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Maternal lipid profile in early pregnancy is
associated with foetal growth and the risk
of a child born large-for-gestational age: a
population-based prospective cohort study
Maternal lipid profile in early pregnancy and foetal growth
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Abstract

Background: Lipids such as cholesterol and triglycerides play an important role in both maternal and foetal energy
metabolism. Little is known about maternal lipid levels in pregnancy and their effect on foetal growth. The aim of
this study was to assess maternal lipid levels, foetal growth and the risk of small-for-gestational age (SGA) and
large-for-gestational age (LGA).

Methods: We included 5702 women from the Generation R Study, a prospective population-based cohort.
Maternal lipid levels (total cholesterol, triglycerides and high-density lipoprotein cholesterol [HDL-c]) were measured
in early pregnancy (median 13.4 weeks, 90% range [10.5 to 17.2]). Low-density lipoprotein cholesterol (LDL-c),
remnant cholesterol and non-HDL-c were calculated. Foetal growth was measured repeatedly by ultrasound.
Information on birth anthropometrics was retrieved from medical records. A birth weight below the 10th percentile
was defined as SGA and above the 90th percentile as LGA.

Results: Maternal triglyceride and remnant cholesterol levels were associated with increased foetal head
circumference and abdominal circumference growth rates. Triglycerides and remnant cholesterol were positively
associated with the risk of LGA (odds ratio [OR] 1.11, 95% confidence interval [CI] [1.01 to 1.22] and OR 1.11, 95% CI
[1.01 to 1.23], respectively). These associations were independent of maternal pre-pregnancy body mass index, but
not maternal glucose levels. We observed no association between maternal lipids in early pregnancy and SGA.
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Conclusions: Our study suggests a novel association of early pregnancy triglyceride and remnant cholesterol levels
with foetal growth, patterns of foetal growth and the risk of LGA. Future studies are warranted to explore clinical
implication possibilities.

Keywords: Pregnancy, Lipoproteins, Foetal weight, Infant; Small-for-gestational age, Foetal programming

Background
The worldwide incidence of overweight and obese women
of reproductive age is increasing [1–3]. High maternal
weight and hyperglycaemia are established risk factors for
increased foetal growth and a child born large-for-
gestational age (LGA). Maternal hyperglycaemia is associ-
ated with a higher flux of glucose over the placenta leading
to foetal upregulation of insulin, increased foetal growth
and ultimately a child born LGA [4–10].
Because the foetus has a limited capacity for de novo

lipogenesis and fatty acid oxidation, it is dependent on ma-
ternal triglycerides as source for growth and development
[11, 12]. During pregnancy, maternal insulin resistance
leads to decreased lipoprotein lipase (LPL) activity and
hence 2–3-fold increased maternal triglyceride levels [7, 8,
13]. Maternal triglycerides in the form of both liver-derived
very low-density lipoprotein (VLDL) and dietary chylomi-
crons must first be hydrolysed to free fatty acids (FFA) by
placental lipases to allow uptake by the syncytiotrophoblast
[13, 14]. There FFA can be stored, metabolized, oxidized or
transported into the foetal circulation [13, 15]. Insufficient
fatty acid oxidation has been linked to preterm birth and
intrauterine growth restriction [16]. On the other hand,
maternal triglycerides were shown to correlate more
strongly than glucose with newborn percent fat [17, 18].
Adverse birth outcomes, including small-for-gestational

age (SGA) and LGA, may affect short-term (e.g. increased
morbidity and mortality) and long-term (increased risk of
hypertension, diabetes and metabolic syndrome) health of
the child [19–21].
Lipid levels in early pregnancy are associated with ma-

ternal pregnancy complications, such as pre-eclampsia, in-
dependent of pre-pregnancy body mass index (BMI) [22].
Our hypothesis is that according to the Developmental
Origins of Health and Disease (DOHaD) theory, maternal
lipid levels may also lead to adverse birth outcomes such
as LGA due to adverse growth patterns [23]. Therefore,
the aim of this study is to examine the association of
maternal early pregnancy lipid levels with foetal growth,
patterns of foetal growth and the risk of SGA and LGA
independent of maternal BMI and glucose levels.

