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Current genetic studies of monogenic and complex bone diseases have broadened

our understanding of disease pathophysiology, highlighting the need for medical

interventions and treatments tailored to the characteristics of patients. As genomic

research progresses, novel insights into the molecular mechanisms are starting to

provide support to clinical decision-making; now offering ample opportunities for disease

screening, diagnosis, prognosis and treatment. Drug targets holding mechanisms with

genetic support are more likely to be successful. Therefore, implementing genetic

information to the drug development process and a molecular redefinition of skeletal

disease can help overcoming current shortcomings in pharmaceutical research, including

failed attempts and appalling costs. This review summarizes the achievements of genetic

studies in the bone field and their application to clinical care, illustrating the imminent

advent of the genomic medicine era.

Keywords: genomic medicine, osteoporosis, complex diseases, monogenic bone disorders, drug repurposing,

Mendelian randomization

INTRODUCTION

The concept of “precision” or “personalized” medicine, i.e., individualized prevention and
treatment tailored to a patient’s individual needs is not new. What is clear is that it has gained
notorious popularity over the past decade, fuelled by the advances in human genomics, setting
the ground for the field of “Genomic Medicine.” The biggest breakthroughs in the field were
achieved with the emergence of the genome-wide screens across large study populations which
have uncovered many novel molecular mechanisms underlying rare and common human diseases.
This review summarizes the achievements of genetic studies in the bone field (both for monogenic
and complex traits) and their application to clinical care, illustrating the imminent advent of the
genomic medicine era.

The translation of genomic findings to the clinic has been particularly successful for the
diagnostic screening and treatment of rare monogenic diseases. For instance, ivacaftor is a drug
widely used in clinical practice to treat patients with cystic fibrosis; the compound targets directly
the gene defect in patients with at least oneG551Dmutation in theCFTR gene (1). Gene therapy has
also been introduced for several other monogenic diseases such as inherited immune deficiencies
(2), hereditary blindness (3), hemophilia (4), and beta-thalassemia (5) among others. Similarly,
tremendous progress has been made in cancer research with the development of the chimeric
antigen receptor T cell (CAR-T) immunotherapy which acts as a “living drug” against cancer cells
(6). In contrast, the translation of genomic discoveries for common diseases has lagged behind due
to their complex nature, i.e., involvement of numerous genetic variants of weak effects and large
environmental influence.
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WHAT HAVE WE LEARNED FROM
MONOGENIC SKELETAL DISORDERS?

In general, monogenic diseases arise due to mutation in a
specific gene and are responsible for sometimes life-threatening
abnormalities across different bodily systems, including the
musculoskeletal. Based on the inheritance pattern, monogenic
diseases can be classified as recessive or dominant. These diseases
have been extensively described in previous reviews (7–10).
Below we will focus mainly on those musculoskeletal conditions
where novel treatments have been developed.

Osteogenesis Imperfecta
Osteogenesis imperfecta (OI) is a group of genetic disorders
characterized by weak bones, of which most are of autosomal
dominant inheritance (types I, II, III, IV, V, and VI); while a few
are inherited in an autosomal recessive manner (types VII, VIII
and some cases of type III). Most of the mutations are present
in either the COL1A1 or COL1A2 genes, which encode proα1 (I)
and proα2 (I) collagen chains (11).Mutations in these genes affect
the composition of the bone matrix and bone architecture, due
to alterations in the collagen cross-links and of collagen 1 triple
helix formation. These material properties of collagen 1 fibrils
constitute strong determinants of bone strength, and are affected
to varying degrees in OI (type I-IV). Notably, the COL1A1 gene
has also been associated with variation in bone mineral density
(BMD) in the general population (12).

Patients with OI display wide range of skeletal features
such as low bone mass, increased bone fragility and fracture
risk, physical disability, and chronic pain which altogether
decrease the quality of life. OI treatment is based on disease
severity and patient’s specific symptoms. While still pending
to reach clinical application, several efforts have been made to
correct the underlying genetic defect of OI. Chamberlain et
al. using adeno-associated virus (AAV) targeting vector have
successfully inactivated mutant COL1A1 (13) and COL1A2 (14)
genes in OI mesenchymal stem cells (MSCs), thus restoring the
production of normal type 1 procollagen. Induced pluripotent
stem cells (iPSCs) generated from gene-targeted MSCs isolated
from OI patients were able to differentiate to osteoblasts and
produce normal collagen as well (15). Recently, using CRISPR-
Cas9 several iPSC lines have been created to explore the
OI mechanisms and therapeutic approaches in vivo (16, 17).
Furthermore, MSC transplantation in OI patients has showed
promising results leading to increased BMD and decreased
fracture risk after transplantation in both mice and humans (18–
21). In 2016, EU approved the Boost Brittle Bones Before Birth
(BOOSTB4) study whose sole aim is to perform Phase I/II clinical
trials on the safety and efficacy of prenatal and/or postnatal
transplantation of fetal-derived MSC for severe forms of OI
(Type III and IV) (22). Finally, it has been also shown that allele-
specific Col1a1 and Col1a2 silencing using small interfering
RNAs leads to reduction of the mutant collagen in both human
and mice cell models (23, 24). These findings should be further
replicated and validated before moving into clinic.

Overall, all of these approaches have shown to have possible
therapeutic benefit in OI types I-IV. Much less is known about

the other forms of OI (types V-XVII) caused by mutations in
other genes: IFITM5 (type V), SERPINF1 (type VI), CRTAP (type
VII); LEPRE1 (type VIII), PPIB (type IX), SERPINH1 (type X),
FKBP10 (type XI), SP7 (type XII), BMP1 (type XIII), TMEM38B
(type XIV),WNT1 (type XV), and SPARC (type XVII).

