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ABSTRACT  

In-situ natural water dissociation and redox processes on metal oxide perovskites which easily 

expose TiO2 – terminated surfaces, such as SrTiO3, BaTiO3 or Pb(Zr,Ti)O3 are studied by ambient 

pressure XPS, as a function of water vapour pressure. Water dissociation is of great interest 

because its fundamental aspects are still not well understood and it has implications in many 

processes, from ferroelectric polarization screening phenomena to surface catalysis and oxides 

surface chemistry. From the analysis of the O1s spectra, we determine the presence of different 

type of oxygen based species, from hydroxyl groups, either bound to Ti4+and metal sites or lattice 

oxygen, to different peroxide compounds, and propose a model for the adsorbates layer 
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composition, valid for environmental conditions. From the XPS analysis, we describe the existing 

surface redox reactions for metal oxide perovskites, happening at different water vapour pressures. 

Among them, peroxide species resulting from surface oxidative reactions are correlated with the 

presence of Ti4+ ions, which are observed to specifically promote surface oxidation and water 

dissociation as compared to other metals. Finally, surface water oxidation cycle is enhanced by X-

ray beam irradiation, leading to a higher coverage of peroxide species after beam overexposure.  

 

INTRODUCTION 

Surfaces under ambient conditions show a wide range of interactions with water molecules. Water 

can form a layer upon physical adsorption, pseudo-dissociate or chemisorb by simultaneously 

hydroxylating and protonating the surface or even participate in different oxidative or reducing 

reactions, as an oxidizing agent or in photocatalytic processes.1 Among all surfaces, interaction 

with metal oxide perovskites is of great interest because its fundamental aspects are still not well 

understood and it has implications in many processes, from ferroelectric polarization screening 

phenomena to surface catalysis and oxides surface chemistry in general, as well as a strong impact 

in applied electronics and sensing devices. Among the studies devoted to water interaction with 

perovskite-type oxide surfaces, emphasis has been placed on those exposing a TiO2 terminated 

surface2-5 such as SrTiO3 (STO),6-13 BaTiO3 (BTO)14-16 or even Pb(Zr0.25Ti0.75)O3 (PZT)17 due to 

its proximity with photocatalytic reactions mediated by TiO2.
18 

Theoretical studies on water interaction with surfaces can be classified into those addressing ideal 

surfaces for a fundamental point of view and those which study reconstructed surfaces, closer to 

what can be expect for coarse materials exposed to ambient.19-21 For STO surfaces, molecular and 
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dissociative adsorption has been modeled in ideal surfaces and reconstructed surfaces for both 

terminations (SrO and TiO2),
7-8, 12, 14 while for BTO, several experimental and theoretical studies 

have been conducted to study the reactivity of water on surfaces with different configurations,15 

including their effect on ferroelectric polarization charge screening.16, 22-25  

Furthermore, photocatalytic water splitting on different TiO2 surfaces14, 26 is of great interest for 

H2 production21 and in general for applications in atmospheric chemistry27 and photocatalytic 

environmental cleaning.14 Several studies of density functional theory (DFT) delve into the 

mechanistic picture of the nature of surface active sites for the photoinduced holes transfer from 

the TiO2 surface to the adsorbed water28 as well as the role in photocatalytic reactions5 of water 

and organic compounds as intermediate products.20, 29 It has been found that two types of hydroxyl 

groups (terminal hydroxyl groups, Ti-OH, and bridging hydroxyl groups, Ox-H)28 are present on 

the TiO2 surface,2 even though their distribution and activity properties are unclear. Moreover, 

predicted photocatalytic reactions often include the presence of reduced ions, and several other 

oxide species such as surface peroxide or O2
- adatoms that have been detected as intermediate 

species28 associated to water oxidation reactions in environmental conditions. Although STO is 

known to perform poorly as a water oxidation site in comparison with pure TiO2 surfaces because 

of the stability of the Ti(IV)-O to oxidize further,20 in ambient pressure X-Ray photoelectron 

spectroscopy (AP-XPS) experiments an intense generation of material’s holes can accelerate 

surface water catalytic reactions.  

The identification of different oxygen species upon water adsorption by AP-XPS has been 

extensively studied for metal surfaces. On Pt30, known to induce water dissociation, spectra taken 

at the O1s region revealed up to 5 different contributions from different oxygen states indicating a 

complex reactivity of water molecules in contact with the surface. However, the experimental 
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determination of water surface adsorption on oxide perovskites from XPS spectra often simplifies 

the presence of the different possible oxygen related species to three contributions: bulk oxides, 

molecular water and a mix of hydroxide species which in some cases also includes traces of 

contamination,31 and carbon related species.13   

In this report, we show the experimental detection of different oxygen related species on a STO 

(001) surface exposed to water vapor by AP-XPS, and we further interpret the data in terms of 

water molecule dissociation at the surface and photon induced water oxidation surface reactions. 