Methods
Study design
This study was embedded within the Generation R
Study, an ongoing population-based prospective cohort

study from early pregnancy onwards in Rotterdam, the
Netherlands [24]. All pregnant women living in Rotter-
dam with an expected delivery date between April 2002
and January 2006 were eligible for participation. The
study has been approved by the Medical Ethical
Committee of the Erasmus Medical Centre Rotterdam,
the Netherlands (MEC 198.782/2001/31). All procedures
were in accordance with institutional guidelines, and
written informed consent was obtained from all partici-
pants [25]. For the present study, we included 5702
women with a live born singleton and available informa-
tion on lipid measurements in early pregnancy. We ex-
cluded women with a twin pregnancy, diabetes mellitus
and gestational diabetes and those on lipid or glucose
regulating treatment during study enrolment (Fig. 1).
Gestational diabetes was diagnosed according to Dutch
guidelines using the following criteria: either a random
glucose level > 11.0 mmol/L, a fasting glucose level ≥ 7.0
mmol/L or a fasting glucose level between 6.1 and 6.9
mmol/L with a subsequent abnormal glucose tolerance
test (glucose level > 7.8 mmol/L after glucose intake)
[24]. Additional file 2 contains a Strengthening the
Reporting of Observational Studies in Epidemiology
(STROBE) statement for the current study [26].

Exposure: maternal lipid levels in early pregnancy
Non-fasting plasma samples were obtained in early preg-
nancy (median 13.4 weeks of gestation, 90% range [10.5 to
17.2]). Total cholesterol (mmol/L), triglyceride (mmol/L)
and high-density lipoprotein cholesterol (HDL-c) (mmol/L)
concentrations were analysed. LDL-c (mmol/L), remnant
cholesterol ([total cholesterol − LDL-c] − HDL-c) and non-
HDL-c (total cholesterol − HDL-c) were calculated [22].
Sample processing, storage procedures and the changes in
maternal lipid levels per gestational age in the same study
population have been described previously [22, 27].

Outcome measures: foetal growth parameters and
adverse birth outcomes
The primary outcome of this study was adverse birth
outcomes. Secondary outcomes were foetal growth and
foetal growth patterns. Ultrasound measurements were
performed in mid-pregnancy (median 20.4 weeks of
gestation, 90% range [19.1 to 22.5]) and late pregnancy
(median 30.2 weeks of gestation, 90% range [29.1 to
31.9]) using protocols describing standardized planes
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[28–30]. Foetal growth parameters included the head
circumference, femur length and abdominal circumfer-
ence. We calculated the estimated foetal weight (EFW)
using the Hadlock 3 formula [31]. Longitudinal growth
curves and gestational-age-adjusted standard deviation
scores (SDS) were constructed for all foetal growth
parameters. These gestational-age-adjusted SDS were
based on reference growth curves from the whole-study
population and represent the equivalent of z-scores [30].
Information on birth anthropometrics (head circumfer-
ence, length and weight) and gestational age at birth was
obtained from medical files and midwife registries.
Gestational-age-adjusted SDS for birth weight were con-
structed using North European growth standards as the
reference growth curve and represent the equivalent of
z-scores [32]. A birth weight below the 10th percentile,

adjusted for gestational age and foetal sex, was defined
as SGA and above the 90th percentile as LGA. All
children with a birth weight above the 10th percentile
and below the 90th percentile were considered average-
for-gestational age (AGA).

Covariates
Potential confounders were identified based on the graph-
ical criteria for confounding by visualizing a directed acyclic
graph (DAG) (Additional file 1, Figure S1). Of these poten-
tial confounders, we included those in the models that
changed the effect estimates > 10% for at least one of the
outcomes [33]. Maternal questionnaires at study enrolment
provided information on maternal age, parity, ethnicity,
education, pre-pregnancy body mass index, smoking habits
and folic acid supplementation. Pre-pregnancy BMI was

Fig. 1 Flowchart showing the inclusion and exclusion criteria
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highly correlated with BMI measured at study enrolment
(Pearson’s correlation coefficient 0.95 [P value < .001]) [34],
and therefore, pre-pregnancy BMI was used in the analyses.
Non-fasting maternal glucose levels were measured in early
pregnancy with the c702 module on a Cobas 8000 analyser
as described previously [6, 27]. Women who experienced
gestational hypertension and pre-eclampsia in their index
pregnancy were classified as having a hypertensive disorder
of pregnancy. All diagnoses were cross-validated retrospect-
ively by obstetric records that were obtained from midwife
and hospital registries [24, 35]. The criteria for hypertensive
disorders of pregnancy were defined by the criteria that
applied at the time of study inclusion of Generation R. This
was according to the statement from the International Soci-
ety for the Study of Hypertension in Pregnancy of 2001
[36]. Several overlapping sources (obstetric caregivers and
Municipal Health Services) provided information on admis-
sion to the Neonatal Intensive Care Unit (NICU) [37].