Osteopetrosis
Osteopetrosis is a group of rare bone disorders characterized
by high bone mass due to defects in osteoclast differentiation
and function. The abnormal bone remodeling leads to a variety
of skeletal and dental deformities. Moreover, severe forms of
osteopetrosis can expand to the bone marrow and the cranial
nerve foramina resulting in a plethora of hematological and
neurological complications (9). The autosomal dominant form
of osteopetrosis (ADO), i.e., Albers-Schönberg disease, is caused
primarily by heterozygous mutations in the chloride channel 7
(CLCN7) gene (25). On the other hand, there are eight different
forms of autosomal recessive osteopetrosis (ARO) [reviewed
elsewhere (26)] caused by mutations across several different
genes such as TCIRG1, CAII, OSTM1, TNFSF11, TNFRSF11A
among others.

The clinical diagnosis of osteopetrosis can be easily made
using simple X-ray. Nevertheless, it is important to distinguish
between the different forms of osteopetrosis using genetic testing
as this will determine the choice of disease treatment and
prognosis. For instance, patients with CAII deficiency are at
high risk of developing nephrocalcinosis and nephrolithiasis
(27), whereas patients with mutations in OSTM1 or CLCN7
may have severe neurological defects (28). Currently, the only
established treatment for the severe forms of osteopetrosis is
hematopoietic stem cell transplantation (HSCT). However, the
success of the HSCT will depend on the time of diagnosis, i.e.,
patients undergoing HSCT after the age of 10 months have
high prevalence of graft rejection (29). A major issue with
HSCT treatment is that it requires HLA-matched donors. For
individuals lacking compatible donor, alternative treatment in
the future can be gene therapy which has shown promising results
in the preclinical trials. For instance, neonatal transplantation
of gene-modified HSCs have led to increased bone resorption
in oc/oc mice (30, 31). Lentiviral-mediated correction of the
genetic defect (TCIRG1) have improved osteoclasts activity in
vivo (32, 33). Last but not least, gene-corrected iPSCs may also
be valuable source for testing and developing gene therapy for
osteopetrosis (34).

HSCT treatment for TNFSF11 mutations will be ineffective
because in this form of osteopetrosis the main defect does
not arise from the haematopoietic lineage (35). Osteopetrosis
in TNFSF11-deficient patients requires a different treatment
approach. Several pre-clinical studies have shown promising
results in the treatment of TNFSF11-dependent osteopetrosis.
For instance, the administration of synthetic RANKL to
Tnfsf11−/− mice led to significant improvement of the bone
phenotype (36). In addition, several studies are also testing the
use of implants and biomimetic scaffolds as source of synthetic
RANKL in order to promote osteoclastogenesis in Tnfsf11 knock-
out mice (37). These methods need to be further validated before
entering clinical trials.
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Additional novel approaches for the treatment of
osteopetrosis include gene silencing using small interfering
RNAs (38) and interferon gamma (IFN-y) (39) which have
shown to be effective in reducing bone mass. Nevertheless, both
approaches need further evaluation before they can be brought
to the clinic.

Sclerosing Bone Disorders
Genetic mutations affecting the SOST (chr17q12-21) gene lead
to two similar syndromes: sclerosteosis and van Buchem disease,
described in detail in previous reviews (10, 40, 41). Sclerosteosis
arises from loss-of-function mutations within the SOST gene;
whereas, van Buchem disease from deletion of a region (∼52-
kb) downstream of the SOST gene, which is relevant for
proper gene expression (42). SOST encodes sclerostin, which
is a potent inhibitor of the Wnt/β-catenin signaling pathway
relevant for osteoblast differentiation and proliferation (43,
44). Moreover, sclerostin incites RANKL secretion and triggers
osteoclastogenesis (45). Thus, both diseases are characterized by
high bone mass throughout the skeleton. There is no specific
therapy for these conditions. The treatment is based on treating
symptoms and reducing the severity of complications (40).

The knowledge of the cellular and molecular mechanisms of
these rare skeletal disorders have led to new treatment strategies
for osteoporosis. The sclerostin monoclonal antibody (Scl-Ab/
Romosozumab), which inhibits the function of sclerostin and
enhances bone formation (anabolic compound), is the most
recent addition to the osteoporosis set of medications. In the
early research stages, Scl-Ab treatment has resulted in dose-
dependent increases in cortical and trabecular bone mass and
volume at several skeletal sites in monkeys (46) and rats (47).
Similar findings were observed during a Romosozumab Phase
I clinical trial of 72 postmenopausal women and healthy men
(48). In 2014, the phase II clinical trial of Romosozumab showed
significant increases in BMD (49), whereas in Phase III (two years
later) it was associated with 73% lower risk of future vertebral
fracture in women with postmenopausal osteoporosis during 24-
months of follow-up (50). Since 2019, Romosozumab is officially
approved for clinical use and is promoted as anabolic agent that
stimulates bone formation and decreases bone resorption.

It is worth mentioning that when targeting treatments based
on gene function (i.e., gain/loss of function mutations) effects
can result in opposing outcomes. For instance, gain-of-function
mutations in the LRP5 gene result in drastic increases in bone
mass (51, 52), while loss-of-function mutations cause decreases
in bone mass, i.e., osteoporosis-pseudoglioma syndrome (53,
54). Therefore, strong biological knowledge is needed before
embarking on clinical trials as provided by pre-clinical cell
and animal models, potentially complemented by the rapidly
growing number of genome-wide association studies (GWAS)
for complex traits. Further, as described below, GWAS of
osteoporosis traits have re-identified variants in genes known to
harbor mutations responsible for monogenic conditions. This
implies that (1) genes identified by GWAS of complex traits
serve as prominent candidates to be scrutinized for underlying
“unsolved” monogenic conditions; and (2) genes underlying
monogenic conditions which are harboring common variants

associated with complex traits provide indication of shared
biological pathways with enormous translational potential (55).

