖+1+[𝑆𝑖(𝑡)]
[𝐸𝑖+1]𝑇 − 𝑘𝑜𝑓𝑓[𝑆𝑖(𝑡)], [𝑆𝑖(𝑡)] <

𝑛𝑊𝑅,𝑖

𝑁𝐴𝑉

−
𝑘𝑐𝑎𝑡,𝑖+1[𝑆𝑖(𝑡)]

𝐾𝑀,𝑖+1+[𝑆𝑖(𝑡)]
[𝐸𝑖+1]𝑇 − 𝑘𝑜𝑓𝑓[𝑆𝑖(𝑡)], [𝑆𝑖(𝑡)] ≥

𝑛𝑊𝑅,𝑖

𝑁𝐴𝑉

(2.6) 

 

where nWR,i is the capacity (in number of molecules) of the waiting room. However, due to the 

discontinuity in [𝑆𝑖], the solution to this differential equation does not exist.  Instead, we model 

the discontinuity with a logistic term, 𝐿([𝑆𝑖(𝑡)]) = (1 + 𝑒
𝛾([𝑆𝑖(𝑡)]−[𝑆𝑚𝑎𝑥]))

−1
 with a high steepness 

parameter, 𝛾 = 10, and [𝑆𝑚𝑎𝑥] =
𝑛𝑊𝑅,𝑖

𝑁𝐴𝑉
. Then, the set of equations turns into: 

 

 
𝑑[𝑆𝑖(𝑡)]

𝑑𝑡
=
𝑘𝑐𝑎𝑡,𝑖[𝑆𝑖−1(𝑡)]

𝐾𝑀,𝑖 + [𝑆𝑖−1(𝑡)]
[𝐸𝑖]𝑇 ⋅ 𝐿([𝑆𝑖(𝑡)]) −

𝑘𝑐𝑎𝑡,𝑖+1[𝑆𝑖(𝑡)]

𝐾𝑀,𝑖+1 + [𝑆𝑖(𝑡)]
[𝐸𝑖+1]𝑇 − 𝑘𝑙𝑜𝑠𝑠[𝑆𝑖(𝑡)] (2.7) 

 

We further assume that there is no waiting room for E0, so it produces S1 at a constant velocity55, 

89 𝑣0 until the waiting room is filled.  Hence, we have the following simplification for S1 net 

production: 

𝑑[𝑆1(𝑡)]

𝑑𝑡
= 𝑣0 ⋅ 𝐿([𝑆1(𝑡)]) −

𝑘𝑐𝑎𝑡,2[𝑆1(𝑡)]

𝐾𝑀,2 + [𝑆1(𝑡)]
[𝐸2]𝑇 − 𝑘𝑙𝑜𝑠𝑠[𝑆1(𝑡)] (2.8) 

For simplicity, 𝑣0 will be approximated as 𝑣0 = 𝑘𝑐𝑎𝑡,1 (𝑁𝐴𝑉)⁄ . 
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 With [𝑃] denoting the final product concentration, the output rate of the enzymatic cascade, 𝑟, 

is given by 

𝑟 =
𝑑[𝑃(𝑡)]

𝑑𝑡
=  

𝑘𝑐𝑎𝑡,𝑁[𝑆𝑁−1(𝑡)]

𝐾𝑀,𝑁 + [𝑆𝑁−1(𝑡)]
[𝐸𝑁]𝑇 (2.9) 

 

Note that no loss rate is considered for the final product P since it is not confined. The system is 

solved using either the ode45 or ode23s solver of the MATLAB® software by setting all the 

concentrations to 0 at t=0. 

 

Modeling the stochastic reaction kinetics. A stochastic process is defined by the transition 

probabilities between states.  These transition probabilities can be written down in the form of the 

master equation, which describes the time dependent evolution of the distribution of the stochastic 

process.  These transition probabilities also form the basis of processes examined in queueing 

theory.79  The stochastic evolution of a set of chemical reactions can be described by the chemical 

master equation.90, 91 We solve the chemical master equation using the stochastic simulation 

algorithm (SSA) also known as the Gillespie algorithm.92 The main difference with the 

deterministic approach is that chemical reactions are not described by a rate constant but by their 

probability of occurring between time t and t+dt. This probability is characterized by a likelihood, 

or propensity function. The definition of these functions is similar to the definition of an 

elementary chemical reaction rate.  Here, we highlight the main features of the discrete stochastic 

approach (see Appendix Sections B.1 and B.2 for details). 

 We model the enzymatic cascade as a succession of N servers (Figure 2.2).  Waiting rooms 

contain integral quantities of intermediate substrate molecules.  Each enzyme can be in one of two 
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states: (1) in complex with exactly one intermediate substrate molecule or (2) empty.  The Gillespie 

algorithm iterates over two steps, the outcome of which is a change in the state of a single molecule.  

Step 1 of the algorithm determines the time until the next reaction.  This is calculated by sampling 

an exponential random variable with rate parameter equal to the sum of all possible reaction rates 

in the system.  This is equivalent to determining the minimum time until the next reaction when 

looking at all possible reactions separately.  Step 2 of the algorithm chooses the reaction that 

occurred.  This is done by sampling a uniform random variable and using it to pick a reaction with 

probability proportional to its rate. 
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Figure 2.2. Schematic representation of the stochastic model. (A) The enzyme cascade is 

modeled as a series of N servers with service rates equal to the stochastic enzyme catalytic rates. 

In between enzymes, there is a tunnel or surface path which stores molecules; we refer to this space 

as the waiting room.  Molecules may exit the waiting room either by forming a complex with the 

next enzyme, or by being lost to the environment (impatience). (B) Model of the waiting room i 

between Ei-1 and Ei. con, coff, ccat,i-1, and closs are stochastic rate constants associated to the simulated 

chemical reactions (Equation (2.1)) used in the computation of the propensity function. Note that 

no other simplifications are assumed in the stochastic model. 

 

  



30 

Simulations.  To determine the rate of product throughput for each condition, the stochastic 

simulation was independently run 100 times over a time scale of 100s (unless the cascade consisted 

of more than two enzymes, in which case runs were performed over a time period of 1000s to 

ensure steady state).  The calculated throughputs from each run were averaged to attain the final, 

presented result.  The standard error of the mean is provided with each data point. 

 The kinetic parameters in the simulation were chosen to represent the widely studied glucose 

oxidase-horseradish peroxidase (GOx-HRP) cascade in which hydrogen peroxide is the 

intermediate produced by GOx, and consumed by HRP. The rate constant at which hydrogen 

peroxide is produced by GOx is varied between 0 and 180 s-1, and the catalytic rate constant of 

HRP is set to 30 s-1.39  The volume accessible to the intermediate substrate is assumed to be 10 

nm3 for all waiting rooms, based on typical tunnel dimensions in enzymes.61 The KM of HRP is set 

to 2.5 μM.39 This KM, as the KM of almost every enzyme, is below the concentration created by a 

single intermediate substrate molecule in the waiting room (170 mM). Since the MM model 

generally assumes the rapid establishment of equilibrium between the enzyme, the substrate and 

the enzyme substrate complex, we set the substrate unbinding rate constant koff to be 100-fold 

higher than the kcat and calculated the substrate binding rate constant kon from kcat and KM using 

Equation (3).  The computations of stochastic rate constants from deterministic rate constants are 

performed according to Sanft et al.93 All parameters are listed in Table 2.1.  
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Table 2.1. Values of Parameters Used in Stochastic Simulations. 

Parameter Symbol Value 

Number of enzymes 

in the cascade 
N 2-10 

Waiting room 

capacity 
nWR 1-10 (or +∞) 

Interenzyme volume V 10 nm3 

Michaelis constant 

(enzyme E2) 
KM,2 2.5 μM or 250 mM 

Deterministic 

catalytic rate 

constant (E1) 

kcat,1 0 to 180 s-1 

Deterministic 

enzyme catalytic 

rate constant (E2) 

kcat,2 30 s-1 

Deterministic 

reverse reaction rate 

constant 

koff = 100 kcat,2 3000 s-1 

Deterministic 

forward reaction rate 

constant 

𝑘𝑜𝑛 =
𝑘𝑜𝑓𝑓 + 𝑘𝑐𝑎𝑡,2

𝐾𝑀,2
 12.12 to 12.12*105 mM-1.s-1 

Stochastic catalytic 

rate constant (E1) 
ccat,1 = kcat,1 0-180 s-1 

Stochastic catalytic 

rate constant (E2) 
ccat,2 = kcat,2 30 s-1 

Stochastic reverse 

reaction rate 

constant 

coff = koff 3000 s-1 

Stochastic forward 

reaction rate 

constant 
𝑐𝑜𝑛 =

𝑘𝑜𝑛
𝑁𝐴𝑉

 2013 to 2013*105 s-1 
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Results 

Cascades without impatience.  The most basic system is a two-enzyme cascade with no impatience 

in the waiting room and a KM of the second enzyme far below the concentration corresponding to 

just one intermediate molecule in the accessible volume of the waiting room (170 mM for a 

volume of 10 nm3). Under these conditions, any intermediate substrate molecule entering the 

waiting room is accepted by the second enzyme without delay if the second enzyme is not 

occupied. We computed the output rate of the cascade with both deterministic and stochastic 

models. In the deterministic model, the overall output rate is equal to the smaller of the production 

rate of the first enzyme (kcat,1) or the catalytic rate constant of the second enzyme (kcat,2). The 

stochastic model shows deviations from the deterministic model only when the two enzymes have 

similar catalytic rate constants and when the waiting room capacity is small (Figure 2.3). For a 

waiting room with infinite capacity, both models agree within the error of the stochastic 

simulation. 
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Figure 2.3. Deterministic model solutions and simulations of a two-enzyme cascade with a 

low KM and a finite waiting room in between enzymes. The solid line represents the solutions 

of the MM ODEs system (Equation (2.7)) and a maximum concentration in the intermediate 

volume representing 1, 2, 4, 10 and ∞ molecules (solutions overlap). Symbols represent the results 

of the stochastic simulations for a waiting room capacity of 1 (orange triangles), 2 (blue squares), 

4 (green triangles), 10 (red circles) and ∞ molecules (black diamonds). Error bars for standard 

error are smaller than the marker.  KM = 2.5 μM (con  = 2013*105 s-1) 
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Figure 2.4. Deterministic model solutions and simulations of a two-enzyme cascade with a 

high KM and a finite waiting room in between enzymes. Solid lines represent the solutions of 

the MM ODEs system (Equation (2.7)) and a maximum concentration in the intermediate volume 

representing 1 (orange), 2 (blue), 4 (green), 10 (red) and ∞ (black) molecules. Symbols represent 

the results of the stochastic simulations for a waiting room capacity of 1 (orange triangles), 2 (blue 

squares), 4 (green triangles), 10 (red circles) and ∞ molecules (black diamonds).  Error bars for 

standard error are smaller than the marker.  KM = 250 mM (con = 2013 s-1) 
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 The system slightly increases in complexity if the KM of the second enzyme is chosen so high 

(e.g. 250 mM), that it requires a significant population (an average of 1.5 molecules for 250 

mM) in the waiting room (Figure 2.4).  In this case, the results of the deterministic model depend 

on the waiting room capacity if the first enzyme is producing faster than the second enzyme, 

because the second enzyme cannot be saturated without filling the waiting room and triggering 

the overflow condition (molecules produced by the first enzyme are returned to the bulk). The 

maximal output rate for the downstream enzyme is achieved when the number of intermediate 

molecules available is equal to the waiting room capacity; then, the maximal output rate, based 

on the MM model, 𝑟𝑀𝑀,2
𝑚𝑎𝑥 , for kcat,2 << kcat,1 is given by: 

 

𝑟𝑀𝑀,2
𝑚𝑎𝑥 = max(𝑘𝑐𝑎𝑡,2 ⋅

[𝑆]

[𝑆] + 𝐾𝑀
[𝐸2]𝑇) = 𝑘𝑐𝑎𝑡,2 ⋅

𝑛𝑊𝑅
𝑛𝑊𝑅 + 𝐾𝑀𝑉𝑁𝐴

[𝐸2]𝑇 (2.10) 

 

The critical value between the regime where the upstream enzyme sets the overall output rate and 

the one where the downstream enzyme depends on the waiting room capacity is found by setting 

the output rate of the first enzyme equal to the maximum output rate of the second enzyme.  Then, 

we have: 

kcat,1
crit = 𝑘𝑐𝑎𝑡,2 ⋅

𝑛𝑊𝑅
𝑛𝑊𝑅 + 𝐾𝑀𝑉𝑁𝐴

(2.11) 

 

We have therefore shown that there are significant differences in output rates for deterministic and 

stochastic models. However, by computing the relative error |rdeter - rstoch|/rdeter where rdeter is the 

output rate with the deterministic model and rstoch is the output rate with the stochastic model, these 

differences are below 20% for capacities greater than 4 molecules (or up to 50% for a capacity of 
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1 molecule) which are small compared to other sources of variation in throughput, such as 

temperature and pH. On the other hand, these difference are amplified for longer enzyme cascades, 

such as the 10-enzyme cascade experimentally studied by Mukai et al.94 Note that deviations of 

20% are of the same order of magnitude as other deviations found in the study of stochastic effects 

on the MM model.89 

 To investigate the “worst case” scenario, we simulated a N-enzyme cascade where all the 

downstream enzymes have the same set of parameters (KM = 2.5 μM and kcat = 30 s-1), waiting 

rooms of equal size, and an upstream enzyme (E1) catalytic rate constant of 30 s-1 (Figure 2.5). 

The deterministic model exhibited, as expected, an output rate equal to kcat/(NAV) regardless of 

cascade length. In the stochastic simulations the overall output rate decreased with increasing 

cascade length. In the worst case scenario i.e. a very long enzyme cascade with very small waiting 

rooms, the output rate computed using stochastic simulations can be more than 5-fold smaller than 

the one predicted by the deterministic model.  
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Figure 2.5. The output rate calculated with stochastic simulations and the deterministic 

model as a function of the number of enzymes in series. All waiting rooms have the same 

capacity of 1 (orange triangles), 2 (blue squares), 4 (green triangles) or 10 molecules (red circles). 

Black diamonds correspond to the identical results of the stochastic model (solid diamonds) with 

infinite waiting room size and the deterministic model (open diamonds). Error bars for standard 

error are smaller than the marker. 
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Cascades with impatience.  Impatience represents the escape of substrate molecules from their 

confinement in the waiting room to the bulk. We model impatience as a Poisson process with a 

rate of 20 s-1, which is of similar magnitude to the catalytic rate constants of the enzymes in order 

to have an appreciable impact. We considered again a low (2.5 μM, Figure 6) and a high (250 mM, 

Figure 2.7) KM case. Just as before, waiting room capacity does not have any effect in the 

deterministic model in low KM. However, for the stochastic simulations, the amplitude of the 

capacity effect is much smaller than in the absence of impatience and the result for an infinite 

waiting room now differs from the deterministic model.  

 For high KM (250 mM, Figure 2.7), the shape of the curves is similar to those of the same 

system without impatience (Figure 2.4). Since the impatience reduces the rate at which substrate 

molecules reach the downstream enzyme, the critical value between the regime where the upstream 

enzyme sets the overall output rate and the one where the downstream enzyme previously 

described by Equation (2.10) is now given by: 

  

𝑘𝑐𝑎𝑡,1
𝑐𝑟𝑖𝑡 [𝐸1]𝑇 = 𝑘𝑐𝑎𝑡,2 ⋅

𝑛𝑊𝑅
𝑛𝑊𝑅 +𝐾𝑀𝑉𝑁𝐴

[𝐸2]𝑇 + 𝑘𝑙𝑜𝑠𝑠 ⋅
𝑛𝑊𝑅
𝑉𝑁𝐴

(2.12) 
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Figure 2.6. Deterministic model solutions and simulations of a two-enzyme cascade with a 

low KM and a finite waiting room in between enzymes in the presence of impatience. The black 

solid line represents the overlapping solutions of the MM ODEs system (Equation (2.7)) for 

maximum concentration in the intermediate volume of 1, 2, 4, 10 and ∞ molecules. Symbols 

represent the results of the stochastic simulations for a waiting room capacity of 1 (orange 

triangles), 2 (blue squares), 4 (green triangles), 10 (red circles) and ∞ molecules (black diamonds).  

Error bars for standard error are smaller than the marker. KM = 2.5 μM (con = 2013*105 s-1).  kloss 

= 20 s-1. 
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Figure 2.7. Deterministic model solutions and simulations of a two-enzyme cascade with a 

high KM and a finite waiting room in between enzymes in the presence of impatience. The 

black solid line represents the overlapping solutions of the MM ODEs system (Equation (2.7)) for 

maximum concentration in the intermediate volume of 1, 2, 4, 10 and ∞ molecules. Symbols 

represent the results of the stochastic simulations for a waiting room capacity of 1 (orange 

triangles), 2 (blue squares), 4 (green triangles), 10 (red circles) and ∞ molecules (black diamonds).  

Error bars for standard error are smaller than the marker.  KM = 250 mM (con = 2013 s-1).  kloss = 20 

s-1. 
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Discussion 

The first important result is that the deterministic model and the stochastic simulations yield 

identical results for infinite waiting room size when impatience is not considered. This is in 

agreement with Thomas et al.95 who highlighted the importance of a large number of substrate 

molecules in the MM model. Secondly, if the output rate of the first enzyme is significantly 

different from the catalytic rate constant of the second enzyme, the results of the deterministic 

model and the stochastic simulations are also identical. This agreement between the models arises 

because the waiting room is either mostly empty or mostly full (Figure 8), which is well 

approximated by the deterministic model. Our discussion will therefore focus on the particular 

case when the catalytic rate constants of the enzymes in the cascade are similar, first for a two-

enzyme cascade and then for longer cascades. We will also discuss the validity of MM model 

assumptions, the validity of the assumption on bulk intermediate contributions, and methods for 

experimental validation of our system.  

 

The two-enzyme cascade.  Stochastic simulations give results which deviate up to 50% from the 

deterministic model when the waiting room is small and the enzymes have similar rate constants. 

The origins of this deviation are illustrated in Figure 2.8, where we plot the distribution of the 

number of molecules in the waiting room for stochastic simulations (KM = 2.5 μM; no impatience: 

kloss = 0). For kcat,1 less than kcat,2 (downstream enzyme faster), the probability for the waiting room 

to be empty is very high; the downstream enzyme is not rate-limiting and operates at rate rMM,1 

given by Equation (2.4). For kcat,1 greater than kcat,2 (upstream enzyme faster), the probability for 

the waiting room to be empty is negligible and the upstream enzyme operates at a rate close to its 

catalytic rate.  Surprisingly, however, the waiting room is rarely maximally filled.  The origin of 

this behavior lies in the rapid rate of substrate-enzyme complex formation (con) and dissociation 
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(coff) (when compared to catalysis, ccat).  If the waiting room becomes full, it will lose a molecule 

almost immediately (time scale of 
1

𝑐𝑜𝑛
≈ 10−8 s) after the enzyme-substrate complex dissociates 

(time scale of 
1

𝑐𝑜𝑓𝑓
≈ 10−3s), while the substrate molecule previously in the complex will be lost 

to the bulk.  Then, between catalysis events, the occupancy of a waiting room of capacity nWR will 

fluctuate between nWR (full waiting room, free enzyme state), and nWR-1 (1 below capacity waiting 

room, enzyme complex state).  It will spend a fraction 
𝑐𝑜𝑛

𝑐𝑜𝑛+𝑐𝑜𝑓𝑓
≈ 1 of time in the nWR-1 state and 

𝑐𝑜𝑛

𝑐𝑜𝑛+𝑐𝑜𝑓𝑓
≈ 10−5 in the filled waiting room state. 

 For kcat,1 similar to kcat,2, the waiting room population is evenly distributed, and the probability 

for the waiting room to be empty is similar to the probability of finding any other number of 

molecules in the waiting room.  This substantial probability of an empty waiting room slows the 

production of the downstream enzyme. This is consistent with previous work of Hochendoner et 

al. who linked the probability for an enzyme to be unoccupied and its catalytic rate.74 In contrast, 

the deterministic model always evolves towards an intermediate substrate concentration which is 

equal to the maximal allowed concentration, and thereby keeps the downstream enzyme producing 

at its maximum rate.  
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Figure 2.8. Substrate population distributions in the waiting room of a two enzyme cascade 

in steady state. Top (green): The waiting room capacity is 4 molecules. Bottom (red): The waiting 

room capacity is 10 molecules. Left: kcat,1 – kcat,2 = -25 s-1 (downstream enzyme faster). Middle: 

kcat,1 – kcat,2 = 0. Right: kcat,1 – kcat,2 = 50 s-1 (upstream enzyme faster). KM = 2.5 μM. 
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 Figure 2.3 also shows that the higher the value of nWR, the maximum number of molecules that 

can fit in the waiting room, the better the agreement between the two models for kcat,1 close to kcat,2. 

The probability of an empty waiting room decreases when nWR increases. This result is well 

understood in queueing theory.96 When the catalytic rates of two enzymes are equal, only the 

number of molecules processed in unit time on average are equal. On average, one molecule is 

converted each 1/kcat,1 second. But since the turnover events are assumed to be Poisson distributed, 

non-negligible disruptions in the production by the upstream enzyme can occur. Such disruptions 

would lead to a decrease in the overall output rate since the downstream enzyme would not be fed 

for non-negligible periods. However, if a waiting room is present in between enzymes, it can act 

as a reservoir and compensate for the shortages. If the waiting room is too small, long shortages 

will still decrease the output rate because the waiting room can be fully exhausted by the 

downstream enzyme (zero occupancy). These disruptions are relevant only for enzymes with 

comparable processing rates. If the upstream enzyme is much faster, the disruptions are relatively 

short and the waiting room is typically filled, so the second enzyme will not have time to empty 

it. If the upstream enzyme is much slower than the downstream enzyme, the upstream enzyme is 

rate-limiting so events occurring downstream (e.g. stochastic feeding of the downstream server) 

do not have any effect on the overall output rate. The waiting room effect is intrinsically a 

stochastic phenomenon which cannot be described with a deterministic approach. The 

deterministic model does not account for a correlation between the catalytic events of the two 

enzymes (here, a temporary upstream slowdown which leads to a downstream slowdown) since 

each catalytic rate is defined independently from the other one. The two approaches agree as soon 

as this correlation does not matter anymore e.g. when the waiting room is relatively large and 

essentially never emptied so that upstream process does not impact the downstream process.  
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 Impatience, the loss of molecules from the waiting room, reduces the effect of the waiting 

room (Figures 6-7). Impatience can be considered as negative feedback for substrate production 

since the probability of an unbinding event increases with increasing substrate population in the 

waiting room. Thus, a steady-state is reached even if the waiting room is infinitely large. 

Consequently, if the loss rate constant is high enough, it will set an implicit limit for the size of 

the waiting room population which is much lower than the waiting room size. Thus, for high loss 

rates the overall output rate is unaffected by the waiting room capacity. That is why even for an 

infinite waiting room capacity, the actual number of substrate molecules is not large enough to 

make the two models agree (Figure 6). 

 

Multi-Enzyme Cascades.  The dependency of stochastic effects on cascade length is not intuitively 

obvious. Experimentally, cascades of up to 10 successive enzymatic reactions have been described. 

The deterministic model predicts that the overall output is equal to the catalytic rate 𝑟𝑀𝑀,𝑖
𝑚𝑎𝑥 of the 

slowest enzyme regardless of cascade length. Similar results have been reported in queueing theory 

if the waiting room is of infinite size. For servers with the same service rate, Hunt79 computed the 

maximum utilization factor max which corresponds to the ratio between the mean overall output 

rate and the maximum service rate.97 Waiting rooms of infinite size resulted in max = 1 regardless 

of the number of enzymes. However, if the waiting rooms are small, the maximum utilization 

factor max decreases with increasing cascade length (see Appendix Section B.3 for details).  

 Our simulations demonstrate that cascade throughput decreases with increasing cascade length 

for small waiting rooms.  At the same time, we show that cascade throughput is constant with 

increasing cascade length for infinite waiting rooms (Figure 2.5).  This is in agreement with the 

analytical results of Hunt for low KM (see Appendix Section B.3). Ultimately, the cascade 
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production rate predicted by the stochastic simulations can be as little as 20% of the production 

rate predicted by the deterministic model. Most of this discrepancy is created by the first few 

enzymes, because the reduced throughput of the first enzyme pair (due to the stochastic effects) 

feeds the third enzyme at a slower rate than its maximum catalytic rate, which creates a mismatch 

between the upstream and downstream catalytic rates and diminishes the stochastic effects arising 

from the waiting room between the second and third enzyme (Figure 2.3). The mismatch increases 

further down the line and thereby downstream stochastic effects contribute less and less to the 

overall discrepancy between the deterministic model and the stochastic simulations.  

 The mismatch between the output of an initial stage of the cascade and the catalytic rate of the 

following enzyme could be minimized if the catalytic rate of the following enzyme is reduced to 

match the output rate. This progressive reduction in catalytic rate along the cascade reduces 

throughput, but one might expect an increase in the difference of the predictions of the 

deterministic and the stochastic simulations. To study this case, we simulated a cascade where the 

catalytic rate constant of the i+1 enzyme matches the decreased output of the previous i enzymes.  

In this cascade (kcat,1 = 30 s-1, KM = 2.5 μM, and nWR = 1), the first two enzymes have a catalytic 

rate of kcat,1 = kcat,2 and – as suggested by Hunts equation (Equation B.9) – the catalytic rate of each 

subsequent enzyme is reduced by half.  For a 10-enzyme cascade, the final throughput as predicted 

by the simulation is 0.070 +/- 0.002 s-1(95% confidence interval) compared to 0.117 s-1
 predicted 

by the continuum model.  The difference in predicted production rates between the stochastic and 

deterministic model is approximately 50%, which is actually smaller than the difference between 

the predictions for the cascade with constant catalytic rates.  In this case, the accuracy of the 

continuum model actually improves because the predicted production rate (equal to the slowest 
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enzyme in the cascade) drops in the same ratio as the predicted production rate of the stochastic 

model as the length of the cascade increases.     

 

Validity of Michaelis-Menten Model.  The validity of the Michaelis Menten model assumptions 

has been extensively studied over the past decades.89, 98, 99 Some authors have also reported a MM-

like formula100, 101 for a single enzyme molecule. We reaffirm the results of Grima et al.89, that the 

MM equation deviates roughly 20% from stochastic simulations for single enzymes.  Note that our 

stochastic simulations solve the most general form of the chemical master equation, foregoing the 

use of the KM, Equation (2.3), and any other approximations. In this context, our results highlight 

the robustness of the MM equation already noticed in literature.89 Meanwhile, we highlight the 

impact of a new parameter for the magnitude of the reported deviations: the difference between 

the catalytic rate constants of the successive enzymes. 

 

Contributions from the bulk.  In our study, we assume that intermediate molecules lost to the bulk 

cannot diffuse back into the waiting room.  This assumption is valid because, typically, the time 

scale of the reaction is too small for the bulk intermediate concentration to build up significantly.  

In fact, Liu et al. performed studies on a synthetic cascade consisting of hexokinase and glucose-

6-phosphate dehydrogenase connected via a polylysine bridge 54, 102, and found that intermediate 

bulk concentration never reached the steady state level, and that contributions from the bulk could 

be deemed negligible.54 In addition, the intermediate molecules can be unstable in the environment 

outside the cascade 59, 60. 

 In the end, the goal of this study is to compare the results of the queueing model with the 

continuum model.  In the worst case, contributions from the bulk counteract the effects of waiting 
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room impatience.  Then, the system reverts to the cases considered in Figures 2.3 and 2.4, and 

deviations in predicted throughput between the queueing model and continuum model can still 

extend up to 50%. 

 

Model validation.  The predicted differences in the steady-state production rates between the 

stochastic and the deterministic model of up to 50% (low KM and small waiting room) are large 

compared to the experimental errors in measuring catalytic rates in enzyme reactions (<5%).39   

However, the measured catalytic rates of individual enzymes may not represent the catalytic rates 

of the same enzymes when they are assembled to form tunnels, cages, or bridges, for example due 

to a changed enzyme microenvironment.1 The tryptophan synthase bienzyme complex is one of 

the best studied systems with a tunnel.103 It consists of two subunits: the upstream (α) subunit 

catalyzes the formation of indole from indole 3-glycerol phosphate, and the downstream (β) 

subunit catalyzes the formation of tryptophan from the newly formed indole molecule and also 

serine.  Somewhat counterintuitively, the downstream subunit regulates the activity of the 

upstream subunit.  In the absence of serine, the upstream subunit’s catalytic activity (kcat=0.14 s-1) 

is about 20 times lower than that of the downstream subunit (kcat=3.6 s-1).104  However, once a 

serine molecule begins reacting with the downstream subunit, a conformational change occurs in 

the upstream subunit,11 increasing its catalytic activity by over 20 times, to the point that it nearly 

matches that of the downstream subunit (new upstream kcat=3.0 s-1).104  Considering that the tunnel 

of tryptophan synthase can contain up to 4 intermediate (indole) molecules,62 the stochastic effects 

would not be negligible when the upstream subunit is activated.  Typically, the purpose of this 

regulating mechanism is considered to be keeping the outputs of both subunits in phase.103, 105  

However, from the queueing perspective, it is also conceivable that this protein has evolved this 



49 

regulatory mechanism to minimize the stochastic effects that would arise if both subunits were 

continuously matched. We plan to investigate this more complex system in a future study.  