Statistical analyses
Missing values of the covariates were imputed through
multiple imputation procedures [38]. Data were imputed
according to the Markov Chain Monte Carlo method.
Data were analysed in each set separately, and pooled
estimates from the five imputed datasets were used to
report the effect estimates and their 95% confidence
intervals. For the multiple imputation procedure, we
performed 10 iterations [39]. In this study, 0% of women
had missing information on maternal age at enrolment
and gestational age at the time of blood sampling, 4.2%
on ethnicity, 7.4% on educational level, 0.9% on parity,
10.4% on smoking habits, 23.2% on folic acid supple-
mentation, 21.4% on pre-pregnancy BMI and 2.4% on
early pregnancy maternal glucose levels. First, we exam-
ined baseline characteristics. Thereafter, we examined
differences in maternal lipid profiles in women with a
child born AGA compared to women with a child born
SGA or LGA through a Student t test. Not normally dis-
tributed exposure measures were log transformed. To
enable comparison of effect estimates, we constructed
SD scores (SDS) of exposures. Multivariate linear regres-
sion analyses were performed to examine the associa-
tions of maternal lipid levels in early pregnancy with
foetal growth parameters at birth. We performed multi-
variate logistic regression analyses to determine the asso-
ciation of lipid levels in early pregnancy with the risk of
SGA and LGA. The basic regression model adjusted for
maternal age at enrolment, gestational age at the time of
blood sampling, parity, ethnicity, educational level,
smoking habits and folic acid supplementation. The BMI
model additionally adjusted for pre-pregnancy BMI. In a
separate glucose model, we additionally adjusted for
early pregnancy maternal glucose levels. To assess foetal
growth patterns, we examined the associations between

lipid levels in early pregnancy and repeatedly measured
foetal growth parameters using unbalanced repeated
measurement regression models with an unstructured
covariance structure. These models take the correlation
between repeated measurements of the same individual
into account and allow for incomplete outcome data
[40]. We included maternal early pregnancy lipid levels
in these models as an intercept and as an interaction
term with gestational age to estimate foetal growth rates
over time [40]. The repeated analyses were conducted
without adjustment for covariates, which most clearly re-
flects clinical practice. Since maternal lipid levels in early
pregnancy are associated with pre-eclampsia and since
hypertensive disorders of pregnancy are associated with
adverse birth outcomes, we additionally performed a
regression analysis of lipid levels in early pregnancy with
the risk of SGA in LGA in a subgroup excluding women
with gestational hypertension or pre-eclampsia in their
index pregnancy.
To examine whether the association of early pregnancy

lipid levels with adverse birth outcomes was explained
by genetic factors and/or lifestyle factors as well, we
performed logistic regression analyses in a subset of
women including only nulliparous, non-smoking women
with a pre-pregnancy BMI < 25 kg/m2. Comparison of
women included and excluded in this study was
conducted by comparing the characteristics of women
included in this study (women with inclusion in early
pregnancy, [n = 5702]) to women with inclusion in mid-
or late pregnancy (n = 2151).
In all analyses, a P value < .05 was considered statisti-

cally significant. Statistical analyses were performed
using the IBM Statistical Package for the Social Sciences
version 24.0 for Windows (SPSS Incl., Chicago, IL, USA)
and the Statistical Analysis System version 9.4 (SAS,
Institute Inc., Cary, NC, USA).

Results
We included 5702 women. These women were on aver-
age 29.5 (± 5.1) years of age, mostly European (58.6%),
and most women had a pre-pregnancy BMI < 25.0 kg/m2

(71.6%). Foetal growth parameters were available in 5499
(96.4%) and 5486 (96.2%) children in mid- and late preg-
nancy, respectively (Table 1). Of all children, 4526 were
born AGA, 564 SGA and 565 LGA. Women with a child
born LGA had higher levels of triglycerides and remnant
cholesterol in early pregnancy than women with a child
born AGA (Table 2). No differences were observed in
lipid distribution between women with a child born
SGA and AGA.
Figure 2 shows that triglycerides and remnant choles-

terol were associated with increased foetal head circumfer-
ence growth rates from late pregnancy onwards resulting
in a higher head circumference at birth (0.6 SDS, 95%
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confidence interval [CI] [0.04 to 1.2] and 0.7 SDS, 95% CI
[0.1 to 1.2], respectively) (Table 3). Additionally, triglycer-
ides and remnant cholesterol were associated with in-
creased foetal abdominal circumference growth rates from
mid-pregnancy onwards (Fig. 2) resulting in a higher birth
weight (18.4 SDS, 95% CI [6.5 to 30.3] and 18.7 SDS 95%
CI [6.8 to 30.6], respectively) (Table 3). Maternal lipid
levels in early pregnancy were not associated with foetal
length and weight growth patterns (Fig. 2 and Table 3).
Table 4 shows the association of maternal lipid con-

