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Abstract

Background: After High-Dose Methotrexate (HD-MTX), folinic acid rescue therapy (Leucovorin) is administered to
reduce side effects in pediatric acute lymphoblastic leukemia (ALL) patients. Leucovorin and MTX are structural
analogues, possibly competing for cellular transport and intracellular metabolism. We hypothesize that Leucovorin
accumulates during consecutive courses, which might result in a lower MTX uptake.

Methods: We prospectively measured red blood cell (RBC) folate and MTX levels during four HD-MTX and Leucovorin
courses in 43 patients treated according the DCOG ALL-11 protocol with 2-weekly HD-MTX (5 g/m2/dose) and
Leucovorin (15 mg/m2/dose) using LC-MS/MS. We estimated a linear mixed model to assess the relationship between
these variables over time.

Results: Both RBC MTX-PG and folate levels increased significantly during protocol M. MTX-PG2–5 levels increased most
substantially after the first two HD-MTX courses (until median 113.0 nmol/L, IQR 76.8–165.2) after which levels plateaued
during the 3d and 4th course (until median 141.3 nmol/L, IQR 100.2–190.2). In parallel, folate levels increased most
substantially after the first two HD-MTX courses (until median 401.6 nmol/L, IQR 163.3–594.2) after which levels plateaued
during the 3d and 4th course (until median 411.5 nmol/L, IQR 240.3–665.6). The ratio folate/MTX-PG decreased
significantly over time, which was mostly due to the relatively higher increase (delta) of MTX-PG.

Conclusion: These results suggest that the increase in RBC folate levels does not seem to have a large effect
on RBC MTX levels. Future studies, assessing competition of Leucovorin and MTX on other cellular mechanisms which
might negatively affect treatment efficacy, are necessary.
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Background
High-dose Methotrexate (HD-MTX) is an important
component of pediatric acute lymphoblastic leukemia
(ALL) treatment [1–3]. MTX is an antifolate that im-
pairs purine- and thymidine synthesis by inhibiting the

enzymes Dihydrofolate Reductase (DHFR) and Thymidy-
late Synthase (TS) [4]. Following HD-MTX infusions,
folinic acid rescue therapy (Leucovorin – LV) is admin-
istered to reduce toxic side effects of therapy. LV is a re-
duced folate that bypasses the block of DHFR by MTX
(Fig. 1) [5]. Leucovorin and MTX are structural ana-
logues, possibly competing for cellular transport and
intracellular pathways. Previous studies showed that
most toxicity seems to occur after the first out of four
HD-MTX courses, when cells have not yet been exposed

© The Author(s). 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this article are included in the article's Creative Commons
licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons
licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the
data made available in this article, unless otherwise stated in a credit line to the data.

* Correspondence: N.Oosterom@prinsesmaximacentrum.nl
1Princess Máxima Center for Pediatric Oncology, Postbus 113, 3720 AC
Bilthoven, Utrecht, The Netherlands
2Department of Clinical Chemistry, Erasmus MC, University Medical Center
Rotterdam, Rotterdam, The Netherlands
Full list of author information is available at the end of the article

Oosterom et al. BMC Cancer          (2020) 20:940 
https://doi.org/10.1186/s12885-020-07422-y

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Erasmus University Digital Repository

https://core.ac.uk/display/343132299?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1186/s12885-020-07422-y&domain=pdf
http://orcid.org/0000-0001-9871-1887
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:N.Oosterom@prinsesmaximacentrum.nl


to LV [6, 7]. LV restores the intracellular folate pool and
might compete with MTX for cellular transport mecha-
nisms leading to a lower uptake of MTX during con-
secutive HD-MTX and LV courses [8–11].
Both pediatric ALL studies [8, 10–12] and rheumatoid

arthritis (RA) studies [13, 14] have shown that the ad-
ministration of folate rescue therapy decreases toxicity,
but might also decrease treatment efficacy – reflected by
a higher risk of relapse in ALL and a higher disease ac-
tivity in RA. In contrast, several studies advocate the use
of higher LV doses to reduce toxicity as they were not
able to show decreased treatment efficacy by LV rescue
after HD-MTX [15–17]. As both treatment efficacy and
toxicity are affected by the possible competition between

MTX and LV, it would be of value to determine whether
LV negatively affects MTX accumulation during con-
secutive HD-MTX and LV courses.
In this study, we prospectively determined red blood

cell (RBC) folate and MTX levels longitudinally after
each of the four consecutive 2-weekly 5 g/m2 HD-MTX
courses with LV rescue in pediatric ALL patients to
assess the changes in RBC folate and MTX levels over
time.