 Another interesting enzyme complex is carbamoyl phosphate synthetase, which catalyzes a 

three step reaction and contains two narrow tunnels connecting three active sites.86  However, the 

catalytic activities of the individual active sites are still undetermined.106  Current DNA nanocages 

have large volumes (creating large waiting rooms) and therefore the difference in the predictions 

of the stochastic and deterministic model are again small. An interesting system may be one where 

the intermediate is a protein, because the large size of the protein would reduce the waiting room 

capacity.  A swinging arm transferring substrate between two enzymes, as described by Fu et al., 

107 can be considered to be a waiting room of size one if the substrate cannot reach the second 

enzyme without the swinging arm. This is not the case in the study by Fu et al.107 and may be 

difficult to experimentally realize. 

 The pre-steady state is in principle also accessible to our modeling, and could conceivably 

enable the validation of the predicted difference between stochastic and deterministic models. The 

duration of the pre-steady state can be quantified by the transient/lag time.53-57   In our simulations, 

we observed that lag time increased with the number of enzymes, the KM, and the waiting room 

size.  The lag time was calculated by performing a nonlinear fit of the production rate as described 

by Farrell et al.108  The longest lag time was obtained for a cascade of 10 enzymes with identical 

kinetics (kcat = 30 s-1, KM = 250 mM) and an infinite waiting room. In this case, the continuum 

model predicts a lag time of 3.95 +/- 0.06 s (95% confidence interval) and the queueing model 

predicts a lag time of 4.08 +/- 0.16 s (95% confidence interval). If the cascade is shortened to 2 

enzymes, the continuum model predicts a lag time of 0.18 +/- 0.02 s, while the queueing model 

predicts a lag time of 0.22 +/- 0.04 s (95% confidence intervals).  These differences in predicted 
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lag times are not statistically significant.  Therefore, characterizing steady state throughput is the 

best approach for a potential validation of our model predictions. 

 

Conclusion 

We have modeled enzyme cascade reactions with deterministic and stochastic approaches to 

consider phenomena arising from the inherent stochasticity and discreteness of chemical reactions. 

We focused on enzyme cascade systems where the intermediate substrates are confined and 

“waiting rooms” of limited capacity are created. In this case, up to five-fold differences between 

the two models have been found for specific parameter values. Differences are found when 

enzymes have similar catalytic rates and the waiting room capacity is only one or several 

molecules. For most cases (unequal catalytic rates, waiting room capacities exceeding 10 

molecules), the discrepancies between the deterministic model and the stochastic model are not 

practically relevant. However, from a theoretical point of view, an interesting analogy with 

queueing theory has been highlighted, based on the agreement between our simulations and 

analytical results taken from operations research.  The challenge for an experimental validation of 

our results is to find an enzyme cascade where the catalytic rates are well-matched and a waiting 

room with a capacity of a few molecules exists naturally or can be constructed. 

 In the waiting room model considered here, intermediate molecules are confined to tunnels 

between active sites participating in sequential reactions.  The tunnels store intermediate 

molecules awaiting catalysis, and protect them from elimination in the outside environment.  In 

the next chapter, we will discuss cascade reaction conducted in cellular compartments: structures 

over 100 nm in diameter that can store molecules on a larger scale.  These compartments can 

take the form of proteinaceous shells in cyanobacteria or membrane-bound organelles in 

eukaryotic cells.  One of their main roles is to protect unstable cascade intermediates from 
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degradation in the cytosol and to quarantine volatile cascade intermediates that could exhibit 

cross-reactivity with other cellular processes. 
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Chapter 3. Design Principles for a 

Compartmentalized Enzyme Cascade Reaction 
 

This section follows “Design principles for a compartmentalized enzyme cascade reaction,” by 

Stanislav Tsitkov and Henry Hess, ACS Catalysis 9 (3), 2432-2439, 2019. 

 

Introduction 

Compartmentalization is vital to the functioning of cells and a topic of tremendous interest in 

biocatalysis and synthetic biology.17, 23, 26-29, 32, 109, 110 Despite its intuitive usefulness in containing 

toxic reactants and enhancing the concentration of unstable intermediates, quantitative models 

have only recently been published.  Proteome-scale network-based approaches,110 such as those 

used by Alam et al.32, have revealed that compartmentalization reduced the number of inhibitory 

enzymatic interactions in the cell.  Chen et al.33 provide closed form solutions for the reaction 

diffusion equation governing a second messenger reaction pathway, where a source of cyclic 

adenosine monophosphate (cAMP) is compartmentalized to prevent degradation by 

phosphodiesterases.  Recent work by Hinzpeter et al.34 examines the spatial reaction dynamics of 

a compartmentalized cascade reaction by evaluating its productivity, defined as the ratio of the 

compartment flux to the total number of enzymes within the compartment.  Mangan et al.35 provide 

an in-depth study of the bacterial carboxysome by solving the relevant reaction diffusion equations 

for a cascade involving the RuBiSCo and carbonic anhydrase enzymes.  Jakobson et al.36 perform 

a similar study as Mangan et al.35 for the propanediol utilization microcompartment in bacteria.  

However, despite the growing variety of approaches to modeling compartments, a simple, intuitive 
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model which captures only the essential physics of the problem is still missing.  Such a basic 

quantitative understanding would be of use in evaluating the numerous recent advances in 

experimental work geared towards compartmentalization of enzyme cascade reactions.111, 112  

 In this chapter, we aim to develop a basic model of compartmentalized cascade reactions, 

identify the optimal design, and determine when compartmentalization provides benefits. This 

basic model describes a two-enzyme cascade and makes the generally valid assumption of a well-

mixed interior and exterior of the compartment. Substrate, intermediate, and product molecules 

can enter the compartment through openings in the compartment boundary.  We assume that the 

total number of molecules moving through all these openings per unit of time (with units of moles 

per second) is proportional to the concentration difference across the opening, and call the 

proportionality constant the diffusive conductance (with units of M-1s-1).  This diffusive 

conductance is a property of the compartment and accounts for the number, permeability, and size 

of the openings.  First, we show that for given numbers of enzymes, the rate at which product 

leaves the compartment is maximized at an intermediate value of the conductance as one would 

intuitively expect. If the numbers of enzymes can be adjusted, the optimization problem is more 

complicated and can best be formulated as: Given a certain maximum number of enzymes (due to 

packing constraints) and a certain desired throughput (within the limit of the turnover rates of 

enzymes 1 and 2), for which numbers of enzymes and compartment diffusive conductance is the 

intermediate loss from the compartment minimized? The solution of this problem is presented in 

a second section.     

 The insights we gain from our analysis provide a set of simple, quantitative conclusions that 

can be used to engineer more efficient micro- and nanoscale bioreactors. We show that spatial 

considerations are usually negligible in nanoscale compartment design which greatly simplifies 
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the requirements for most models. In contrast to previous models,34, 59 our analysis replaces 

arbitrary definitions of cascade efficiency with a concrete design objective (minimize 

intermediate outflux given an enzyme packing constraint and a desired product throughput). 

Finally, we show that compartmentalizing an enzyme cascade reaction is beneficial whenever the 

rate of intermediate removal in solution (due to instability) is greater than the turnover rate of the 

first reaction step. 
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Figure 3.1: Scheme of a Compartmentalized Cascade Reaction.  An outer shell represents the 

boundary of the cell, reaction vessel, or simply periodic boundary conditions. A defined number 

of Enzyme 1 molecules (light blue) utilizes substrate molecules (dark blue) to produce intermediate 

molecules (dark green) with catalytic efficiency γ1. Intermediate molecules are consumed by a 

defined number of Enzyme 2 molecules (light green) to produce product molecules (yellow) with 

catalytic efficiency γ2. A semi-permeable compartment wall with diffusive conductances FS, FI 

and FP can restrict the exchange of molecules with the surrounding cell, where intermediate 

molecules are removed at rate ke.  

 

 

  



56 

Methods 

Modeling the reaction kinetics. We construct a model (Figure 3.1) similar to that of Hinzpeter et 

al.34  The compartment contains two types of enzymes, E1 and E2, which can be described by 

Michaelis-Menten (MM) kinetics.  The substrate, S, is converted into the intermediate, I, by 

enzyme E1 with catalytic rate constant 𝑘𝑐𝑎𝑡,1  and MM constant KM,1.  The intermediate is then 

converted into product, P, by enzyme E2 with catalytic rate constant 𝑘𝑐𝑎𝑡,2 and MM constant KM,2. 

 

Modeling the transport across the compartment boundary. A species inside the compartment is 

well mixed if its reaction time scale is much longer than its diffusion time scale.34 For the substrate 

or product of an enzymatic reaction, this is true if: 

 

𝐷𝐾𝑀
𝑘𝑐𝑎𝑡

≫ 𝑟2[𝐸] =
3𝑛𝐸
4𝜋𝑟

(3.1) 

 

where D is the diffusion coefficient of the substrate or product, r is the radius of the compartment, 

and [E] and nE are the concentration and number of the enzyme, respectively. This condition is 

met in all practical cellular compartments (Appendix Section C.1).  As a result, we model the 

influx and outflux of S, I and P from the compartment at rates proportional to their concentrations, 

which we call diffusive conductances, 𝐹𝑆, 𝐹𝐼 and 𝐹𝑃 determined by the properties of the boundary 

(e.g. the number and size of openings).  The diffusive conductance is equal to the product of the 

compartment boundary permeability, the surface area and Avogadro’s Number. The inverse of this 

quantity, the diffusive resistance, is defined by Berg as discussed below.58    
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Modeling the environment outside the compartment. Similar to Castellana et al.,59 we assume that 

the substrate concentration is maintained at a constant level.  Furthermore, the intermediate, I, is 

assumed to be unstable, and immediately degraded if it leaves the compartment (𝑘𝑒 → ∞ in Figure 

1).  A finite removal rate is discussed later in Equations (3.21-24).  With V denoting the volume 

of the compartment, and NA denoting Avogadro’s Number, the following set of equations describe 

the reaction dynamics: 

𝑑[𝑆]

𝑑𝑡
=
𝐹𝑆([𝑆0] − [𝑆])

𝑉NA
−
𝑘𝑐𝑎𝑡,1[𝐸1][𝑆]

𝐾𝑀,1 + [𝑆]
(3.2) 

𝑑[𝐼]

𝑑𝑡
=
𝑘𝑐𝑎𝑡,1[𝐸1][𝑆]

𝐾𝑀,1 + [𝑆]
−
𝐹𝐼[𝐼]

𝑉NA
−
𝑘𝑐𝑎𝑡,2[𝐸2][𝐼]

𝐾𝑀,2 + [𝐼]
(3.3) 

𝑑[𝑃]

𝑑𝑡
=
𝑘𝑐𝑎𝑡,2[𝐸2][𝐼]

𝐾𝑀,2 + [𝐼]
−
𝐹𝑃[𝑃]

𝑉NA
(3.4) 

 

Since substrate concentrations in the cell are typically much lower than the KM of their respective 

enzymes, we analyze the linear regime of the kinetics.5  In addition, we will analyze the system in 

steady state, because we assume that environmental substrate concentrations are homeostatically 

maintained at a constant level.  Furthermore, typical values of compartment permeability derived 

for bacterial microcompartments (1-100 μm/s) ensure that the process of transport across the 

compartment boundary will equilibrate within the first second for a compartment on the 100 nm-

size scale (the time scale being roughly equal to the quotient of compartment radius and 

permeability).  In steady state, Equations (3.2-4) then simplify to: 

 

𝐹𝑠([𝑆0] − [𝑆]) −
𝑘𝑐𝑎𝑡,1𝑛1[𝑆]

𝐾𝑀,1
= 0 (3.5) 

𝑘𝑐𝑎𝑡,1𝑛1[𝑆]

𝐾𝑀,1
− 𝐹𝐼[𝐼] −

𝑘𝑐𝑎𝑡,2𝑛2[𝐼]

𝐾𝑀,2
= 0 (3.6) 
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𝑘𝑐𝑎𝑡,2𝑛2[𝐼]

𝐾𝑀,2
− 𝐹𝑃[𝑃] = 0 (3.7) 

 

where n1 denotes the number of molecules of enzyme E1 and n2 denotes the number of molecules 

of enzyme E2 in the compartment.   

To keep equations concise, we define the turnover rates 𝛽i as the product of the enzymatic 

catalytic efficiency (𝛾𝑖) and number of molecules of the enzyme (𝑛𝑖): 

 

𝛽1 = 𝛾1𝑛1 =
𝑘𝑐𝑎𝑡,1𝑛1
𝐾𝑀,1

(3.8) 

𝛽2 = 𝛾2𝑛2 =
𝑘𝑐𝑎𝑡,2𝑛2
𝐾𝑀,2

(3.9) 

 

Results 

Numbers of enzymes describe the system better than enzyme concentrations. Equations (3.5-7) 

reveal that the steady state system is affected by the volume of the compartment only indirectly, 

that is if changing the volume affects either the transport across the boundary (e.g. by increasing 

the number of pores) or the number of enzymes. Hinzpeter et al.34 discuss the kinetics as a function 

of the compartment radius while assuming that an increase in the surface area of the spherical 

compartment leads to a proportional increase in the diffusive conductance due to a constant 

permeability (defined by the number and size of pores per area). Since the number of pores is 

defined by the number of pore proteins and the size of the compartment is dependent on the 

properties of the shell proteins or lipid molecules, this proportionality is not required and more 

suitable ratios of surface conductance to surface area can be engineered. Therefore, we optimize 
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compartment properties in terms of numbers of enzymes, enzyme properties, and diffusive 

conductances.   

 

Maximizing product outflux for given numbers of enzymes.  Our initial goal is to optimize this 

system by engineering a compartment with the optimum diffusive conductance, 𝐹, to maximize 

product outflow.  According to Equation (3.5), the amount of substrate in the compartment in 

steady state may be expressed as:  

 

[𝑆] =
𝐹𝑆

𝐹𝑆 + 𝛽1
[𝑆0] (3.10) 

 

Based on Equation (3.6), the amount of intermediate is then: 

 

[𝐼] =
1

𝐹𝐼 + 𝛽2
⋅
𝛽1𝐹𝑆
𝐹𝑆 + 𝛽1

[S0]  (3.11) 

 

Here, the origin of the optimal diffusive conductance can be seen.  When the conductance rate FS 

is low, substrate cannot cross the boundary, limiting the production of intermediate.  On the other 

hand, if the diffusive conductance FI is high, the intermediate will be lost before it can be converted 

into product. To attain the optimal conductance between these regimes, we maximize 𝛽2[𝐼] =

𝐹𝑃[𝑃], the rate of intermediate conversion and, due to our steady state assumption, product outflux. 

If FSFI, the value of 𝐹 that returns the maximal product outflux is (see Appendix Section C.2 for 

derivation): 
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𝐹𝑆,𝐼 = √𝛽1𝛽2 (3.12) 

 

The dependence of product and intermediate outflux on the diffusive conductance is shown in 

Figure 3.2.  In Appendix Section C.3, we examine this derivation in the case of species-dependent 

permeabilities, when 𝐹𝑆 ≠ 𝐹𝐼.  

The product outflux, Ropt, at optimal conductance can be found by inserting Equation (3.12) 

into Equation (3.11): 

 

𝑅𝑜𝑝𝑡 = 𝐹𝑃[𝑃] = 𝛽2[𝐼] =
𝛽1𝛽2

(√𝛽1 +√𝛽2)
2
[𝑆0] (3.13) 

 

Equation (3.13) states that for an optimally chosen conductance (or conductances in the case of 

species-dependent permeabilities), product outflux can be increased by increasing the turnover 

rates 𝛽1 and 𝛽2. 

 

Maximizing product outflux for given numbers of enzymes in the case of enzyme saturation.  Since 

bacterial microcompartments often contain enzymes with a low KM, it is necessary to discuss the 

effects of enzyme saturation in a cascade reaction, i.e. when the full, nonlinear form of Equations 

(3.2-4) must be taken into consideration. 

As seen in Figure 3.2, product throughput initially grows with increasing diffusive 

conductance.  If an enzyme becomes saturated before the optimal diffusive conductance is reached, 

there is no point in further increasing the conductance.  This would only result in more intermediate 

outflux with little increase in intermediate conversion.  
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Since the optimal diffusive conductance will be reached on the boundary between the linear 

and nonlinear regimes of the Michaelis-Menten kinetics, the substrate turnover can be estimated 

by inserting Equation (3.10) into the turnover term of Equation (3.2).  Assuming that the second 

enzyme is not yet saturated, this gives the steady state intermediate concentration of: 

 

[𝐼] =
1

𝐹𝐼 + 𝛽2
⋅

𝛽1𝐹𝑠[S0]

𝐹𝑆 + 𝛽1 + 𝐹𝑆
[S0]
𝐾𝑀,1

(3.14)
 

 

This intermediate concentration (and therefore product throughput) is maximized – setting again 

FSFI – when: 

 

𝐹𝑠𝑎𝑡 = √

𝛽1𝛽2

1 +
[𝑆0]
𝐾𝑀,1

≈ √𝛽1𝛽2√
𝐾𝑀,1
[𝑆0]

, (3.15)
 

 

where we have assumed that [𝑆0] ≫ 𝐾𝑀,1.  By comparing Equation (3.15) with Equation (3.12), 

we see that the saturation of the first enzyme effectively lowers the optimal diffusive conductance 

by a factor of √𝐾𝑀,1 [𝑆0]⁄ .  A similar expression can be derived for saturation of the second enzyme 

(Appendix Section C.4). 

As with the linear regime, the product outflux in the saturated case may be further increased 

by increasing the number of enzymes, although with diminishing returns.  The question then 

becomes: Given the available volume and the available enzyme catalytic efficiencies, what are the 

optimal numbers of enzymes and conductances which minimize the outflux of the toxic or unstable 

intermediate. 



62 

 

 

Figure 3.2: Dependence of compartment dynamics on diffusive conductance.  Substrate 

conversion (blue, dotted line), intermediate outflux (green, dashed line), and product outflux 

(orange, solid line) depend on the diffusive conductance of the compartment for a given set of 

numbers of enzymes and catalytic efficiencies. At a low diffusive conductance, very little substrate 

enters the compartment.  At a high diffusive conductance, most of the produced intermediate leaves 

the compartment before it can be converted into product.  We used the kinetic parameters from the 

cascade consisting of the NAD+-dependent alcohol dehydrogenase and NADH-dependent amine-

dehydrogenase from the study of Zhang et al.113  We assume 𝛾1 = 24 mM-1s-1 and 𝛾2 =

0.080 mM-1s-1, 𝑛1 = 𝑛2 = 50, and set [𝑆0] = 0.1 mM.  
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Minimizing intermediate loss for a given product output.  Compartments often serve as a tool for 

containing either volatile or toxic intermediates.  In this section, we consider a volatile 

intermediate, meaning the intermediate is rapidly removed outside the compartment.  Then, the 

design problem becomes: Given a required product outflux, R, a total number of enzymes, n0, and 

enzyme catalytic efficiencies, 𝛾1 and 𝛾2, how are diffusive conductances, 𝐹𝑆 and 𝐹𝐼, and numbers 

of each enzyme, 𝑛1 and 𝑛2, chosen to minimize intermediate outflux, 𝐹𝐼[𝐼]?  This design problem 

is written in equation form as: 

 

min
n1,𝑛2,𝐹

𝐹𝐼[𝐼] (3.16) 

               𝛽2[𝐼] = 𝐹𝑃[𝑃] = 𝑅 (3.17) 

               𝑛1 + 𝑛2 = 𝑛0 (3.18) 

 

Both constraints are necessary.  Without the first constraint, zero intermediate outflux can be 

attained by setting the number of Enzyme 1 molecules to zero, but this would also halt product 

outflux.  Without the second constraint, the intermediate outflux rate could be lowered closer to 

zero by packing the compartment with more Enzyme 2. 

For simplicity, we consider 𝐹𝑆 = 𝐹𝐼, which describes a situation where the diffusive 

conductance of substrate and intermediate is similar.  However, selectively permeable boundaries 

may be taken into account by setting 𝐹𝑆 = 𝑐𝐹𝐼 with a proportionality constant c (Discussed in 

Appendix Section C.5), since the main difference in transport rates between species in the 

compartment will be the changing resistance of a single pore to different molecules. 

To visualize the optimization problem, it is necessary to reduce the dimensionality of the 

objective function by applying the constraint on product outflux (Equation 3.17).  Then, the 

intermediate outflux surface may be plotted as a function of the number of molecules of each 
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enzyme, 𝑛1 and 𝑛2 (Figure 3.3a).  The feasible set of parameters, i.e. the set of parameters that 

satisfy the design constraints, is found by intersecting the surface with the plane corresponding to 

the constraint on total number of enzymes (Figure 3.3b). 

This constrained minimization problem can be analytically solved using Lagrange multipliers.  

As critical points, we find two sets of relations for F: 

 

𝐹1 = √𝛽1𝛽2 (3.19) 

𝐹2 =
𝛽1𝑛1
𝑛2

(3.20) 

 

We gain a better understanding of Equations (3.19-20) by plotting intermediate outflux as a 

function of the number of Enzyme 1 (Figure 3.3b), while satisfying both constraints, Equations 

(3.17-18).  As we see in Figure 3.3b, the first critical point, F1, corresponds to the boundaries of 

the feasible set; the solutions for the number of Enzyme 1 are the most extreme values of n1 that 

can still satisfy the constraint on product outflux. The second critical point, F2, corresponds to 

critical points within the interior of the feasible set, and the solutions for the number of Enzyme 1 

are the extrema for the intermediate outflux while satisfying the constraints.  

The expression for F1 is the same as Equation (3.12); it corresponds to the lower and upper 

bounds on the number of Enzyme 1 molecules such that the constraint on product outflux, Equation 

(3.14), can still be satisfied.  If the objective was to maximize product outflux instead of to 

minimize intermediate outflux, F1 would be the optimal choice for diffusive conductance.    By 

choosing F2, we sacrifice product outflux to minimize intermediate outflux. 

Once we set the diffusive conductance equal to F2, we can find the values of n1 and n2 that 

minimize (or maximize) the intermediate outflux.  The exact closed form solutions for the number 
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of molecules of each enzyme are not available, as they require solving a fourth order polynomial.  

However, they are easily found numerically.  In addition, for sufficiently high n0, their closed form 

solution may be approximated (see Appendix Section C.6). 

In this section, we have considered a volatile intermediate, meaning an intermediate which is 

rapidly removed from the environment.  This is motivated by the acetalydehyde intermediate 

molecule produced in the ethanolamine utilization bacterial microcompartment, which rapidly 

escapes the cell if it is lost from the compartment.114  We may also consider the case of a toxic 

intermediate by a reformulation of Equations (3.16-18) where the objective would be to maximize 

product outflux while constraining intermediate outflux to limit toxicity.  This problem is analyzed 

in Appendix Section C.7.  
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Figure 3.3: Visualization of the optimization problem for a compartmentalized cascade.  (a) 

The multi-colored surface represents intermediate outflux (elimination rate) under the constraint 

of a specific product outflux, as a function of the number of both enzymes.  The light-blue plane 

denotes the constraint on the total number of enzyme molecules.  Its intersection with the surface 

gives the curve of the feasible set of parameters. (b)  The critical points of the optimization problem 

correspond to the boundaries of the feasible set (black, dashed line), and its maximum and 

minimum (blue, dotted line). As in Figure 1, 𝛾1 = 24 mM-1s-1 and 𝛾2 = 0.080 mM-1s-1, 𝑛0 = 100, 

[𝑆0] =0.1 mM, and the desired product outflux is R=0.5 s-1.  
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Comparison to the non-compartmentalized reaction. Intuitively, a free solution reaction is 

disadvantageous when a high rate of intermediate removal prevents a sufficient rate of product 

formation.  On the other hand, the drawback of the compartment is that it limits substrate influx.  

The question becomes: how high must the rate of intermediate removal be in order for a 

compartment to become favorable. Answering this question requires the modification of the 

reaction equations, which so far assumed that intermediate reaching the cytosol is immediately 

removed. 

We model the removal of intermediate in the cytosol in terms of a removal rate, ke (e for 

elimination), and the cell volume, 𝑉𝑐𝑒𝑙𝑙.  This removal rate is assumed to be an intrinsic property 

of the cell that cannot be tuned.  Then, the model for the non-compartmentalized cascade reaction 

is: 

 

𝑉𝑐𝑒𝑙𝑙
𝑑[𝐼𝑐]

𝑑𝑡
=
𝑘𝑐𝑎𝑡,1𝑛1
𝐾𝑚1

[S0] −
𝑘𝑐𝑎𝑡,2𝑛2
𝐾𝑚,2

[𝐼𝑐] − 𝑘𝑒[𝐼𝑐] (3.21) 

𝑉𝑐𝑒𝑙𝑙
𝑑[𝑃𝑐]

𝑑𝑡
=
𝑘𝑐𝑎𝑡,2𝑛2
𝐾𝑚,2

[𝐼𝑐] (3.22) 

 

At steady state, the volume of the cell cancels out, and we attain expressions in terms of turnover 

rates.  Using the same notation as before, the rate of product formation in the non-

compartmentalized reaction, 𝑅𝑃, becomes: 

 

𝑅𝑃 =
𝛽2

𝛽2 + 𝑘𝑒
𝛽1[𝑆0] (3.23) 
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We can compare this rate with the product outflux at optimal conductance for a compartmentalized 

reaction by modifying Equations (3.2-4) to account for return of intermediate to the compartment 

if the outside concentration of intermediate is not negligible (Figure 3.4).  This comparison reveals 

a surprising result (Appendix Section C.8): the optimal diffusive conductance becomes infinite for 

a non-zero value of ke which we name ke,crit.  It is given by: 

 

𝑘𝑒,𝑐𝑟𝑖𝑡 =
𝛽1
2
(1 + √1 +

4𝛽2
𝛽1
) (3.24) 

 

For removal rates below this critical value, the non-compartmentalized reaction is optimal, and the 

product formation rate is given by Equation (3.23).  If the removal rate exceeds ke,crit, then 

compartmentalization is beneficial, and the maximal product formation rate approaches the result 

given in Equation (3.13) with increasing removal rate (Figure 3.4, green arrow).  This result shows 

that the model forms a natural connection between the non-compartmentalized and 

compartmentalized cascade. 

The condition, ke > ke,crit, is satisfied when the removal rate is much larger than the turnover 

rate of the first reaction (𝛽1).  For large values of ke, the throughput of the non-compartmentalized 

reaction is inversely proportional to ke and approaches zero, while the product outflux of the 

compartmentalized reaction asymptotically approaches the value given by Equation (3.13).   
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Figure 3.4: Comparison of product output between the non-compartmentalized reaction and 

the compartmentalized reaction as a function of the cytosol intermediate removal rate, ke. In 

the non-compartmentalized reaction (black solid line), the rate of product formation is inversely 

proportional to ke and approaches zero with increasing ke. At the same time, the rate of product 

outflux (green dashed line) asymptotically approaches the non-zero value defined by Equation 

(3.13) (indicated by a green arrow on the right vertical axis). The optimal product output rates are 

identical up until a critical value of ke (indicated by a circle on the graph and black arrow) after 

which the optimal diffusive conductance for the compartmentalized reaction becomes finite and 

compartmentalization provides benefits.  𝛾1 = 24 mM-1s-1 and 𝛾2 = 0.080 mM-1s-1, 𝑛1 = 𝑛2 =

50, (as in Figure 2) and [𝑆0] = 0.1  mM.   
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Discussion 

In general, the cell compartmentalizes either in space, where certain sets of enzymes are confined 

to specific organelles,23, 115 or time, where enzymes only function at pre-defined points in the cell 

cycle.109, 115  Recently, metabolic engineers have been investigating how compartmentalization 

could enhance the throughput and efficiency of biocatalysis in engineered cellular pathways.  This 

is because the repurposing of cellular machinery provides an often appealing alternative to classic 

chemical synthesis.15-19 However, non-native enzymatic cascades often have compatibility issues.6, 

17, 116, 117  For example, cascade intermediates and byproducts tend to activate inhibitory pathways 

and can be toxic to the cell.23-26  Compartments are advantageous in that they can both quarantine 

such toxic byproducts from entering the cytosol19, 27-29 and prevent the cellular environment from 

degrading unstable enzymes that participate in the desired reaction.30 There are already several 

reports in the scientific literature demonstrating that the relocation of a synthetic cascade from the 

cytosol to the mitochondria improves reaction throughput.10, 28, 29, 118 

As synthetic compartments for cascade reactions become more widespread, a rational and 

efficient design process for optimizing compartmentalized cascade properties is required.  Our 

modeling shows that cascade reactions in the well-mixed, linear regime can be described by 

numbers of molecules of each enzyme, rather than concentrations, and that the compartment 

volume only plays an indirect role in the steady state.  The model allowed us to formulate and 

solve the compartment optimization problem for the cases when the intermediate is volatile or 

toxic.  Finally, we determined that a compartmentalized reaction provides significant benefits over 

a non-compartmentalized reaction when the rate of intermediate elimination in the non-

compartmentalized reaction exceeds the maximum turnover rate of the cascade. These results can 

be viewed in the larger context of reactor design.  
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Metrics on compartment quality.  In general, the design of chemical reactors is quantified by 

measuring the reactor conversion, yield, and selectivity.119-121 Previous approaches to studying 

compartments have been based on optimizing other metrics that aim to describe compartment 

performance.  These include the reaction efficiency,34, 59 which is similar to the reactor conversion, 

and reaction productivity.34  In the analysis of compartment performance, the best metric would 

reward product outflux but penalize intermediate outflux.   

Reaction conversion, or reaction efficiency as defined by Castellana et al., 𝜂, is a metric of a 

cascade reaction which is defined as the ratio of product outflux to substrate influx 59: 

 

𝜂 =
𝐹𝑃[𝑃]

𝐹𝑆[𝑆0]
(3.25) 

 

The reaction efficiency reaches 100% when every substrate molecule entering the compartment is 

converted into product. However, optimizing this metric is not desirable because substrate 

molecules which enter the compartment and leave again as unreacted substrate do not negatively 

affect product formation or intermediate toxicity.  