We further demonstrate the presence of these species in different metal oxide perovskites which 

easily expose TiO2 terminated surfaces and the need to considerate them as active elements in 

surface screening phenomena of ferroelectric Ti based oxides.  

EXPERIMENTAL METHODS: 

AP- XPS experiments were performed at the NAPP endstation of the CIRCE beamline (BL-24) at 

the ALBA synchrotron radiation facility. The photon energy range at CIRCE is 100 eV-2000 eV. 

The endstation is equipped with a Phoibos 150 NAP electron energy analyzer. The analyzer is 

provided with four differentially pumped stages connected by small apertures. A set of electrostatic 

lenses focuses the electrons though the apertures to maximize transmission. Such set-up allows 

keeping the detector in Ultra High Vacuum while the sample is at a maximum pressure of 20 

mbar.32-33 The total electron energy resolution in the experimental conditions used for the high-

resolution spectra was better than 0.3 eV. Further details about the system can be found 

elsewhere.34  

Three different metal Ti-based oxide perovskite structures were studied: STO and BTO single 

crystals, and PZT thin films. Additionally, we also added another ferroelectric material with no Ti 
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sites as it is BiFeO3 (BFO) thin films for comparison. STO (001) single crystals were provided by 

Crystec, GmbH. Commercially available substrates are mechanically polished single-crystals and 

their surfaces usually contain a mixture of two terminations, but commonly SrO termination is the 

minority, and we assume it to be below 40% of the total surface area, while the rest is TiO2 

terminated.35 BTO (001) single crystals were acquired from SurfaceNet GmbH. PbTi0.8Zr0.2O3 

(PZT) thin film was grown on STO (001)36 and finally, an epitaxial BFO (001) thin film on SrRuO3 

(SRO)-covered DyScO3 (001) single-crystal substrates was prepared by pulsed laser deposition 

(PLD) as explained somewhere else.37 STO sample was cleaned by heating to 300 oC at 0.1 mbar 

of O2 pressure. The evolution of the C1s peak was monitored until only a small broad peak was 

observed (see Figure S1). Increasing exposure time of the surface to O2 did not originate further 

changes in the C1s spectra. Then the chamber was evacuated down to  6.5 10 -8 mbar and cooled 

down to 23ºC and water vapor was dosed into the chamber. Water was previously degassed by 

several freeze-pump-thaw cycles. The BTO single crystal and the other ferroelectric thin films 

were cleaned by heat treatment up to 300 to 400 ºC overnight in high vacuum conditions (~10-7 

mbar). In these cases, a small amount of adventitious carbon was also observed at lower 

temperatures and is assumed to sit atop the surface uniformly and not influence the results. In this 

experiment, two different water pressures were investigated, corresponding to RH of ~5% and 

~10% respectively.  

High-resolution XPS spectra for the Sr3d, Ba4d, Bi4f, Pb4f, Zr3p, Ti2p, O1s and C1s core levels 

were obtained. Spectra acquired at the three different environmental conditions are shown in 

Figure 1. Spectra have been normalized in the “y” axes to the intensity of the bulk peak to take 

into account the loss of intensity due to electron inelastic scattering when travelling through the 

gas phase. Please notice that scale for C1s spectra are shown multiplied by 5. The fitting of all 
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XPS spectra peaks (not all shown, see some of them in Figure S2) was performed using the 

CasaXPS software with a combination of Gaussian/Lorentzian functions in the ratio of 70:30 after 

a Shirley subtraction except for the gas phase peak were a 30:70 ratio was used (see Supporting 

Information section B for a detailed description of the fitting methodology).  

RESULTS AND DISCUSSION: 

The O1s spectrum shows a complex structure of peaks as observed in Figure 2a. These peaks were 

assigned to different adsorbate species according to reported XPS measurements regarding water 

adsorption on TiO2 terminated surfaces,2 on perovskites,31 and on BTO thin films.15 The lowest 

binding energy (BE) peak corresponding to bulk oxide was found at 530.5 eV, similar to previously 

reported in the literature (Figure 2a). This BE was calibrated by taking as a reference the position 

of the C1s C-C adventitious carbon (energy fixed at 284.8 eV measured before annealing of the 

substrate in O2 to clean it). Five additional peaks were considered to fit the O1s region, four 

corresponding to surface adsorbates plus a fifth peak located at +(5.5  0.1) eV from the oxide 

peak, corresponding to the water gas phase (Figure 2a). The four oxygen-related adsorbate peaks 

were positioned at BE = +(1.00.1) eV, BE = + (1.80.1) eV, BE = + (2.50.1) eV and BE 