centrations in early pregnancy with adverse birth out-
comes. Triglyceride and remnant cholesterol levels in
early pregnancy were positively associated with the risk
of LGA. The association of triglycerides and remnant
cholesterol with LGA was attenuated when adjusting for
pre-pregnancy BMI. However, after adjustment for
glucose, the associations were not significant anymore.
The negative association between HDL-c and LGA
attenuated to non-significant levels after adjustment for
pre-pregnancy BMI and early pregnancy maternal glu-
cose levels. Total cholesterol, LDL-c and non-HDL-c
were not associated with LGA. We observed no associ-
ation between maternal lipid levels in early pregnancy
and the risk of SGA.
In this study, 218 women had gestational hyperten-

sion and 139 women had pre-eclampsia in their index
pregnancy. Excluding these women from the analysis,
it shows that maternal lipid concentrations in early
pregnancy are not associated with SGA and LGA
(Additional file 1, Table S1).
Additional file 1, Table S2a, presents the lipid profile

of 1915 nulliparous, non-smoking women with a BMI <
25 kg/m2. This more homogeneous subset of relatively
healthy women had a less atherogenic lipid profile in
early pregnancy, especially lower triglycerides, LDL-c,
remnant cholesterol and higher levels of HDL-c than
women in the total study population. In this subset of
women, we found no association with adverse birth out-
comes (Additional file 1, Table S2b).

Discussion
This study shows that maternal triglycerides and
remnant cholesterol levels in early pregnancy are associ-
ated with increased foetal growth rates, specifically for
head and abdominal circumference from mid-pregnancy
onwards resulting in a higher head circumference at
birth and a higher birth weight. Moreover, triglycerides
and remnant cholesterol in early pregnancy are associ-
ated with a higher risk of being born LGA, independent
of maternal BMI. However, these associations attenuated
to non-significant levels after adjustment for early preg-
nancy maternal glucose levels.
The positive association of triglycerides and birth

weight that we found is in line with previous studies

Table 1 Baseline characteristics (n = 5702)

Outcomes

Maternal characteristics

Maternal age at enrolment (years) 29.5 (5.1)

Non-European ethnicity, n (%) 2362 (41.4)

Educational level

Primary or no education, n (%) 667 (11.7)

Secondary, n (%) 2644 (46.4)

Higher, n (%) 2391 (41.9)

Pre-pregnancy BMI (kg/m2)

Normal or underweight (< 25.0), n (%) 4081 (71.6)

Overweight (25.0–30.0), n (%) 1143 (20.0)

Obesity (≥ 30.0), n (%) 478 (8.4)

Nulliparous, n (%) 3506 (61.5)

Smoking during pregnancy, n (%) 1642 (28.8)

No folic acid supplementation, n (%) 1609 (28.2)

Gestational age at blood sampling (weeks) 13.4 (10.5 to 17.2)

Glucose levels (mmol/L) 4.4 (0.8)

Foetal characteristics

Mid-pregnancy measurements, n (%) 5499 (96.4)

Gestational age (weeks) 20.5 (19.1 to 22.6)

Head circumference (mm) 179 (13)

Femur length (mm) 33 (3)

Abdominal circumference (mm) 156 (14)

Estimated foetal weight (g) 372 (77)

Late pregnancy measurements, n (%) 5486 (96.2)

Gestational age (weeks) 30.4 (29.0 to 32.2)

Head circumference (mm) 285 (12)

Femur length (mm) 57 (3)

Abdominal circumference (mm) 263 (16)

Estimated foetal weight (g) 1604 (177)

Birth characteristics

Gestational age at birth (weeks) 40.1 (36.9 to 42.1)

Boy, n (%) 2880 (50.5)

Birth measurements, n (%) 5666 (99.4)

Head circumference (mm) 338 (17)

Length (mm) 502 (24)

Birth weight (g) 3401 (560)

Gestational hypertension, n (%) 218 (3.8)

Pre-eclampsia, n (%) 139 (2.4)

Early onset (< 34 weeks of gestation), n 18

Late onset (> 34 weeks of gestation), n 121

NICU admission 595 (10.4)