Reaction productivity, p, as defined by Hinzpeter et al. 34, is the ratio of product outflux to the 

number of enzymes in the compartment: 

 

𝑝 =
𝐹𝑃[𝑃]

𝑛1 + 𝑛2
(3.26) 

  

Maximizing productivity is equivalent to maximizing product outflux while maintaining a 

constraint on the total number of enzymes.  While this metric rewards a high product outflux, it 

does not penalize loss of intermediate. 
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The reaction yield and reaction selectivity are two metrics that are often used to quantify 

chemical reactor performance; however, they have not been used to quantify compartment 

performance.  The reaction yield, Y,53 of a cascade reaction is defined as the ratio of product 

outflux to the rate of substrate turnover: 

 

𝑌 =
FP[𝑃]

𝛽1[𝑆]
=

𝐹𝑃[𝑃]

𝐹𝑃[𝑃] + 𝐹𝐼[𝐼]
 (3.27) 

 

This metric penalizes intermediate outflux: it is high when the outflux of intermediate is low. 

However, this metric is also imperfect; Y approaches its maximum when the number of Enzyme 

1 molecules approaches zero. 

The reaction selectivity, Se, is defined as the ratio of the outfluxes of desired to undesired 

species; in this case, this is the ratio of product outflux to intermediate outflux: 

 

𝑆𝑒 =
FP[𝑃]

FI[𝐼]
(3.28) 

 

This metric rewards product outflux and penalizes intermediate outflux.  However, it suffers 

from the same problem as the yield: it attains its maximal value when the number of Enzyme 1 is 

zero.  

Each of these metrics is imperfect.  Here, we avoid the use of these metrics and replace them 

with concrete design specifications.  This gives a clear understanding of how the final compartment 

parameters depend on the initial specifications. 
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Defining Diffusive Conductance.  Different researchers have adopted different interpretations for 

the value of the diffusive conductance or its inverse the diffusive resistance. On one hand, Berg58 

defines the diffusive resistance by considering the case of a sphere with perfectly adsorbing patches 

spread out along the surface.  The diffusive resistance becomes related to the extent by which the 

substrate becomes depleted around the sphere.  On the other hand, Hinzpeter et al.34 considers 

diffusive resistance in terms of permeability, where the diffusive current into the membrane is 

dependent on the thickness of the membrane.  Deciding which approach is suitable for specific 

situations would require complex molecular simulations which take into account pore size, pore 

density, molecule size, and molecular interactions.122  As first approximation, the larger of the two 

resistances can be used.  The resistance due to substrate depletion, RD, is according to Berg (written 

in units of Ms): 

 

𝑅𝐷 =
1

4𝜋NA𝐷𝑟
⋅

1

1 +
𝜋𝑟
𝑁𝑠

(3.29) 

 

The resistance due to membrane permeability, RP, is according to Hinzpeter et al. (written in units 

of Ms): 

 

𝑅𝑃 =
1

𝑁N𝐴𝜋𝑠2
𝐷
𝛿

(3.30) 

 

Where N is the number of pores, NA is Avogadro’s number, s is the apparent pore radius (which 

takes into account the molecule size, the pore size, and molecular interactions), D is the diffusion 

coefficient, and 𝛿 is the membrane thickness. 
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Comparison to Biological Systems.  Compartment models have so far been published for the 

carboxysome,34, 35 and the propanediol utilization (Pdu) microcompartment.36  Typically, a 

comparison to a biological system offers credibility to a model.  However, these comparisons are 

only justified if a full mechanistic picture of the system is available.  The main missing piece in 

the study of bacterial microcompartments is the diffusive resistance across the shell boundary.123  

Indeed, estimates for the diffusive resistance of the alpha-carboxysome shell span three orders of 

magnitude, with Mangan et al.35 suggesting a shell permeability of 10 μm/s, Hinzpeter et al.34 

using permeabilities of 90 μm/s and 18 μm/s, and Tsai et al. suggesting that diffusive resistance 

could reach 75% of the diffusion limited aggregation rate.124 Instead of comparing our results to 

biological systems, we will therefore compare them to the results of the more complex published 

models which include reaction-diffusion systems and the full nonlinear regime of cascade kinetics. 

The goal is to test if our more basic model gives the same answers, and therefore retained the 

essential physics of the process while stripping out unnecessary detail.  

The dynamics of the carboxysome have been modeled using reaction diffusion equations by 

Mangan et al.35  In their study, the numerical solution of the reaction diffusion model for a 50-nm 

radius carboxysome was found to plateau and maximize product throughput for a permeability of 

1.5 ± 0.7 μm/s.  This translates into a diffusive conductance of 3 ± 1 ⋅ 107 M-1s-1. Using the same 

kinetic parameters, our analysis gives an optimal diffusive conductance – limited by the saturation 

of the second enzyme – of 2.7 ⋅ 107 M-1s-1. 

The dynamics of the bacterial propanediol utilization microcompartment were modeled by 

Jakobson et al.36 They find that the optimal permeability for the 100 nm-radius microcompartment 

is 1 μm/s. This translates to a diffusive conductance of 8 ⋅ 106 M-1s-1.  Using the same parameters 
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in our model, we found that the optimal diffusive conductance was limited by the saturation of the 

first enzyme at a value of 8.4 ⋅ 106 M-1s-1. 

In both cases, a complex reaction diffusion model that considers a number of auxiliary 

interactions returns practically identical results as our simplified analysis, which only requires 

knowledge of the most basic reaction kinetics of the enzymes. 

 

A microsphere surface as a compartment.  An interesting parallel may be drawn between a 

compartment containing enzymes that participate in a cascade reaction and a microsphere whose 

surface is coated with enzymes that participate in the same cascade reaction.  The diffusive 

resistance inherent to molecules approaching a large adsorbing sphere generates reaction 

conditions similar to a compartment, and precludes the need for a physical compartment boundary.   

Solving the reaction-diffusion equation for a microsphere of radius r coated with enzymes 

participating in a cascade reaction at densities of σE1 and σE2, with catalytic efficiencies defined as 

in Equations 3.8 and 3.9, and absorbing boundary conditions for substrate and intermediate 

concentrations at infinity ([𝑆](𝑟 = ∞) = 𝑆0, [𝐼](𝑟 = ∞) = 0), the steady state rate of product 

throughput on the surface can be written down as: 

𝑅𝑜𝑝𝑡,𝑚𝑖𝑐𝑟𝑜𝑠𝑝ℎ𝑒𝑟𝑒 = 𝑆0 ⋅ (
𝛾1𝜎𝐸1𝛾2𝜎𝐸2

𝐷𝑆
𝑟

(𝛾1𝜎𝐸1 +
𝐷𝑆
𝑟 ) (𝛾2𝜎𝐸2 +

𝐷𝐼
𝑟 )
) (3.30) 

Multiplying out the above expression by the microsphere surface area returns an expression 

equivalent to that of Equation 3.11, with 𝐹𝑖 = 4𝜋𝐷𝑖𝑟 as the diffusive resistance.  Details on the 

derivation can be found in Appendix Section C.9.  This result can be extended to include a 

competing reaction for intermediate in solution, with a rate constant ke.  In this case, the rate of 

product throughput on the surface of the microsphere may be written as: 
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𝑅𝑜𝑝𝑡,𝑚𝑖𝑐𝑟𝑜𝑠𝑝ℎ𝑒𝑟𝑒 = 𝑆0 ⋅ (
𝛾1𝜎𝐸1𝛾2𝜎𝐸2

𝐷𝑆
𝑟

(𝛾1𝜎𝐸1 +
𝐷𝑆
𝑟 ) (𝛾2𝜎𝐸2 +

𝐷𝐼
𝑟 + √𝐷𝐼𝑘𝑒)

) (3.31) 

The competing reaction for intermediate in solution only begins to significantly affect reaction 

dynamics when 𝑘𝑒 > 𝐷𝐼/𝑟
2.  The details of the calculation performed for deriving Equation 3.31 

can be found in Appendix Section C.10 

 

Conclusion 

With the innovations in the experimental manipulation of compartmentalized cascades, the 

metabolic engineer’s toolbox is continuously growing.  This paves the way for the design of micro- 

and nanoscale bioreactors and synthetic cells125-127 for cascade reactions with unstable 

intermediates.  In this chapter, we consider a model for a compartmentalized cascade reaction with 

unstable intermediates.  The model assumes a well-mixed compartment interior, a homeostatically 

maintained environmental substrate concentration, that steady state has been reached, and that the 

enzymes exhibit Michaelis-Menten kinetics. We study the case when both enzymes are functioning 

in the linear regime of the kinetics and the case when one enzyme is saturated. The model presented 

here captures in a quantitative manner the intuition that since small pores restrict substrate influx 

and large pores permit intermediate escape, the design challenge is to find the optimal diffusive 

conductances.  Furthermore, we define a new strategy for the design of compartmentalized cascade 

reactions, and provide a simple relation for determining when a compartmentalized reaction will 

perform significantly better than its non-compartmentalized counterpart. 
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Chapter 4: An Alternative Approach to 

Enhancing Cascade Reaction Throughput: 

Microenvironment Engineering 
 

This section discusses the electrostatic modeling of the DNA Origami surface from “Proximity 

does not contribute to activity enhancement in the glucose oxidase–horseradish peroxidase 

cascade,” by Yifei Zhang, Stanislav Tsitkov, and Henry Hess, Nature Communications 7, 13982, 

2016. 

 

Introduction 

The previous chapters have demonstrated that the spatial organization of enzyme cascades does 

not enhance reaction throughput when intermediate molecules are stable if a steady state exists 

for the reaction system.  However, experimental evidence has demonstrated that the 

immobilization of certain enzyme cascades on DNA origami scaffolds enhances cascade reaction 

throughput.47, 50, 107  In order to resolve the apparent disagreement between modeling and 

experimental results, it was hypothesized that the experimentally observed reaction enhancement 

could be a result of the highly negatively-charged DNA origami nanostructure generating a 

favorable microenvironment for enzyme activity,39, 129, 130 by attracting protons from the buffer 

solution and locally lowering the pH.  In this chapter, we test this hypothesis by modeling the 

electric potential near the surface of the DNA origami scaffold using the Derjaguin-Landau-

Verwey-Overbeek (DLVO) theory.131-133 
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Methods 

The Poisson-Boltzmann equation for charged surfaces in buffer solutions.  The electrostatics of 

fluids near charged surfaces is described by the Poisson Boltzmann equation:80, 134 

∇2Ψ = −
2𝐹𝐶0
𝜖
sinh (−

𝐹𝛹

𝑅𝑇
) (4.1) 

Where F is the Faraday constant, C0 is the bulk salt concentration, Ψ is the electric potential, R is 

the universal gas constant, T is the temperature, and ε is the product of the vacuum permittivity 

constant and dielectric constant of water.  If we model the DNA origami surface as an infinite 

sheet of charge, we can use symmetry to reduce this equation to a one-dimensional form 

describing the potential along the axis perpendicular to the sheet of charge: 

d2Ψ

dx2
= −

2𝐹𝐶0
𝜖
sinh (−

𝐹𝛹

𝑅𝑇
) (4.2) 

Two boundary conditions are required to solve this equation.  The first states that the potential at 

infinity is zero.  The other specifies the potential at the surface.  While the surface potential of a 

DNA origami surface has yet to be determined, we can estimate it be using the Grahame 

equation, which provides a relation between surface potential, surface charge density, and buffer 

ionic strength: 

𝜎 = √8𝐶0𝜖𝑅𝑇 sinh (
𝐹𝛹0
2𝑅𝑇

) (4.3) 
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Results 

Solution to the linearized Poisson-Boltzmann Equation.  The equation can then be solved in one 

using Ψ(𝑥 = 0) = Ψ0 and Ψ(𝑥 = ∞) = 0.  For low surface potentials (Ψ0 ≪
𝑅𝑇

𝐹
≈ 25 𝑚𝑉), the 

Poisson Boltzmann equation can be linearized and solved in a closed form as follows: 

 

d2Ψ

dx2
= −

2𝐹𝐶0
𝜖
sinh (−

𝐹𝛹

𝑅𝑇
) = −

2𝐹𝐶0
𝜖

⋅
1

2
(𝑒−

𝐹Ψ
𝑅𝑇 − 𝑒

𝐹Ψ
𝑅𝑇) =

𝐹𝐶0
𝜖
(
2𝐹Ψ

𝑅𝑇
) + 𝐻. 𝑂. 𝑇. (4.4) 

 

Where the higher order terms (H.O.T.) are of order 𝑂 (
𝐹Ψ

𝑅𝑇
)
2

.  A natural variable that appears in 

the above equation is: 

𝜅 = √
2𝐹2𝐶0
𝜖𝑅𝑇

(4.5) 

The variable κ is also known as the Debye length and describes the distance at which charged 

surfaces become screened by counterions in buffer solutions.  Dropping out the higher order 

terms and substituting in the variable for the Debye length, κ, we arrive at a second order linear 

ordinary differential equation: 

d2Ψ

dx2
− 𝜅2Ψ = 0 (4.6) 

Solving with the appropriate boundary conditions, we find that: 

Ψ(𝑥) = Ψ0𝑒
−𝜅𝑥 (4.7) 

The concentration of charged species as a function of potential can be evaluated as:134 
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𝐶(𝑥) = 𝐶𝑏𝑢𝑙𝑘𝑒
−
𝐹Ψ
RT (4.8) 

As a result, the concentration of protons, and also the pH, near a charged surface can be 

estimated as: 

[𝐻+](𝑥) = [𝐻+]𝑏𝑢𝑙𝑘𝑒
−
𝐹Ψ
𝑅𝑇
 (4.9) 

pH(𝑥) = pH𝑏𝑢𝑙𝑘 + log10 𝑒 
𝐹Ψ

𝑅𝑇
= 𝑝𝐻𝑏𝑢𝑙𝑘 +

𝐹Ψ

2.3𝑅𝑇
(4.10) 

The above expression may be used for estimating the pH profile near the charged surface of a 

DNA origami scaffold. 

 

Closed form solution for the one-dimensional Poisson Boltzmann Equation. In the derivation 

above, we made the assumption of a low surface potential.  In fact, the equation may be solved in 

closed form while foregoing the linearization, although it provides a less intuitive result.  Solving 

the one-dimensional Poisson-Boltzmann equation without linearization, we arrive at the 

following closed form solution for the potential: 

Ψ(𝑥) =
2𝑅𝑇

𝐹
⋅ log (

1 + exp(−𝜅𝑥) tanh(𝛼)

1 − exp(−𝜅𝑥) tanh(𝛼)
) (4.11) 

𝛼 =
𝐹Ψ0
4𝑅𝑇

, 𝜅 = √
2𝐹2𝐶0
𝜖𝑅𝑇

(4.12) 

This equation deviates from the solution to the linearized Poisson Boltzmann equation by 

generating a steeper potential drop off near the surface. 
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An issue that arises is that the Poisson Boltzmann equation tends to overestimate the 

concentration of counterions near highly charged surfaces.133  The finite size of counterions 

results in steric restrictions on the maximum number of counterions that can accumulate near a 

surface.  This can then extend the electric potential farther from the surface.  This problem was 

examined in detail by Borukhov and Andelman (1997)133, who gave expression to the 

concentration profile near a surface which takes into account the steric interactions which would 

influence the density of counterions near the surface.  The presence of these steric effects implies 

that the counterion concentration saturates near the surface for a distance of 𝑙∗ ≈ 𝑎3𝜎/𝑒, where a 

is the radius of the counterion particle in question, σ is the surface charge density, and e is the 

charge of an electron.133 

 

Conclusion 

The main conclusion of this section is that the DNA origami scaffold can generate a 

microenvironment with a lowered pH extending up to 2 nm from the surface.  Enzymes tethered 

to the charged surface then spend a non-negligible amount of time in the lower-pH environment.  

Since enzyme activity is known to strongly depend on pH, it is a reasonable conclusion that 

DNA origami scaffolds affect the activity of enzymes tether to them, and enhancement cascade 

reaction throughput.   
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Part II 
Organization in Systems of Active 

Cytoskeletal Filaments 
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Chapter 5. Background on Systems of Active 

Cytoskeletal Filaments 
 

This section follows “Design of active nanosystems incorporating biomolecular motors,” by 

Stanislav Tsitkov and Henry Hess. Out-of-equilibrium supramolecular systems and materials. 

Wiley. (In Press). 

 

Molecular motors couple the consumption of fuel, a non-equilibrium process, to the generation 

of mechanical work, which in turn can be used to either push a system away from or accelerate 

its approach to chemical equilibrium.135, 136 In nature, dedicated proteins have evolved to serve as 

molecular motors.  These biomolecular motors play key roles in organisms,137 enabling them to 

replicate DNA with an error rate as small as 10-11,138 and to move their bodies as fast as the 104 

km/h top speed of a running cheetah.139, 140  DNA replication and transcription are supported by 

polymerase enzymes hydrolyzing nucleotide triphosphates and adding them to the growing 

complementary strand while unidirectionally traversing the template strand.141  The muscle 

contraction of the cheetah is powered by bundles of myosin motors of the thick filament stepping 

along the filamentous actin of the thin filament in the sarcomeres of muscle fibers. 142, 143  Other 

biomolecular motors play important roles in cellular processes as well.  Protons flowing through 

the channels formed by the Mot protein complex generate the rotary motion required for 

bacterial flagellar propulsion.144  Dynein motor proteins step along microtubules of the axoneme 

in motile cilia in lungs to keep the airways clear of mucus.145  The F1F0 ATPase enzyme complex 

transports protons across membranes and catalyzes the synthesis of the cellular fuel ATP. 146, 147  

Kinesin motor proteins participate in intracellular transport and in cell division.148  In contrast to 
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heat engines, motor proteins directly convert chemical energy into mechanical energy, usually by 

the hydrolysis of adenosine 5’-triphosphate (ATP).149   The emergent properties resulting from  

the integration of molecular motors into materials and structures are an active field of study; 

most notably, they include plasticity, adaptability, and self-healing.150   

Over the past two decades, a growing field of study has been the incorporation of 

biomolecular motors into active nanosystems.2, 41, 42, 149-163  These systems typically focus on the 

motors of the cellular cytoskeleton,164 kinesin,165, 166 dynein,167, 168 and myosin,169 interacting 

with microtubules170-172 and actin filaments.173 (Figures 5.1a, 5.1b) Most implementations of 

these systems fall into one of two categories depending on the configuration of the motors and 

filaments. In the “bead” or “native” configuration, motors traverse surface-immobilized 

filaments as they do in cells; in the “inverted” configuration, filaments glide upon surface-

immobilized motors.174(Figures 5.1c, 5.1d)   

These systems are used both as a tool to study intracellular dynamics 175 and to develop ATP-

powered devices outside of the cell.176, 177  From the biomedical perspective,178, 179 constructing 

these systems gives us a better understanding of the interactions between their components, 

which in turn helps researchers develop treatments against illnesses resulting from the 

dysfunction of biomolecular motors or infectious agents that hijack them.156, 161, 180 From the 

technological perspective, active nanosystems incorporating biomolecular motors can be 

engineered to detect molecules181 and perform computation.182  Moreover, it is reasonable to 

conjecture that the trend in the shrinking size of semiconductor components defined in Moore’s 

Law will soon be accompanied by a growing need for reliable actuation on the nanoscale.153  

Biomolecular motors are an excellent candidate for addressing this need, with the only 

alternative being man-made synthetic motors, which currently lag behind in functionality, 
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efficiency, and structural complexity despite their tremendous progress over the past two 

decades.183 For example, autonomous light-activated motors184 based on overcrowded alkenes 

can have rotation rates as high as 2-3 MHz,185 and were recently used to drill holes in cell 

membranes.186  Still, the force production and energetic efficiencies of these motors remain 

unclear.186-188  In addition, only one autonomous chemically-fueled synthetic motor has so far 

been developed, and it rotates once approximately every 12 hours.183, 189  In comparison, the 

motor protein kinesin takes approximately 100 steps each second and has been estimated to 

attain an energy efficiency of up to 80%. 190 

In this chapter, we provide an overview of the design of active nanoscale systems based on 

motor proteins and cytoskeletal filaments.  In the first section, “Active nanosystem design,” we 

examine the engineering objectives and provide a brief overview of the components involved; in 

the next section, “Biological components of active nanosystems,” we describe the structure and 

function of the filaments and motors involved; in “Interactions between components of active 

nanosystems” we describe the interactions which occur between the individual components; in 

“Implementation of active nanosystems,” we provide a brief review of applications of active 

nanosystems. 
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Figure 5.1: Biomolecular motors generate forces in living organisms by walking along 

filaments.  (a) Electron microscopy images of latex microspheres crosslinked to taxol-stabilized 

microtubules via kinesin motors.  Kinesin motor heads are indicated by white arrows.  Adapted 

from Hirokawa et al. 191 (b) The myosin motors bundled into the thick filament step along the 

thin filament to generate contractile forces in the sarcomere. Top image adapted from Huxley et 

al.192 Bottom image (cross section) adapted from Hawkins et al.193  (c) Cartoon of an inverted 

motility assay modified for engineering purposes: microtubules gliding on a kinesin-coated 

surface load and unload cargo (in this case quantum dots) at specific stations.  Adapted from 

Kerssemakers et al.194  (d) The native configuration of kinesin and dynein-driven transport: 

motors bind cargo and walk along the microtubule. Adapted from Veigel and Schmidt.195  
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Active nanosystem design  

Myosin and kinesin-powered active nanosystems have been used for cargo transport, 196-200 

analyte concentration, 181, 201-203 force generation, 152, 204-214 detection, 160, 196, 215-221 studying 

biology and soft-matter physics, 222-224 and even computation.182, 225  Depending on the 

application, active nanosystems typically take on one of two distinct configurations: in the native 

configuration, filaments are immobilized on a surface and cargo-carrying motors use them as 

tracks;226 in the inverted configuration, filaments carrying cargo glide on carpets of surface-

immobilized motors.227, 228  A third configuration, where both filaments and motors are 

suspended in solution, has been gaining popularity as a model system for active matter and self-

assembly.214, 229  The native configuration is reminiscent of what happens in biology: motor 

proteins walk along filaments that are stationary, e.g. inside an axon.179 However, the transport 

distance of cargo is limited by the length of single filaments, which rarely can exceed a few tens 

of micrometers,230 unless cargo-carrying motors can transition between filaments. In the inverted 

system, filaments are propelled for large distances as long as ATP remains and filaments do not 

degrade or get stuck. 

The dynamics of the active nanosystems can be altered by modifying the environment in 

which the biomolecular motors and filaments operate. The motor protein velocity is controlled 

by the ATP concentration and the temperature.231  The addition of high concentrations of 

polymers such as methylcellulose,213 PEG,232 and pluronics233 can create crowding effects and 

depletion forces and generate collective behavior in systems of gliding filaments.  More complex 

approaches for environmental modifications involve engineering the surface to either reversibly43 

or controllably bind234 motors from solution.  Surfaces can be patterned using photolithography 

to create patches for motor binding235 or walls for guiding gliding filaments.236  External control 
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over the active nanosystems can be achieved with light237 (modulating motor activity and fuel 

availability),238 magnetic fields (acting on particles attached to gliding filaments),239 electric 

fields (acting on the charged filaments),240 mechanical forces,241 and heat.242   

The packaging of the active nanosystems typically consists of flow cells:243 structures 

consisting of a small, 22 mm x 22 mm glass coverslip on top of a larger, 24 mm x 60 mm glass 

coverslip separated by a 100 μm - high spacer (such as parafilm or double-sided tape).  

Experiments are performed by flowing various solutions through the flow cell in order to coat 

surfaces and introduce ATP, motors, filaments, and the components of a molecular antifade 

system, which suppresses photodamage caused by fluorescent illumination by reducing the 

concentration of dissolved oxygen.244, 245  The filaments and motors on the inner surfaces of the 

flow cell are then usually imaged with epifluorescence microscopy.195  Alternative imaging 

strategies can be used as well. Nanometer-precision estimates of molecular height above 

reflective surfaces can be made using fluorescence interference contrast microscopy.194, 246, 247  

Recently, it was observed that surface-adhered filaments could be imaged in a fluorescence 

label-free manner.248  Both optical traps249 and total internal reflection dark field microscopy can 

be used to study the stepping dynamics and force-production of single motor proteins.250   

The design process for an active nanosystem becomes an optimization problem of a function 

of the following variables: 

• The filament used (microtubule or actin filament) 

• The motor used (kinesin family, dynein family, or myosin family) 

• The environment (walls and obstacles on the surface, motor patterning, etc.) 



89 

• External influences (activation/inhibition mediated by light, electric or magnetic fields, 

heat, and compression) 

Most optimization problems are solved by determining first how a function behaves in response 

to changes in individual variables (i.e. by calculating the gradient), and then by changes in pairs 

of variables (i.e. by calculating the matrix of second derivatives, the Hessian).  We will strive to 

take a similar approach in the remaining sections of this chapter.  
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Biological components of active nanosystems 

This section aims to provide a brief overview of the structure and function of the cytoskeletal 

filaments and motor proteins frequently incorporated into active nanosystems, first describing 

microtubules, kinesins, and dyneins, and then actin filaments and myosins.  

 

Microtubules. The microtubule is the most widely used filament in active nanosystems, as it is a 

rigid, polar rod with a high density of binding sites for motors and cargo alike.  This filament 

takes the form of a hollow cylinder 25 nm251 in outer diameter and 17 nm in inner diameter,252 

with a length ranging from one micrometer in a cell to tens of micrometers in active 

nanosystems.230, 252  Microtubules have three levels of structure: the alpha-beta tubulin 

heterodimer,253 the protofilament,254 and the microtubule itself.255, 256  The assembly process of a 

microtubule is activated by the presence of GTP.  The binding of GTP to free tubulin 

heterodimers induces a conformational change257 which makes dimer-dimer binding favorable.  

Tubulin heterodimers assemble longitudinally in a polar manner (with beta tubulin of one 

heterodimer binding the alpha tubulin of the next heterodimer) to form protofilaments.  The 

alpha-beta binding orientation grants the microtubule polarity; to describe the orientation of the 

microtubule, the end with exposed beta-tubulin subunits is called the “plus” end of the 

microtubule, while the end with exposed alpha-tubulin is called the “minus” end.  In vitro, the 

plus end polymerizes faster than the minus end258, which results in an asymmetric length 

distribution known in polymer science as the “Schulz distribution.”259  The protofilaments 

assemble laterally with a 0.9 nm offset between individual protofilaments and a 4.9 nm offset at 

the seam (termed an A-seam, where alpha monomers laterally bind beta monomers and vice 

versa260) to form the helical structure of the microtubule.261, 262  The number of protofilaments in 
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a microtubule can vary between 9 and 16.263, 264  However, due to the lateral offset of 

protofilament assembly, a 13 protofilament microtubule is the only one where protofilaments are 

not supertwisted; microtubules consisting of different numbers of protofilaments forces the 

protofilaments to exhibit a helical twist around the central axis of the microtubule.264  A recent 

direction of research has been analyzing the mechanical and stability properties of these 

‘supertwisted’ microtubules.260, 265 

An important property of microtubules is their kinetic instability. (Figure 5.2a)  In the 

absence of stabilizing agents, microtubules exhibit a phenomenon termed, ‘dynamic instability,’ 

where they alternate between phases of growth and “catastrophe,” when they rapidly 

disassemble.266  This process is caused by the hydrolysis of the GTP in the heterodimer subunits 

into GDP, resulting in a strain on the microtubule lattice.267-269  Considering this inherent out-of-

equilibrium behavior of a polymerized microtubule,270 it is not surprising that researchers have 

demonstrated that the polymerization and depolymerization of microtubules can perform work in 

the absence of molecular motors, making the un-stabilized microtubule a “molecular machine” 

even by itself.258, 271-274 

While this kind of instability can be useful in cellular processes, where e.g. repeated cycles of 

microtubule assembly and disassembly facilitate the capture of chromosomes by the spindles 

during mitosis, it can be unfavorable in active nanosystems, where filaments must remain intact 

over time periods spanning several hours.  As a result, microtubules are often stabilized with 

taxol, a molecule which reversibly binds tubulin dimers and stabilizes the microtubule against 

depolymerization,275 the non-hydrolyzable GTP-analogue GMP-CPP,268 or both.276 
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Kinesin.  One of the main roles of microtubules in cells is to provide a rail for kinesin motors.  

Kinesin motors were first identified in 1985 as force generating proteins involved in 

microtubule-mediated organelle transport.228  Typically, kinesin motors consist of motor (head) 

domains and a coiled-coil domain.  So far, researchers have discovered 15 different families of 

kinesin motors, 166 which are mainly identified based on conserved sequences in their head 

domain.277, 278  The families can be grouped into three groups based on the position of their 

motor domain; N-terminal motor domains drive kinesins toward the plus end of microtubules, C-

terminal motor domains drive kinesins to the minus end of the microtubule, and motor domains 

located in the middle of the kinesin cause microtubule depolymerization.166  The most 

commonly-used kinesin in active nanosystems is kinesin-1 (also termed KIF5 or conventional 

kinesin), which drives plus-end directed microtubule transport.  Other kinesin superfamily 

proteins that have been used include kinesin-8,279 kinesin-3,280 and kinesin-5.281  We will 

primarily focus on kinesin-1 in this chapter due to its popularity. 