WHAT HAVE WE LEARNED FROM
COMPLEX SKELETAL TRAITS?

Gene Discovery in Osteoporosis
Osteoporosis is a common complex skeletal disease with a
devastating endpoint i.e., fractures. From a genetic perspective
osteoporosis is a systemic multifactorial disease caused by a
combination of genetic, environmental, and lifestyle factors.
Similarly, fracture risk, comprises a very complex trait involving
numerous biological and biomechanical processes that are under
convoluted genetic and environmental control (55). GWAS
have revolutionized the field of genetics of complex traits
and common diseases, where osteoporosis is no exception.
There are several reviews describing in detail the findings
arising from the Genetic Factors of Osteoporosis (GEFOS)
consortium, and the UK Biobank (56–58). Currently, there are
close to thousands of variants associated with increased risk
of osteoporosis (12, 59–62). These variants map to relevant
bone pathways such as Wnt signaling (LRP5, WNT16, AXIN1,
CTNNB1, DKK1, WLS, LRP4, MEF2C, RSPO3, SERP4„ SOST,
WNT4, WNT5B, EN1), OPG-RANK-RANKL (TNFRSF11B,
TNFRSF11A, TNFSF11) and endochondral ossification (PTHLH,
RUNX2, SPP1, SOX6), but also novel pathways yet to be
explored. Recently, novel genes have been discovered, which are
involved in bone metabolism (SLC8A1, PLC1, and ADAMTS5);
osteoblast and osteoclast differentiation and activity (CSF1,
DUSP5, SMAD3, SMAD9, and CD44); and manganese and
calcium absorption (GCKR, DGKD, and SLC30A10), among
others (59). Importantly, there is an overlap between the
monogenic skeletal conditions and BMDGWAS-identified genes
such as GALNT3 [OMIM: 211900], COL1A1 [OMIM: 166210
and 259420], SHFM1 [OMIM: 601285], ESR1 [OMIM: 615363],
and LRP4 [OMIM: 212780]; genes implicated in mesenchymal
cell differentiation, skeletal development, and bone remodeling
and metabolism (55). Remarkably, GWASs on BMD have
identified existing or promising drug targets (Figure 1); reflecting
the 267-fold enrichment observed across GWAS for validated
drug targets in humans (56). However, such relatively high
number of discovered drug targets represents a small fraction
of the total number of discovered genes. Hence, many novel
drug targets are yet to be identified. Recently, two genes
identified by GWAS have been proposed as possible novel
drug targets for osteoporosis. Kemp et al. (60) using multiple
layers of evidence from bioinformatical, functional and biological
knowledge have shown GPC6 to play a prominent role in
bone biology. Gpc6−/− mice is characterized by a high bone
mass phenotype and increased cortical bone thickness (60).
This gene has also been linked to several essential pathways
such as fibroblast growth factor, vascular endothelial growth
factor, Hedgehog, and bone morphogenetic protein pathways
(64). GPC6 encodes a glypican anchored on the cell membrane
in the extracellular matrix and it is relevant for cell signaling.
In particular, the heparan sulfate proteoglycans attached to the
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FIGURE 1 | Existing drug targets and whether they have been identified through GWASs. RANKL-Receptor activator of nuclear factor-κB ligand; SOST-sclerostin;

DKK1-Dickkopf WNT signaling pathway inhibitor 1; ESR1-Estrogen Receptor 1; PHR-parathyroid hormone receptor; FDP-Farnesyl pyrophosphate. The figure was

adapted from Jepsen et al. (63).

GPC6 protein regulate skeletal signaling pathways involved in
bone formation andmineralization; thus, representing a potential
good drug target. In humans, GPC6 is mainly expressed in the
liver and bladder tissue. Given the lack of bone and muscle
tissues in publicly available databases there is no evidence for its
expression in bone tissue. Nevertheless, GPC6 have been reported
to be expressed in osteoblasts and osteocytes in mice (60). Yet
another potential drug target identified by GWAS is DAAM2
which regulates canonicalWnt signaling. Further, CRISPR–Cas9-
mediated DAAM2 knockout models in osteoblast cells lines are
shown to exert substantial reduction in inducible mineralization
(61). To date, only few genes have been linked with bone
mineralization, making this gene particularly interesting as drug
target. Nevertheless, further investigations are needed to establish
whether GPC6 or DAAM2 truly represent a suitable drug target
for osteoporosis.