Methods
Patient selection
Pediatric ALL patients (1–19 years) treated with HD-
MTX courses according to the standard and medium

Fig. 1 Mechanism of action MTX and LV. Overview of the folate pathway with separate folate isoforms and converting enzymes in relation to the
mechanism of action of MTX. MTX enters the cell through RFC1, PCFT and MFR. MTX is then polyglutamated (−PG) by FPGS and depolyglutamated by
GGH, after which MTX is exported out of the cell by ABC transporters. MTX(−PG) inhibits TS and DHFR. Leucovorin (5-formylTHF) is represented in bold
/ italic and bypasses the action of DHFR. Abbreviations: ABCB1 - ATP Binding Cassette Subfamily B Member 1; ABCC1–4 - ATP Binding Cassette
Subfamily C Member 1–4; ABCG2 - ATP Binding Cassette Subfamily G Member 2; DHF – Dihydrofolate; DHFR – Dihydrofolate Reductase; FPGS –
Folylpolyglutamate Synthetase; GGH – Gamma-Glutamyl Hydrolase; MFR – Membrane Folate Transporter; MTHFR - Methylene tetrahydrofolate
reductase; MTHFD1 - Methylenetetrahydrofolate Dehydrogenase, Cyclohydrolase And Formyltetrahydrofolate Synthetase 1; PCFT – Proton-Coupled
Folate Transporter; RFC1 – Reduced Folate Carrier; SHMT - Serine hydroxymethyltransferase; THF – tetrahydrofolate; TS – Thymidylate Synthase. This
Figure was created using Microsoft Office Powerpoint
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risk arms of the Dutch Childhood Oncology (DCOG)
ALL-11 protocol were eligible for this study. Children
were newly diagnosed with ALL in the period between
November 2014 and September 2018. All patients par-
ticipated in the DCOG ALL-11 protocol and consented
to the use of their patient data for the purpose of ALL
studies (CCMO register: NL50250.078.14 / MEC-2012-
287). This study was approved by the local ethics com-
mittee and according to Dutch legislation informed con-
sent was signed by children 12–18 years old and the
parents or guardians, for children < 12 years old in-
formed consent was signed by the parents or guardians.
Above the age > 18 years old the patient signed the in-
formed consent.

Protocol M
We studied patients prospectively during protocol M
(HD-MTX phase). During protocol M, four HD-MTX
infusions were administered every 2 weeks at a dose of
5000 mg/m2 in 24 h. Each MTX administration was
combined with intrathecal triple chemotherapy in a
standard dose adjusted for age (respectively, 8–12 mg
MTX; 20–30 Cytosine Arabinoside; 8–12mg Diadreson
F aquosum). Folinic acid rescue (15 mg/m2/dose) was
administered at 42, 48 and 54 h after the start of intra-
venous HD-MTX administration. Standard supportive
care guidelines included hyperhydration (2.5–3.0 L/m2/
day) and urine alkalinization using sodium bicarbonate
(pH between 7.0–8.0). In addition, protocol M included
oral 6-mercaptopurine (25 mg/m2 daily for 56 days). Pa-
tients had a standard 48 h hospital admission during
HD-MTX courses. Plasma MTX levels were measured at
48 h (T48) after start of the HD-MTX infusion. When
plasma MTX T48 levels were < 0.4 μmol/L and the pa-
tient was in a good clinical condition, the patient was
discharged and the last folinic acid rescue dose was ad-
ministered at home. When plasma MTX T48 levels
were > 0.4 μmol/L, folinic acid was continued until
plasma MTX levels were < 0.25 μmol/L. HD-MTX
courses were postponed for at least 1 week when pa-
tients suffered from a severe infection, mucositis or hep-
atotoxicity (AST / ALT >10x upper limit of normal),
when the white blood count was < 1.5 × 109/L or plate-
lets were < 50 × 109/L.