Abbreviation: BMI body mass index. Data are presented as valid percentages
for categorical variables, mean (SD) for continuous variables with a normal
distribution or median (90% range) for continuous variables with a skewed
distribution. Covariates are imputed
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examining the associations of maternal triglycerides in
early, mid- and late pregnancy with birth weight and
LGA [41–44]. A study of Vrijkotte et al. examined early
pregnancy (median 13 weeks, interquartile range 12; 14
weeks) non-fasting total cholesterol and triglyceride
levels in 2502 Dutch women [43]. Lipid levels were di-
vided into quintiles, and women in the highest quintile
had a mean triglyceride level of 2.15 (± 0.52) mmol/L. In
our study, women had lower levels of triglycerides with
a mean of 1.72 (± 0.54) mmol/L in the highest quintile.
The study of Vrijkotte et al. found that the highest tri-
glyceride quintile was associated with a higher birth
weight and a higher prevalence of a child born LGA.
However, a limitation of this study is that they did not
take the influence of glucose into account, even though
this is a well-known confounder for triglyceride levels
[45, 46]. In our study, we corrected for both maternal
BMI and early pregnancy glucose levels and showed that
the positive association between triglycerides and LGA
remained significant if maternal BMI was considered.
However, after adjustment for glucose levels, the associ-
ation attenuated to non-significant levels.
A study by Jin et al. measured lipid levels in 934

women during every trimester and, as expected, found
that triglyceride levels increased from 2.2 mmol/L in the
first trimester to 3 mmol/L [47]. In this study, higher tri-
glyceride concentrations in late pregnancy were associ-
ated with an increased risk of LGA but also a lower risk
of SGA. Results were adjusted for some confounders in-
cluding pre-pregnancy BMI but not glucose. In our
study, the expected negative association of early preg-
nancy maternal lipid levels with SGA was not found.
However, it should be noted that the study by Jin et al.
used no national representative reference curves and
that the reference curves dated from 1989. It is doubtful
if these reference curves are still valid as improvements
in the past decades, such as the educational level of the
mothers and prenatal nutritional status, led to an in-
crease in infant weight [48]. It may be possible that this
has led to an underestimation of SGA (2.4%) and an
overestimation of LGA (26.3%). Maternal triglycerides

have also been positively associated with newborn fat
which may be a more accurate measure of newborn adi-
posity than birth weight [17, 18]. Triglycerides and
remnant cholesterol levels reflect an impaired metabol-
ism of triglyceride-rich lipoproteins and their remnants,
which are controlled by placental lipoprotein lipases
such as placental lipoprotein lipase (pLPL) and placental
endothelial lipase (pEPL) activity [13, 14].
The only study which assessed maternal remnant chol-

esterol levels, representative of the remnant lipoproteins,
was performed in mice and showed that remnant choles-
terol is associated with accelerated foetal growth in mice
[49]. In our study, maternal remnant cholesterol levels
in early pregnancy are positively associated with foetal
growth, increased foetal growth pattern of head circum-
ference and abdominal circumference and the risk of
LGA, independent of maternal BMI. After correction for
glucose, the association of remnant cholesterol and LGA
attenuated to just non-significance. This may be ex-
plained by the close relation between remnant choles-
terol levels and insulin resistance, the association of
insulin resistance with glucose levels and the association
of insulin resistance with an atherogenic plasma lipid
profile [50–52].
To fully comprehend the association of maternal

lipid levels and foetal growth, it is important to
understand the maternal-placental-foetal transport
pathways but also the development of the foetal lipid
metabolism. Unfortunately, to date, this is still
largely unknown. However, we assume that the con-
tribution of the foetal metabolism will be ignorable
or very little in early pregnancy, and therefore, we
expect that this will have a limited effect on our re-
sults. Our results are in line with a meta-analysis of
Wang et al. describing a positive association of tri-
glycerides with LGA and birth weight and a negative
association of HDL-c with birth weight [53]. The as-
sociations were even stronger in overweight or obese
women prior to pregnancy. Our study adds to these
findings that the associations are even independent
of pre-pregnancy BMI.

Table 2 Maternal lipid profile in early pregnancy and foetal growth
SGA (n = 564) AGA (n = 4526) LGA (n = 565)

Gestational age at blood sampling, weeks 13.4 (10.5 to 17.2) 13.4 (10.5 to 17.2) 13.2 (10.9 to 17.1)

Total cholesterol, mmol/L 4.77 (0.90) 4.82 (0.87) 4.83 (0.88)

Triglycerides, mmol/L 1.23 (0.68 to 2.33) 1.26 (0.72 to 2.34) 1.33 (0.73 to 2.51)a

LDL-c, mmol/L 2.40 (0.74) 2.43 (0.72) 2.43 (0.73)

HDL-c, mmol/L 1.77 (0.35) 1.78 (0.35) 1.74 (0.35)a

Remnant cholesterol, mmol/L 0.56 (0.31 to 1.06) 0.57 (0.33 to 1.06) 0.60 (0.33 to 1.12)a

Non-HDL-c, mmol/L 3.00 (0.85) 3.05 (0.83) 3.08 (0.85)

Abbreviations: SGA small-for-gestational age, AGA average-for-gestational age, LGA large-for-gestational age. LDL-c low-density lipoprotein cholesterol, HDL-c high-
density lipoprotein cholesterol. Data are presented as mean (SD) for continuous variables with a normal distribution, or as median (90% range) for continuous
variables with a skewed distribution
aStudent t test value of P < 0.05 between women with LGA and women with AGA

Adank et al. BMC Medicine          (2020) 18:276 Page 6 of 12



It is known that children of mothers with high cholesterol
levels in early pregnancy have a higher risk of fatty streaks
in the aorta [54]. These fatty streaks are a precursor of

atherosclerosis and can result in cardiovascular disease later
in life [55]. These results underline the importance of meas-
uring maternal lipid levels in early pregnancy.