The kinesin-1 motor protein moves along single protofilaments of microtubules282 towards 

their plus end at a maximum velocity between 0.8 μm/s and 1.8 μm/s,283 with a stall force of 7 

pN;149, 284 these quantities are strongly dependent on the concentrations of both ATP and ADP in 

solution (for example, a 1:1 ratio of saturating ATP and ADP can decrease the stall force by as 

much as 50%).  During each step, a kinesin motor moves 8 nm along the microtubule, 

corresponding to the length of a tubulin heterodimer.285  An important aspect of the kinesin 

motor is its processivity: unlike other molecular motors, the kinesin motor stays bound to the 

microtubule for about 100 steps before unbinding.174, 286   

The mechanochemistry of kinesin-1-based propulsion has been a topic of great interest ever 

since the motor’s discovery; even now a complete consensus has not yet been reached as to 
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which conformational changes occur within the motor during ATP binding and hydrolysis into 

ADP and inorganic phosphate.277  The key structural elements of the kinesin mechanochemical 

cycle are the motor head, which binds the motor to the tubulin heterodimer, and the neck linker, 

which provides tension-mediated coordination between the motor heads.  During each step, the 

kinesin motor undergoes a cycle of ATP hydrolysis into ADP and inorganic phosphate.(Figure 

5.2b)  The motor head remains strongly bound to the tubulin heterodimer while its catalytic core 

is empty (apo), bound to ATP, and bound to ADP.Pi (ADP and inorganic phosphate).287  

However, once the release of a phosphate molecule from the ADP.Pi bound state leaves only an 

ADP molecule within the catalytic core, the motor domain undergoes a conformational change 

which lowers its affinity to the tubulin heterodimer, thereby allowing the motor head to detach 

and make a step.  When the kinesin head detaches, it rotates around the coiled coil of the 

motor190 and binds to the next tubulin heterodimer of the protofilament 16 nm away,167 thereby 

displacing the whole motor 8 nm. 

 

Dynein.  Dynein is a motor protein that exhibits microtubule minus-end direction motion. 

Whereas kinesin motors transport cargo towards the periphery of the cell, dynein motor proteins 

transport cargo toward the interior of the cell, close to the nucleus. Understanding how this 

motor functions is of immense scientific interest, as it can both play a significant role in 

pathologies, where the motor is hijacked by an infectious agent and transports it to the nucleus of 

the cell,288 and also because it has a unique structure compared to the kinesin motors.167  There 

are typically two types of dynein motors in eukaryotic cells.  Cytoplasmic dynein plays 

important roles in mitosis and retrograde cargo transport.289  On the other hand, axonemal dynein 

motors are located in cilia and flagella, where they drive cellular propulsion.290  Dynein motors 
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are also significantly larger than kinesin and myosin motors, weighing in at 1.5 MDa, compared 

to 360 kDa174 for kinesin and 520 kDa for myosin II.291  The step size of cytoplasmic dynein has 

been observed to vary between 4-32 nm.167   Both stall force and unloaded velocity has been 

found to vary significantly between species, ranging from 1-2 pN and >1000 nm/s in mammalian 

dynein, to 5-7 pN and 100 nm/s in yeast dynein.292 

 

Actin Filaments.  The second cellular filament involved in motor-driven cellular dynamics is the 

actin filament.  Actin filaments power processes ranging from cellular migration to muscular 

contraction, where they constitute the structure of the thin filament in the sarcomere.  In cells, 

actin filaments (also called F-actin, for filamentous) are typically nucleated upon an Arp2/3293 

complex and grow once the critical concentration294 of globular actin (G-actin, for globular) is 

high enough.  Unlike microtubules which use GTP to power polymerization, actin filament 

polymerization is activated in the presence of ATP;295 in fact, ATP-bound G-actin has a 20 times 

lower critical polymerization concentration than ADP-bound actin.5  Similar to microtubules, 

actin filaments have polarity, with a front, “barbed” (+) end (where polymerization mostly 

occurs) and a back, “pointed” (-) end.  The filament takes the shape of a two-stranded cable, with 

each consecutive monomer undergoing a rotation of 166o and a translation of 25.5 A.5  While 

actin filaments do not undergo dynamic instability as microtubules do, they still can 

depolymerize when the bound ATP molecule hydrolyzes into ADP.  Unlike microtubules, actin 

filaments do not accumulate strain during polymerization and typically disassemble from their 

pointed end; disassembled monomers can then be reused by binding a new molecule of ATP and 

diffusing to the barbed end of the filament; this gives rise to the “treadmilling” phenomenon, 

where monomers are continuously recycled from the pointed end to be reincorporated at the 
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barbed end.296 Depolymerization of actin filaments can be averted by the addition of phalloidin, a 

molecule that binds between F-actin subunits and inhibits the ATPase activity of the actin 

subunits.297  In addition, due to its higher affinity for polymerized actin over monomer G-

actin,297 phalloidin is especially useful for targeting filamentous actin for labeling. 

 

Myosin.  Myosin motor proteins drive transport along actin filaments.  In muscles, myosin 

motors bundle together to form the thick filament of the sarcomere, which interacts with the actin 

filaments of the thin filament of the sarcomere to create contractile force.  Similar to kinesin, 

myosin is a directional motor that consumes one ATP molecule per step.  Unlike kinesin 

however, the most widely used myosin motor in active nanosystems, myosin II, is not a 

processive motor: after each step, the myosin motor unbinds from the actin filament.298   For this 

reason, myosin-II mediated transport must be accomplished by utilizing teams of myosin motors, 

so as to prevent the motors and cargo from diffusing away from the filament between rebinding 

events, and step sizes can vary between 5 – 15 nm.299  This non-processive behavior allows the 

motor to move significantly faster along the filament; myosin II can move along actin at 

velocities as high as 8 μm/s, ten times faster than kinesin-1. 298 The chemomechanical cycle for 

myosin II is different from kinesin as well.  Whereas kinesin motion is governed by neck linker 

docking upon ATP binding, myosin-II motion is governed by a powerstroke of its lever arm 

upon phosphate release.5  Furthermore, myosin has a high F-actin affinity in the ADP-bound and 

Apo states, but exhibits a low affinity for actin in the ATP and ADP.Pi-bound states, 300 with 

undocking occurring during ATP binding and redocking occurring during the ADP.Pi state.299  

Not all myosin motors are non-processive.  For example, myosin V is a double headed motor 

that processively walks along the actin filament, taking at least 40 steps on average before 
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unbinding.  This processive myosin motor achieves velocities at saturating ATP concentration of 

about 300 nm/s and exhibits a stall force of approximately 3 pN.301 

The actomyosin system has also been widely used to construct active nanoscale systems due 

to its distinct advantages, such as 10x faster motility compared to kinesin/microtubule systems. 

However, binding cargo molecules to the actin filament is more difficult, due to a lower density 

of binding sites compared to microtubules.291  The actomyosin system has also been employed in 

studies of active matter, where motor speed allows straightforward observation and analysis of 

dynamic topological behaviors.302 
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Figure 5.2: Microtubules and kinesin motors function out of equilibrium.  (A) Microtubules 

are polar polymers consisting of a roll of laterally-bound protofilaments which consist of alpha-

beta tubulin heterodimers bound end to end.  Unstabilized microtubules undergo dynamic 

instability: a phenomenon characterized by stochastically alternating phases of polymerization 

and “catastrophe:” a rapid depolymerization where whole pieces of the microtubule break off 

due to the accumulated strain of GDP-bound tubulin heterodimers.  Adapted from Calligaris et 
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al.303  (B) The kinesin stepping cycle.  Each kinesin head is coupled to an ATP hydrolysis cycle, 

with Apo (empty), ATP-bound, ADP.Pi-bound kinesin heads strongly bound to the microtubule, 

while the ADP-bound state is weakly bound, which allows a step to happen.  Interhead 

coordination is mediated by tension in the neck-linker domain.  Adapted from Hancock.277   
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Interactions between components of active nanosystems 

In this section, we will examine the interactions between filaments and motors and their 

responses to external stimuli. 

 

Filament response to external load.  The mechanical properties of motor-propelled filaments 

determine the length scale over which they can be guided and their resistance to deformations in 

response to external loads.  The metric that is commonly used to evaluate these quantities is the 

flexural rigidity of the filament, which is related to the persistence length of the filament by a 

factor of kBT.252  In the first attempt to measure the flexural rigidity of a microtubule, the 

distribution of end-to-end distances of microtubules stuck to a surface yielded an estimate of 74 

μm for the persistence length.304  Later, Gittes et al.305 observed microtubules and actin filaments 

freely bending in solution in response to thermal fluctuations and estimated the flexural rigidity 

of a microtubule at 2.2 x 10-23 Nm2 (LP = 5.2 mm) and of an actin filament at 7.3 x 10-26 Nm2 (LP 

= 17.7 μm).  While it is now accepted that the persistence length of a microtubule is on the order 

of 1-10 mm, a definitive number has not yet been established.  Indeed, several alternative 

methods have been developed to calculate the persistence length, which include using 

hydrodynamic flows to measure bending in response to a force,306, 307 measuring relaxation times 

from deformations,308, 309 using optical tweezers to determine buckling forces,310-313 and 

others.252 Several hypotheses have been developed to explain the wide range of measurements, 

ranging from inaccurate drag measurements during hydrodynamic bending experiments to 

internal microtubule friction when measuring stiffness by analyzing the modes of thermal 

fluctuations.311  Even more, there appear to be dependencies on filament length, stabilization 

method (unstabilized, taxol, GMP-CPP), and polymerization procedures.  An additional source 
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of error for these measurements could be the reliance on the Euler-Bernoulli theories for beam 

bending, which assumes that the microtubule is a hollow cylinder of an isotropic material.314  

However, the protofilament structure of the microtubule makes it a highly anisotropic material, 

because the lateral bonds are much weaker than the longitudinal bonds between tubulin 

dimers.311  A recent study that ventured to map out this anisotropy by measuring the strain across 

a microtubule while applying increasing loads conjectures that the loads that microtubules 

experience during passive measurements, such as when using thermal fluctuations, access a 

different strain regime than microtubules that are subjected to active loads, such as those by 

optical traps.313 

 

Motor-filament interactions.  The traditional role of the motor-filament interaction is 

propulsion.315  However, it has also been found that motor binding can induce large scale 

conformational changes within the microtubule lattice,316 which in turn can influence processes 

such as microtubule wear and microtubule stability, and create feedback on propulsion 

velocity241, 283, 317and even motor binding itself. 318-320  

The repetitive forces exerted by motor proteins stepping on filaments can be expected to 

cause mechanical wear and fatigue as in macroscopic systems. The ensuing degradation of the 

filament can become a rate limiting factor for system lifetime; whereas the ability to control this 

process could allow the introduction of regulatory pathways similar to those of the 

depolymerizing motors kinesin-8279, 321, 322 and kinesin-13.323, 324  

The question whether the cyclical motion of kinesin motors along microtubules can cause 

degradation has been studied by Dumont et al.325 .  It was observed that the propulsion of taxol-
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stabilized microtubules on high densities of kinesin motors (300-4000 μm-2) causes gradual 

shortening of microtubules, which exceeded the stationary Taxol-stabilized microtubule 

shrinking rate by over two-fold.  In addition, the shrinking rate was found to increase with 

velocity as well as motor density as the surface-bound motors transition from a “mushroom” to a 

tightly packed “brush” configuration.326 

However, Reuther et al.327 observed that the shrinking rate of stationary microtubules 

decreased with increasing kinesin density at low to intermediate densities (3-30 μm-2), and that 

the shrinking rate of gliding microtubules at intermediate densities of kinesin (30 μm-2) was 

similar to that of stationary microtubules at low kinesin density.327  This suggests that kinesin 

binding stabilizes microtubule ends against polymerization.  Microtubules not stabilized with 

taxol have also been found to depolymerize slower in the presence of ATP and kinesin.316  

The observations of gliding microtubules on surfaces coated with high densities of kinesin 

motors using high speed atomic force microscopy by Jannat Keya et al. revealed that the 

shrinking associated with gliding is not caused by depolymerization (which kinesin motors 

protect against as Reuther et al. have shown) but by forceful removal of protofilament segments 

from the tip of the gliding microtubules by slow or inactive kinesin motors.328  A similar 

observation of microtubules splitting into protofilament bundles was observed by VanDelinder et 

al.329   

Motor binding to microtubules has been shown to exhibit cooperative behavior, where the 

binding of one motor increases the binding rate for the next motor.319, 320  At the same time, 

crowding of motors on microtubules can lower individual motor processivity; Telley et al.330 

found that mGFP-labeled kinesin motors tend to detach prematurely from microtubules upon 
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encountering rigor kinesin mutant roadblocks. Furthermore, experiments by Leduc et al. 

demonstrated that traffic jams in motor transport along microtubules were caused by two factors: 

motor density surpassing a critical threshold and slow dissociation of motors from microtubule 

ends.279 Another mode for negative interference between microtubule-bound kinesin is only 

observed in systems with the inverted motility configuration.  It has been found that tight 

mechanical coupling between motors with shortened stalks can play a significant role in 

decreasing the velocity of gliding microtubules.317  If the microtubule-motor bond is especially 

taught, then the stepping cycle of a motor can be affected as it pushes against all other motors 

bound to a microtubule.  These effects were observed by Bieling et al.317 with a kinesin-1 

construct consisting of the first 401 amino-terminal amino acids at densities ranging from 100 to 

10000 μm-2.  These results were confirmed by Inoue et al.241, who demonstrated that 

microtubules propelled by similarly short GFP-fused kinesin-1 motors consisting of the first 560 

amino acids of human kinesin-1 achieved a maximum velocity at a motor surface density of 112 

μm-2.   

 

Filament-filament interactions.  Systems of active nanoscale filaments can be used to study self-

assembly processes 152 and active matter.210  The key ingredient to these studies is the 

incorporation of interactions between individual gliding filaments.  In typical systems with the 

inverted motility configuration, there are no interactions; whenever gliding filaments collide, 

they cross over (or under) each other with no measurable change in gliding direction.194  The 

introduction of inter-filament interactions usually manifests itself in higher frequencies of 

filament alignment during collisions.  Strong interactions may be introduced in systems of 

gliding microtubules by incorporating biotin-streptavidin cross links,204 or in systems of gliding 
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actin filaments by incorporating facsin.208  Weaker interactions can be generated by depletion 

forces, induced by crowding agents such as methylcellulose or Pluronic F127.213, 214, 233, 331, 332  

Dynein motors and truncated kinesin motors can induce a strong enough filament-surface bond 

to prevent filament crossovers during collisions due to steric effects.333, 334  A new approach for 

the self-assembly of strong microtubule-surface bonds through mutualistic interactions of 

microtubules and kinesins will be demonstrated in the Chapter 6. 

 

Filament-cargo interactions.  Cargo can be attached to filaments by functionalizing individual 

subunits of the filament.291, 335  The simplest approach is to use sticky biotin/streptavidin bonds335 

and optimize the interaction time336 and binding site density.337 However, the high strength of 

this bond limits applications where cargo must be repeatedly dropped off or picked up.  

Alternative approaches include DNA functionalization,197 antibodies,338 and others.339-341  A 

complication that can arise is that the introduction of cargo binding sites on a propelled filament 

may create roadblocks for motor binding.342, 343  Somewhat surprisingly, supertwist in 

microtubules, which causes rotation of the microtubule, has been found to not have an effect on 

cargo transport reliability.198 

 

Motor-surface interactions.  In a traditional inverted motility assay, molecular motors are 

irreversibly bound to the surface.  Motor immobilization on surfaces can be achieved using a 

variety of routes, including through the use of casein coatings which help the binding of kinesin 

motors in the proper orientation,344, 345 and through the use of antibody coatings346 that bind 

specific domains on the motor.  In this respect, an interesting distinction between the kinesin-1 
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and myosin-II inverted motility assays is that kinesin motors preferentially bind hydrophilic 

surfaces,347, 348 while myosin motors preferentially bind hydrophobic surfaces.347, 349-351  Reviews 

on the interactions between motors and surfaces have been published by Fischer and Hess,352 and 

Månsson et al.353 

A disadvantage of systems where motors are irreversibly immobilized on a surface is that a 

large fraction of the motors does not participate in the propulsion of the sparsely distributed 

filaments.  In addition, defective motors can cause microtubules to become attached, exhibit a 

fish-tailing behavior,204, 354 and break.  To combat these concerns, our lab recently developed a 

new method which reengineers the surface-motor bond by coating the surface with a 

nitrilotriacetic acid (NTA)-functionalized polymer which can reversibly bind hexahistidine 

(His6) groups via a chelated nickel ion.  The introduction of this weak His6-Ni2+-NTA bond 

resulted in the kinesin existing in an equilibrium between a surface-bound and free-in-solution 

state.  Gliding microtubules were observed to have a tolerance to defective motors, with fish-

tailing events never occurring.43  Another instance of a reversible surface-kinesin bond was 

recently demonstrated, where motors would only bind to the surface in the presence of light,234  

allowing for the controlled landing of microtubules.    
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Implementations of active nanosystems 

The majority of active nanosystems are based on inverted motility systems, where filaments 

glide upon surface-immobilized motors.  In this section, we will give an overview of applications 

of these systems toward cargo delivery, sensing, control, and higher order structure generation.  

We will additionally cover how the system lifetime can be extended. 

 

Delivering cargo in active nanosystems.  Molecular motors transport cargo in cells. Similarly, a 

large portion of the scientific literature studying active nanosystems has focused on developing 

novel methods for cargo delivery.  The types of cargo that have been transported include 

molecules,216, 355 quantum dots,196, 356, 357 microspheres,237, 336 metal-organic frameworks,358 

catalysts,359 nucleic acids,219, 360 viruses,361 and gold nanoparticles.362, 363 

There have been several proof of concept demonstrations of cargo transport using molecular 

motors.  In one of the first of such demonstrations, researchers stretched DNA molecules 

tethered to microtubules by biotin-streptavidin bonds.360  In later studies, researchers focused on 

expanding the variety of cargo that could be delivered by engineering alternatives to the biotin-

streptavidin filament-cargo tether.  An “immunoassay on a filament” was implemented by 

functionalizing microtubules with antibodies; it was first used to detect tomato mosaic 

tobamoviruses,361 and later, for multiplex sensing of the cytokines interleukin-2 and tumor 

necrosis factor alpha.196 

Gold nanoparticles, fluorescent microspheres, and quantum dots can be used as model cargo 

to test system concepts.  For example, gold nanoparticles conjugated to anti-biotin antibodies 

have been used as the model cargo for determining optimal conditions in a loading area of an 

active nanosystem,363 where it is necessary that the cargo binds sufficiently strongly to the 
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“loading dock” so as to not diffuse away, but also weakly enough so that it could be pulled off by 

a gliding microtubule.  In another study, the loading of fluorescent microspheres onto gliding 

filaments was observed to determine the optimal geometries for cargo loading.336  Quantum dots 

loaded onto microtubules gliding on a kinesin-coated silicon surface were employed to study 

how the rotation of a microtubule about its central axis affects cargo retention.246 

The next step involves both unloading and loading of cargo in the same system (Figure 

5.3a).362  In one study, quantum dots were used as model cargo in a demonstration of filament 

loading and unloading in solution.197  In this system, microtubules were functionalized with a 

single stranded oligonucleotide, and cargo was bound to a complementary single stranded 

oligonucleotide.  The cargo would bind to the filament by complementary base pairing as the 

loading phase.  Then, restriction enzymes were employed to sever the microtubule-cargo bond as 

the unloading phase.  Gold nanoparticles were used as model cargo to demonstrate spatial 

separation of cargo loading and unloading in an active device via the nonlinear characteristic of 

the force-unbinding rate curve of DNA oligonucleotides.362  Later, pressure driven flow was 

combined with microtubule-drive motion to develop a device which allowed the sequential 

loading and unloading of molecular cargo.364 

These concepts have been demonstrated with the actomyosin system as well.365-367  Actin 

filaments gliding on myosin-coated surfaces have been observed to successfully transport 

liposomes,368 microbeads,369 quantum dots,356 and more.199, 370 

 

Sensing using active nanosystems.  Filaments propelled by surface-adhered motors have been 

used to capture, tag, and aggregate molecular analyte for fluorescence detection, to explore the 



107 

surfaces they are moving on and report about their properties, and to exert forces to measure 

intermolecular interactions.  

 

Biosensors.  Motor-propelled filaments can selectively capture and move analytes and tags, and 

thereby replace wash steps in traditional assays.216 For example, in the “double antibody 

sandwich” assay, two antibodies are chosen for a specific antigen; one antibody is conjugated to 

the gliding filament, and the other to a fluorescent marker.  The conjugated filaments capture the 

antigen as they glide and then bind the second antibody and its marker. Gliding filaments with a 

high number of fluorescent markers indicate the presence of the analyte.  This approach has been 

used to identify a variety of analytes, such as viruses,361 cytokines,196 staphylococcal enterotoxin 

B,215 and even mercury ions.220 

The dynamic properties of gliding filaments can be used as reporters for detection as well.  

Microtubule self-assembly has been used as a signal for the presence of leukemia 

microvesicles.221  Recently, the landing rate and gliding dynamics of microtubules were 

suggested as parameters to evaluate the activity of isoforms of the microtubule associated protein 

Tau.222  Similar studies have been employed in the actin-myosin motility assay to determine the 

effects of anti-F-actin antibodies, such as antigen-binding fragments of Immunoglobulin G, on 

smooth muscle function.223 

 

Surface Characterization.  Gliding filaments can sense surface obstacles and deformations.  One 

of the first demonstrations of this used gliding microtubules to determine the positions of pillars 

on a surface.  By observing the gliding of fluorescently-labeled microtubules on the surface and 
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summing the fluorescence of the images, researchers were able to create a topographic map of 

the surface (Figure 5.3b). 371  Gliding microtubules have also been used as probes for studying 

surface deformations.241  It was found that microtubules gliding on surfaces coated with 

truncated kinesin motors would experience changes in velocity and direction as the surface was 

deformed (thus changing inter-motor distance). When depletion forces were introduced into this 

system, gliding microtubules were found to generate collective formations, such as streams, 

diamonds, and more.372  Another study used microtubules labeled with quantum dots to map out 

the positions of 100 nm-wide nanoslits with 5 nm precision.373 

 

Force measurements. Microtubules bend in response to external loads.  By knowing the bending 

mechanics of a microtubule, one can extrapolate the force the filament is experiencing.  This has 

been done to study the rupture force of the biotin-streptavidin interaction.  In this experiment, the 

deflection of a stationary, cantilevered, biotinylated microtubule was measured in response to 

binding a streptavidin-coated bead which was being transported by a gliding microtubule.  The 

measured deflection was then used to derive the force acting upon the microtubule.  A particular 

advantage is of this approach is that, unlike traditional methods for studying molecular-scale 

forces, such as optical tweezers and AFM, these cantileverd microtubule allow the monitoring of 

several unbinding events in parallel.374  
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Figure 5.3: Implementations of active nanoscale systems based on cytoskeletal filaments 

propelled by surface-adhered motor proteins.  (A) Spatial separation of microtubule loading, 

transportation, and unloading.  Loading and unloading are achieved by using specialized 

oligonucleotides as tethers.  The increasing bond strength from loading station over the 

microtubule to the unloading station enables loading and unloading.  Adapted from Schmidt and 



110 

Vogel.362  (B) The motion of fluorescently labeled microtubules on a kinesin coated surface in 

the presence of pillars is imaged to generate a map of the surface.  Since the probability that a 

particular pixel has not been visited falls exponentially with time, this provides a “Monte Carlo”-

type surface characterization procedure.  Adapted from Hess et al.371  (C) Microfabricated 

rectifiers in arrow/spade-like shapes rectify filament motion, allowing for work extraction from 

streams of unidirectionally gliding filaments.  Filaments entering from the bottom of the arrow 

will funnel into the top.  Filaments entering from the top of the arrow will run into the wall and 

be redirected.  Adapted from van den Heuvel.375  (D) Optical control of kinesin surface binding.  

Exposure to blue light switches the affinity of anchor molecules, so kinesin motors accumulate 

on the surface.  This in turn causes accumulation of microtubules on the surface.  Adapted from 

Tas et al.234 
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Controlling the behavior of active nanosystems.  The function of active nanosystems may be 

guided by either passive or active control.  Passive control introduces guidance into the system 

during fabrication, an example of this are guiding structures defined by lithographic 

techniques.376-378  Active control, on the other hand, requires energy input during system function 

in the form of light,379 electric fields,380 magnetic fields,239 or heat 241, 242. 

 

Passive Control.  Passive control is used to arrange filaments into work producing 

configurations381 and to guide filaments for transport.  This is usually done by micropatterning 

the surface.  In the first approaches, myosin-coated elevated platforms of PTFE382 and PMMA383 

were used to guide gliding actin filaments.  However, there were two problems.  First, there were 

no walls: filaments would gradually leave the elevated platform.  Second, there was no 

directional control on the movement of filaments.  These two problems were addressed by 

Hiratsuka et al.381 by (1) replacing elevated tracks with guiding channels and (2) including 

rectifiers: arrow-like shapes236 which would reorient filaments gliding in undesirable directions 

(Figure 5.3c).  Later, modeling384-387 and experimental studies revealed how channel width and 

filament persistence length relate to give optimal guidance properties to channels.  

Photolithographic techniques have been developed to create “overhangs” which prevent the 

filaments from leaving the channel.200, 388  Alternative approaches to filament guidance include 

direct motor patterning in specific configurations,389, 390 by patterning hydrophilicity,212, PEG 

coatings,391, polyNIPAM coatings,392 UV-laser ablation,393 and inducing photodestruction of 

binding sites.235   
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Active Control.  Active control can be exerted over an active nanosytem through the use of light, 

heat, electric fields, and magnetic fields. 

The first demonstration of light-mediated control of active filaments was the use of caged 

ATP molecules, which are photolyzed by UV light to release ATP.237  Since then, researchers 

have succeeded in generating light-activated inhibitors and ATP analogs to control the function 

of kinesin motors.238, 394-398  More recently, light-mediated control has been expanded beyond 

kinesin ATPase activity.  Light-sensitive azobenzene molecules were used to control self-

assembly of microtubules functionalized with DNA oligonucleotides.211 Kinesin motors 

functionalized with a light-sensitive peptide were demonstrated to have controllable, light-

mediated surface binding (Figure 5.3d).234 

The controlled delivery of heat can alter the temperature of the entire device and thereby 

control the activity of the motor proteins399 or it can alter the temperature of specific surface 

regions coated with thermoresponsive polymers which expand or collapse in response to 

temperature changes.242, 400 Microtubule gliding can be gated by coating a thermo-responsive 

polymer onto a gold channel and transiently heating it with an electrical current to induce 

collapse of the polymer and permit the passage of the microtubule.401 

The use of electric fields to control the motion of active filaments is motivated by the 

negative charge of microtubules, which can be as high as 48 electrons per tubulin heterodimer 

based on x-ray crystallography structural data402, 403 although estimates from experiments have 

provided lower numbers.380, 404  Electric fields have been used to steer and sort microtubules 

gliding on a kinesin coated surface,240, 380, 405 attract microtubules to an oppositely charged 

surface,406 control microtubule velocity,407 and study the electrochemical properties of 
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microtubules.404, 408  However, a drawback of using DC electric fields is that they leads to 

electrolysis, forming bubbles and potentially damaging both electrodes and microtubules.408 

Magnetic fields have been used to steer gliding microtubules.239  While the polar structure of 

microtubules does provide diamagnetic anisotropy to microtubules,409 it has been observed that it 

takes 4-11 Tesla magnetic fields to orient microtubules.410  Since such strong magnetic fields are 

not suitable for typical laboratory settings, magnetic guidance of microtubules is achieved by 

functionalizing microtubules with magnetic nanoparticles, such as magnetic quantum dots411, 412 

or CoFe2O4 particles.239, 413  The advantage of magnetic fields over electric fields is that they do 

not create the problems associated with electrolysis and electroosmotic flow. 

 

Higher-order structure generation.  Microtubules and actin filaments are already self-assembled 

out-of-equilibrium structures,42 but the addition of motors further enriches the dynamics of the 

system.229 While weak and transient interactions lead to self-organization of the motor-filament 

system into transient structures dependent on a continuous flow of energy, strong interactions 

can cause “active self-assembly”,157 where emergent structures persist in the absence of motor-

generated forces but dynamically assemble and disassemble when motors are activated. This is 

demonstrated by a system of biotinylated microtubules partially coated with streptavidin gliding 

on a kinesin-coated surface, where the strong biotin-streptavidin interactions between gliding 

microtubules lead to the formation of wires and spools (Figure 5.4a).152  In an effort to make 

systems more dynamic, researchers experimented with weakening these inter-filament bonds.  

By the incorporation of depletion forces via addition of crowding agents such as 

methylcellulose213, 331 PEG,224 and Pluronic F127,233 filaments were shown to form streams and 

bundles.  The additional incorporation of mechanical forces led to the formation of diamond-like 
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formations (Figure 5.4b).372  High densities of microtubules gliding on dynein motors interacted 

to form large scale vortex lattices.333, 414  Recently, it was demonstrated that light activated bonds 

between filaments could be used to form streams and spools of filaments on demand by UV 

illumination.211  Our lab recently demonstrated that kinesin motors can be self-assembled by 

gliding microtubules when the kinesin-surface bond is weakened (Figure 5.4c).43, 44  In Chapter 

6, we will demonstrate how mutualistic interactions between mobile kinesin motors and gliding 

microtubules can generate strong microtubule-surface bonds and form collective behavior. 
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Figure 5.4: Self Assembly in active nanoscale systems.  (A) Self-assembly in the presence of 

strong interactions.  Biotin-functionalized microtubules gliding on a kinesin-coated surface in the 

presence of streptavidin stick together when they collide with one another.  However, instead of 

forming disorganized aggregates as would be expected for purely diffusive systems, these sticky 

gliding microtubules form wires and spools.  Adapted from Idan et al. 207  (B) Self-organization 

in response to dynamic boundary conditions.  Microtubules gliding in the presence of 

methylcellulose-induced depletion forces on a kinesin coated silicone elastomer which is 

contracting and expanding at different rates self-assemble into dynamic diamond-like structures.  