Toxicity
Toxicity was prospectively registered and graded accord-
ing to the Common Terminology Criteria for Adverse
Events (CTCAE) version 4.03. Registered toxicity in-
cluded central neurotoxicity (ataxia, somnolence, a de-
pressed level of consciousness, agitation, seizures and
posterior reversible encephalopathy syndrome), infec-
tions and mucositis. In addition, a complete blood count,
liver enzymes (alanine transaminase (ALT) and aspartate

transaminase (AST)), and creatinine concentrations were
measured just prior to the next high dose MTX courses.
In addition, the total treatment delay in days due to
extra hospital admissions and prolongation of hospital
admissions due to toxicity were registered.

Red Blood Cell (RBC) Folate and MTX-PG measurements
Samples were collected prospectively every two to three
(when the course was delayed for 1 week) weeks after
every HD-MTX course. Previously, it was shown that
RBC MTX-PG levels did not differ significantly between
samples drawn two or 3 weeks after HD-MTX [18]. In
eight patients samples were also collected at start of
protocol M before the first HD-MTX course. Cell pellets
were harvested from centrifuged EDTA blood samples
and stored at − 80 °C. RBC folate levels (non-methyl tet-
rahydrofolate (THF); 5-methyl THF; folic acid) were
measured using liquid chromatography-tandem mass
spectrometry (LC-MS/MS) as previously described [19].
The non-methyl THF pool consists of the sum of THF,
5,10-methylene THF, 5,10-methenyl THF and 5- and
10-formyl THF (Fig. 1). The sum of the total RBC folate
was calculated by adding the non-methyl THF and 5-
methyl THF levels. RBC MTX-polyglutamates (MTX-
PG1–5) were measured as previously described using an
LC-MS/MS method [20]. MTX-PG1 is freely transport-
able in- and out of cells, thus very variable. Therefore,
only MTX-PG2–5 were used for analysis. Only patients
having ≥3 samples available out of 4 measurements were
included in our analyses. We used the total sum of RBC
folate levels (non-methylTHF + 5-methylTHF + folic
acid) and RBC MTX-PGs (MTX-PG2 +MTX-PG3 +
MTX-PG4 +MTX-PG5) at each timepoint in our ana-
lyses. The delta of median RBC folate and MTX-PG2–5

levels measured between courses was calculated.

Statistical analysis
To investigate the relationship between RBC MTX-PG
and RBC folate levels a linear mixed model (LMM) was
estimated. LMM accounts for the repeated measurement
design of this study and takes into account that mea-
surements belonging to the same patient are correlated.
Two separate LMMs were estimated to study possible
changes of RBC MTX-PG and RBC folate levels as well
as the ratio RBC folate / MTX-PG over time. Due to the
sample size covariates, such as erythrocyte transfusions,
ALL immunophenotype or prolonged hospitalizations
due to high MTX plasma levels (and increased number
of LV doses), were not included in the statistical model.
Possible effects of these covariates were assessed by de-
scriptive figures. A p-value < 0.05 was considered statis-
tically significant.
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Results
Patient characteristics and toxicity
We included 43 pediatric ALL patients. They all received
four HD-MTX courses including LV rescue therapy dur-
ing protocol M (n = 172 courses). Baseline characteristics
are summarized in Table 1. The median duration of
protocol M was 65 days (range 56–83 days). The most
frequent grade III and IV toxicities during protocol M
were neutropenia (60%), leucopenia (35%) and mucositis
(35%).

RBC MTX-PG and folate levels
We measured RBC MTX-PG levels at start of protocol
M, which is a week before start of HD-MTX, in 8 pa-
tients (Table 2) and observed that low levels of MTX-
PG2–5 were present (median 7.5 nmol/L, interquartile
range (IQR) 4.2–9.2). RBC folate levels at start of proto-
col M, a week before start of HD-MTX, in these 8 pa-
tients were median 255.2 nmol/L (IQR 151.7–290.9
nmol/L). In 43 patients, RBC MTX-PG2–5 levels in-
creased most substantially after the first two HD-MTX
courses (until median levels of 113.0 nmol/L, IQR 76.8–
165.2) as compared to after the 3rd (median 131.6 nmol/
L, IQR 88.9–170.7) and 4th course (median 141.3 nmol/
L, IQR 100.2–190.2), where levels plateaued (Table 2;
Fig. 2). In parallel, RBC folate levels increased most sub-
stantially after the first two HD-MTX courses (until me-
dian levels of 401.6 nmol/L, IQR 163.3–594.2) as
compared to after the 3rd (median 411.5 nmol/L, IQR
240.3–665.6) and 4th (median 361.5 nmol/L, IQR 217.5–
511.0) course, where levels plateaued and even seemed
to decrease again (Table 2; Fig. 2). For the different fol-
ate forms we observed that both 5-methylTHF and non-
methylTHF levels increased over time in RBC’s (Table
2). 5-methylTHF levels increased most after the first two
HD-MTX courses (until median levels of 218.3 nmol/L,
IQR 91.1–386.4) as compared to after the 3rd (median
227.8 nmol/L, IQR 151.2–384.3) and 4th course (median
228.9 nmol/L, IQR 134.9–356.0), where levels plateaued
(Table 2). Non-methylTHF levels increased most sub-
stantially until after the first three HD-MTX courses
(until median levels of 106.3 nmol/L, IQR 63.2–208.8) as
compared to after the 4th course (median 94.8 nmol/L,
IQR 59.0–163.9), where levels seemed to decrease again
(Table 2).
The ratio RBC folate/MTX-PG decreased over time