Fig. 2 Differences in foetal growth rates per change in maternal early pregnancy lipid level.
Abbreviations: SDS, standard deviation score; CI, confidence interval; LDL-c, low-density lipoprotein cholesterol; HDL-c, high-density lipoprotein
cholesterol. Estimates represent SDS values (95% CI) from repeated measurement regression models that reflect the differences in gestational
age-adjusted growth rates in SDS of head circumference, length, weight and abdominal circumference at mid-pregnancy, late pregnancy and at
birth per 1 SDS change in maternal early pregnancy lipid levels
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It has been suggested that maternal fasting glucose
levels, postpandrial glucose levels and non-fasting
random samples are appropriate measures of maternal
glucose metabolism and are related to adverse birth out-
comes [56, 57]. A recent study of Barbour et al. suggests
that postpandrial triglyceride levels may be a new target
for early intervention in obese pregnancies [17], since
postpandrial triglycerides compared to fasting triglycer-
ides are better predictors of newborn adiposity. The
findings of our study are independent of maternal BMI,
and non-fasting blood values may better reflect the
normal physiological state in pregnant women [5, 58].
Therefore, we suggest that further studies are needed to
replicate our findings, including fasting blood samples
and detailed postpandrial measurements.
A few studies examining the effect of HDL-c levels and

the risk of LGA did not observe an association [47, 59].

We hypothesized that HDL-c was in contrast to the other
lipid levels negatively associated with foetal growth. How-
ever, the negative associations of HDL-c with birth weight
and LGA attenuated to non-significance after adjustment
for pre-pregnancy BMI and glucose. This may be explained
by the inverse association between BMI and HDL-c [60].
In this study, we found no association of lipid levels in

early pregnancy with adverse birth outcomes in a subset
of relatively healthy women (nulliparous, non-smoking,
lean women). If the association of lipid levels with adverse
birth outcomes would be fully explained by genetics, we
would have expected to also find an association of early
pregnancy lipid levels with adverse birth outcomes in this
relatively healthy population. Since no association was
found, we hypothesize that in addition to genetics, lifestyle
factors also play an important role in the association of
lipid levels with adverse birth outcomes.

Table 3 Associations of maternal lipid levels in early pregnancy with birth anthropometrics

Head circumference (mm)
β (95% CI)
n = 3110

P value Birth length (mm)
β (95% CI)
n = 3641

P value Birth weight (g)
β (95% CI)
n = 5666

P value

Total cholesterol, SDS

Basic model 0.2 (− 0.4 to 0.8) 0.44 0.1 (− 0.6 to 0.9) 0.73 9.2 (− 2.5 to 20.9) 0.12

BMI model 0.1 (− 0.4 to 0.7) 0.65 − 0.1 (− 0.8 to 0.7) 0.89 3.2 (− 8.4 to 14.8) 0.59

Glucose model 0.1 (− 0.4 to 0.7) 0.63 − 0.0 (− 0.8 to 0.7) 0.90 3.6 (− 8.1 to 15.2) 0.55

Triglycerides, SDS

Basic model 0.8 (0.2 to 1.3) 0.01 0.6 (− 0.2 to 1.3) 0.13 29.6 (17.9 to 41.3) < 0.001

BMI model 0.6 (0.1 to 1.2) 0.03 0.3 (− 0.5 to 1.0) 0.48 19.5 (7.6 to 31.3) 0.001

Glucose model 0.6 (0.04 to 1.2) 0.04 0.2 (− 0.5 to 1.0) 0.53 18.4 (6.5 to 30.3) 0.002

LDL-c, SDS

Basic model 0.2 (−0.4 to 0.8) 0.51 0.2 (− 0.5 to 1.0) 0.51 10.2 (− 1.3 to 21.7) 0.08

BMI model 0.1 (− 0.5 to 0.7) 0.79 0.0 (− 0.7 to 0.7) 0.96 2.9 (− 8.5 to 14.4) 0.62

Glucose model 0.1 (− 0.5 to 0.7) 0.78 0.0 (− 0.7 to 0.7) 0.95 3.2 (− 8.3 to 14.7) 0.58