Before the GWAS era, genetic research was mainly driven
by typically underpowered and ill-defined candidate gene

studies. For that purpose, the Genetic Markers for Osteoporosis
(GENOMOS) consortium was created in order to study
“classical” candidate gene polymorphisms such as ESR1,
COL1A1, VDR, TGFbeta and LRP5 in relation to osteoporosis-
related outcomes in a well-powered setting of subjects drawn
from several study populations around the globe. The main
phenotypic outcomes included fracture risk and femoral neck
and lumbar spine BMD. The first GENOMOS meta-analysis
evaluated three polymorphisms in the ESR1 gene among 18,917
individuals across eight studies and demonstrated no effects on
BMD but a modest effect on fracture risk (19–35% risk reduction
for XbaI homozygotes), independent of BMD (65). Next,
GENOMOS embarked on studying COL1A1, a gene with long
standing candidacy to be involved in the etiology of osteoporosis
given its established effect on monogenic forms of skeletal
fragility, i.e., osteogenesis imperfecta. GENOMOS observed a
significantly lower BMD (0.15SD) in TT homozygotes for the
COL1A1 Sp1 polymorphism; (66) as well as a non-significant
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trend toward a 10% increase in vertebral fracture risk per T-
allele. The vitamin D receptor (VDR) is yet another long-
standing candidate gene of osteoporosis, given the crucial
role of vitamin D on bone biology. GENOMOS scrutinized
5 VDR polymorphisms (Cdx2, FokI, BsmI, ApaI, TaqI) none
of which had evidence for association with either BMD or
fracture risk (67). Similarly, none of the 5 tested TGFbeta
polymorphisms had effect on BMD or fracture risk (68). Last
but not least, GENOMOS did demonstrate an effect for LRP5
coding polymorphisms (Val667Met, Ala1330Val) on BMD as well
as on fracture risk, while no effect for the (Ile1062Val) variant
in LRP6 (69). Altogether, the meta-analyses of the GENOMOS
has provided high degree of evidence of involvement across
what were then regarded as high-risk alleles. Of these, only
ESR1 and LRP5 have shown to be effectively contributing to
explain population variance in risk for osteoporosis. In line with
the findings of GENOMOS, none of the classical “osteoporosis”
candidate genes, such as VDR and TGFbeta, have been identified
in the GWAS meta-analyses of GEFOS as associated with
osteoporosis traits. This is not really surprising and stresses the
need for well-powered GWAS and the importance of replication
of identified genetic associations.

The Potential of Polygenic Risk Scores in
Osteoporosis
Polygenic risk scores (PRSs), which harness findings from
GWAS, defined as a sum of genetic variants associated with a
specific trait/disease, have recently evolved with the promise of
entering and be implemented in the clinic; among other uses to
predict an individual’s risk of disease. PRSs have been successfully
applied across many complex diseases such as type 2 diabetes
(70, 71), coronary artery disease (71, 72), atrial fibrillation (71),
inflammatory bowel disease (71), breast cancer and depression;
(73) and for some of these conditions characterizing groups of
individuals with a risk equivalent to that observed for patients
with monogenic mutations (71). Another advantage of the PRS,
is that genetic effects are stable across the life-course, therefore
holding the potential to predict the onset of disease decades
before it occurs. Similarly, genetics can contribute to improved
treatment strategies by identifying people who will most benefit
from treatment or are at higher risk of adverse effects (74).

In the field of osteoporosis in particular, the use of polygenic
risk scores and theMendelian randomization (MR) approach has
brought upon novel insights. In the field of prediction, efforts
drawn within the highly-powered setting of the UK Biobank
have shown impressive predictive ability. Kim (62) showed that
a genetic algorithm using 22,886 SNPs was correlated with heel
ultrasound estimated BMD (rho= 0.42) and that combining this
genetic algorithm with clinical information could improve this
correlation (rho= 0.5). More recently, Forgetta et al. (75) showed
that a PRS for heel quantitative ultrasound speed of sound
(SOS)—can reassure the low risk of individuals who can safely
be excluded from a fracture risk screening program. The “gSOS
algorithm” (genetically predicted SOS) employed 21,717 genetic
variants that were strongly correlated with standard SOS testing.
These findings are important, considering that gSOS proved to
have similar predictive power as existing diagnostic tools for
osteoporosis i.e., the fracture risk assessment tool (FRAX) with

93.4% and BMD-based FRAX tests with 98.5%. These findings
suggest that such genetic tool can help to confidently exclude
low risk patients from undergoing osteoporosis testing and its
associated health care costs.

Just as in other fields, the field of osteoporosis has witnessed
how genetic data arising from the GWAS have brought many
successes in linking traits and diseases to provide more robust
evidence of causality, i.e., when used in a MR framework
(76). Randomized Clinical Trials (RCTs) are the gold standard
for testing whether exposure is causal for a specific outcome.
However, it is not always easy to conduct a RCT. From
this perspective, MR has emerged as a promising approach
to address this. As our genotypes are randomized by nature
(Mendel’s second law of independent assortment), the MR
approach has been developed to derive more robust evidence of
causal association between risk factors and outcomes. MR uses
genetic variants that are fixed at birth as instrumental variables
in order to derive un-confounded causal effect estimates for
modifiable risk factors. Most importantly, performing an MR
analysis prior to an RCT can be helpful to predict adverse
effects and/or unexpected outcomes, sometimes helping decide
if it is worth launching the RCT or not. The use of the MR
approach in the field of osteoporosis has provided remarkable
insight when scrutinizing the main clinical risk factors of fracture
risk. A plethora of risk factors for osteoporosis identified by
observational studies have been tested using MR [reviewed by us
and others elsewhere (77, 78)]. Trajanoska et al. (79) showed that
BMD is the most important “causally-related” determinant of
fracture risk; and that prevention strategies aimed at increasing or
maintaining BMD are the most likely to be successful, in contrast
to strategies targeting the other traditionally used risk factors.
Remarkably, the MR analysis showed how continuous increases
in vitamin D levels are not causally related with fracture risk;
providing robust evidence showing that indiscriminate vitamin
D supplementation in the general population is unlikely to
be effective for the prevention of fracture. This work and the
follow-up work by Trajanoska et al. (79) and Cerani et al. (80)
showed that calcium intake or calcium levels are also not causally
related with fracture risk. The MR analysis also showed that such
genetically-derived increase in serum calcium is associated with
an increased risk of coronary artery disease (81). These findings
imply that widespread calcium supplementation in the general
population has a questionable risk/benefit ratio.