Adapted from Inoue et al.372  (C) Weakly surface-bound kinesin motors propel a microtubule.  

GFP-tagged kinesin motors weakly bind a polymer-coated surface via a His6-Ni2+-NTA bond.  

As a result, motors exist in an equilibrium between a surface-bound and in-solution state.  

Gliding microtubules assemble kinesin motors from solution and place them on the surface, 

using the motors to propel themselves forward.  Motors used to propel the microtubule remain 

behind in a temporary wake, until they unbind back into solution.  This can be observed under 

TIRF microscopy, where a line of kinesin motors (green) is seen left behind by the gliding 

microtubule (red).  Adapted from Lam et al.43    

 

 

  



117 

Active nanosystems employing the native motility configuration.  Studies involving the native 

motility configuration have been instrumental in developing the understanding of how molecular 

motors interact with filaments.  In addition, there are several examples of how active 

nanosystems can be built where the molecular motor is the motile element, similar to the cell. 

 

Biological Importance.  Svoboda et al.415-417 used the native motility configuration combined 

with an optical trap in order to demonstrate that kinesin-1 is a processive motor that takes 

discrete steps during its motion.  Since then, optical trap configurations have been used to study 

several other processive motors, such as myosin-V301 and dynein.289  Recently, optical traps were 

used to demonstrate that kinesin motors rotate unidirectionally during stepping,190  and to map 

out the two dimensional protofilament surface of a microtubule lattice by studying the 3D 

displacements of a kinesin motor walking along a microtubule.265 

 

Active nanosystems.  One of the most famous devices developed using the native motility 

configuration systems is the array of pixels developed by Aoyama et al.201  In this work, 

microtubule seeds were anchored to the center of hexagonal chambers using photolithographic 

processes and a mutated T93N-kinesin. The seeds were then grown by further polymerization 

into aster-shaped arrays of unidirectional microtubules extending throughout the chamber.  Then, 

dynein motors carrying pigment granules were flown into the chambers along with caged ATP, 

homogenously dispersing along the microtubules.  Upon illumination by a light source releasing 

the caged ATP, the dynein motors would walk toward the minus end of the microtubules located 

at the center of the chamber.  The increase in fluorescence at the center of the chamber enhances 
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the contrast against the background.  Different images can be formed by selectively illuminating 

separate chambers.  This work builds on the self-organized asters emerging from the interaction 

of multiheaded kinesin with microtubules in solution described by Nédélec et al., (Figure 

5.5a).229  Recent work has studied the programmability of the interplay between molecular 

motors, filaments, and DNA to self-assemble large scale structures for cargo 

loading/unloading418 (Figure 5.5b).  Multimeric kinesin motors cross-linking microtubule asters 

with DNA origami centers can also induce smooth muscle-like contractions in the presence of 

ATP.419 Kinesin Eg5 (kinesin-5) motors mixed with microtubules were observed to create 

globally contractile networks under appropriate conditions.281 These are important steps towards 

the construction of actuators powered by molecular motors.  
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Figure 5.5: Active nanosystems in the native motor-on-filament configuration.  (A) 

Solutions of tetrameric kinesin motors and microtubules form asters.  The motion of kinesin 

molecules toward the plus end of microtubules combined with cross-linking of pairs of 

microtubules ensures that microtubules will become organized with the plus end at the center.  

Adapted from Nedelec et al.229  (B)  Zinc Finger and DNA bound tetrameric kinesin motors are 

used to assemble microtubule asters, and programmably load and unload cargo using DNA 

strand displacement reactions.  Adapted from Wollman et al.418  
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Conclusion 

The first motility assays demonstrating filament propulsion by surface-adhered motors were 

performed by Vale et al. in 1985228 for the microtubule/kinesin system, and Kron and Spudich in 

1986 227 for the actomyosin system.  35 years later, scientists have developed dozens of 

techniques to design active nanosystems powered by motor proteins. Despite the remarkable 

progress, the functionality, complexity, and efficiency of these systems is still far from what they 

are in biological systems, such as the axons of nerve cells or sarcomeres of muscle cells. 

However, the technological arc of history points towards an ever-increasing number of 

smaller and smaller devices, which require actuation all the way down to the molecular.153 

Hybrid nanosystems which utilize highly functional nanomachines perfected by evolution over 

billions of years, such as motor proteins, are promising contenders to fulfill this emerging need. 

At minimum, continued experimentation will clarify general challenges in molecular and 

nanoscale engineering of mechanically active structures. In the best case, we will demonstrate 

our understanding of biological design principles, by acquiring the ability to engineer man-made 

structures of comparable complexity, functionality, and beauty. 

In this next chapter, we will build on the concepts of higher order structure generation and 

inter-filament interactions introduced in this chapter to demonstrate how mutualistically 

interacting gliding microtubules and mobile kinesin motors can generate collective behavior.  
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Chapter 6. Kinesin-Recruiting Microtubules 

Exhibit Collective Gliding Motion While 

Forming Motor Trails 
 

This section follows “Kinesin-Recruiting Microtubules Exhibit Collective Gliding Motion While 

Forming Motor Trails,” by Stanislav Tsitkov, Yuchen Song, Juan B. Rodriguez III, Yifei Zhang, 

and Henry Hess. (Under Review). 

 

Introduction 

Swarming organisms, such as flocks of birds, schools of fish, and tuxedos of penguins self-

organize and respond to environmental stimuli through inter-agent interactions420-426.  Advances 

in robotic technology427-429  and synthetic biology430-435 create a need for a fundamental 

understanding of how collective behaviors emerge as a function of the actions and interactions of 

individual agents; it would allow for better design in applications ranging from drug delivery by 

colonies of magneto-tactic bacteria, over directing traffic flow of fleets of self-driving cars, to 

aerial control of gaggles of drones435-438.  Systems of active nanoscale filaments, such as 

functionalized microtubules propelled by surface-adhered kinesin motor proteins162, 181, 237, 240, 357, 

361, 363, 374, 439, are excellent testbeds for analyzing how simple interactions between agents result in 

dynamic self-assembly and collective behaviors.204, 207-209, 211-214, 224, 232, 331, 334, 440, 441  One of the 

first systems described consisted of biotinylated microtubules gliding on a kinesin-1 motor protein-

coated surface, which cross-link via biotin-streptavidin bonds and form spools and wires.152, 204, 

230, 442  Under optimal conditions nearly millimeter-long wires can form.207  Microtubules gliding 
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on kinesin motors in the presence of weaker, depletion force-induced interactions have been shown 

to form nematically organized streams.211-213, 331, 441  Microtubules gliding on truncated kinesin 

motors in the absence of depletion forces exhibited collective behavior dependent on kinesin 

surface density; these behaviors varied from long range order at low kinesin densities to clustering 

at high kinesin densities.334  Actin filaments gliding on myosin motors in the presence of depletion 

forces have been demonstrated to form streams and density waves, and have been used to test 

theories of active matter.208, 224, 440, 443   Microtubules gliding on dynein-coated surfaces have been 

found to nematically align upon collisions, resulting in the formation of large vortices.209  

These nanorobotic and active matter systems are constructed in a way that prevents the 

utilization of a large portion of the available components: the majority of the biomolecular motors 

attached to the surface are idly standing by, rather than actively propelling filaments. If motors 

could co-localize with cytoskeletal filaments, the utilization of system components and other 

benefits arising from motor-filament interactions, such as enhanced filament stability,316, 327 would 

be maximized. Such a mutualistic interaction444 between motors and filaments would be 

reminiscent of how the spread of fruit seeds by elephants leads to the growth of fruit-bearing trees 

along their paths.445-447  Our goal was to engineer such a mutualistic interaction in the microtubule-

kinesin system (Figure 6.1a). 

A first step towards that goal was to develop a system where motors could dynamically change 

their position, turning them into mobile agents. This was achieved in our previous work that 

described a system consisting of microtubules gliding on reversibly surface-adhered kinesins 

(Figure 6.1b).43, 44 Reversibility arises from a weak interaction between kinesins and the surface 

via Ni-NTA – His-tag bonds (Figure 6.1b).43  A microtubule gliding on the surface accumulates 

kinesin motors from solution, places them on the surface in a “trail” under itself, and uses them to 
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propel itself forward.  After kinesins have reached the end of a microtubule they are left behind, 

and unbind from the surface within a minute.  As such, kinesin motors undergo reversible 

transitions between four states: (1) diffusing in solution, (2) head-bound to a microtubule, (3) tail-

bound to the surface, and (4) doubly-bound to both the microtubule and the surface (Figure 6.1c). 

The earlier experiments did not demonstrate collective behavior, due to low microtubule densities 

and weak interactions between microtubules.  An important shortcoming of the system was that, 

due to the weak binding to the surface, 99% of the kinesin motors were diffusing in the solution 

without contributing to the generation of force.   

Here, a new regime of this dynamic system is demonstrated, where the density of Ni-NTA 

binding sites on the surface is hundred-fold increased and the kinesin population is shifted towards 

the surface-bound states (states (2) and (4) in Figure 6.1c). In this regime gliding microtubules 

exhibit collective behavior by assembling into dense bundles (Figure 6.1d). Bundling arises from 

a higher microtubule density and a direct, steric interaction discouraging microtubules from 

crossing due to a strong, kinesin-mediated microtubule-surface interaction, similar to that observed 

by Tanida et al.334 Kinesin motors are initially dispersed on the surface, but increasingly co-

localize with the microtubule bundles.  The resulting bundles provide not only a novel 

demonstration of mutualistic collective behavior in a system of two mobile agents, but also 

demonstrate the possibility of higher order self-assembly where both motors and filaments 

assemble hierarchically. 
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Figure 6.1. Studying collective behavior in the microtubule/kinesin system with reversible 

kinesin binding.  (a)  In the traditional microtubule-kinesin system, microtubules glide on surfaces 

uniformly coated with kinesin motors.  By tuning the microtubule density and steric interactions, 

Tanida et al.334 demonstrated that this system can be used to generate dense bundles (scale bar 20 

μm).  (Image adapted from Tanida et al. 334).  We engineer a system where kinesin motors 

dynamically reorganize to co-localize with microtubules.   (b) Schematic of the kinesin-surface 

bond.  In our dynamic system, kinesin motors labeled with green fluorescent protein (GFP-kinesin) 

and tagged with a His6 tag reversibly bind to the Pluronic-F108-NTA coated surface via a weak, 

His6-Ni-NTA bond.  (c) Schematic of motor binding states.  In our dynamic system, motors can 

access four states: diffusing in solution, head-bound to a microtubule, tail bound to the surface, 

and both head-bound to a microtubule and tail bound to the surface.  The fluxes between these 

states strongly depend on ATP concentration ([ATP]), microtubule surface density (σMT), and 

kinesin surface binding site density (σNTA).  The parameters LK and ρMT-K denote the reach length 
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of kinesin and kinesin linear density along the microtubule, respectively.  (d) (Top) Composite 

images of HiLyte 670 microtubules (red) and GFP-kinesin motors (green) imaged using total 

internal reflection fluorescence (TIRF) microscopy.  (Bottom) Individual channels showing the 

formation of bundles of HiLyte 670 microtubules (red) and trails of GFP-kinesin motors (green). 

Images taken 30 mins after the start of the experiment; the initial experimental conditions were 1 

mM ATP, 25 nM GFP-Kinesin, and 16 μg/mL tubulin. 

 

Results and Discussion 

Dynamics of the kinesin-surface interaction in the absence of microtubules.  Although stable 

microtubule gliding was achieved in the first demonstration of this dynamic system by Lam et 

al.43, its analysis revealed that the interaction of GFP-kinesin motors with the surface was weaker 

than expected: the association constant of GFP-kinesin binding to the surface was 0.3 μm-2 nM-1, 

which implied a Ni-NTA binding site surface density of 300 μm-2, (based on the 1 μM dissociation 

constant for the NTA-His6 bond accepted in literature448, 449) a value far below the maximum 

packing density of 62,500 μm-2 (considering a radius of gyration of about 2 nm for the Pluronic 

F108-NTA polymer).  The presence of imperfections in the coating was further highlighted by 

high densities of non-specifically bound kinesin aggregates on the surface. 

Here, the strength of the motor-surface interaction was increased by adopting a rigorous 

coverglass cleaning procedure, which included an acetone wash, a base etch, and a longer 

silanization step.  Furthermore, in order to lessen the stripping of Ni(II) ions from the surface, 

dithiothreitol (DTT) was removed from the oxygen scavenging system, and the Ni(II) ion 

concentration in the 2 mg/mL Pluronic F108-NTA coating solution was increased from 50 mM 

NiSO4 to 500 mM NiSO4.  The removal of DTT did not appear to have a significant effect on 
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photobleaching. The implementation of this cleaning procedure changed the dynamics of the 

interaction of GFP-kinesin with the Pluronic F108-NTA-coated surface.   

The kinesin-surface interaction was characterized in experiments where kinesin motors 

interacted with the surfaces in the flow cell in the absence of microtubules (Figure 6.2a).  Single 

molecule imaging of picomolar quantities of GFP-kinesins interacting with the surface were used 

to calibrate the fluorescence signal as a function of microscope, and camera settings and exposure 

time (Appendix Section D.1). 

The surface density of kinesin motors changed with time, increasing from 0 μm-2 to 1200 μm-

2 within the first 500 seconds of the experiment and then falling to 500 μm-2 within the next 1,500 

seconds (Figure 2a-c).  The slow rise in surface density can be attributed to the diffusion-limited 

landing rate of motors on the surface; the subsequent depletion of motors from the surface can be 

explained by the stripping of nickel ions from the surface by ethylene glycol tetraacetic acid 

(EGTA) molecules in the BRB80 buffer (Figure 6.2b-c).  Two different models incorporating mass 

transport-limited surface kinetics were used to fit the data: a two-compartment model which is 

commonly used to analyze data from signal plasmon resonance (SPR) experiments for binding 

kinetics,450, 451 and a landing rate model approximating the diffusion equation with reversible 

surface binding452 (Appendix Section D.2).  
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Figure 6.2. The kinesin-surface interaction via the NTA-His6 bond is dynamic even in the 

absence of microtubules.  (a) The binding of GFP-kinesin motors to the surface is observed via 

fluorescence imaging with TIRF illumination.  (b) Images of the surface at identical contrast 

settings taken at 0 s, 200 s, and 1800 s after the beginning of the experiment show a clear peak in 

fluorescence near 200 s.  (c) Average kinesin density over time (green) fit with a two-compartment 

model (black, dashed) describing mass-transfer limited adsorption of kinesin motors to the surface. 

Details on the calibration can be found in Appendix Section D.1. (d) In a Fluorescence Recovery 

After Photobleaching (FRAP) experiment a region of the field of view is photobleached, and the 

recovery of fluorescence in the bleached region is observed and compared to that of a nearby 

unbleached region.  (e) Images taken 0 s, 1500 s, and 3000 s after photobleaching, and (f) profile 

of fluorescence of unbleached area (green) and bleached area (black) obtained from the indicated 

areas as described in Appendix Section D.4.   
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While the models have different forms, they arrive at similar conclusions: The association 

constant for the motor-surface interaction is between 60-100 μm-2 nM-1, which implies a Ni-NTA 

surface density of 60,000-100,00 μm-2 (based on the accepted KD of 1 μM for the NTA-His6 

interaction), a value which is much closer to the packing density and compares well to SPR 

measurements of the Pluronic-F108 coating density on a gold surface of 58,000 μm-2.453  The rate 

constant for the decrease of the motor surface density at the longer time scale (>500 s) is 6 ⋅

10−4 s-1, presumably due to the stripping of Ni(II) ions from the surface by the 2 mM EGTA (a 

chelator for divalent ions) in the BRB80 buffer.  This stripping rate is comparable to the 1.7 ⋅

10−4 s-1 rate found by Nieba et al.448 for His-tagged streptavidin leaving a Ni-NTA Bioacore 

surface in the presence of 300 μM EDTA and the 3 ⋅ 10−4 s-1 stripping rate for hexahistidine 

peptides leaving a Ni-NTA coated surface in the experiments of Knecht et al.449  Nickel ion 

stripping was also observed in a similar assay examining microtubule gliding on a tris-NTA coated 

surface by Bhagawati et al.235  We ensured that the fall in fluorescence was not due to 

photobleaching by observing that unexposed regions of the surface 200 μm away had similar 

fluorescence.  The surface density of motors stopped falling after 5000 s (Appendix Section D.3), 

at which point it reaches a steady state value of 180 ± 40 μm-2 (N=7, Standard Error).    

To ensure that the reversible binding of the motors was still operational while the motor density 

was falling, a fluorescence recovery after photobleaching (FRAP) experiment (Figure 6.2d-f) was 

performed.  The recovery of fluorescence in the bleached area was compared to that of an 

unbleached area 20 μm away.  It was found that while the fluorescence of the unbleached portion 

of the surface was steadily falling, the fluorescence of the bleached area initially increased, and 

then fell to match the diminishing intensity of the unbleached area.  The ability of the surface to 
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recover fluorescence after photobleaching indicates that the surface-kinesin interaction remains 

specific and reversible. 

The unbinding rate of the kinesin from the surface was determined by single molecule imaging 

of individual GFP-kinesins landing and leaving the surface (Appendix Section D.5).  90% of the 

binding events identified by the tracking program had off-rates greater that 0.12 s-1.  This could 

correspond to the His6-Tag-mono-NTA off rate constant of 1.8 s-1 found be Lata et al.454; however, 

the accuracy of this estimate is limited by the minimum 0.5 s exposure time necessary to image 

the single fluorophore and also limited by the false-positive rate of the automation of the tracking 

program. 10% of tracked kinesin motors unbind from the surface with an off rate of 0.024 s-1, 

which is in excellent agreement with the experimentally determined off-rate for His6-Tag-bis-NTA 

binding of 0.022 s-1 found by Lata et al.454   

An additional interesting behavior observed in these single molecule experiments was the 

surface diffusion of individual motors (Appendix Section D.5).  By fitting their mean square 

displacement (MSD) with 𝑀𝑆𝐷 = 4𝐷Δ𝑡 + 𝑐, it was found that GFP-kinesins had a surface 

diffusion coefficient of (1.70 ± 0.02) ⋅ 10−3 μm2 s-1, which is remarkable because a surface 

density of binding sites on the order of 60,000 μm-2 and an off rate as high as 1.8 s-1 would imply 

a surface diffusion coefficient of 3·10-5 μm2/s, suggesting that the movement of individual 

fluorophores is due to either displacement reactions or crawling mechanisms.455, 456 

 

Dynamics of microtubule motility.  In pursuit of our goal to enhance microtubule interactions as 

they are propelled by the kinesin on the surface, we increased the microtubule surface density five-

fold relative to Lam et al.43 to 14,000 mm-2. The microtubules had an average length of 21 ± 1 

μm and were gliding in the presence of 25 nM GFP-kinesin and an initial ATP concentration of 1 
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mM (initial velocity: 610 ± 10 nm/s).  The microtubule density was chosen such that the rate of 

collisions between microtubules (proportional to the microtubule density 𝜎, length 𝑙, and velocity 

𝑣: 𝑘𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛 ~ 𝜎𝑙𝑣) was roughly an order of magnitude larger than the rate at which a gliding 

microtubule loses directional information  (proportional to velocity and inversely proportional to 

a trajectory persistence length 𝐿𝑃: 𝑘𝑝𝑒𝑟𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑒 ~ 𝑣 𝐿𝑃⁄ ).  This gives a critical density of 𝜎𝑐𝑟𝑖𝑡 ≈

1 𝐿𝑃𝑙 = 500 𝑚𝑚
−2 ⁄ for 20 μm-long microtubules with a trajectory persistence length of 100 

μm.385  The microtubules surface density used by us is similar to the 50,000 mm-2 used to form 

vortex lattices on dynein-coated surfaces209 and an order of magnitude smaller than the 280,000 

mm-2 critical density determined for microtubules gliding in the presence of methylcellulose-

induced depletion forces to demonstrate ordered behavior.213 

Under these conditions, we observe microtubule bundle assembly driven by the nematic 

alignment of microtubules upon collisions (Figure 1d).  However, due to the rapid conversion of 

ATP by the 25 nM kinesin (at a rate of up to 2 μM/s), the gliding velocity begins to fall within the 

first 10 min of the experiment. We therefore increased the initial ATP concentration to 10 mM and 

imaged the dynamics over the course of 2 hours, during which the microtubule velocity had fallen 

from an initial 720 ± 20 nm/s down to 16 ± 1 nm/s.  During this time period, gliding microtubules 

formed bundles and kinesin motors were redistributed from the surface to the microtubules (Figure 

3a).  This redistribution of kinesin can be observed in the composite images of the microtubule 

and kinesin channels.  In these images, the color of individual microtubules changes from red at 

time t = 0 s to yellow at t = 7000 s.  At the same time, the green background of kinesin fluorescence 

vanishes. 

The temporal evolution of the distribution of kinesin and microtubules on the surface was 

quantified by recording the pixel-wise mean and variance of the flattened images of the 
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microtubule and kinesin channels. The means of both channels remain roughly constant over time, 

indicating that the numbers of microtubules and kinesins remain constant (Appendix Section D.6). 

However, the ratio of variance to mean (Figure 6.3b) – often employed as a measure of 

swarming457 – shows a noticeable increase after 1 h.  This increase is more striking in the green 

channel, as motors transition from being homogenously distributed across the surface to being 

concentrated along the microtubules.  The transition is less apparent in the microtubule channel 

because even the initial, disordered distribution of microtubules has a high variance due to their 

rod-like shape. By fitting the pixel-wise green channel fluorescence as a linear function of the 

pixel-wise red channel fluorescence, it is possible to decompose the fluorescence of the green 

channel into a background and microtubule-bound component (Figure 6.3c).  The rate constant for 

background depletion is 2·10-4 s-1, similar to the 6·10-4 s-1 stripping rate constant found for kinesin 

leaving the surface in the microtubule-free assay described in the previous section, suggesting that 

as the kinesin is finding fewer binding sites on the surface, it accumulates on the microtubules.  

The temporal evolution of the velocity of the microtubules is shown in Figure 6.3d, where the 

average velocity of 10 microtubules was recorded every 100 frames and fit with a model 

accounting for the Michaelis-Menten dependence of kinesin activity on ATP concentration and 

the resulting ATP depletion.  The fit parameters were a KM of 1.8 mM, a vmax of 920 nm/s, and an 

active kinesin concentration of 24 nM. The high KM value originates from the accumulation of 

ADP and Pi in the solution as a result of ATP hydrolysis, because ADP acts as an inhibitor.458  

Microtubule velocity can also be affected by the mechanical coupling of surface-bound motors 

and crowding of motors along individual microtubules, which is not modeled here.317, 459  The high 

concentration of active kinesin (95 % of all kinesins), demonstrates that almost all kinesins are 
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stepping on microtubules, because kinesin ATPase activity is dependent on microtubule 

binding.460   

The drastic increase in microtubule bundling and kinesin colocalization with microtubules after 

one hour coincides with a significant decrease of the gliding velocity (Figure 6.3b,c). The 

decreasing kinesin velocity combined with a largely unchanged run length of the kinesin 

(Appendix Section D.7) yields a greatly reduced unbinding rate from the microtubule (as low as 

0.009 s-1 based on a FRAP experiment). A decreasing unbinding rate from microtubules in turn 

stabilizes the kinesin population on the microtubules relative to the kinesin population on the 

surface.  

The idea that longer-lasting kinesin-microtubule interactions are conducive to bundling is 

further supported by experiments with an additional 100 μM adenylyl-imidodiphosphate (AMP-

PNP), which acts as a non-hydrolyzable analog of ATP and locks kinesin motors in the 

microtubule-binding ATP-bound state.  This system demonstrated nematic alignment at the onset 

of the experiment but featured a noticeable increase in the number of spool-like bundles (Appendix 

Section D.8).  Similar spool-like bundles have been observed by Tanida et al.334 for microtubules 

gliding on high surface densities of kinesin, indicating that the AMP-PNP-induced spools we 

observe could be a consequence of a stronger microtubule-surface interaction mediated by 

kinesins. 

The effects of varying the kinesin and microtubule concentrations are shown in Appendix 

Section D.9. Increasing the kinesin concentration from 25 nM to 75 nM did not have a significant 

effect on microtubule dynamics.  However, decreasing the kinesin concentration to 3.1 nM 

prevented bundle formation and lowered microtubule surface-landing.  Decreasing microtubule 

density two-fold and ten-fold resulted in less dense bundles. 
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Figure 6.3. Microtubules assemble into bundles as GFP-kinesins assemble on microtubules.  

(a) Flattened composite images of microtubules gliding in the presence of an initial 10 mM ATP.  

(b-d) Analysis of flattened images in (a).  (b) Ratio of pixel-wise variance to pixel-wise mean 

plotted against time.  (c) Decomposition of mean green channel fluorescence into a background 

(green) and a microtubule-bound (orange) component, as determined by performing linear 

regression on green channel fluorescence as a function of red channel fluorescence.  (d) 

Microtubule velocity with respect to time, fit with a function accounting for ATP-dependent 

velocity and velocity-dependent ATP depletion.  
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Collective microtubule behavior arises from nematic alignment.  The emergence of collective 

behavior requires the presence of interactions between individual agents.  In this system, the result 

of these interactions is the nematic alignment of microtubules upon collision (Figure 6.4a).  The 

alignment is reversible, in that microtubules dissociate from bundles either mid bundle or at bundle 

turns (Figure 6.4b). 

In previous studies of microtubules propelled by (permanently) surface-adhered full-length 

kinesins, a microtubule colliding with another microtubule usually passes either over or under it, 

likely as a result of height fluctuations of the advancing microtubule tip194, 461. In studies 

demonstrating collective behavior, filament alignment has been usually achieved by engineering 

interactions between filaments, either by the use of strong, streptavidin-biotin interactions204, 

depletion forces213 , or DNA-crosslinking211.  A recent study examining the gliding of microtubules 

on SNAP-tagged kinesin motors bound to a Pluronic-F127 coated surface found that tuning kinesin 

surface density allowed for the control of filament alignment during collisions.334  Alignment 

events were occasionally observed in the previous version of our system, but were too rare to 

generate collective behavior.43   

In the current system, interactions originate primarily from steric effects and chemical 

guidance. High densities of GFP-kinesin motors, similar to the ones that are used in this experiment 

(consisting of the first N-terminal 401 amino acids of kinesin from Drosophila melanogaster 

compared to the first N-terminal 430 amino acids of rat kinesin used in these experiments), have 

been previously shown to mechanically influence the dynamics of microtubule gliding.317  In this 

dynamic system, under the chosen conditions, microtubules generate many linkages to the surface 

via the high density of kinesin motors recruited from solution. The dense surface attachment 

reduces vertical fluctuations and prevents microtubules from crossing each other, forcing them to 



135 

buckle and align with the microtubule they are colliding with.  This is supported by the observation 

that bundling increases as the density of microtubule-bound kinesin increases (Figure 3c).  

Additionally, the kinesin motors used here have truncated tails (430 amino acids) and are thus 

shorter than the full-length kinesin (963 amino acids for rat kinesin462), so they cannot be stretched 

as much to accommodate a crossover.  

In further support of the concept that steric interactions are a source of nematic alignment 

among microtubules, we were able to observe ‘ramming’ events, where an incoming microtubule 

visibly indents another microtubule (Figure 6.4c).  However, such microtubule deflections are rare; 

we were only able to observe a few such events in experiments initialized with 1 mM ATP.  This 

is not surprising, since typically more kinesins hold the indented microtubules than push the 

ramming microtubule.  However, visible deflections become more frequent if microtubules are 

gliding in the presence of 1 mM AMP-PNP (the non-hydrolyzable analog of ATP, adenylyl-

imidodiphosphate).  An example of this is shown in Figure 6.4c.  AMP-PNP molecules lock 

kinesin motors in their strong microtubule-binding state, which increases the density of kinesin 

motors holding the microtubule to the surface, and most likely acts as a support to prevent 

microtubules from buckling early, thereby facilitating ‘ramming’ events. 

 

“Snapping into alignment” contributes to bundle formation.  An additional mechanism by which 

microtubules align is a ‘snapping’ event, where a microtubule that has begun to cross over another 

microtubule suddenly snaps to align with the microtubule it has crossed over (Figure 6.4d).  This 

“snapping into alignment” has been observed in Brownian Dynamics simulations of gliding 

microtubules approaching the edge of a kinesin-track,463 and can be considered chemical guiding 

by the kinesin track formed under a gliding microtubule. 
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A phenomenon similar to “snapping into alignment” has been observed in microtubules 

growing in the presence of the positively charged tetravalent starPEG-(KA7)4 cross-linker that was 

designed to mimic microtubule associated proteins.464  This cross-linker, which has a dissociation 

constant for a microtubule of 30 nM, was found to laterally zip microtubules at cross-linker 

concentrations of 50 nM and 100 nM.  In addition, when concentrated at the depolymerizing end 

of a microtubule, this cross-linker was found to produce depolymerization-coupled forces of up to 

8.4 pN. Although it is likely that multi-valent kinesin motors are present in our dynamic system 

(discussed below), it is unlikely that the same zippering mechanism plays a significant role during 

snapping events, as these happen on a much faster time scale.  The data shown by Drechsler et 

al.464 suggests that zippering events happen over the course of 40-50 s, while the snapping events 

observed here occur in under 5 s. 

 

Chemical guiding by the kinesin trail: The case for pheromonic interactions.  Prior work on 

filament guiding on motor protein coated surfaces has shown that filaments follow permanent trails 

of motors created by chemical surface patterning if the required change in the angle of motion is 

small (<150 for microtubules).390, 463, 465 This “chemical guiding” mechanism implies that the 

deposition of a kinesin trail by one microtubule may induce another microtubule to follow, which 

would be reminiscent of the trails of pheromones deposited by ants to induce other ants to follow 

and it would constitute another, “pheromonic” interaction mechanism between gliding 

microtubules.   