= + (3.60.2) eV from the bulk oxide peak. The peak closer to the oxide peak in TiO2, STO and 

BTO has been consistently related to the presence of hydroxyl groups in general. For the case of 

TiO2 terminated surfaces, this peak can be associated with two types of hydroxyl groups: the 

terminal hydroxyl group (Ti-OH) and a bridging hydroxyl group (Ox-H),2, 11, 15, 38 which can be 

considered as hydroxyl groups incorporated in the lattice15 (hereafter named “lattice OH”). For 

STO thought, we also have to consider the contribution of hydroxylated SrO terminated surfaces, 

which should contribute to this peak. The peak at BE  1.8 eV from the oxide has been related 
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to carbon oxide molecules (-COx) in studies on alcohol adsorption on STO,13 or to carbonate 

species for BTO and STO surfaces exposed to CO2.
14, 39 We corroborate this association by the 

combined monitoring of the O1s peak at BE  1.8 eV from the oxide and the C1s spectra; in the 

C1s spectrum taken before annealing of the STO surface, a wide peak at BE 289 eV is clearly 

observed corresponding to carbonates formed during exposure to atmospheric conditions. During 

annealing in O2 atmosphere the O1s peak at BE  1.8 eV named “-COx” from the oxide 

diminishes along with the C1s peak associated to carbonate and other carbon peaks confirming its 

correlation with carbon related species. C1s peaks however were not totally removed in the 

procedure used and thus, even after annealing, a small contribution in the C1s spectra is observed 

(Figure 1d). Peaks located in the band between BE ~ 2.4 eV and BE ~3.6 eV from the oxide 

have been usually associated with adsorbed water on the surface.2, 38, 40-41 However, studies of 

water dissociation on metals30, 42 revealed that O1s spectra of adsorbed water could have different 

BE within this range depending on the nature of water, with molecules forming a water multilayer 

showing the highest BE in this range, while adsorbed water molecules bounded to -OH groups 

(that is, hydrated –OH terminations) contribute with the lowest BE.30, 42 In addition to that, 

previous XPS studies also suggest the contribution in the lowest part of this BE band of 

chemisorbed water molecules, that is,“pseudo-dissociated” water2,15 following an hydroxylation 

and protonation process (creating a pair of terminal and lattice -OH groups in a nearby position 

maybe also interacting through soft hydrogen bonds), followed by a back reaction to form a water 

molecule again with a small energy barrier of 0.4 eV between the two states.43 Finally, more 

recent studies of XPS on TiO2 terminated surfaces extend the contribution to the lower part of this 

BE band to all types of chemisorbed oxygen species including those taking the form of peroxide 

groups.5,44 In our case, we found that in order to fit the O1s spectra when water pressure is 
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increased (Figure 1a), it was necessary to consider two peaks located at the above mentioned 

positions (BE  2.5 eV and BE  3.6 eV from the oxide). We associate the peak at BE  3.6 

eV from the oxide to molecularly adsorbed water bounded to other water molecules and according 

to the previous discussion, the peak at BE  2.5 eV from the oxide can have contributions from 

hydrating water molecules and chemisorbed oxygen species, from pseudo-dissociated water to 

peroxide groups (hereafter named surface oxygen peak). 

Coverage of surface adsorbates containing oxygen was estimated from the intensities of the 

peaks used to fit the O1s region using a multilayer attenuation model,45-46 and quantitatively 

analyzed following the procedure used by Newberg et al,47,40 taking into account the  theoretical 

inelastic mean free path (IMFP) of electrons through the different layers. Our model is similar to 

the one used recently to study water adsorption on perovskites31, 48, iron oxides49 or LiNbO3
40 

surfaces using AP-XPS, and renders the relative variations of peak intensity for each considered 

species when comparing spectra taken with two different incident energies, 700 eV and 1000eV 

(depth profile).48 A visual description of this variation is shown in Figure 2b which plots a 

percentage variation of the species contribution with respect to an averaged value as a function of 

the depth of the out-coming electrons: filled bars correspond to the partial contribution of each 

species measured at 1000 eV and empty bars correspond to the partial contribution of the same 

species at 700 eV (spectra shown in Figure S4). The exact calculation of this contributions is 

described in the supplementary material, but the visual meaning is that a species that shows a 

higher empty bar means that measured electrons should be originated closer to the external surface 

(i.e. surface in contact with the gas) than a species showing a lower empty bar (and obviously the 

opposite if we check the height of the filled bars). Thus, the height of the empty bars directly 

correlates with a stronger superficial contribution, but considering that the differences between the 
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three intermediate peaks are small and might not be determining, our proposal for the distribution 

of the different oxide species over the sample adsorbates layer is depicted in the scheme shown in 

Figure 2c. Following this model we consider that the bulk oxide is covered mainly by a 

hydroxylated layer (terminal and lattice –OH) of thickness tOH. In agreement with the data of 

Figure 2b, we support this idea with the fact that the main chemical environment of –OH groups 

should include the lattice oxygen and thus be closer to the oxide, even it can extend further along 

the adsorbates layer and include –OH groups that might tight to Ti or Sr ions or water molecules. 