(Figs. 2 and 3; Table 2). The decrease of the ratio was
mostly due to the relatively high increase (delta) of
MTX-PG levels over time, which was higher than the in-
crease of sum folate levels (Table 2). The decrease was
most prominent after the first two HD-MTX courses,
after which the ratio plateaued (Table 2; Fig. 2).
A linear mixed model (LMM) to study the relation be-

tween RBC MTX-PG levels and folate levels as a

function of time was estimated. The interaction term in
the model was significant (p < 0.001), which indicates
that both RBC MTX-PG as well as RBC folate levels

Table 1 Patient characteristics

Patient characteristics n = 43

Age at diagnosis in years, median (range) 4.2 (1.6–17.7)

Sex, n (%)

Female 18 (42%)

Male 25 (58%)

Immunophenotype ALL, n (%)

B-lineage 38 (88%)

T-lineage 5 (12%)

Risk group ALL-10 protocol, n (%)

Standard risk 19 (44%)

Medium risk 24 (56%)

Protocol M characteristics

Duration Protocol M in days, median (range) 65 (56–83)

Extra hospital admissions during protocol M,
n (percentage of 172 courses)

12 (7%)

Duration HD-MTX hospital admission in days, median (range)

After Course 1 2 (2–13)

After Course 2 2 (2–5)

After Course 3 2 (2–8)

After Course 4 2 (2–6)

Toxicity during Protocol M (NCI CTC)

Number of infections, n (%) 10 (23%)

Number of Erythrocyte transfusions per patient,
median (range)

0 (0–3)

Number of Thrombocyte transfusions per patient,
median (range)

0 (0–1)

Leukopenia, n (%)

Grade 1–2 28 (65%)

Grade 3–4 15 (35%)

Neutropenia, n (%)

Grade 1–2 17 (40%)

Grade 3–4 26 (60%)

Increased creatinine T48

Grade 1–2 43 (100%)

Grade 3–4 0 (0%)

Neurotoxicity

Grade 1–2 42 (98%)

Grade 3–4 1 (2%)

Oral Mucositis

Grade 1–2 28 (65%)

Grade 3–4 15 (35%)

Patient characteristics of n = 43 pediatric acute lympoblastic leukemia patients
included in this study
NCI CTC national cancer institute CTCAE criteria
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Table 2 Intracellular MTX-PG and eryfolate levels (n = 43)

RBC MTX-PG, in nmol/L median IQR Delta RBC MTX-PG, in nmol/L median IQR

MTX-PG2, median (IQR)

Start protocol Ma 1.4 (1.2–2.4)

After Course 1 8.0 (4.9–15.5)

After Course 2 12.6 (6.7–23.8) Course 2 – Course 1 + 1.9 (−0.8–7.9)

After Course 3 11.0 (6.1–20.6) Course 3 – Course 2 −1.7 (−8.7–1.5)

After Course 4 10.8 (6.2–25.3) Course 4 – Course 3 + 0.2 (−5.4–8.3)

MTX-PG3, median (IQR)

Start protocol Ma 2.5 (1.3–3.9)

After Course 1 14.3 (9.4–19.6)

After Course 2 26.2 (20.5–34.7) Course 2 – Course 1 + 11.3 (8.4–17.4)

After Course 3 31.1 (20.6–39.9) Course 3 – Course 2 + 4.2 (0.1–7.6)