HDL-c, SDS

Basic model − 0.4 (− 1.0 to 0.2) 0.15 − 0.7 (− 1.4 to 0.1) 0.07 −20.1 (−31.7 to − 8.5) 0.001

BMI model − 0.3 (− 0.9 to 0.3) 0.27 − 0.4 (− 1.2 to 0.3) 0.22 −12.7 (− 24.3 to − 1.1) 0.03

Glucose model − 0.3 (− 0.9 to 0.3) 0.32 − 0.4 (− 1.2 to 0.3) 0.25 −11.6 (− 23.2 to 0.1) 0.05

Remnant cholesterol, SDS

Basic model 0.8 (0.2 to 1.4) 0.01 0.6 (− 0.1 to 1.3) 0.11 30.0 (18.3 to 41.8) < 0.001

BMI model 0.7 (0.1 to 1.3) 0.02 0.3 (− 0.4 to 1.0) 0.44 19.8 (7.9 to 31.6) 0.001

Glucose model 0.7 (0.1 to 1.2) 0.03 0.3 (− 0.5 to 1.0) 0.48 18.7 (6.8 to 30.6) 0.002

Non-HDL-c, SDS

Basic model 0.4 (− 0.2 to 1.0) 0.18 0.4 (− 0.3 to 1.1) 0.27 17.7 (6.1 to 29.3) 0.003

BMI model 0.3 (− 0.3 to 0.8) 0.38 0.1 (− 0.6 to 0.9) 0.74 8.4 (− 3.3 to 20.0) 0.16

Glucose model 0.3 (− 0.3 to 0.8) 0.39 0.1 (− 0.6 to 0.8) 0.74 8.2 (− 3.4 to 19.9) 0.17

Abbreviations: CI confidence interval, SDS SD scores, LDL-c low-density lipoprotein cholesterol, HDL-c high-density lipoprotein cholesterol. Values are beta’s (95% CI)
derived from multiple linear regression analyses. Basic model: adjusted for maternal age, gestational age at blood sampling, ethnicity, educational level, parity,
smoking, folic acid supplementation and gestational age at measurement. BMI model: basic model additionally adjusted for pre-pregnancy BMI. Glucose model:
BMI model additionally adjusted for glucose levels in early pregnancy
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Currently, non-high-density lipoprotein cholesterol
(non-HDL-c) is often used to describe the total of pro-
atherogenic particles (low-density lipoprotein cholesterol
[LDL-c], lipoprotein-a, intermediate-density lipoprotein
[IDL] and VLDL). High maternal levels of non-HDL-c
may therefore be more specific to depict the future car-
diovascular risk of the foetus than maternal hypercholes-
terolemia [61]. This study is to our knowledge the first
study to examine the role of maternal early pregnancy
lipids including remnant cholesterol and non-HDL-c in
association with LGA independent of maternal pre-
pregnancy BMI and glucose levels.
Our results suggest a novel association of early preg-

nancy maternal lipid levels and the risk of a child born
LGA. However, it should be noted that foetal growth
alone may be a weak surrogate for perinatal harm since
there was no difference in NICU admission for women

with a child born AGA compared to women with a child
born LGA in our study. Before implementation of life-
style interventions to decrease maternal lipid levels in
early pregnancy, future studies are warranted to examine
whether maternal lipid levels are not only associated
with foetal growth, but also with subsequent perinatal
harm such as shoulder dystocia, neonatal asphyxia and
neonatal death.

Strengths and limitations
Blood samples were obtained in a non-fasting state, sam-
pled on nonfixed times throughout the day. This may
have led to non-differential misclassification, causing an
underestimation of the observed effect estimates. How-
ever, several large-scale, population-based studies and
registries including children, women, men and patients
with diabetes have established that plasma lipids and

Table 4 Associations of maternal lipid profile in early pregnancy with birth outcomes