Pharmacogenetic Studies in Osteoporosis
From a clinical perspective there are several pharmacological
alternatives for osteoporosis such as bisphosphonates, selective
estrogen receptor modulators (SERMs), Hormone replacement
therapy (HRT), Teriparatide and Denosumab, among others.
About 10–15% of osteoporosis patients fail to gain bone
mass (>3%) despite receiving anti-osteoporotic therapy (82–
85). Treatment non-response can be due to poor adherence,
duration and type of treatment but can also represent a
biologically-based failure. Stratified or personalized approaches
can be quite relevant for complex disease where an individual’s
drug response will depend on the combination of markers
that regulate absorption, availability, activity and metabolism
of drug compounds (86). There is little data about the
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pharmacogenetics of osteoporosis and osteoporotic fractures.
In the past, research has mainly focused on few candidate
genes, namely the VDR, estrogen receptor alpha (ER-α) and
COL1A1 genes, which have been investigated with regard to
response to osteoporosis-drugs. Long before GWAS, some drug-
gene interaction with bisphosphonates have been postulated. For
instance, VDR variants were suggested to modify the effect of
alendronate (87, 88) or of etidronate (89); the COL1A1 Sp1
polymorphism the effect of etidronate; and variants of genes
belonging to the FDPS (mevalonate pathway) the response to
amino-bisphosphonate treatment (90–92). Allelic combinations
of SOST, PTH, FDPS, and GGPS1 gene variants may also have
a role in the individual response to bisphosphonate treatment
(93). From the other clinically-relevant perspective of side
effects, several polymorphisms mapping within the cytochrome
P450-2C (CYP2C8) gene have been associated with increased
risk of bisphosphonate-induced osteonecrosis of the jaw in
patients with multiple myeloma (94). While illustrating the great
potential underlying potential pharmacogenomic investigations,
these results need to be interpreted with caution. These
studies have been performed in underpowered settings and
the tested variants have not been robustly replicated across
larger GWAS. Thus, additional evidence from large-scale GWAS
aimed at investigating gene x drug interactions are needed,
ideally combined with knowledge from cell and animal models
to robustly ascertain possible pharmacogenomics effects. Such
pharmacogenomic studies represent a clear knowledge gap in the
osteoporosis field.

CURRENT NEEDS IN THE OSTEOPOROSIS
TREATMENT FRAMEWORK

Currently we are facing challenges in osteoporosis care. The
operative “decision-to-treat” definition of the disease currently
relies on the BMD measurement, transformed to a sex-matched
young-adult (peak-bone mass acquisition age) reference in the
form of T-scores (95). Pragmatically, individuals with a T-score
BMD measurement < −2.5 standard deviations (SD) of the
BMD of a young adult are classified as having osteoporosis;
and due for the initiation of pharmacological treatment and
control of risk factors. Individuals with a T-score between −2.5
and −1.0 are classified as having osteopenia and (in absence
of clinical risk factors or fractures) pharmacological treatment
is not indicated while preventive life style reinforcement is
provided. This strategy is extremely suboptimal, as more than
50% of the fractures occur above the osteoporosis threshold
(96). Nevertheless, risk assessments tools that incorporate clinical
risk factors on fracture risk over and above the risk provided
by BMD, are guiding clinicians in identifying individuals at
high fracture risk, so that treatments can be targeted. For
example, FRAX (University of Sheffield) integrates clinical
risk factors and femoral neck BMD to calculate the 10-year
probability of suffering hip fracture and any major osteoporotic
fracture (clinical spine, forearm, hip, or shoulder fracture)
(97). The predictive ability of FRAX using clinical risk factors
and BMD is effective in helping to identify gradients of risk

and make decisions on treatment indication. Nevertheless,
the current clinical framework still falls short in its ability
to predict accurately response to treatment and providing
tailored approaches to maximize the effectiveness of treatments.
As discussed above, addition of genetic information to the
prediction models can lead to improved risk stratification.

The osteoporosis field possesses multiple pharmacologic
therapeutic options at hand, where at least 46 trials (comprising
138,523 participants) have been performed since 1990, including
studies on: Bisphosphonates: alendronate (98–106), clodronate
(107, 108), etidronate (109), risedronate (110–113), and since
more recently zoledronate (114–119), and ibandronate; (120,
120) HRT: estrogen (121) (+progestin) (122) and since more
recently, tibolone; (123) SERMs: raloxifen, (124, 125, 125)
lasofoxifene (126), bazedoxifene (127, 128), arzoxifene; (129)
Calcitonin; (130) Cathepsin K inhibitors: odanacatib; (131)
RANKL inhibitor: denosumab; (132–134) Strontium; PTH and
analogs: abaloparatide, (135) teriparatide, (136) PTH (1-34) (137,
138) and PTH (1-84); (139) and an Anti-sclerostin antibody:
romozosumab (140).