After Course 4 33.0 (27.1–43.5) Course 4 – Course 3 + 3.1 (− 5.5–10.9)

MTX-PG4, median (IQR)

Start protocol Ma 2.2 (1.3–2.5)

After Course 1 20.2 (11.2–28.3)

After Course 2 35.8 (24.5–56.3) Course 2 – Course 1 + 16.6 (9.0–27.5)

After Course 3 46.5 31.2–59.1) Course 3 – Course 2 + 7.6 (3.8–13.2)

After Course 4 48.7 (34.0–71.4) Course 4 – Course 3 + 10.0 (−4.4–16.2)

MTX-PG5, median (IQR)

Start protocol Ma 1.6 (1.1–2.0)

After Course 1 18.2 (8.3–22.8)

After Course 2 29.9 (22.0–45.2) Course 2 – Course 1 + 12.8 (7.5–23.1)

After Course 3 36.5 (20.6–49.3) Course 3 – Course 2 + 6.6 (1.7–11.0)

After Course 4 42.9 (23.6–56.5) Course 4 – Course 3 + 6.2 (−8.6–13.0)

Sum MTX-PG2–5, median (IQR)

Start protocol Ma 7.5 (4.2–9.2)

After Course 1 60.7 (41.0–92.0)

After Course 2 113.0 (76.8–165.2) Course 2 – Course 1 + 43.0 (27.9–80.1)

After Course 3 131.6 (88.9–170.7) Course 3 – Course 2 + 19.4 (−0.9–33.0)

After Course 4 141.3 (100.2–190.2) Course 4 – Course 3 + 15.2 (−18.7–44.7)

RBC Folate, in nmol/L Delta RBC Folate, in nmol/L

5-methylTHF, median (IQR)

Start protocol Ma 185.7 (97.8–215.7)

After Course 1 150.3 (56.6–300.6)

After Course 2 218.3 (91.1–386.4) Course 2 – Course 1 + 82.2 (−0.6–146.3)

After Course 3 227.8 (151.2–384.3) Course 3 – Course 2 + 23.2 (−48.8–67.8)

After Course 4 228.9 (134.9–356.0) Course 4 – Course 3 + 33.6 (−71.5–107.0)

Non-methylTHF, median (IQR)

Start protocol Ma 42.6 (27.9–67.7)

After Course 1 61.9 (39.8–132.7)

After Course 2 88.1 (49.3–169.7) Course 2 – Course 1 + 1.8 (−24.4–82.7)

After Course 3 106.3 (63.2–208.8) Course 3 – Course 2 + 14.2 (−90.9–56.7)

After Course 4 94.8 (59.0–163.9) Course 4 – Course 3 −6.9 (−80.2–54.4)
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changed significantly over time (Figs. 2 and 3; Table 2).
The ratio RBC folate/MTX-PG changed significantly
over time (P < 0.001) in a separate LMM model. Possible
covariates such as erythrocyte transfusions, ALL immu-
nophenotype or prolonged hospitalizations due to high
MTX plasma levels (and increased number of LV doses)
did not show large effects based on visual inspection. Re-
sults of individual patient levels are shown in Fig. 3.

Discussion
In this study, we hypothesized that LV increases intra-
cellular folate levels during consecutive courses, which
might result in a lower uptake of MTX due to competi-
tion for cellular transport mechanisms. We showed that
both RBC folate and MTX levels increased throughout
four consecutive HD-MTX and LV courses and plat-
eaued after the first two courses. This shows that the in-
crease in RBC folate levels does not seem to have a large
effect on RBC MTX levels.
Alongside with the increase of RBC folate and MTX-

PG levels over time, the RBC folate/MTX-PG ratio de-
creased over time, which is due to the relatively higher
increase of MTX-PG levels over time than to the in-
crease of folate levels. This change of the folate/MTX-
PG ratio over time is to be expected based on the higher
dose of MTX (5000 mg/m2) compared to the cumulative