Such pheromonic interactions were weak in our previous work using low microtubule 

densities,43, 44 because it was exceedingly rare that a gliding microtubule encounters a kinesin trail 

under a small enough angle. In the system described here, the initially high density of kinesins on 
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the surface makes the kinesin trails less prominent and prevents alignment. However, steric 

interactions can align microtubules and the redistribution of the kinesin motors from the surface 

to the trails (Figure 6.3a) can increase the prominence of the kinesin trails relative to the 

surrounding surface, resulting in a strengthening of the pheromonic interaction. An example of a 

microtubule behavior potentially related to the pheromonic interaction is shown in Appendix 

Section D.10, where a microtubule begins to migrate away from another microtubule but soon 

returns to rejoin it. We initially interpreted the absence of microtubules emerging from the outside 

of a curved bundle as indication that the bundle must be stabilized by depletion forces (absent here, 

see next section), cross-linkers (weak here, see next section), or a pheromonic interaction. 

However, the bundle morphology observed by Tanida et al.334 in the absence of the pheromonic 

interaction (Figure 6.1a) appears identical to the bundle morphology in our system (Figure 6.1d), 

demonstrating that a pheromonic interaction is not required to explain the system behavior.    

 

Alternative mechanisms of microtubule interactions.  There are two other conceivable mechanisms 

by which microtubules interact in our assay: (1) depletion forces induced by excess Pluronic F108-

NTA remaining in solution and (2) multi-headed kinesin motors cross-linking to each other in 

solution and then cross-linking microtubules.  However, for the reasons outlined below, we do not 

believe these mechanisms play a significant role. 

Previous studies have reported that the generation of depletion forces in systems of active 

nanoscale filaments require polymer concentrations on the order of a few milligrams per milliliter.  

For example, the work of Inoue et al.213 used a concentration of 3 mg/mL methylcellulose to induce 

depletion forces in a classical motility assay, and the work of Wu et al.233 used 20 mg/mL of 

Pluronic F127.  In our experiments, while we do initially flow in 20 μL of 2 mg/mL Pluronic F108-
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NTA to coat the surface of the flow chamber, we then wash it out three times with 20 μL of BRB80 

buffer.  This suggests that the leftover Pluronic F108-NTA concentration can be expected to be as 

much as three orders of magnitude lower than that required for inducing depletion forces between 

microtubules243.  Furthermore, the presence of depletion forces would have a constant effect on 

nematic alignment, which is in contrast to the velocity-dependent alignment that is observed in 

this dynamic system.  As a result, we conclude that the Pluronic F108-NTA polymer remaining in 

solution is insufficient to cause significant depletion forces. 

Microtubules can also interact by cross-linking via kinesins.  This can be seen from the 

formation of dense microtubule clusters when microtubules and kinesin are mixed in the presence 

of 1 mM ATP and either 100 μM or 1 mM AMP-PNP, which locks kinesin motors in a strong 

microtubule-binding state.  However, the forces exerted by kinesin cross-links are small compared 

to the forces exerted by surface-bound kinesins propelling microtubules.  In Appendix Section 

D.11, we demonstrate that a cluster of microtubules can spread out over time.  In Appendix Section 

D.12, we show that microtubules gliding in the presence of 1 mM AMP-PNP (while moving 

significantly slower overall) do not exhibit a statistically significant change in velocity even during 

antiparallel collisions.  Since these behaviors are the opposite of what one would expect in the 

presence of cross-links, we find it unlikely that these kinesin cross-links can play a significant role 

in the dynamics of bundle formation. 
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Figure 6.4.  Microtubule interactions. (a) Collisions do not lead to crossing but to alignment 

either in antiparallel or parallel fashion depending on the angle of collision. Scale bar: 5 μm (Top), 

10 μm (Bottom).  (b) The alignment is reversible, as microtubules can dissociate afterwards. Scale 

bar: 10 μm. (c) A microtubule “ramming” another microtubule and creating an indent in the 

absence (top) and presence (bottom) of AMP-PNP. Scale bar: 10 μm (Top and Bottom). (d) 

Microtubule “snapping” to align with another microtubule that it had already crossed. Scale bar: 

20 μm. 
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The origin of these kinesin cross-links is unclear.  A likely explanation is that motors aggregate, 

generating multi-headed complexes that can bind multiple microtubules at once.  An alternative, 

though unlikely, mechanism for multivalent kinesin formations is nickel ion mediated interactions 

of their His-tags466.  In our experiments, it is unlikely that this mechanism plays a major role 

because it requires free nickel ions in solution.  However, nickel ion chelating agents (NTA groups 

on the surface and 2 mM EGTA in the BRB80 buffer) will bind all free nickel ions and compete 

them away from the His-tags.  In addition, such cross-linking would prevent microtubules from 

dissociating after aligning, which is not what we observe (Figure 6.4b).   

 

Comparison of collective behavior to other dynamic systems.  The bundles formed in our dynamic 

system are similar to the active foam generated in numerical simulations of Vicsek-like particles 

moving with memory.414 They are also similar to the swirling, spooling, and giant flock regimes 

generated in simulations of gliding filaments with high rigidities and interaction energies.467 

Tanida et al.334 recently investigated the effects of tunable binary collisions in a dynamic system 

where the strength of the microtubule-surface bond is regulated by kinesin density, and found that 

increasing bond strength changed the system behavior from long range order to aggregation.  The 

bundles formed in their system at moderate kinesin surface density (example shown in Figure 6.1a) 

are similar to the bundles generated in our dynamic system.   

 

Conclusions 

In this study, we present a system of two agents exhibiting mutualistic collective motion where 

components dynamically rearrange to maximize system utility: microtubules assemble into dense 

bundles and kinesin motors rearrange to support the assembled bundles.  These bundles have 

several layers of dynamic organization: first, kinesin motors are assembled by single microtubules 
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to allow for microtubule propulsion; next, propelled microtubules collide and align due to the 

strong surface bond provided by the kinesin motors (the first level of organization), forming long 

bundles; finally, bundles interact to form large scale networks stabilized by the migration of the 

kinesin from the surface to the trails. Swarming is thus achieved here through a combination of 

direct, steric interactions and environmental modification (the assembly of kinesins into trails on 

the surface). 

The high degree of engagement (>95%) of the available kinesin motors in the generation of 

force, as indicated by the rapid consumption of ATP and the depletion of the kinesin from the 

surface areas between trails, is a highly desirable outcome. Dynamic turnover enables adaptation 

and self-repair, but ideally unproductive stores of building blocks are kept small. This has been 

achieved here by increasing the surface affinity for kinesin motors, which reduced the 

concentration of motors in the solution without impeding the kinesin trail formation.  

The next steps will aim to achieve unidirectional movement of the microtubules in these 

bundles, for example through the utilization of asymmetric guiding structures, as well as the 

coupling of loads to the microtubules in the bundles to extract work from the system. Ultimately, 

this work pushes towards the development of artificial muscles from active nanoscale filaments. 

 

Methods  

Microtubule and Kinesin Preparation. Microtubules were polymerized by reconstituting 10 μg of 

HiLyte647-labeled lyophilized tubulin (Cytoskeleton Inc., Denver, CO) in 6.25 μL of 

polymerization buffer (BRB80 buffer and 4 mM MgCl2, 1 mM GTP, 5% dimethyl sulfoxide) and 

incubating at 37 °C for 75 min. BRB80 buffer contains 80 mM piperazine-N,N′-

bis(2ethanesulfonic acid), 1 mM MgCl2, and 1 mM ethylene glycol tetraacetic acid at a pH of 6.9 

(adjusted with KOH). The microtubules were then stabilized by diluting them 20-fold into BRB80 
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buffer with 10 μM paclitaxel (Sigma, Saint Louis, MO). A kinesin construct containing the first 

430 amino acids of rat kinesin heavy chain fused to eGFP and a C-terminal His-tag at the tail 

domain (rkin430eGFP)468 was expressed in Escherichia coli and purified using a Ni−NTA column 

(prepared by the team of G. Bachand at the Center for Integrated Nanotechnologies at Sandia 

National Laboratories). The concentration of the GFP-kinesin stock solution was 2.5 μM as 

determined by observing the absorbance at 488 nm with a Nanodrop instrument with a 1 mm path 

length. 

 

Surface cleaning. Coverslips were cleaned by sonicating them for 20 minutes in acetone, rinsing 

with water, sonicating for 20 min in 1 M KOH, rinsing with water, and oven-drying. The dried 

coverslips were then UV/ozone treated on both sides for 20 min, sonicated in water for 20 min, 

and oven dried.  The coverslips were then UV/ozone treated again, after which they were immersed 

in a solution of 5% dimethyldichlorosilane in toluene for 30 min.  Coverslips were then rinsed two 

times with toluene, three times with methanol, and dried with nitrogen gas.  

 

Experimental procedure. Cleaned coverslips were assembled into a flow cell of 1 cm width and 

100 μm height using double-sided tape as spacers. A solution of 2 mg/mL Pluronic F108-NTA 

(gift from AllVivo Vascular) in 500 mM nickel(II) sulfate (Sigma, Saint Louis, MO) was first 

flowed into the flow cell. The Pluronic-F108-NTA was allowed to adsorb for 7 min. Then the 

solution was replaced three times with 15 μL BRB80 buffer solution. Next, a solution containing 

microtubules (8 μg mL−1),  25 nM GFP-kinesin, 1 mM ATP in 0.5 mg/mL casein (Sigma), 10 μM 

paclitaxel, and an enzymatic antifade system (20 mM D-glucose, 20 μg mL−1 glucose oxidase, and 
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8 μg mL−1 catalase) in BRB80 buffer was flown in. The edges of the flow cell were sealed with 

vacuum grease to prevent evaporation.  

Images were acquired with an objective-type total internal reflection fluorescence setup on an 

Eclipse Ti microscope (Nikon Instruments, Melville, NY) with a 100×/1.49 NA objective lens 

(Nikon Instruments, Melville, NY) using a 642 nm laser and a 480 nm laser (Omicron Laserage) 

for the imaging of microtubules and kinesin, respectively. Pairs of images were taken with a Zyla 

4.2 sCMOS camera (Andor Technology) once every 5 s (exposure time of 30 ms for both channels) 

for as long as motility was observed. All experiments were performed at room temperature, which 

varied between 22-24 °C. 
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Conclusion 
 

 

Part I: Emergent properties of colocalized enzyme cascades 

In this dissertation, we have examined the kinetics of enzyme cascade reactions occurring in a 

tunneled multi-enzyme complex and in compartments.  The primary role of spatial organization 

of cascading enzymes in these systems is to protect cascade intermediates that would otherwise 

be unstable in the environment outside of the tunnel/compartment.  We showed that the 

stochasticity of reaction events occurring in tunneled enzyme complexes can significantly impact 

reaction throughput when tunnel capacities are small and catalytic rates of active sites are 

similar.  Furthermore, it is conceivable that through evolution, control mechanisms have been 

selected for to decrease the effect of stochastic fluctuations in tunneled enzyme complexes; 

indeed, literature describing the activity of the tryptophan synthase bienzyme complex claims the 

presence of a gaiting mechanism between active sites which allows for matching rates between 

active sites.  These control mechanisms in tunneled multi-enzyme complexes can be studied in 

further work. 

In our study of compartmentalized cascade reactions, we have developed a design process for 

compartments containing enzymes which participate in a cascade reaction with unstable 

intermediates.  The simple model then reveals a remarkable, yet unexpected (given the simplicity 

of the model) result: there exists a critical threshold at which compartmentalization becomes 

advantageous.  Future work can focus on the characterization of this threshold for both biological 

and synthetic systems. 
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Part II: Organization in systems of active cytoskeletal filaments    

In Part II of this dissertation, we examined the origins of collective behavior in a highly dynamic 

experimental system consisting of microtubules gliding on a surface coated with weakly-binding 

kinesin motors.  The surface mobility of kinesin motors allowed them to be redistributed to trails 

surrounding microtubules, which in turn strengthened microtubule-surface bonds and resulted in 

alignments upon microtubule collisions.  Kinesin motors and microtubules gradually assembled 

into long, dense bundles.  Future directions of this work will can focus on controlling collective 

behavior in microfabricated structures to generate work. 
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A.1: Full set of ordinary differential equations describing a two-enzyme cascade 

The set of ordinary differential equations describing a two-enzyme cascade are written below: 

 

𝑑[𝑆]

𝑑𝑡
= −𝑘𝑜𝑛,1[𝐸1][𝑆] + 𝑘𝑜𝑓𝑓,1[𝐸1𝑆] (𝐴. 1) 

𝑑[𝐸1𝑆]

𝑑𝑡
= 𝑘𝑜𝑛,1[𝐸1][𝑆] − 𝑘𝑜𝑓𝑓,1[𝐸1𝑆] − 𝑘𝑐𝑎𝑡,1[𝐸1𝑆] (𝐴. 2) 

𝑑[𝐸1]

𝑑𝑡
= −𝑘𝑜𝑛,1[𝐸1][𝑆] + 𝑘𝑜𝑓𝑓,1[𝐸1𝑆] + 𝑘𝑐𝑎𝑡,1[𝐸1𝑆] (𝐴. 3) 

𝑑[𝐼]

𝑑𝑡
= 𝑘𝑐𝑎𝑡,1[𝐸1𝑆] − 𝑘𝑜𝑛,2[𝐸2][𝐼] + 𝑘𝑜𝑓𝑓,2[𝐸2𝐼] (𝐴. 4) 

𝑑[𝐸2𝐼]

𝑑𝑡
= 𝑘𝑜𝑛,2[𝐸2][𝐼] − 𝑘𝑜𝑓𝑓,2[𝐸2𝐼] − 𝑘𝑐𝑎𝑡,2[𝐸2𝐼] (𝐴. 5) 

𝑑[𝐸2]

𝑑𝑡
= −𝑘𝑜𝑛,2[𝐸2][𝐼] + 𝑘𝑜𝑓𝑓,2[𝐸2𝐼] + 𝑘𝑐𝑎𝑡,2[𝐸2𝐼] (𝐴. 6) 

𝑑[𝑃]

𝑑𝑡
= 𝑘𝑐𝑎𝑡,2[𝐸2𝐼] (𝐴. 7) 

 

In the system above, [I] is the concentration of intermediate, [E2] is the concentration of unbound 

enzyme 2, [E2I] is the concentration of enzyme 2-intermediate complex, and the rate constants 

are defined as previously and indexed by their respective enzyme. 
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A.2: Justification for a zeroth-order rate of intermediate production 

The use of a zeroth-order production rate for intermediate molecules by the first enzyme in the 

cascade can be justified as follows.  First, the time to quasi-steady state can by estimated by 

𝜏𝑄𝑆𝑆𝐴 ≈ 𝑘𝑜𝑛,1([𝑆] + 𝐾𝑀,1)
−1
< 𝑘𝑐𝑎𝑡,1

−1  (this expression can be derived by solving the ODE in 

Equation 1.3 with respect to time while considering [S] as a constant).  Since the processes that 

we will be examining take place on a time scale longer than 𝑘𝑐𝑎𝑡,1
−1 , we can employ the Michaelis-

Menten Equation to describe the dynamics of the upstream enzyme.  This simplifies equations 

A.1-A.7 to the following form: 

𝑑[𝐼]

𝑑𝑡
=
𝑘𝑐𝑎𝑡,1[𝐸1,0][𝑆]

𝐾𝑀,1 + [𝑆]
(1 −

[𝐸2]

[𝐸2,0]
𝑓𝑐ℎ𝑎𝑛𝑛𝑒𝑙) − 𝑘𝑜𝑛[𝐸2][𝐼] + 𝑘𝑜𝑓𝑓[𝐸2𝐼] (𝐴. 8) 

𝑑[𝐸2𝐼]

𝑑𝑡
=
𝑘𝑐𝑎𝑡,1[𝐸1,0][𝑆]

𝐾𝑀,1 + [𝑆]
⋅
[𝐸2]

[𝐸2,0]
𝑓𝑐ℎ𝑎𝑛𝑛𝑒𝑙 + 𝑘𝑜𝑛[𝐸2][𝐼] − 𝑘𝑜𝑓𝑓[𝐸2𝐼] − 𝑘𝑐𝑎𝑡,2[𝐸2𝐼] (𝐴. 9) 

𝑑[𝑃]

𝑑𝑡
= 𝑘𝑐𝑎𝑡[𝐸2𝐼] (𝐴. 10) 

Where KM,1 is the Michaelis-Menten constant for enzyme 1.  The rate constants kon, koff, and kcat 

are the rate constants for enzyme 2, but their subscript was removed for brevity of notation.  The 

concentrations [𝐸1,0] and [𝐸2,0] denote the total concentrations of each type of enzyme.  There is 

a prefactor of [𝐸2] [𝐸2,0]⁄  before 𝑓𝑐ℎ𝑎𝑛𝑛𝑒𝑙 to take into account the probability that the active site 

of the downstream enzyme is occupied. 

As a further simplification, we assume excess initial substrate, [𝑆0] ≫ 𝐾𝑀,1, so the 

throughput of the first reaction remains constant.  Rewriting 𝑉𝑆 =
𝑘𝑐𝑎𝑡,1[𝐸1][𝑆]

𝐾𝑀,1+[𝑆]
, and using [𝐸2] =

[𝐸2,0] − [𝐸2𝐼], we arrive at the system of 3 ODEs shown in the main text. 
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A.3: Jacobian of nonlinear system of ODEs describing intermediate and intermediate-

complex concentrations 

The Jacobian and characteristic equation for the nonlinear system of ODEs can be written down 

as follows: 

 

𝐽 =

[
 
 
 
 𝑑
[𝐼]̇

𝑑[𝐼]

𝑑[𝐼]̇

𝑑[𝐸2𝐼]

𝑑[𝐸2𝐼]̇

𝑑[𝐼]

𝑑[𝐸2𝐼]̇

𝑑[𝐸2𝐼]]
 
 
 
 

|
|

[𝐼]=[𝐼]∗

[𝐸2𝐼]=[𝐸2𝐼]
∗

=

=

[
 
 
 
 −𝑘𝑜𝑛[𝐸2]

∗
𝑉𝑆𝑓𝑐ℎ𝑎𝑛𝑛𝑒𝑙

[𝐸2,0]
+ 𝑘𝑜𝑛[𝐼]

∗ + 𝑘𝑜𝑓𝑓

𝑘𝑜𝑛[𝐸2]
∗ −

𝑉𝑆𝑓𝑐ℎ𝑎𝑛𝑛𝑒𝑙

[𝐸2,0]
− 𝑘𝑜𝑛[𝐼]

∗ − 𝑘𝑜𝑓𝑓 − 𝑘𝑐𝑎𝑡
]
 
 
 
 

(𝐴. 11)

 

𝐽𝑣⃑ = 𝜆𝑣⃑ (𝐴. 12) 

𝜆2 + 𝑘𝑜𝑛 ([𝐼]
∗ + 𝐾𝑀 + [𝐸2]

∗ +
𝑉𝑆𝑓𝑐ℎ𝑎𝑛𝑛𝑒𝑙

𝑘𝑜𝑛[𝐸2,0]
) 𝜆 + 𝑘𝑐𝑎𝑡,2𝑘𝑜𝑛[𝐸2]

∗ = 0 (𝐴. 13) 

 

Plugging in the steady state concentrations, [I]* from equation 1.31, and [E2]
* from equation 

1.29, we arrive at the characteristic equation found in the main text. 
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A.4: The enzyme-intermediate complex concentration rapidly reaches QSS 

We can determine the characteristic time to steady state for this reaction by assuming that the 

arrival to QSS is much faster than the time scale of changes in [I].  Then, solving Equation 1.27 

while treating [I] as a constant, we find: 

 

[𝐸2𝐼](𝑡) =
[𝐸2,0][ℐ]

𝐾𝑀 + [ℐ]
⋅ (1 − 𝑒−𝜆𝑄𝑆𝑆𝐴𝑡) (𝐴. 14) 

𝜆𝑄𝑆𝑆𝐴 = 𝑘𝑜𝑛 (𝐾𝑀 + [𝐼] +
𝑉𝑠

𝑘𝑜𝑛[𝐸2,0]
𝑓𝑐ℎ𝑎𝑛𝑛𝑒𝑙) > 𝑘𝑜𝑛𝐾𝑀 > 𝑘𝑐𝑎𝑡 (𝐴. 15) 

 

The above equation demonstrates that the time to quasi steady state, 𝜏𝑄𝑆𝑆𝐴 = 𝜆𝑄𝑆𝑆𝐴
−1 , can bounded 

from above: 𝜏𝑄𝑆𝑆𝐴 < 𝑘𝑐𝑎𝑡
−1 .   

The time to quasi steady state for the enzyme-intermediate complex concentration is much 

faster than the time to quasi steady state for the bulk intermediate concentration.  This can be 

seen by solving Equation 1.26 while treating [E2I] as a constant; we find the reaction time scale 

to be: 

 

𝜆𝐼,𝑄𝑆𝑆𝐴 = 𝑘𝑜𝑛([𝐸2,0] − [𝐸2𝐼]) < 𝑘𝑜𝑛[𝐸2,0] (𝐴. 16) 
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In contrast to the time to quasi steady state for the enzyme-intermediate complex concentration, 

we can only lower bound the time to quasi steady state for the intermediate concentration.  Using 

, 𝜏𝐼,𝑄𝑆𝑆𝐴 = 𝜆𝐼,𝑄𝑆𝑆𝐴
−1 , we find: 

 

𝜏𝐼,𝑄𝑆𝑆𝐴 > (𝑘𝑜𝑛[𝐸2,0])
−1
≫ (𝑘𝑜𝑛𝐾𝑀)

−1 > 𝜏𝑄𝑆𝑆𝐴 (𝐴. 17) 

 

Where we have used the fact the KM of an enzymatic reaction, whose values usually range from 

the low micromolar range to high millimolar range, is usually much greater than the enzyme 

concentration, which usually remains in the nanomolar range. 
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B.1: Propensity functions for stochastic simulation of enzyme cascade with waiting rooms 

For each waiting room i (1 ≤ 𝑖 ≤ 𝑁 − 1), the following set of propensity functions was defined: 

 

Forward reaction: 𝛼𝑜𝑛,𝑖 = 𝑐𝑜𝑛𝑆𝑖̃𝐸𝑖̃ (𝐵. 1) 

Reverse reaction: 𝛼𝑜𝑓𝑓,𝑖 = 𝑐𝑜𝑓𝑓𝐸𝑖𝑆𝑖̃ (𝐵. 2) 

Catalysis: 𝛼𝑐𝑎𝑡,𝑖 = 𝑐𝑐𝑎𝑡,𝑖𝐸𝑖𝑆𝑖̃ (𝐵. 3) 

Impatience: 𝛼𝑙𝑜𝑠𝑠,𝑖 = 𝑐𝑙𝑜𝑠𝑠𝑆𝑖̃ (𝐵. 4) 

 

Where tilde symbols denote the population of the species in number of molecules. 

 For the first waiting room, the production of 𝑆1̃ is modelled using the following propensity 

function: 

 

Production reaction: 𝛼𝑝𝑟𝑜𝑑 = 𝑐𝑐𝑎𝑡,0 (𝐵. 5) 

 

We defined the total propensity function as 

𝛼0 = ∑(𝛼𝑜𝑛,𝑖 + 𝛼𝑜𝑓𝑓,𝑖 + 𝛼𝑐𝑎𝑡,𝑖 + 𝛼𝑙𝑜𝑠𝑠,𝑖)

𝑁−1

𝑖=1

+ 𝛼𝑝𝑟𝑜𝑑 (𝐵. 6) 

 

The algorithm for the stochastic simulation of the enzyme cascade is detailed in Section B.2. 
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B.2 Algorithm for stochastic simulation of enzyme cascade with waiting rooms 

In the following algorithm, propensity functions are defined as in Section B.2. 

 

Initialization 

𝐹𝑜𝑟 1 ≤ 𝑖 ≤ 𝑁 − 1, 𝑆̃𝑖(0) = 0 

𝑃̃(0) = 0 

System update 

1. Generate two random numbers u1 and u2 according to a uniform law over [0,1] 

2. Compute  using the following equation 

𝜏 =  
1

𝛼0(𝑡)
ln (

1

𝑢1
) (𝐵. 7) 

Above, 𝛼0(𝑡) is a function of time because the total propensity function depends on the 

number of molecules in each state at that time (i.e. number of substrate molecules in the 

waiting room, number of complex/free enzymes, etc.) 

3. Update t: t → t +  

4. Choose the occurring reaction using u2 according to Gillespie et al.92  That is, the reaction 

is chosen with a probability proportional to its reaction rate. 

5. Update the system composition according to the occurring reaction chosen in step 4. 

a. If the reverse reaction is chosen 

i. The waiting room i is not full: 𝑆̃𝑖 → 𝑆̃𝑖 + 1 & 𝐸𝑖𝑆̃𝑖 → 𝐸𝑖𝑆̃𝑖 − 1 

ii. The waiting room i is full: 𝑆̃𝑖 → 𝑆̃𝑖 & 𝐸𝑖𝑆̃𝑖 → 𝐸𝑖𝑆̃𝑖 − 1 
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b. If the production reaction performed by the upstream enzyme is chosen: 

i. The waiting room i is not full: 𝑆̃𝑖 → 𝑆̃𝑖 + 1 

ii. The waiting room i is full: 𝑆̃𝑖 → 𝑆̃𝑖 

c. For N-enzyme cascades (𝑁 > 2),  if the substrate 𝑆̃𝑖+1production (via the 

consumption of substrate 𝑆̃𝑖) reaction processed by Ei is chosen: 

i. The following waiting room i+1 is not full: 𝐸𝑖𝑆̃𝑖 → 𝐸𝑖𝑆̃𝑖 − 1 & 𝑆̃𝑖+1 → 𝑆̃𝑖+1 +

1 

ii. The following waiting room i+1 is full: 𝐸𝑖𝑆̃𝑖 → 𝐸𝑖𝑆̃𝑖 − 1 & 𝑆̃𝑖+1 → 𝑆̃𝑖+1 

d. If another reaction is chosen: 

The state of the waiting room does not matter 

6. Go back to step 1 while t < tfinal 
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B.3: Queueing theory and Hunt’s equations for 2-enzyme cascades 

Our aim is to repurpose the analytical machinery of queueing theory used in operations research 

to gain insight into the workings of a tunneled enzyme cascade.  Indeed, the conversion of 

molecules by sequential active sites connected by tunnels of finite capacity is analogous to the 

service of customers by sequential server booths connected by waiting rooms.  In this section, we 

will compare our simulation results to those of Hunt,79 who studied the queueing theory of two 

servers with different service rates.  In Hunt’s model, the downstream server is preceded by a finite 

waiting room while the first server is always busy. 

 Defining r as the maximum cascade output rate incoming to the upstream server, we can 

implement equations (24) and (25) from Hunt’s paper79 for our system as follows: 

𝑟 = 𝑟0𝑟1
𝑟0
𝑄−1 − 𝑟1

𝑄−1

𝑟0
𝑄
− 𝑟1

𝑄  , 𝑖𝑓 𝑟0 ≠ 𝑟1 (𝐵. 8) 

𝑟 = 𝑟0
𝑄 − 1

𝑄
 , 𝑖𝑓 𝑟0 = 𝑟1 (𝐵. 9) 

Where Q corresponds to the number of system states. The parameters r0 and r1 are the output rates 

of the upstream and downstream servers (or enzymes), respectively. For Hunt’s system, they are 

equal to the server service rate µi. In order to take all the chemical reactions into account, we define 

the following rates r0 and r1 as: 

𝑟0 = 𝑐𝑐𝑎𝑡,0 − 𝑐𝑜𝑓𝑓〈𝑆̃〉 (𝐵. 10) 

𝑟1 = 𝑐𝑐𝑎𝑡,1
〈𝑆̃〉

〈𝑆̃〉 + 𝐾𝑀𝑁𝐴𝑉
(𝐵. 11) 

where 〈𝑆̃〉 is the mean steady-state substrate population computed from our simulations. 
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 The definition of r0 can be interpreted as an effective production rate seen by the downstream 

enzyme. It is a balance between all the reactions which produce or consume one substrate molecule 

– except the reaction of the downstream enzyme itself.  The definition of r1 is chosen to coincide 

with the Michaelis-Menten reaction kinetics. 

 Figure B.1 shows that simulated data are better described by Hunt’s equation than by the MM 

model. The best description is obtained when the number of system states, Q, is equal to the waiting 

room capacity plus 1. 
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Figure B.1. Comparison of stochastic simulation results with analytical queueing theory 

results.  Simulated data are the same as in Figure 2.3 (upper left), Figure 2.4 (upper right), Figure 

2.6 (lower left) and Figure 2.7 (lower right) of the main text. The same colors and symbols are 

used. Dotted curves are solutions of Hunt’s Equations (B.8), (B.9) with the corresponding rate 

definitions (B.10) and (B.11). The number of system states Q is taken equal to nWR + 1. Solid 

curves are solutions of MM model (2.7) (main paper) with the corresponding waiting room 

capacity. Colors and parameters are the same as in Figure 2.3. Symbols represent the results of the 

stochastic simulations for a waiting room capacity of 1 (orange triangles), 2 (blue squares), 4 

(green triangles), 10 (red circles) and ∞ molecules (black diamonds).  Error bars for standard error 

are smaller than the marker. 
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 According to Hunt, a total of nWR + 3 states can be defined for a two-server system with a 

waiting room of size nWR. These states are listed in Table B.1.  The reason why we estimate the 

number of states by 𝑄 = 𝑛𝑊𝑅 + 1 for our model can be explained by analyzing the discrepancies 

between our model of a tunneled enzyme cascade and Hunt’s model.  One such discrepancy is that 

Hunt assumed that a customer will immediately go to the downstream server as soon as the service 

is completed.  In our system, the molecules do not immediately enter the enzyme active site when 

they are full.  Rather, it takes a time on the scale of 𝑐𝑓
−1.  However, since cf >> ccat,2, the time to 

occupy an empty active site is not a rate-limiting factor in the cascade reaction.  Therefore, we can 

make the same assumption.   