AGA
n = 4526

SGA
OR (95% CI)
n = 564

P value LGA
OR (95% CI)
n = 565

P value

Total cholesterol, SDS

Basic model Reference 0.94 (0.85 to 1.03) 0.16 1.00 (0.92 to 1.10) 0.94

BMI model Reference 0.96 (0.87 to 1.05) 0.33 0.97 (0.88 to 1.06) 0.51

Glucose model Reference 0.95 (0.87 to 1.05) 0.32 0.97 (0.87 to 1.07) 0.57

Triglycerides, SDS

Basic model Reference 0.91 (0.83 to 1.00) 0.04 1.18 (1.07 to 1.29) 0.001

BMI model Reference 0.94 (0.85 to 1.03) 0.17 1.11 (1.01 to 1.22) 0.04

Glucose model Reference 0.94 (0.85 to 1.03) 0.19 1.09 (0.99 to 1.20) 0.08

LDL-c, SDS

Basic model Reference 0.95 (0.87 to 1.04) 0.28 1.01 (0.92 to 1.10) 0.91

BMI model Reference 0.98 (0.89 to 1.07) 0.59 0.96 (0.88 to 1.06) 0.43

Glucose model Reference 0.98 (0.89 to 1.07) 0.59 0.97 (0.88 to 1.06) 0.47

HDL-c, SDS

Basic model Reference 1.01 (0.92 to 1.10) 0.91 0.88 (0.81 to 0.97) 0.01

BMI model Reference 0.98 (0.90 to 1.07) 0.67 0.92 (0.84 to 1.01) 0.09

Glucose model Reference 0.98 (0.89 to 1.07) 0.62 0.93 (0.85 to 1.03) 0.16

Remnant cholesterol, SDS

Basic model Reference 0.91 (0.83 to 1.00) 0.05 1.18 (1.08 to 1.30) < 0.001

BMI model Reference 0.94 (0.86 to 1.03) 0.20 1.11 (1.01 to 1.23) 0.03

Glucose model Reference 0.94 (0.86 to 1.04) 0.23 1.10 (1.00 to 1.21) 0.06

Non-HDL-c, SDS

Basic model Reference 0.93 (0.85 to 1.02) 0.13 1.05 (0.96 to 1.15) 0.27

BMI model Reference 0.96 (0.88 to 1.06) 0.40 1.00 (0.91 to 1.09) 0.95

Glucose model Reference 0.96 (0.88 to 1.06) 0.41 1.00 (0.91 to 1.09) 0.92

Abbreviations: OR odds ratio, CI confidence interval, SDS SD scores, AGA average-for-gestational age, SGA small-for-gestational age, LGA large-for-gestational age,
LDL-c low-density lipoprotein cholesterol, HDL-c high-density lipoprotein cholesterol. Values are odds ratio’s (95% CI) derived from multiple logistic regression
analyses. Basic model: adjusted for maternal age, gestational age at blood sampling, ethnicity, educational level, parity, smoking and folic acid supplementation.
BMI model: basic model additionally adjusted for pre-pregnancy BMI. Glucose model: BMI model additionally adjusted for glucose levels in early pregnancy
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lipoproteins change only modestly in response to habit-
ual food intake [62–67]. Among all studies comparing
non-fasting with fasting lipid profiles, minor increases in
plasma triglycerides and minor decreases in total and
LDL cholesterol concentrations were observed, with no
change in HDL cholesterol concentrations [67]. These
minor and transient changes in lipid concentrations
appear to be clinically insignificant [67]. Naturally, the
corresponding changes in concentrations in individuals
will differ from mean changes in populations, exactly as
concentrations will differ from one fasting measurement
to another in the same individual [67]. Lipids and lipo-
proteins change minimally in response to normal food
intake [67, 68]. It is stated that only if non-fasting
plasma triglycerides are > 5 mmol/L, a fasting blood
sample could be considered [67]. In our study, in only
three women, triglycerides exceeded 5mmol/L. Moreover,
using non-fasting samples may also have advantages. As
previously mentioned, they may better reflect the normal
physiological state in pregnant women. Moreover, non-
fasting triglycerides were previously observed to be better
predictors of newborn adiposity [17]. Compared to
non-responders, study participants were more often
of European origin, were higher educated, had a
lower pre-pregnancy BMI, were more often nullipar-
ous, smoked more often in their pregnancy and more
often used folic acid supplementation (Additional file
1, Table S3). It is not possible to foresee whether
and, if so, how this would affect our results. More-
over, we included a relatively healthy population and
blood samples were obtained in early pregnancy
whilst dyslipidaemia is more profound in mid- and
late pregnancy which both may have led to an under-
estimation of the association between maternal lipid
profile in early pregnancy with foetal growth and the
risk of LGA [69]. Therefore, our results cannot be ex-
trapolated beyond this context. Pre-pregnancy BMI was
calculated from self-reported pre-pregnancy weight.
However, pre-pregnancy BMI was strongly correlated
with BMI measured at enrolment, which makes mis-
classification unlikely. Gestational weight gain may also
have an effect on our results; however, due to the high
percentage of missing information (59.3%) and its oc-
currence after our exposure, we did not include gesta-
tional weight gain to our models. In future studies, the
role of gestational weight gain should be further
examined.

Conclusion
This study suggests a novel association of triglycerides
and remnant cholesterol in early pregnancy with foetal
growth rates and the risk of a child born LGA. However,
future studies are warranted to explore clinical implica-
tion possibilities.
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