dose of LV (45 mg/m2) administered to the patient. No
decrease or less steep increase of RBC MTX was ob-
served compared to RBC folate levels, which was ex-
pected if a large competition for cellular transport
mechanisms would have been the case. True competi-
tion for cellular transport mechanisms could not be ex-
cluded as data could not be compared to patients
receiving other doses of LV or no LV. An explanation
for the fact that MTX-PG and LV did not seem to com-
pete to a large extent for the use of cellular transport
mechanisms could be due to passive diffusion of MTX
across the membrane due to the use of high doses [21].
The restoration of the RBC folate pool could, however,
still lead to a competition for binding sites of DHFR/TS
or a restoration of normal DNA- and RNA- synthesis
through bypassing the DHFR/TS block within cells. This
could be the case in both healthy cells, leading to less
toxicity during consecutive HD-MTX and LV courses,
but also in leukemic blasts, leading to a decreased treat-
ment efficacy.
We showed an increase in RBC folate levels upon con-

secutive HD-MTX and LV rescue courses in pediatric
ALL patients. The majority of values are, however,
within the range measured in the normal healthy popu-
lation (RBC folate median 440.0 nmol/L, range 170.3–
1164.4]) [22]. The large interindividual variability in RBC

Table 2 Intracellular MTX-PG and eryfolate levels (n = 43) (Continued)

Folic acid, median (IQR)

Start protocol Ma 11.8 (8.0–13.7)

After Course 1 11.5 (7.9–21.1)

After Course 2 17.3 (10.1–22.3) Course 2 – Course 1 −0.9 (−5.3–4.7)

After Course 3 13.3 (7.7–20.8) Course 3 – Course 2 −4.3 (−11.5–1.4)

After Course 4 13.0 (9.0–24.8) Course 4 – Course 3 + 2.0 (−8.1–8.5)

Sum folate, median (IQR)

Start protocol Ma 255.2 (151.7–290.9)

After Course 1 290.1 (152.7–453.8)

After Course 2 401.6 (163.3–594.2) Course 2 – Course 1 + 75.9 (−51.0–194.9)

After Course 3 411.5 (240.3–665.6) Course 3 – Course 2 + 39.4 (−169.1–128.1)

After Course 4 361.5 (217.5–511.0) Course 4 – Course 3 + 20.6 (− 162.4–199.6)

Ratio RBC Folate / MTX-PG2–5 Delta Ratio RBC Folate / MTX-PG2–5

After Course 1 4.7 (2.7–6.9)

After Course 2 3.3 (2.2–5.2) Course 2 – Course 1 −2.6 (−9.7–0.1)

After Course 3 3.4 (1.8–5.5) Course 3 – Course 2 −0.7 (−2.4–0.9)

After Course 4 2.7 (1.7–4.5) Course 4 – Course 3 − 0.6 (− 2.1–1.3)

Levels are measured in n = 43 patients every 2 weeks after a HD-MTX and LV course at time of qualification for the next course
Course 1: MTX-PG in n = 2 missing + Folate in n = 4 missing
Course 2: MTX-PG in n = 5 missing + Folate in n = 8 missing
Course 3: MTX-PG in n = 4 missing + Folate in n = 5 missing
Course 4: MTX-PG in n = 6 missing + Folate in n = 8 missing
aMTX-PG and folate levels were available in n = 8 patients at start of protocol M before administration of HD-MTX and LV – as these levels were only measured
only in n = 8 patients we did not analyse these levels in the linear mixed model
IQR interquartile range
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folate levels in our pediatric ALL patients are in line
with the variability reported in the healthy population
and may be partly explained by small differences in pre-
analytical conditions, genetic variation in genes of folate
transporters and metabolizing enzymes, such as the
MTHFR c.677 C > T genotype, as well as differences in
dietary folate intake and supplementation [22].
Median RBC MTX-PG2–5 levels were low at start of

protocol M and accumulated until median levels of 141
nmol/L after four HD-MTX courses in 2 months. In
addition, we observed very low levels of RBC MTX-PG2–

5 levels (median level 7.5 nmol/L) in patients before start
of HD-MTX treatment, presumably due to intrathecal
administration of MTX in preceding chemotherapy
courses, which is able to cross the blood brain barrier.
MTX-PG levels after HD-MTX courses are higher com-
pared to levels previously measured in rheumatoid

arthritis (RA) patients of around 20–70 nmol/L after 2
months receiving a weekly low oral dose MTX (2.5–
37.5 mg) [23, 24]. We showed that especially long chain
MTX-PGs (MTX-PG4–5), that are associated with longer
retention of HD-MTX and higher pharmacological activ-
ity, were high in our HD-MTX setting with median
levels between 40 and 50 nmol/L compared to previously
reported median levels between 1 and 20 nmol/L in a
low dose MTX RA setting [24–26]. Previously, the same
phenomenon of accumulation of especially long-chain
MTX-PG’s after HD-MTX when compared to low dose
MTX has been shown in leukemic blasts [27].
Previous cell line and mouse studies suggested a “se-

lectivity” in the mechanisms of action of MTX and LV
in tumor- versus in normal healthy cells [28–33]. High
levels of MTX-PG accumulated in leukemia- and solid
tumor cell lines, whereas only low MTX-PG levels