These sets of compounds can be broadly classified into
bone resorption inhibitors (including bisphosphonates, HRT,
SERMs, Calcitonin and RANKL inhibitor) and bone formation
(anabolic) agents (including Anti-Sclerostin antibody, Strontium
and PTH/PTH-analogs though the latter two can also exert anti-
resorption effects). Even with the diverse treatment alternatives,
there is a so-called “crisis in the treatment of osteoporosis”
i.e., despite the existence of effective drugs to prevent fractures,
patients, including those assessed as having a latent high
fracture risk and who unequivocally need treatment, are not
prescribed osteoporosis medications or they refuse to take them
given the uncertainty surrounding the prolonged use of anti-
resorptive medications and under the fear of ominous rare
adverse events (like increased risk of osteonecrosis of the jaw and
atypical femur fractures) (141). The current clinical framework
lacks crucial information on the biologic and mechanistic
pathways underlying the complex nature of fracture risk that
are not contemplated in the current T-score based definition of
osteoporosis. Altogether, rather than a primary need to embark
in the search of “superior” treatments, there is a current need
to scrutinize the performance of- and adherence to- current
osteoporosis therapies. The best way to do these is by bringing
new knowledge resulting in an operative molecular redefinition
of osteoporosis that will improve patient care by bringing the field
closer to personalized/tailored interventions for the prevention
and treatment of the disease.

GENOMIC MEDICINE IN OSTEOPOROSIS
PRACTICE

Future Use of Polygenic Risk Scores (PRS)
in Clinical Practice
Genomic approaches are key to the development of personalized
medicine as they contribute to: (1) the understanding of
disease at a molecular level; (2) the identification of new
biomarkers (quantifiable parameters of disease development
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or disease prognosis); and (3) optimization of therapeutic
interventions (drug target discovery, novel indications or
response to treatment) (Figure 2). Genomic rather than seeking
the identification of a unique treatment beneficial for each
individual person, tools of genomic medicine primarily seek sub-
dividing patients into groups based on their “molecular make-
up,” e.g., using PRS. PRS typically follow a “normal distribution”
of risk alleles in the population (Figure 3A), with the majority
of individuals tending to have a mean number of risk alleles.
Toward both sides of the PRS distribution, a lower fraction of
the population consists of individuals with either a very high
or very low number of risk alleles. At more extreme truncates
of the distribution, disease classification becomes more robust,
as it becomes evident that high and low risk alleles underlie
(yet not without error) substantial risk differences among groups
(Figure 3B); i.e., more risk genotypes (red) cluster to the right
(disease category), while non-risk alleles (green) cluster to the
left (normal category). Further, the inclusion of SNP annotation
to biologic pathways (Figure 3C) can allow pinpointing clusters
of patients that theoretically can respond differently to specific
pathways targeted by the osteoporosis treatment. This way, the
understanding of disease processes at a molecular level, can guide
the search for biomarkers of disease risk and differential response
to treatments.

Through this so-called patient “stratification” medical
interventions can be more successful when fitted to a specific
group on patients instead of using the current approach
of “one size fits all.” This is true for all diseases in general,
but of particular great potential for several musculoskeletal
conditions (86). In the years to come, genomic research will
bring novel insights into molecular mechanisms of osteoporosis
and may lead to disease definition reevaluation. In addition,
the newly acquired knowledge will redefine the disease-disease
relationships by highlighting shared molecular mechanisms that
may serve as drug targets for two or more diseases (see below
“drug repurposing”). This way, systems biology approaches
guided by genomic studies can help to improve decision-
making in pharmaceutical development in the search for novel
biomarkers and therapeutic target.

Drug Discovery and Repurposing
On average, it takes 12 years and ∼1.5 billion dollars for a new
drug to complete all three phases of clinical trials before getting
marketing approval. Despite the expensive and time intensive
efforts, 90% of the drugs fail to pass the clinical trials as a result
of poor efficacy and safety issues. Nearly 50% of the failures in
Phase II are due to lack of efficacy, whereas 25% are result of
high toxicity; (142, 143) even occurring after preclinical models
have shown the drugs to be efficient and safe. There are many
reasons for the drugs to fail during clinical trials; one of them is
that in general drug targets are selected based on their intrinsic
“druggability” properties but not their biology. If we don’t
understand fully the underlying biology of the drug target-disease
relationship, unexpected outcomes can occur. Nonetheless, in
the past decade positive waves in the drug discovery process
have been facilitated by advances in the genomic field supported
by a variety of novel computational methods. Nowadays, we

have better understanding of the genetic architecture of many
diseases and traits and we can utilize this genetic information in
drug discovery to pinpoint more efficient and safe drug targets.
Nelson et al. have shown that genetic support doubles the drug
approval rate (144). These findings were later supported by King
et al., which also observed that Phase II and III studies are twice
more likely to be successful when genetic data is incorporated in
the selection of the drug target (145). For instance, GWAS hits
have identified variants in genes encoding pathways targeted by
compounds in Phase III or already approved drugs (146, 147).
Finan et al. (148) have estimated that around 22% of the 20,300
protein-coding genes annotated in Ensembl version 73 are set
to be “druggable.” The authors stratified the druggable gene sets
into three groups. Tier 1 consists of approved small molecules,
biotherapeutic drugs and clinical-case drug candidate; Tier 2
contains a set of genes encoding targets with known bioactive
drug-like small-molecule binding partners as well as those with
≥50% identity (over ≥75% of the sequence) with approved drug
target; and Tier 3 is a set of genes encoding coding-secreted or
extracellular proteins, i.e., proteins with more distant similarity
to approved drug targets, and members of key druggable gene
families not already included in tier 1 or 2 (148). Mapping the
GWAS results to these protein-coding genes may derive new
potential drug–targets and is one of our current active areas
of research.