 The second discrepancy in the models is that Hunt considered that a customer served by the 

first server will wait in case the waiting room is full. However, we consider that the first enzyme 

(E1) is always processing since it produces its product either in the waiting room or in the bulk. 

This removes a state from Table B.1 and we update Q = nWR + 2. 

 The best description of the system is attained for Q= nWR +1 because, as described in the 

Discussion and shown in Figure 8 of the main text, for KM = 2.5 µM, the probability that the 

waiting room is maximally full is negligible; the state (S0 : in service / S1 : in service / WR : nWR 

molecules) has a very low associated probability. This removes state number nWR+1 from Table 

B.1 and we end up with: 

𝑄 = (𝑛𝑊𝑅 + 3) −1⏟
𝐸1 𝑎𝑙𝑤𝑎𝑦𝑠 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔

−1⏞
𝑊𝑅 𝑛𝑒𝑣𝑒𝑟 𝑓𝑢𝑙𝑙

= 𝑛𝑊𝑅 + 1 (𝐵. 12) 

However, while Hunt’s equations do provide a good approximation for simulated data for KM = 

2.5 µM, they do not perform as well for KM = 250 mM (Figure B.1).  As explained in the Discussion 
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section of the main text, the waiting room occupancy fluctuates between 𝑛𝑊𝑅 − 1 and 𝑛𝑊𝑅  

between catalysis events, spending an approximate fraction, 
𝑐𝑟

𝑐𝑓+𝑐𝑟
, of the time in the 𝑛𝑊𝑅 state.  

While this quantity is near 0 for KM = 2.5 µM, it is greater than 0.5 for KM = 250 mM.  As a result, 

the probability that the waiting room is full is no longer negligible, and Q= nWR + 1 gives only a 

lower bound on the total number of states. 

 

Table B.1. States for Hunt’s System (2 servers in series with a finite waiting room in front of the 

downstream server). 

State S0 S1 WR (waiting customers) 

1 In service Unoccupied 0 

2 In service In service 0 

3 In service In service 1 

… … … … 

I In service In service i-2 

… … … … 

nWR +1 In service In service nWR -1 

nWR +2 In service In service nWR 

nWR +3 

Service completed  

(one customer waits in the first 

server) 

In service nWR 
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Appendix C  
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C.1: The well mixed assumption is typically valid for compartmentalized enzyme cascades 

The well-mixed assumption holds if the diffusion time scale is much less than the reaction time 

scale.  Using the same notation as in the main text, this may be written as: 

 

𝑟2

𝐷
≪

KM
𝑘𝑐𝑎𝑡[𝐸]

(𝐶. 1) 

 

By keeping the number of enzymes, ET, constant, and assuming a diffusion coefficient of 𝐷 ≈

10−9 m2/s, and 𝐾𝑀 ≫ 1𝜇𝑀, we can rewrite Equation (C.1) as:  

 

𝐷𝐾𝑀
kcat[𝐸]

≫ 𝑟2 (𝐶. 2) 

𝐷𝐾𝑀
kcat

≫
𝑟2𝑛𝐸
𝑉

=
𝑟2𝑛𝐸
4
3𝜋𝑟

3
=
3

4

𝑛𝐸
𝜋𝑟

(C. 3)
 

𝑟 ≫
3

4

𝑛𝐸
𝜋

𝑘𝑐𝑎𝑡
𝐷𝐾𝑀

(𝐶. 4) 

 

According to Equation (C.4), if the compartment radius is large enough, then the well mixed 

assumption will hold.  To find the largest value that the right hand-side of Equation (C.4) can 

attain, we compare it to the maximum, diffusion limited, catalytic efficiency of enzymes, which is 

sometimes considered to be 
𝑘𝑐𝑎𝑡

𝐾𝑀
= 109𝑀−1𝑠−1.128  For 100 enzymes in the compartment, this 

would give: 
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𝑟 ≫
3

4

100

𝜋
⋅
109 M−1s−1

10−9 m2s−1
≈ 40 nm (𝐶. 5) 

 

In other words, the well mixed assumption will hold for a compartment containing 100 of the most 

catalytically efficient enzymes, as long as it has a radius greater than 40 nm.  
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C.2: Optimizing product throughput 

The goal is to maximize the product outflux, given by: 

 

𝐹𝑃[𝑃] = 𝛽2[𝐼] =
𝐹𝛽1𝛽2[𝑆0]

(𝐹 + 𝛽2)(𝐹 + 𝛽1)
(𝐶. 6) 

 

This may be done by taking the derivative of the right hand-side term of Equation (C.6) with 

respect to 𝐹, and finding where it equals zero: 

 

𝑑𝛽2[𝐼]

𝑑𝐹
= 𝛽1𝛽2[𝑆0]

(𝐹 + 𝛽2)(𝐹 + 𝛽1) − 𝐹((𝐹 + 𝛽2) + (𝐹 + 𝛽1))

((𝐹 + 𝛽2)(𝐹 + 𝛽1))
2 = 

= 𝛽1𝛽2[𝑆0]
𝛽1𝛽2 − 𝐹

2

((𝐹 + 𝛽2)(𝐹 + 𝛽1))
2 = 0 (𝐶. 7) 

 

This gives the critical point: 

 

𝐹 = √𝛽1𝛽2 (𝐶. 8) 

 

This critical point is a maximum because the second derivative of Equation (C.6) evaluated at 

this critical point is negative: 
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𝑑2𝛽2[𝐼]

𝑑𝐹2
= 𝛽1𝛽2[𝑆0]

−2𝐹((𝐹 + 𝛽2)(𝐹 + 𝛽1))
2

((𝐹 + 𝛽2)(𝐹 + 𝛽1))
4 − 

−
(𝛽1𝛽2 − 𝐹

2)
𝑑
𝑑𝐹
(((𝐹 + 𝛽2)(𝐹 + 𝛽1))

2
)

((𝐹 + 𝛽2)(𝐹 + 𝛽1))
4 |

𝐹=√𝛽1𝛽2

< 0 (𝐶. 9) 
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C.3: The effect of selective permeability on optimal diffusive conductance can be interpreted 

as a change in the turnover rate 

We model selective permeability by setting 𝐹𝐼 = 𝑐𝐹𝑠 = 𝑐𝐹, where c is a constant of 

proportionality between the diffusive conductances of intermediate and substrate.  Then, we can 

use Equation (3.11) to rewrite the rate of product outflux as: 

 

𝐹𝑃[𝑃] = 𝛽2[𝐼] =
𝐹𝑆𝛽1𝛽2[𝑆0]

(𝐹𝐼 + 𝛽2)(𝐹𝑆 + 𝛽1)
=

𝐹𝛽1𝛽2[𝑆0]

(𝑐𝐹 + 𝛽2)(𝐹 + 𝛽1)
=

𝐹𝛽1𝛽2
′ [𝑆0]

(𝐹 + 𝛽2′)(𝐹 + 𝛽1)
(𝐶. 10) 

 

where 𝛽2
′ = 𝛽2/𝑐. 

Using the same methods as in Section C.2, we find that product outflux is maximized for: 

𝐹 = √𝛽1𝛽2′ = √
𝛽1𝛽2
𝑐

(𝐶. 11) 

Then, the product outflux is: 

 

𝐹𝑃[𝑃] = 𝛽2[𝐼] =
𝛽1𝛽2

′ [𝑆0]

(√𝛽1 +√𝛽2
′)
2 =

𝛽1𝛽2[𝑆0]

(√𝑐𝛽1 +√𝛽2)
2

(𝐶. 12) 

 

Interestingly, this expression shows that if c is small enough, the reaction will be running close to 

maximum velocity, and lowering the value of c further only provides diminishing returns.  If we 

assume 𝑐𝛽1 ≪ 𝛽2 and let 𝜖 = 𝑐𝛽1/𝛽2, then we have: 
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𝛽2[𝐼] =
𝛽1[𝑆0]

(√𝜖 + 1)
2 ≈ 𝛽1[𝑆0](1 − 2√𝜖) ≈ 𝛽1[𝑆0] (𝐶. 13) 

 

Which gives us the maximum possible throughput.  So, if the ratio of the diffusive conductance 

rates of intermediate to substrate molecules is much less than the ratio of the turnover rates of the 

Enzyme 1 to Enzyme 2, the reaction will be running close to maximum velocity: 

𝐹𝐼
𝐹𝑆
≪
𝛽2
𝛽1
→ 𝛽2[𝐼] ≈ 𝛽1[𝑆] (𝐶. 14) 
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C.4: Choosing diffusive conductance under saturating conditions 

When optimizing the diffusive conductance, it is possible that one of the enzymes in the cascade 

will become saturated.  The case when the first enzyme is saturated is discussed in the main text.  

Here, we will discuss the case when the second enzyme is saturated. 

We begin with Equation (3.3) from the main text: 

 

𝑘𝑐𝑎𝑡,1[𝐸1][𝑆]

𝐾𝑚1 + [𝑆]
−
𝐹𝐼[𝐼]

𝑉
−
𝑘𝑐𝑎𝑡,2[𝐸2][𝐼]

𝐾𝑚,2 + [𝐼]
= 0 (𝐶. 15) 

 

We assume that the first enzyme is not saturated, so it is in the linear regime of its kinetics and 

the steady state substrate concentration is given by Equation (3.10).  Using the notation from the 

main text, and assuming that the diffusive conductances are equal, we rewrite this Equation 

(C.15): 

 

𝛽1𝐹

F + 𝛽1
[𝑆0] − F[I] −

β2[𝐼]

1 +
[𝐼]
𝐾𝑚,2

= 0 (𝐶. 16)
 

 

If we set the intermediate concentration equal to the KM of the second enzyme, we find that there 

are two values of diffusive conductance, F, that satisfy the above equation.  This means that over 

a certain range of values of diffusive conductance, the steady state product throughput rate will 
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only experience a small change.  For [𝑆0] ≫ 𝐾𝑚,2 the range this plateau spans from 𝐹 =  
kcat,2𝑛2

[𝑆0]
 

to 𝐹 = 𝛽1 ⋅
[𝑆0]

𝐾𝑚,2
. 

To find the maximum product throughput, we perform implicit differentiation on Equation 

(C.16).   Define: 

𝑔([𝐼]) =
β2[𝐼]

1 +
[𝐼]
𝐾𝑚,2

(𝐶. 17)
 

Then 

𝑑𝑔([𝐼])

𝑑𝐹
=
𝑑𝑔

𝑑[𝐼]
⋅
𝑑[𝐼]

𝑑𝐹
=

𝛽1
2

(F + 𝛽1)2
[𝑆0] − [I] − F ⋅

d[I]

dF
= 0 (𝐶. 18) 

 

Since 𝑔([𝐼]) is a monotonic function in [𝐼], the same value of F will maximize both 𝑔([𝐼]) and 

[𝐼]. So, if 
𝑑𝑔([𝐼])

𝑑𝐹
= 0 then 

d[I]

dF
= 0, and we find: 

 

𝛽1
2

(F + 𝛽1)2
[𝑆0] = [I] (𝐶. 19) 

 

Inserting Equation (C.19) into Equation (C.16), we find an expression for F: 

 

𝐹2 (1 +
𝛽1
2

(F + 𝛽1)2
⋅
[𝑆0]

𝐾𝑚,2
) = 𝛽1𝛽2 (𝐶. 20) 
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If [𝑆0] ≪ 𝐾𝑚,2, we arrive at the initial result that F = √𝛽1𝛽2.  However, if [𝑆0] ≫ 𝐾𝑚,2, we may 

approximate the previous expression as: 

 

𝐹2 (
𝛽1
2

(𝐹 + 𝛽1)2
⋅
[𝑆0]

𝐾𝑚,2
) = 𝛽1𝛽2 (𝐶. 21) 

 

This expression simplifies to: 

 

𝐹 =
𝛽1

√
𝛽1
𝛽2
⋅
[𝑆0]
𝐾𝑚,2

− 1

≈ √𝛽1𝛽2 √
𝐾𝑚,2
[𝑆0]

(𝐶. 22)
 

 

Saturation in the second enzyme effectively lowers the optimal diffusive conductance by a factor 

of √
𝐾𝑚,2

[𝑆0]
. 
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C.5: The effect of selective permeability on optimal compartment parameters can be 

interpreted as a change in the catalytic efficiency 

As in Section C.3, we model selective permeability by setting 𝐹𝐼 = 𝑐𝐹𝑠 = 𝑐𝐹, where c is a 

constant of proportionality between the diffusive conductances of intermediate and substrate.  

Inserting Equations (3.10-11) into Equations (3.16-18): 

 

𝑚𝑖𝑛
𝑛𝐸1,𝑛𝐸2,𝐹

𝐹𝐼𝐹𝑆𝛽1
(𝐹𝑆 + 𝛽1)(𝐹𝐼 + 𝛽2)

=
𝐹2𝛽1

(𝐹 + 𝛽1)(𝐹 + 𝛽2
′)

(𝐶. 24) 

                
𝐹𝑆𝛽1𝛽2

(𝐹𝑆 + 𝛽1)(𝐹𝐼 + 𝛽2)
=

𝐹𝛽1𝛽2
′

(𝐹 + 𝛽1)(𝐹 + 𝛽2
′)
= 𝑅 (𝐶. 25) 

                𝑛𝐸1 + 𝑛𝐸2 = 𝑛0 (𝐶. 26) 

 

Above, we have defined 𝛽2
′ =

𝛽2

𝑐
= (

𝛾2

𝑐
) 𝑛2 = 𝛾2

′𝑛2.  The resulting optimization problem is 

similar to Equations (3.16-18), with the only difference being that the catalytic efficiency of 

Enzyme 2 is now given by 𝛾2
′ =

𝛾2

𝑐
. 
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C.6: Closed form expression for optimal diffusive conductance and enzyme numbers 

To solve the optimization problem in the main text given by Equations (3.16-18), and assuming 

FS=FI, we construct the Lagrangian: 

 

𝐿(𝑛1, 𝑛2, 𝐹, 𝜆1, 𝜆2) = 𝐹[𝐼] + 𝜆1(𝑅 − 𝛽2[𝐼]) + 𝜆2(𝑛0 − 𝑛1 − 𝑛2) (𝐶. 27) 

 

We insert the steady state expression for the intermediate concentration, [𝐼], from Equation 

(3.11), and set the gradient of the Lagrangian to zero: 

 

∇𝑛1,𝑛2,𝐹,𝜆1,𝜆2𝐿 = 0 (𝐶. 28) 

 

Solving the equation, we first find two expressions for critical values of F:  

 

𝐹1 = √𝛽1𝛽2 (𝐶. 29) 

𝐹2 =
𝛽1𝑛1
𝑛2

(𝐶. 30) 

 

Then, we can insert the value of F1 and F2 into the constraint given by Equation (3.17) to find an 

expression for n1 in terms of n2.  We will use the variable 𝑅′ =
𝑅

[𝑆0]
 to maintain the brevity of 

expressions. 
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Case 1: 𝐹1 = √𝛽1𝛽2: 

γ1n1 =
𝛾2𝑛2

(√
𝛾2𝑛2
𝑅′ − 1)

2
(𝐶. 31)

 

Case 2: 𝐹2 =
𝛽1𝑛1

𝑛2
: 

𝑛1 = √
𝑅′𝑛0
𝛾1

n2

√n2
2 −

𝑅′𝑛0
𝛾2

(𝐶. 32) 

 

At this stage, if we try inserting the constraint, 𝑛1 + 𝑛2 = 𝑛0, we will arrive at a fourth order 

polynomial in both cases, which does not have a nice closed form solution.  However, if we plot 

𝑛1 against 𝑛2, we see that both curves approach asymptotes given by the expressions: 

Case 1: 𝐹1 = √𝛽1𝛽2: 

lim
𝑛2→∞

𝛾1𝑛1 =
𝛾2𝑛2
𝛾2𝑛2
𝑅′

= 𝑅′ (𝐶. 33) 

lim
𝑛1→∞

𝛾2𝑛2 = 𝑅
′ (𝐶. 34) 

Case 2: 𝐹2 =
𝛽1𝑛1

𝑛2
: 

lim
𝑛2→∞

𝑛1 =√
𝑅′𝑛0
𝛾1

(C. 35) 
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lim
𝑛1→∞

𝑛2 = √
𝑅′𝑛0
𝛾2

(𝐶. 36) 

If 𝑛0 is big enough, we can approximate the optimal numbers of each enzyme by inserting the 

above limits into the constraint, 𝑛1 + 𝑛2 = 𝑛0.  The results are the following: 

Case 1: 𝐹1 = √𝛽1𝛽2: 

(𝛾1𝑛1, 𝛾2𝑛2) = (𝑅
′, 𝛾2 (𝑛0 −

𝑅′

𝛾1
)) (𝐶. 37) 

(𝛾1𝑛1, 𝛾2𝑛2) = (𝛾1 (𝑛0 −
𝑅′

𝛾2
) , 𝑅′) (𝐶. 38) 

 

Case 2: 𝐹2 =
𝛽1𝑛1

𝑛2
: 

(𝑛1, 𝑛2) = (√
𝑅′𝑛0
𝛾1
 , 𝑛0 −√

𝑅′𝑛0
𝛾1
) (𝐶. 39) 

(𝑛1, 𝑛2) = (𝑛0 −√
𝑅′𝑛0
𝛾2

, √
𝑅′𝑛0
𝛾2
) (𝐶. 40) 

 

Equation (C.39) gives the approximate number of each enzyme which will minimize 

intermediate elimination under the constraints given by Equations (3.17-18). 
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C.7: Maximizing product outflux while constraining intermediate outflux 

In this section, our goal is to take an alternative approach to the optimization problem presented 

in the main text.  Instead of minimizing intermediate outflux while specifying a product outflux, 

here, we maximize product outflux while setting a constraint on intermediate outflux.  The 

problem may be written down as (assuming FS=FI): 

 

𝑚𝑎𝑥 𝛽2[𝐼]
𝑛1,𝑛2,𝐹

(𝐶. 41) 

       𝐹[𝐼] ≤ 𝑅𝐼 (𝐶. 42) 

               𝑛1 + 𝑛2 = 𝑛0 (𝐶. 43) 

 

We solve this inequality constrained optimization problem by using Lagrange multipliers.  The 

Lagrangian is: 

  

𝐿(𝑛1, 𝑛2, 𝐹, 𝜇1, 𝜆1) = 𝛽2[𝐼] + 𝜇1(𝑅𝐼 − 𝐹[𝐼]) + 𝜆1(𝑛0 − 𝑛1 − 𝑛2) (𝐶. 44) 

 

First, we will set 𝜇1 = 0, and solve the optimization problem to maximize product throughput.  If 

the resulting intermediate elimination rate is lower than the allowed RI, we are done. If not, then 

the optimal solution lies on the boundary, FI[𝐼] = 𝑅𝐼, of the feasible set.  This then becomes 

equivalent to the intermediate elimination minimization problem considered initially.  We use 

the steady state concentration of intermediate given by Equation (11) in our calculations. 

Case 1: 𝜇1 = 0 
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∇𝑛1,𝑛2,𝐹,𝜆1𝐿 = 0 (𝐶. 45) 

=>  𝐹 = √𝛽1𝛽2 (C. 46) 

=> 𝑛1 =
1

1 + 𝛼
𝑛0 (C. 47) 

=>  𝑛2 =
𝛼

1 + 𝛼
𝑛0 (C. 48) 

𝛼 = (
𝛾1
𝛾2
)

1
3

(𝐶. 49) 

 

Case 2: 𝜇1 ≠ 0 

∇𝑛1,𝑛2,𝐹,𝜇1,𝜆1𝐿 = 0 (𝐶. 50) 

𝐹 =
𝛽1𝑛1
𝑛2

(C. 51) 

𝑛2 =
𝑛1𝛾1

2

𝑅′𝑛0𝛾2
⋅ (𝑛1

2 −
𝑅𝐼′𝑛0
𝛾1

) (𝐶. 52) 

 

where we have once again defined the variable 𝑅𝐼
′ =

𝑅𝐼

[𝑆0]
. For the second case, we cannot get a 

closed form solution by inserting the constraint 𝑛1 + 𝑛2 = 𝑛0.  However, we see that at a 

minimum, 𝑛1 must be greater than √
𝑅𝐼′𝑛0

𝛾1
  in order to satisfy the equality on intermediate outflux.  

This corresponds well with the result we find in previous section in Equation (C.39) for how to 

minimize intermediate outflux while maintaining a specified product outflux.  
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C.8: Compartments provide benefits only when cytosol intermediate removal rate surpasses 

a threshold 

It is possible to generalize Equations (3.2-4) of the main text to take into account the bulk 

intermediate concentration. The equations become: 

 

𝑑[𝑆]

𝑑𝑡
=
𝐹𝑆([𝑆0] − [𝑆])

𝑉
−
𝑘𝑐𝑎𝑡,1[𝐸1][𝑆]

𝐾𝑚,1 + [𝑆]
(𝐶. 53) 

 

𝑑[𝐼]

𝑑𝑡
=
𝑘𝑐𝑎𝑡,1[𝐸1][𝑆]

𝐾𝑚1 + [𝑆]
−
𝐹𝐼([𝐼] − [𝐼𝑏])

𝑉
−
𝑘𝑐𝑎𝑡,2[𝐸2][𝐼]

𝐾𝑚,2 + [𝐼]
(𝐶. 54) 

 

𝑑[𝑃]

𝑑𝑡
=
𝑘𝑐𝑎𝑡,2[𝐸2][𝐼]

𝐾𝑚,2 + [𝐼]
−
𝐹𝑃[𝑃]

𝑉
(𝐶. 55) 

𝑑[𝐼𝑏]

𝑑𝑡
=
𝐹𝐼([𝐼] − [𝐼𝑏])

𝑉𝑐𝑒𝑙𝑙
−
𝑘𝑒
𝑉𝑐𝑒𝑙𝑙

[𝐼𝑏] (𝐶. 56) 

 

where the only new variable is [Ib], which denotes the concentration of intermediate in the bulk.  

At steady state, in the linear regime, we find that the intermediate concentration is now 

dependent on the elimination rate of intermediate from the bulk: 

 

[𝐼] =
1

𝑘𝑒𝐹𝐼
ke + 𝐹𝐼

+ 𝛽2

⋅
𝛽1𝐹𝑆
𝐹𝑆 + 𝛽1

[S0] (𝐶. 57)
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As before, the goal is to maximize the product outflux which is equal to intermediate conversion, 

𝛽2[𝐼].  After setting the diffusive conductances equal, 𝐹𝐼 = 𝐹𝑆 = 𝐹, this equation can be 

maximizing by taking the derivative with respect to F. 

The derivative of [I] with respect to F is zero whenever: 

 

𝐹 = {
∞, 𝑘𝑒 < 𝑘𝑒,𝑐𝑟𝑖𝑡

𝐹𝑜𝑝𝑡, 𝑘𝑒 ≥ 𝑘𝑒,𝑐𝑟𝑖𝑡
(𝐶. 58) 

Where 

𝑘𝑒,𝑐𝑟𝑖𝑡 = 𝛽1(
1

2
+ √

1

4
+
𝛽2
𝛽1
) (𝐶. 59) 

𝐹𝑜𝑝𝑡 =

𝑘𝑒𝛽1𝛽2
𝑘𝑒 + 𝛽2

+√(
𝑘𝑒𝛽1𝛽2
𝑘𝑒 + 𝛽2

⋅
𝑘𝑒2

𝑘𝑒 + 𝛽2
 ) (𝑘𝑒 − 𝛽1)

𝑘𝑒
2

𝑘𝑒 + 𝛽2
− 𝛽1

(𝐶. 60) 

 

Surprisingly, the optimal choice of F becomes infinite for a nonzero value of ke.  An infinite 

diffusive conductance corresponds to a non-compartmentalized reaction. 
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C.9: An enzyme-coated sphere in an infinite volume with adsorbing boundary conditions at 

infinity 

Consider a microsphere of radius R coated with two populations of enzymes: E1 converts 

substrate, S, to intermediate, I, and E2 converts I to product, P.  The sphere is located in an 

infinite environment.  At infinity, S=S0 and I=0.  Reaction rates on the surface are taken to be 

first order in [S] and [I].  The system of partial differential equations in spherical coordinates 

describing these reactions can be written down as follows: 

𝑑[𝑆]

𝑑𝑡
= 𝐷𝑆∇

2[𝑆] =
𝐷𝑆
𝑟2
⋅
𝜕

𝜕𝑟
(𝑟2

𝜕[𝑆]

𝜕𝑟
) (𝐶. 61) 

𝑑[𝐼]

𝑑𝑡
= 𝐷𝐼∇

2[𝐼] =
𝐷𝐼
𝑟2
⋅
𝜕

𝜕𝑟
(𝑟2

𝜕[𝐼]

𝜕𝑟
) (𝐶. 62) 

 

With boundary conditions: 

 

𝐷𝑆𝑁𝐴
𝑑[𝑆]

𝑑𝑟
(𝑟 = 𝑅) =

𝑘𝑐𝑎𝑡,1
𝐾𝑀,1

𝜎𝐸1[𝑆](𝑟 = 𝑅) (𝐶. 63) 

𝐷𝐼𝑁𝐴
𝑑[𝐼]

𝑑𝑟
(𝑟 = 𝑅) = −

𝑘𝑐𝑎𝑡,1
𝐾𝑀,1

𝜎𝐸1[𝑆](𝑟 = 𝑅) +
𝑘𝑐𝑎𝑡,2
𝐾𝑀,2

𝜎𝐸2[𝐼](𝑟 = 𝑅) (𝐶. 64) 

[𝐼](𝑟 = ∞) = 0 (𝐶. 65) 

[𝑆](𝑟 = ∞) = 𝑆0 (𝐶. 66) 

 

Let: 
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𝛾1 =
𝑘𝑐𝑎𝑡,1
𝐾𝑀,1

𝑁𝐴
−1 (𝐶. 67) 

𝛾2 =
𝑘𝑐𝑎𝑡,2
𝐾𝑀,2

𝑁𝐴
−1 (𝐶. 68) 

 

We can solve this system for steady state, when 
𝑑[𝑆]

𝑑𝑡
=
𝑑[𝐼]

𝑑𝑡
= 0.  The steady state solutions for 

the diffusion equation of the form of Equations 1 and 2 is: 

𝐶(𝑟) =
𝑎

𝑟
+ 𝑏 (𝐶. 69) 

Introducing the boundary conditions, we find the concentration profiles to be: 

𝑆(𝑟) = 𝑆0(1 −
𝑅

𝑟

𝛾1𝜎𝐸

𝛾1𝜎𝐸 +
𝐷
𝑅

) (𝐶. 70) 

𝐼(𝑟) = 𝑆0 ⋅
𝑅

𝑟
⋅ (

𝛾1𝜎𝐸1𝐷𝑆
𝑅

(𝛾1𝜎𝐸1 +
𝐷𝑆
𝑅 ) (𝛾2𝜎𝐸2 +

𝐷𝐼
𝑅 )
) (𝐶. 71) 

 

The throughput is then: 

𝛾2𝜎𝐸2[𝐼](𝑟 = 𝑅) = 𝑆0 ⋅ (
𝛾1𝜎𝐸1𝛾2𝜎𝐸2

𝐷𝑆
𝑅

(𝛾1𝜎𝐸1 +
𝐷𝑆
𝑅
) (𝛾2𝜎𝐸2 +

𝐷𝐼
𝑅
)
) (𝐶. 72) 

 

Note that this equation presents an optimization opportunity in the variable R.  By picking the 

proper R, we can maximize the number of molecules produced per unit area.  This optimal R is: 



216 

𝑅𝑜𝑝𝑡 = √
𝐷𝑆
𝛾1𝜎𝐸1

⋅
𝐷𝐼
𝛾2𝜎𝐸2

(𝐶. 73) 

Multiplying the numerator and denominator out be the surface area, 4𝜋𝑅2, and replacing enzyme 

density with numbers of enzymes, nEi, and defining 𝐹𝑖 = 4𝜋𝐷𝑖𝑅 as the diffusive conductance (as 

derived by Berg for a sphere), and setting 𝛽𝑖 = 𝛾𝑖𝑛𝐸𝑖  as in the compartments paper, we find that 

the throughput is (molecules of product produced per second): 

𝛽2[𝐼](𝑟 = 𝑅) = 𝑆0 ⋅ (
𝛽1𝛽2𝐹𝑆

(𝛽1 + 𝐹𝑆)(𝛽2 + 𝐹𝐼)
) (𝐶. 74) 

This is equivalent to Equation 3.11. 
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C.10: An enzyme-coated sphere in an infinite volume with adsorbing boundary conditions 

with a competing reaction in solution 

Consider the system examined in Section C.9, albeit with a new reaction: intermediate molecules 

in solution are additionally eliminated with a first order rate constant, ke.  In order to model this, 

we need to only change Equation 2.  It is replaced with: 

𝑑[𝐼]

𝑑𝑡
= 𝐷𝐼∇

2[𝐼] − 𝑘𝑒[𝐼] =
𝐷𝐼
𝑟2
⋅
𝜕

𝜕𝑟
(𝑟2

𝜕[𝐼]

𝜕𝑟
) − 𝑘𝑒[𝐼] (𝐶. 75) 

At steady state, this equation takes the form: 

𝐼(𝑟) =
𝐴

𝑟
𝑒
−√
𝑘𝑒
𝐷𝐼
𝑟
+
𝐵

𝑟
𝑒
√
𝑘𝑒
𝐷𝐼
𝑟

(𝐶. 76) 

A and B are constants to be determined from the boundary conditions.  Since we have 

𝐼(𝑟 → ∞) → 0, we find that 𝐵 = 0.  Using the flux condition on the surface, we find: 

𝐴 = 𝑉𝑆𝑅𝑒
𝛼𝑅 ⋅ (

𝐷

𝑅
(𝛼𝑅 + 1) + 𝛾2𝜎𝐸2)

−1

(𝐶. 77) 

𝛼 = √
𝑘𝑒
𝐷𝐼

(𝐶. 78) 

𝑉𝑆 is the throughput at the surface from the first enzyme.  Note that, because the substrate 

conversion reaction is independent of the intermediate concentration, Equation C.70 remains 

valid for describing substrate concentration.  As a result, the intermediate concentration profile 

can be written as: 
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𝐼(𝑟) = 𝑆0 ⋅
𝑅𝑒𝑎(𝑅−𝑟)

𝑟
⋅

(

 
 𝛾1𝜎𝐸1

𝐷𝑆
𝑅

(𝛾1𝜎𝐸1 +
𝐷𝑆
𝑅 ) (𝛾2𝜎𝐸2 +

𝐷𝐼
𝑅
(𝛼𝑅 + 1))

)

 
 

(𝐶. 79) 

The only difference between the equation above and equation C.72 is that the intermediate 

diffusion coefficient has been modified by a factor of (𝛼𝑅 + 1) and the concentration drop off 

has an additional exponential factor. 