Fig. 2 Median intracellular MTX-PG and folate levels during four consecutive courses. Measurements were performed in n = 8 patients at start of
protocol M and in n = 43 patients every 2 weeks after a HD-MTX and LV course at time of qualification for the next course. Both intracellular MTX-
PG (a) and folate (b) levels increased significantly during protocol M over time (p < 0.001). The ratio folate/MTX-PG (c) decreased significantly over
time (p < 0.001). The bold line represents the median levels of patients over time. This Figure was created using Graphpad Prism version 8.3
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accumulated in normal intestinal and bone marrow pre-
cursor cells [28–41]. Whether these differences in MTX-
PG levels between normal and tumor cells were corre-
lated to different levels of FPGS / GGH activity or a dif-
ferent cytotoxic response to MTX and/or LV has never
been investigated [28–39]. This implies, that MTX-PG
levels measured in our study in cell pellets from patients
in clinical remission are likely lower than in their
leukemic blasts. We performed measurements in red

blood cells, which are expected to reflect RBC folate and
MTX-PG levels in other cells. However, red blood cells
do not have a nucleus nor mitochondria and therefore
no active formation of DNA- or RNA structures [42]. In
future studies, it would be of scientific value to deter-
mine folate- and MTX-PG levels in leukemic blasts or
other nuclear blood cells such as leucocytes.
The current study had some limitations. First, we did

not add covariates, such as ALL immunophenotype, the

Fig. 3 Individual MTX-PG and folate levels over time. Measurements were performed in n = 43 patients every 2 weeks after a HD-MTX and LV
course at time of qualification for the next course. Folate levels (blue line) and MTX-PG (red line) levels in 43 individual patients are depicted over
time after four HD-MTX and LV courses (a). The ratio folate / MTX-PG (green line) is depicted over time (b) after four HD-MTX and LV courses.
This Figure was created using RStudio version 1.1.442
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administration of erythrocyte transfusions and treatment
delays to our statistical model due to the lack of power.
These are factors that could potentially affect RBC folate
and MTX-PG levels. It has been shown that B-ALL
patients have higher RBC MTX-PG levels compared to
T-ALL patients [34]. Administration of erythrocyte
transfusions could potentially lead to lower RBC folate
and MTX-PG levels through the introduction of exogen-
ous erythrocytes which are naïve to MTX and LV treat-
ment. In addition, treatment delays have been shown to
not affect MTX-PG levels [18], but may lead to lower
RBC folate levels. Finally, as not all additional LV infu-
sions were registered in the medical record, we assumed
that a prolonged hospitalization due to high MTX
plasma levels was accompanied with more LV infusions
according to protocol. Although statistical analysis was
not feasible, we did not observe large effects of these co-
variates in our cohort through visual inspection of indi-
vidual trends of MTX-PG and folate levels over time.
Nevertheless, in future studies, it would be valuable to
include these covariates in the analysis. In such a study,
it would also be valuable to have MTX- and folate
measurements at more timepoints throughout one HD-
MTX course (T12; T24; T48; T72) and to measure the
different folate-polyglutamate molecule levels. Finally, it
would be valuable to measure these molecules in other
cell types, such as the leucocyte. The major strength of
this study is the prospective and consecutive measure-
ment of combined MTX and folate levels in a homo-
geneously treated cohort of pediatric ALL patients
throughout several HD-MTX and LV courses.

Conclusion
In conclusion, this is the first study that measured RBC
MTX and folate levels during consecutive MTX courses
in ALL patients and showed that RBC MTX and folate
levels increased most steeply after the first two out of
four courses in red blood cells. Our results suggest that
the increase in RBC folate levels does not seem to have a
large effect on RBC MTX levels. In future studies, it
would be valuable to study possible other cellular com-
petition mechanisms and selective mechanisms of action
of MTX and LV in leukemic blasts and healthy tissue by
assessing differences in MTX polyglutamylation and
FPGS/GGH activity.
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