Besides discovering novel drug targets, the drug discovery
field has directed attention to novel strategies, e.g., drug
repositioning or repurposing, meaning using existing “approved”
drugs for new indications. In the past, GWAS have also shown
to be a good source for drug repositioning as well. Drug
repositioning is possible due to how the GWAS field has
ascertained the wide-spread presence of pleiotropy, i.e., when
one gene (variant) exerts an effect on more than one disease
phenotype or complex trait. It is postulated that around 50%
of the discovered GWAS hits have pleiotropic effects (149).
Therefore, it is possible for one drug to effectively be used for
multiple disease indications. Yet, potential adverse effects need to
be explored in detail in the case of antagonistic effects. Nowadays,
35% of the approved drugs targets modulate G protein-coupled
receptors (GPCRs); the largest family of membrane receptors
(150). Yet, only 16% of the ∼800 GPCRs are being currently
targeted by existing drugs. Hence, the number of GPCR-targeted
drugs, and even types of drugs is expected to dramatically
increase in the following years (150).

Across the literature there is lots of evidence for repurposed
drugs in other fields. For instance, duloxetine is a selective
serotonin and norepinephrine reuptake inhibitor antidepressants
(SSNRI) used initially for management of major depressive
disorder (MDD). Over the years, new indications for the
drug have been proposed, being repurposed for the treatment
of fibromyalgia (151), and musculoskeletal and diabetic
neuropathic pain (152, 153). Next, denosumab, one of the
modern anti-resorptive medications to treat osteoporosis, has
been used as adjuvant therapy of giant-cell tumor of bone
(GCTB) (154). This tumor consists of cluster of neoplastic
mononuclear cells and osteoclast like giant cells which express
RANK (155). Denosumab inhibits RANKL, thus, supressing
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FIGURE 2 | Implementation of genetic information in clinical care.

bone turnover by reducing osteoclast derived bone resorption
while also eliminating giant cells. Nowadays, there are also
ongoing efforts examining benefits of denosumab therapy on
other types of cancer. Such efforts seek pinpointing possible
mechanisms that prevent bone metastasis and increase bone
metastasis free survival. This hypothesis is based on the
knowledge that RANKL is connected with a variety of signaling
pathways implicated in immunity and cancer. RANKL and
it receptors are essential for lymphoid tissue formation,
lymphocyte differentiation, dendritic cell survival and T-cell
activation (156, 157); all relevant components for proper
functioning of the immune system. Recently it has been shown
that concomitant therapy of denosumab and immune checkpoint
inhibitors (ICI) may also have beneficial effect on cancer survival
and progression (158, 159). Therefore, denosumab might
have a tremendous clinical impact. In addition, there is
ongoing research on the potential anti-cancer mechanisms
of bisphosphonates as some (160) but not all (161) clinical
trials on breast cancer have reported evidence for anti-tumor
effects. This anti-neoplastic effects are plausible, considering that
bisphosphonates may alter cellular signaling and responsiveness
by modification in the isopentenyl diphosphate metabolism,
untimely leading to cell death (162, 163). A meta-analysis of
61 clinical trials has also shown bisphosphonates use to be
associated with reduced cardiovascular and all-cause mortality
(164). Nevertheless, more research is needed before repurposing
approaches become common practice, but there is no doubt
about the great underlying potential to enrich the therapeutic
landscapes of musculoskeletal disease.

Last but not least, other approaches using “-omics”
technologies, such as proteomics and metabolomics can
provide additional information about the efficacy of new drug
targets, elucidate part of the underlying biology, and most
importantly, support strategies to anticipate adverse outcomes
(165). In addition, many biological molecules interact with each
other and cluster based on particular functions or so-called

pathways. There are more than 150 different pathway databases,
such as Biocarta, KEGG, and Reactome. These resources can help
shed additional light on drug-disease mechanisms, decrease the
number of false positives in the drug target identification step,
prioritize validation, and aid selecting the best target; altogether
helping improve the drug discovery success rate (166). As such,
there are a variety of computational approaches to detect novel
drug-disease relations supported by multitude of databases
[reviewed elsewhere (167, 168)].

Drug Target Validation Using Mendelian
Randomization
MR analysis can be also performed to investigate potential
risk factors or prognostic factors, and to evaluate drug targets
(169). With the fast growing pace of the genomic field much
better genetic instruments have become available, allowing the
expansion of MR studies for the identification and validation of
potential drug targets and their adverse effects (170). The genetic
variants used as instrumental variants have been implicated
as encoding drug targets (170). Nowadays, there are several
online platforms which provide detailed information about the
underlying biology of the gene of interest, such as the Online
Catalog of Human Genes and Genetic Disorders (OMIM).
Combining GWAS and OMIM can be a useful way to derive
genetic instruments and to test the drug directionality for
variety of heritable diseases with available data (171, 172).
Furthermore, novel methods have been developed to utilize
other –omics data in order to detect causal drug targets. The
recent focus has been made on proteins, which are the target
of most drugs, i.e., using proteomics information to leverage
drug identification. Schmidt et al. (173) have developed a novel
MR framework for drug validation so called “cis-MR” directed
at increasing the precision and robustness of the MR approach.
Traditionally, MR uses genetic variants as instrumental variables
that are associated with the outcome, independent from other
genetic variants in the locus or located elsewhere throughout
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FIGURE 3 | Polygenic risk scores in clinical practice. (A) distribution of PRS in the population; (B) disease risk stratification according to risk allele distribution; and (C)

risk stratification using biological pathways.

the genome. In contrast, the cis-MR approach is more stringent,
only employing genetic variants located in or in the vicinity
of a protein coding genes (173). Recently, work by Zheng et
al., have highlighted the important role of cis and trans protein
quantitative trait loci (pQTLs) MR analysis, which coupled
with evidence for colocalization produces robust evidence of
causal protein-phenotype associations as well (174). Next to the
aforementioned approaches, phenome-wide MR (MR-PheWAS)
can be performed to detect any adverse associations with other
clinically relevant outcomes. MR-PheWAS allows testing for a
casual association between a selected exposure and a range of
phenome-wide disease outcomes; from where we can replicate or
discover new relationships between traits or disease outcomes.