The throughput for this reaction is: 

𝛾2𝜎𝐸2[𝐼](𝑟 = 𝑅) = 𝑆0 ⋅ (
𝛾1𝜎𝐸1𝛾2𝜎𝐸2

𝐷𝑆
𝑅

(𝛾1𝜎𝐸1 +
𝐷𝑆
𝑅 ) (𝛾2𝜎𝐸2 +√𝐷𝐼𝑘𝑒 +

𝐷𝐼
𝑅 )
) (𝐶. 80) 
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Appendix D 
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D.1: Determination of the fluorescence of single kinesin molecules 

Solutions containing 2.5 pM GFP-Kinesin and antifade but excluding microtubules were flown 

into UV/ozone treated flow cells and imaged using TIRF microscopy.  The low concentration of 

GFP-Kinesin allowed for imaging of individual kinesins.  Images of single kinesin molecules 

were taken while varying exposure time between 30 ms and 500 ms.  Using open-source image 

analysis software,469 we found that the Gaussian volume of individual fluorophores is a linear 

function of exposure time on average (Figure D.1).  Linear regression on the data returned a 

slope of 1.62 ms-1
 and a negligible intercept of 1.02 counts.  Most experiments were carried out 

with an exposure time of 𝐸𝑋 = 30 ms, which gives a fluorescence intensity per single kinesin of 

roughly 50 counts. 
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Figure D.1.  Calibration curve for total light from single kinesin molecules.  Average volume 

of Gaussian calculated for single kinesin fluorophores at various exposure times (blue dots) fit 

using linear regression (red line).  
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D.2: Models for kinesin landing on the surface 

In order to describe the dynamics of kinesin motor proteins landing on the surface, we employed 

two approaches, modeled after studies in Signal Plasmon Resonance450, 451 and reversible surface 

adsorption kinetics.452 

Model 1: Compartmentalized kinesin concentrations 

This model compartmentalizes the kinesin concentration in the flow cell into three 

compartments: (1) a bulk compartment concentration, [Kbulk], which cannot react with the 

surface; (2) a near-surface compartment concentration, [Ksurf], which describes motors diffusing 

in solution yet able to bind to the surface; and (3) a surface-bound density, σb: 

 

𝑑[𝐾𝑏𝑢𝑙𝑘]

𝑑𝑡
= −𝑘𝑑𝑖𝑓𝑓([𝐾𝑏𝑢𝑙𝑘] − [𝐾𝑠𝑢𝑟𝑓]) (𝐷. 1) 

𝑑[𝐾𝑠𝑢𝑟𝑓]

𝑑𝑡
= 𝑘𝑑𝑖𝑓𝑓([𝐾𝑏𝑢𝑙𝑘] − [𝐾𝑠𝑢𝑟𝑓]) −

1

ℎ𝑁𝐴
⋅ (𝑘𝑜𝑛(𝜎0 − 𝜎𝑏)[𝐾𝑠𝑢𝑟𝑓] − 𝑘𝑜𝑓𝑓𝜎𝑏) (𝐷. 2) 

𝑑𝜎𝑏
𝑑𝑡

= (𝑘𝑜𝑛𝜎0[𝐾𝑠𝑢𝑟𝑓] − 𝑘𝑜𝑓𝑓𝜎𝑏𝑜𝑢𝑛𝑑) (𝐷. 3) 

 

In the above equations, kdiff describes the rate of transfer between the bulk and surface 

compartment, kon is the on-rate for surface binding, koff is the off-rate for surface dissociation, h 

is the apparent height of the near-surface compartment, and NA is Avogadro’s Number.  The 

Quasi Steady State Approximation for this system assumes2: 

𝑑[𝐾𝑠𝑢𝑟𝑓]

𝑑𝑡
≈ 0 (𝐷. 4) 
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This gives 

[𝐾𝑠] =
𝑘𝑑𝑖𝑓𝑓ℎ𝑁𝐴

𝑘𝑑𝑖𝑓𝑓ℎ𝑁𝐴 + 𝑘𝑜𝑛𝜎0
[𝐾𝑏] +

𝑘𝑜𝑓𝑓

𝑘𝑑𝑖𝑓𝑓ℎ𝑁𝐴 + 𝑘𝑜𝑛𝜎0
𝜎𝑏 (𝐷. 5) 

𝑑𝜎𝑏
𝑑𝑡

= 𝑘𝑜𝑛
′ 𝜎0[𝐾𝑏] − 𝑘𝑜𝑓𝑓

′ 𝜎𝑏 (𝐷. 6) 

𝑘𝑜𝑛
′ =

𝑘𝑑𝑖𝑓𝑓
′

𝑘𝑑𝑖𝑓𝑓
′ + 𝑘𝑜𝑛𝜎0

𝑘𝑜𝑛 (𝐷. 7) 

𝑘𝑜𝑓𝑓
′ =

𝑘𝑑𝑖𝑓𝑓
′

𝑘𝑑𝑖𝑓𝑓
′ + 𝑘𝑜𝑛𝜎0

𝑘𝑜𝑓𝑓 (𝐷. 8) 

𝑘𝑑𝑖𝑓𝑓
′ = 𝑘𝑑𝑖𝑓𝑓ℎ𝑁𝐴 (𝐷. 9) 

𝑘𝑜𝑓𝑓
′

𝑘𝑜𝑛′
= 𝐾𝐷 (𝐷. 10) 

Where KD is the dissociation constant for the kinesin-surface bond. We assume that [𝐾𝑏] ≈ [𝐾0], 

the initial kinesin concentration that was flown in.  In addition, to take into account the effect of 

the surface being stripped of nickel ions, and therefore kinesin binding sites, we replace 𝜎0 with 

𝜎0 exp(−𝑘𝑠𝑡), where ks is the stripping rate constant.  That gives the following equation: 

𝑑𝜎𝑏
𝑑𝑡

= 𝑘𝑜𝑛
′ 𝜎0𝑒

−𝑘𝑠𝑡[𝐾0] − 𝑘𝑜𝑓𝑓
′ 𝜎𝑏 (𝐷. 11) 

The solution to this equation depends on four parameters: the initial condition, 𝜎𝑏(𝑡 = 0), and 

the three rate constants.  They were fit using nonlinear regression on the data shown in Figure 2c 

of the main text.  They were found to be: 𝑘𝑜𝑓𝑓
′ = 4.7 ⋅ 10−3 𝑠−1, 𝑘𝑜𝑛

′ 𝜎0[𝐾0] =

7.5 𝜇𝑚−2𝑠−1, 𝑘𝑠 = 6.0 ⋅ 10
−4𝑠−1. 
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Model 2: Solving the diffusion equation with reversible binding at the solid-liquid interface. 

Muira et al.452 proposed approximate closed form expressions for the solution of the diffusion 

equation where diffusing molecules reversibly bind to the surface.  According to their model, the 

density of binding sites on the surface can be approximated as: 

𝜎𝑏(𝑡) ≈
𝑘𝑜𝑛[𝐾0]𝜎0
𝑘𝑜𝑓𝑓

(1 − 𝑒−𝑘𝑑𝑖𝑓𝑓,2𝑡 erfc√𝑘𝑑𝑖𝑓𝑓,2𝑡) (𝐷. 12) 

𝑘𝑑𝑖𝑓𝑓,2 = (
𝑘𝑜𝑓𝑓

𝑘𝑜𝑛𝜎0
√𝐷)

2

(𝐷. 13) 

Where all variables are defined as in Model 1, kdiff,2 is a new rate constant describing the time to 

diffuse to the surface, and D is the diffusion coefficient for the molecule of interest.  As 

previously, we introduced a term to describe stripping of binding sites from the surface and 

introduced a lag time parameter to fit the data in Figure 2c of the main text.  The fit equation had 

the following form: 

𝜎𝑏(𝑡) =  
𝑘𝑜𝑛[𝐾0]𝜎0
𝑘𝑜𝑓𝑓

⋅ 𝑒−𝑘𝑠(𝑡+𝑡𝑙𝑎𝑔) (1 − 𝑒𝑘𝑑𝑖𝑓𝑓(𝑡+𝑡𝑙𝑎𝑔) erfc√𝑘𝑑𝑖𝑓𝑓(𝑡 + 𝑡𝑙𝑎𝑔)) (𝐷. 14) 

𝑘𝑑𝑖𝑓𝑓 = (
𝑘𝑜𝑓𝑓

𝑘𝑜𝑛𝜎0𝑒
−𝑘𝑠(𝑡+𝑡𝑙𝑎𝑔)

√𝐷)

2

(𝐷. 15) 

The fit parameters for this equation were 
𝑘𝑜𝑛[𝐾0]𝜎0

𝑘𝑜𝑓𝑓
⁄ = 2.6 ⋅ 103 𝜇𝑚−2, (

𝑘𝑜𝑓𝑓

𝑘𝑜𝑛𝜎0
√𝐷)

2

=

3.0 ⋅ 10−3 𝑠−1, 𝑘𝑠 = 7.5 ⋅ 10
−4 𝑠−1, 𝑡𝑙𝑎𝑔 = 47 𝑠. 

This also gives an estimate on the diffusion coefficient of kinesin molecules.  Using the 

above values, we find: 
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𝐷 = 3.0 ⋅ 10−3 ⋅ (
2.6 ⋅ 103 𝜇𝑚−2

0.025 𝜇𝑀
)

2

𝑠−1 = 90
𝜇𝑚2

𝑠
(𝐷. 16) 

 

Considering that the GFP-Kinesin that we use has a molecular weight of about 154 kDa (a dimer, 

with a 48.6 kDa contribution from the first 430 N-terminal amino acids of the rat kinesin-1 heavy 

chain and a 28.3 kDa contribution from the GFP-tag in each monomer), this result is twice the 

value predicted by the Young, Carroad, and Bell model (46 μm2/s for a 154 kDa protein at 22o C 

).470, 471  
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D.3: The kinesin surface density first drops and then reaches a steady state 

We measured the fluorescence from a kinesin-coated surface over a period of 6500 s, and found 

that the kinesin surface density stops falling after 5000 s.  An example of this is shown in Figure 

D.2.  From seven measurements, it was found that final kinesin density is 180 ± 40 μm-2 (N=7, 

Standard Error).   

 

Figure D.2. Kinesin surface density over time.  Plot of pixel-wise averages of image 

fluorescence against time.  Fluorescence was converted into surface density using the calibration 

curve in Figure D.1.  
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D.4: Calculation of profiles for the FRAP experiments in Figures 2(e-f) 

In order to compare the fluorescence of the bleached and unbleached region of the image in 

Figure 2e of the main text, the image was downsampled twice (16 pixels to 1) and the center 

column of pixels (outlined in dashed region), which contained portions of both the unbleached 

and bleached region was isolated.  The mean fluorescence was separately determined for the 

unbleached (top dashed white box) and bleached (bottom dashed white box) region of the 

isolated column, converted to a kinesin density using the calibration curve described in Appendix 

Section 1, and plotted. 
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D.5: Single molecule measurements of the kinesin-surface interaction 

Single kinesin off-rate measurements.  Solutions containing 2.5 pM GFP-Kinesin and antifade 

but excluding microtubules were flown into Pluronic-F108-NTA-Ni coated flow cells and 

imaged using TIRF microscopy once every 1 s with 500 ms exposure time over the course of 200 

s.  Individual motor trajectories and residence times were recorded using open-source single 

molecule tracking software.469  The data were then used to estimate the kinesin-surface off-rate 

constants and surface diffusion coefficients. 

In the analysis of the residence time distribution of individual molecules, all molecules that 

were present in the first frame were excluded, and all molecules that were present in the last 

frame were considered right-censored.  Mean residence time was estimated by calculating the 

integral of the empirical survival function while using the Efron correction (which counts the 

maximum observed residence time as observed if it is actually censored). 

While analyzing the residence time distribution of individual molecules (empirical survival 

function plotted in Figure D.3a), we found that molecules remaining on the surface for longer 

periods of time displayed more robust statistics; in particular, with T denoting the random 

variable describing the time a molecule remains on the surface, the plot of 𝔼[𝑇|𝑇 > 𝑡∗] − 𝑡∗ was 

found to saturate at a value of roughly 40 s for 𝑡∗ > 50 𝑠 (Figure D.3b), suggesting that at least 

part of the distribution could be described by an exponential random variable.301  As a result, the 

residence time was modeled as a mixed exponential distribution with two rate parameters, with 

the following survival function:  

𝑆(𝑡) = 𝑝1𝑒
−𝜆1𝑡 + (1 − 𝑝1)𝑒

−𝜆2𝑡 (𝐷. 17) 

In order to estimate the parameters, we fit the values of 𝔼[𝑇|𝑇 > 𝑡∗] − 𝑡∗: since, 
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ℙ(𝑇 > 𝑡|𝑇 > 𝑡∗) =
ℙ(𝑇 > 𝑡, 𝑇 > 𝑡∗)

ℙ(𝑇 > 𝑡∗)
=
𝑝1𝑒

−𝜆1𝑡 + (1 − 𝑝1)𝑒
−𝜆2𝑡

𝑝1𝑒−𝜆1𝑡
∗
+ (1 − 𝑝1)𝑒−𝜆2𝑡

∗ , 𝑡 > 𝑡∗ (𝐷. 18) 

it follows that: 

𝔼[𝑇|𝑇 > 𝑡∗] − 𝑡∗ =
1

𝜆1

𝑝1𝑒
−𝜆1𝑡

∗

𝑝1𝑒−𝜆1𝑡
∗
+ (1 − 𝑝1)𝑒−𝜆2𝑡

∗ +
1

𝜆2

(1 − 𝑝1)𝑒
−𝜆2𝑡

∗

𝑝1𝑒−𝜆1𝑡
∗
+ (1 − 𝑝1)𝑒−𝜆2𝑡

∗ . (𝐷. 19) 

This function was fit to the data in Figure D.3b by using nonlinear regression to minimize the 

sum of square error.  The fit parameters were:   𝑝1 = 0.89 ± 0.02, 𝜆1 = 0.12 ± 0.01 𝑠
−1, and 

𝜆2 = 0.0240 ± 0.004 𝑠
−1.  The estimate on 𝜆2 coincides with the off-rate for a bis-NTA bond 

with His6 found by Lata et al.454.  The estimate on 𝜆1 however is not trustworthy as it is strongly 

dependent on the short residence time which could be heavily influenced by false positives and 

discretization error originating from the long exposure time. 

Single kinesin diffusion coefficient measurement.  Kinesin diffusion was analyzed using the same 

data set as the previous section.  The diffusion coefficient was calculated from molecule 

trajectories (sample trajectory shown in Figure D.3c) using the mean squared displacement 

(MSD) approach.  Only particles that remained on the surface for at least 30 s were considered.  

A total of 77 particles were examined.  The MSD was calculated for each particle up to a lag 

time of 25 s.  The particle-wise mean MSD was determined for each lag time.  Linear regression 

was performed on the averaged MSD data while weighting with the inverse variance of the 

particle-wise MSD (individual MSD plots and global fit shown in Figure D.3d).  The diffusion 

coefficient was estimated from the fit using: 

𝑀𝑆𝐷 = 4𝐷Δ𝑡 + 𝑐 (𝐷. 20) 

The diffusion coefficient was estimated to be 1700 ± 20 𝑛𝑚2 𝑠−1. 
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Figure D.3. Single molecule analysis of kinesin residence time and diffusion on an Ni-NTA 

surface in the absence of microtubules.  (a) Empirical survival function of residence times with 

1-frame events truncated out. (b) Plot of  𝔼[𝑇|𝑇 > 𝑡∗] − 𝑡∗ for the data (blue) and the fit (red).  

(c) Sample trajectory of a single kinesin, centered at the starting point of the trajectory.  (d) Mean 

squared displacement of individual kinesin trajectories (gray), globally fit using linear regression 

(black), with weights proportional to the inverse observed particle-wise variance of the MSD at 

each lag time (standard deviation as black error bars). 
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D.6:  Analysis of microtubule gliding assays 

Images were flattened according to the following formula: 

𝐼𝐹𝑙𝑎𝑡 =
𝐼𝑜𝑟𝑖𝑔 − 𝑂

𝐼𝐵𝐾𝐺𝐷 − 𝑂
⋅ (𝑚𝑒𝑑𝑖𝑎𝑛 (

1

𝐼𝐵𝐾𝐺𝐷 − 𝑂
))

−1

(𝐷. 21) 

Where Iorig is the original 1024 x 1024 image, O is the offset (100 counts in this case), and IBKGD 

is the image background, found by convolving a 100-pixel Gaussian blur with the original image.  

The median correction is implemented to return the image to original units after conversion.  

Only the center 512 x 512 region was used for analysis in order to avoid issues associated with 

image boundaries. 

For each frame of the video, the pixel-wise mean and pixel-wise variance were calculated.  

These are shown in the figure below.  The ratio of the variance to mean in each frame can be 

found in Figure 3c of the main text.  In addition, the squared correlation coefficient between the 

green and red channel is found to increase with increasingly bundled behavior. 
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Figure D.4. Microtubules assemble into bundles as GFP-kinesins assemble on microtubules.  

(a) Pixel-wise mean of the red (μRed) and green (μGreen) channel plotted against time.  (b) Pixel-

wise variance of red (σRed
2) and green (σGreen

2) channel plotted against time.  (c) Squared 

correlation (ρRed, Green
2) between the pixel-wise fluorescence counts between the kinesin and 

microtubule channel plotted against time. 
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D.7: Kinesin dwell time on microtubules increases with time 

The influence of velocity on bundling behavior can be explained by considering the unbinding 

rate of kinesin motors from the microtubule at depleting ATP and growing ADP and Pi 

concentrations.  In the previous analysis of this dynamic system, it was postulated that the motor 

unbinding rate was equal to the ratio of the velocity to motor run length.43  During the 

experiment at hand, the velocity falls ten-fold.  The change in run length, however, is not so 

clear.  On the one hand, in the absence of ADP and Pi, the run length has been found to be 

independent of ATP concentration down to micromolar quantities.472  On the other hand, equal 

concentrations of ATP and ADP were shown to decrease run length by up to 50%.458, 472  At the 

same time, the addition of Pi has been observed to increase run length by up to two-fold;473 in 

general, Pi has been found to have a stabilizing effect on the kinesin-microtubule bond.277, 474 The 

opposing nature of the growing ADP and Pi concentrations makes it difficult to determine their 

cumulative effect on the kinesin density.  The examination of the kinesin-1 stepping mechanism 

as proposed by Hancock277 suggests that in the absence of ATP and in the presence of ADP and 

Pi, individual kinesin motor will be driven towards the two-head bound state, where the rear head 

is occupied by ADP and Pi while the leading head is bound to ADP.  This state can transition 

backwards into the vulnerable one-head bound state.  However, it was found that the reverse 

transition was roughly 100 times slower than the forward transition,475 implying a saturation for 

dwell time with relation to ADP concentration. 475 Detachment from this vulnerable one head-

bound state will then depend on phosphate release from the bound head.  Since the dissociation 

constant for phosphate from the microtubule bound kinesin-ADP complex is in the tens of 

millimolar range287, 458, 474, it is conceivable that the one head bound state will be stabilized by 

phosphate rebinding if the solution phosphate concentration is high enough.  Using the rate 
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constants for the forward (3.13 +/- 2.75 s-1) and reverse (329.2+/- 291.1 s-1 or 428 s-1) 250, 475, 476 

transition between the one head bound and two head bound states, and the detachment rate of a 

one head-bound kinesin from a microtubule (2.5 s-1)277, 342, the estimate for the off-rate from the 

two head bound state in the presence of ADP and Pi and absence of ATP is on the order of 0.02 

s-1.  In our experiments, microtubule bundles imaged 24 hours after the beginning of the assay 

were found to recover kinesin motors after photobleaching at a rate of 𝜆 = 0.009 s−1  (Figure 

D.5), by fitting a first order kinetics model: 

𝜎𝐾,𝑀𝑇(𝑡) = 𝜎𝐾,𝑀𝑇,0𝑒
−𝜆𝑡 + 𝜎𝐾,𝑀𝑇,𝑚𝑎𝑥(1 − 𝑒

−𝜆𝑡) (𝐷. 22) 

The two-fold difference between our experimentally-determined recovery rate of kinesin and our 

estimate from literature can be explained by the additional phosphate in solution. 
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Figure D.5. Microtubule bundles fluorescence recovery after photobleaching 24 hrs after 

beginning of assay.  (a)  Microtubule bundles are photobleached 24 hrs after beginning of assay, 

after which they regenerate kinesin motors.  Image sequence depicting the kinesin channel before 

photobleaching (-100 s), immediately after (0 s), 100 s and 700 s after photobleach. (b) Pixel-wise 

mean of kinesin fluorescence in the circle in (a) (μGreen, green circles) plotted with respect to time.  

The data is fit with an exponential curve with saturation, revealing a recovery rate of 0.009s-1, 

which corresponds to the off-rate of motors from the bundle.  The remaining 20% of the motors 

may be double-binding the microtubule to the surface. 
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D.8:  Addition of AMP-PNP increases bundling behavior 

Adenylyl-imidodiphosphate (AMP-PNP) is a non-hydrolyzable analog of ATP which locks 

kinesin motors in a state which strongly-binds microtubules.  In order to provide further 

verification that the kinesin-microtubule bond strength is important to bundling dynamics, we 

performed experiments where an additional 100 μM AMP-PNP was added to the microtubule-

kinesin-ATP-antifade solution.  This experiment demonstrated nematic alignment at the onset of 

the experiment and featured a noticeable increase in the number of spool-like bundles (Figure D.6). 
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Figure D.6. Locking kinesin motors in a strong microtubule-binding state by adding AMP-

PNP leads bundles to take on spool-like structures. Comparison of bundles formed 30 mins 

after the beginning of the experiment in the absence (top) and presence (bottom) of 100 μM AMP-

PNP. Microtubules gliding in the presence of 100 μM AMP-PNP assemble more rapidly into 

spool-like structures. 
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D.9: Dependence of microtubule bundling on kinesin and microtubule concentration 

Increasing the kinesin concentration 3-fold, from 25 nM to 75 nM, did not have a significant 

effect on bundle formation.  However, decreasing the kinesin concentration 8-fold, from 25 nM 

to 3.1 nM, severely reduced the functionality of the dynamic system; microtubules were weakly 

surface bound and would not form bundles.  Representative images are shown in Figure S7. 

 

Figure D.7. Dependence of bundle formation on kinesin concentration.  Bundles form at a 3-

fold higher kinesin density (75 nM), yet fail to form at an 8-fold lower kinesin density (3.1 nM), 

as expected from our previous study.  Images taken 30 mins after beginning of experiment. 

 

Decreasing tubulin concentration from 80 nM to 40 nM and 8 nM resulted in a decrease in the 

density of microtubules on the surface (Figure S8).  In turn, the lower densities of microtubules 

resulted in less bundle formation, as collision rates between microtubules fell.   
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Figure D.8. Dependence of bundle formation on microtubule density.  As microtubule density 

is lowered, microtubule bundles become more dispersed and less dense.  Images taken 30 mins after 

beginning of experiment.  
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D.10: Microtubules may be attracted by the kinesin trail under neighboring microtubules 

We found that the kinesin trail left behind gliding microtubules was not enough to induce following in 

other microtubules in a “pheromonic” manner.  However, we observed events where microtubules would 

dissociate from and then re-associate with the same guiding microtubule shortly afterwards.  An example 

of this is shown in Figure S9.  This interaction could be due to a lateral kinesin gradient perpendicular to 

the axis of the guiding microtubule; however, at this stage it is not possible to differentiate it from a 

random event.   

 

 

Figure D.9.  Microtubule reassociation after dissociation from a guiding microtubule.  

Depicted is a sequence of images where a following microtubule dissociates and then re-associates with 

the same microtubule.  While this behavior could be due the lateral gradient of kinesin perpendicular to 

the axis of the guiding microtubule, it happens too rarely to distinguish it from random events. 
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D.11: AMP-PNP-induced microtubule bundling is weak compared to the driving force of 

surface-bound motors 

Kinesin motors can serve as cross-links between microtubules.  This can be seen by locking kinesin 

motors in a strong microtubule-binding state by adding 100 μM AMP-PNP into the solution containing 

microtubules, kinesin, ATP, and the antifade system.  Initially, microtubules land in clusters (Figure 

D.10a).  As the microtubules move in response to the 1 mM ATP in solution, the cluster spreads out 

radially (Figure D.10a).  The spread over time was quantified by downsampling the image 128 times 

(Figure D.10b) and fitting the resulting image to a Gaussian of the form: 

𝑓(𝑥, 𝑦) = 𝐶0 exp(−
(𝑥 − 𝜇𝑥)

2

2𝜎𝑥
2 −

(𝑦 − 𝜇𝑦)
2

2𝜎𝑦
2 ) (𝑆6.23) 

Where x and y are the coordinates, C0 is the peak height, μx is the x-coordinate of the peak, μy is the y-

coordinate of the peak, σx is the gaussian width along the x-axis, and σy is the gaussian width along the y-

axis.  C0, μx, μy, σx, σy are the fit parameters.  The total fluorescence of the field of view of the cluster 

does not change significantly over time (Figure D.10c).  At the same time, the fit parameters reveal that 

the peak height, C0, falls roughly 40% (Figure D.10d) over the span of 5000 s.  In addition, the overall 

width of the gaussian, taken as 𝜎 = √𝜎𝑥𝜎𝑦, increases by 30%, or half of a downsampled pixel, amounting 

to about 10 μm.   This indicates that microtubules are escaping from the initial cluster.  The slow growth 

of the width can be attributed to two factors.  First, the presence of the inhibitory 100 μM AMP-PNP 

limits microtubule velocity.  Second, the spread cannot be described by simple diffusion-based kinetics, 

as microtubules near the center of the cluster are sterically confined from moving down the concentration 

gradient. 

The escape of microtubules from the cluster suggests that microtubule cross-links by kinesins are not 

a significant factor for microtubule interactions in the absence of AMP-PNP. 
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Figure D.10. Dispersion of microtubules from a cluster formed in the presence of 100 μM 

AMP-PNP.  (a) Image of the microtubule channel of the dynamic system when 100 μM AMP-PNP is 

included in the motility solution at the onset of the assay (0 s) and 5000 s later taken with 40x 

magnification.  (b) Downsampled version of images in (a), generated by downsampling by a ratio of 1282 

pixels to 1.  (c) (Left) Pixel-wise average fluorescence of the downsampled image across time, and 

(Right) the fit gaussian peak height and fit gaussian width of the downsampled image across time. 
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D.12: Gliding microtubules do not experience a significant change in velocity when colliding 

with other microtubules in the presence of 1 mM AMP-PNP 

To verify that cross-linking of microtubules by kinesin motors does not play a major role in the 

generation of collective behavior, we examined the velocity of microtubules gliding in the presence of 1 

mM ATP and 1 mM AMP-PNP during a parallel (Fig D.11a) and anti-parallel (Fig D.11b) alignment. 

The velocity was estimated by recording the distance traveled by the microtubule tip every ten frames.  

As expected, the velocity of microtubules decreased significantly over the course of the system lifetime 

due to depleting ATP.  To determine whether the microtubule velocity changed significantly during a 

collision, the downward trend in velocity was fit using linear regression for: (1) the time period over 

which the colliding microtubules did not interact and (2) the time period over which the microtubules did 

interact (Figure D.11c-d).  Using a 2-parameter Wald test, we found that the fits were not statistically 

different in both cases (p=0.86 and p=0.67 for the parallel and anti-parallel collisions, respectively). 

Since we do not observe a statistically significant difference in the velocity under the highest AMP-PNP 

concentration, which should cause the highest degree of microtubule cross-linking by kinesin motors, we 

conclude that multi-headed kinesin motors do not play a significant role in the alignment of gliding 

microtubules in our dynamic system.  
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Figure D.11. Microtubule velocity does not change significantly during collisions in the 

presence of 1 mM AMP-PNP.  (a) Image sequence of parallel collision and alignment.  (b) Image 

sequence of anti-parallel collision and alignment.  (c) Velocity of top microtubule in (a) before, during, 

and after the collision, fit using linear regression.  (d) Velocity of top microtubule in (b) before, during, 

and after an anti-parallel collision fit using linear regression.  Blue markers indicate time points when 

microtubules are not interacting; red markers indicate time points when microtubules are interacting. 