A perfect example of a successful MR-drug discovery is
the validation of proprotein convertase subtilisin–kexin type 9
(PCSK9). Loss- and gain-of-function genetic variation in this
gene region have been associated with low-density lipoprotein

cholesterol (LDL-C) an important risk factor for coronary
artery disease. Monoclonal antibodies that inhibit PCSK9 have
been proposed as a novel drug target to reduce LDL-C and
decrease the risk of cardiovascular events; findings that have
been robustly confirmed by RCT (175) and other MR studies
(176). Additionally, using the MR approach, variations in PCSK9
have been also linked to adverse outcomes such as increased
risk of type 2 diabetes (177). These findings demand careful
consideration and follow-up of patients using PCSK9 inhibitors
to treat hypercholesterolemia, who may be at risk of developing
diabetes. In the skeletal field there are other examples of the
MR success. Interestingly, observational studies showed in the
past that low-doses of cholesterol-lowering statin drugs could
be associated with higher BMD and decreased risk of fracture
(178, 179). Recent MR studies found genetically lower LDL
to be associated with higher BMD levels as well (180, 181).
In addition, variants mapping to the statins gene-drug target
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(HMGCP) were associated with increase in BMD (180). The
effect of HMGCP on bone were established to be partly acting
through lowering LDL-C. This indicates that other biologic
pathways targeted for other conditions, may affect bone and
might have a potential therapeutic implication that needs to
be examined in the future. It is important to note that MR
cannot test for dose dependent associations. Thus, sometimes it
is relevant to couple the evidence from MR with the information
coming from well-conducted observational studies. Further, it is
important to note that MR studies can inform decision making
to launch (or not) RCT about interventions. MR studies can
provide evidence to RCTs about aspects of efficacy; unexpected
favorable outcomes (with repurposing potential); adverse effects
of the evaluated targets; and importantly, the risk of RCT
failure. Given the large costs of RCTs, assessing the evidence
from MR studies should be considered as part of the planning
of any RCT trial. Altogether, while these MR approaches are
pending to be widely applied in the field of osteoporosis, MR
findings pointing to causal relations between risk factor and
outcome, coupled with strong biological understanding of the
drug-target disease association, will allow robust validation of
drug targets.

CURRENT PROGRESS IN GENE EDITING
FOR MONOGENIC AND COMPLEX BONE
DISEASES

Gene editing in clinical practice has major implications in
understanding, treating, and preventing deleterious genetic
diseases. There are several tools that allow researchers to modify
a specific DNA region such as zinc-finer nucleases (ZFNs) (182),
transcription activator-like effector nucleases (TALENs) (183),
and Clustered Regularly Interspaced Short Palindromic Repeats
(CRISPR)/Cas9 (184) [reviewed elsewhere (185, 186)], among
others. Compared to the other editing methods, CRISPR/Cas9
has been positioned as faster, cheaper, more precise, and more
efficient in selecting and binding to the target DNA sequence.
Therefore, the use of the CRISPR/Cas9 technique has become
widely spread in the past few years.

Skeletal genetic defects have been typically studied in two
animal models, i.e., mouse [reviewed by Maynard et al. (187)]
and zebrafish [reviewed by Bergen et al. (188)]. Expectedly,
CRISPR/Cas9 gene editing in these mouse and zebrafish models
of human skeletal disease has swiftly evolved as comprehensively
reviewed, by Wu et al. (189). To date, CRISPR/Cas9 models
have been done for several skeletal disorders such as OI (190),

meningocele syndrome (191) and campomelic dysplasia (192).
OI type V is a rare autosomal dominant disease characterized by
increased bone fragility, low BMD and increased susceptibility to
bone fracture followed by hyperplastic callus formation. OI type
V is caused by heterozygous mutation in the IFITM5 gene which
adds 5 amino acid residues (Met-Ala-Leu-Glu-Pro denoted
MALEP) on the N-terminus of the BRIL protein (encoded by
IFITM5) (193). Rauch et al. (190), generated for the first time, a
MALEP-BRIL knock-in mice using CRISPR-cas9. The MALEP-
BRIL heterozygous mice presented severe skeletal deformities
such as short and bent long bones which lack the primary
ossification center. Although the current model was genetically
identical to human OI type V, it showed additional clinical
manifestations. CRISPR/Cas9 animal models have also provided
novel insights in the pathology of osteoporosis. In a small scale
study (1,625 Han Chinese) variants mapping to ATP6V1H were
associated with spine BMD (194). The same study, produced a
Atp6v1h+/− knockout mice using CRISPR/Cas9 which presented
with decreased bone remodeling accompanied by impaired
bone formation and increased bone resorption (194). Similar
findings were observed in atp6v1h+/− zebrafish generated by
CRISPR/Cas9 as well (195). Last but not least, there have been
several advances in osteogenic gene therapy that has shown
promising results in bone remodeling and fracture healing
[reviewed elsewhere (196)].

CONCLUSIONS

Genomic studies are and will continue to be an inexhaustible
source of information to better understand the genetic
underpinnings of both monogenic and complex bone disorders.
In the long run, genetic discoveries will have vast clinical
implications, paving the road to precision medicine. Genomic
medicine will support clinical-decision making and will
dramatically improve disease screening, diagnosis, prognosis
and treatment.
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