In a second stage, we place a layer of both, COx species and chemisorbed surface oxygen species, 

with thickness tCOx and tSurfO respectively. This layers can in fact be merged and finally all of them 

are mainly covered by a molecular water layer with thickness tH2O (see section B3 of 

Supplementary Information for a detailed explanation of the model). The atomic densities of the 

layers were calculated from the density of the bulk counterparts. The photoionization cross-section 

of O1s for all species is considered to be constant. The IMFP for each layer was calculated using 

the NIST Standard Reference IMFP Database 71 software v1.2. with the Gries inelastic scattering 

model.50  

Finally, surface oxygen vacancies can be monitored by checking the presence of shoulders in the 

low BE side of the Ti4+ 2p3/2 peak (corresponding to Ti4+) due to reduced Ti species, i.e. Ti 3+. In 

our measurements surface oxygen vacancies are not observed in the Ti 2p3/2 peak (see Figure 1b). 

Nevertheless our samples were all previously exposed to atmospheric conditions so we conclude 

that all surface oxygen vacancies have been compensated before the experiments began. No 

differences in the shape of Ti2p3/2 neither the Sr3d peaks are observed before and after water 

exposure (see Figure 1b, 1c).   



 10 

Figure 1a shows the evolution of the O1s spectrum upon the increase of water pressure. In the 

inset, showing the differential spectra, it can be observed that all the peaks obtained from the 

decomposition of the O1s region show a dependence with the increase of water pressure. The 

quantification of the coverage evolution upon water pressure obtained following the model 

previously explained is shown in Figure 3a. It is clearly seen that the main effect of water pressure 

increase to the maximum water pressure is the formation of a complete monolayer of water, 

starting from almost no physically adsorbed water molecules. The increase in water content and 

adsorption has a minimal effect on the surface carbonate species that only shows minor variations 

all over the pressure range and also after temperature increase up to 200 ºC. Regarding the left two 

peaks taken into account for the spectra decomposition, corresponding to hydroxyl species and 

surface oxygen species, both show a progressive increase with pressure but following different 

trends. The surface oxide species show a stronger increase from very low values after the initial 

water exposure, followed by a tendency to saturation to less than half a monolayer for higher water 

pressures. Instead, the hydroxyls initial coverage is already considerable, of about half a 

monolayer, and it increases to higher values for high water coverage. This initial value is unusually 

high considering that after the heating treatment we applied to the surface to clean contamination, 

all hydroxylating groups associated to TiO2 surfaces should be removed.3-4 First of all, it is to 

mention that the absolute value as expressed in ML depends on the definition of the hydroxyls 

monolayer thickness as explained in the Supporting Information, which may differ among different 

works. Still, it is difficult to explain this high degree of hydroxylation at the initial stage after heat 

treatment. Several works point to the fact that SrO terminated surfaces are prone to show a higher 

degree of hydroxylation at room temperature,8, 51 that could explain the initial high coverage of –

OH layer, in agreement with the consideration that the percentage of SrO terminated surface can 
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be of up to 40%. Beyond this, we cannot dismiss that a) this peak has an extra contribution from 

other species b) depicts the presence of remaining hydroxylated compounds contaminating the 

surface after the cleaning process or c) denotes a certain degree of surface reconstruction or 

permanent superoxidation not able to be removed at 300 ºC that could enhance the binding of these 

groups to the surface. In any case, the annealing process applied for the preparation of this oxide 

perovskite surface is the same that can be applied to ferroelectric perovskites, thus leading to 

similar initial conditions to further compare experimental results.  

  Upon temperature increase (Figure 3b), adsorbed water molecules decrease as expected to about 

0.1 ML at 200 ºC. However, even though surface oxygen peak also decreases with increasing 

temperature, the presence of hydroxyls on the surface is enhanced by increasing temperature. The 

total calculated thickness for the adsorbates layer at 2.5 mbar (corresponding to approximately an 

RH of 10%) is of about 1 nm (see Figure S5). 

Water interaction with SrTiO3 surfaces in both, SrO and TiO2 terminations can take different 

paths: a) simple physical adsorption and/or formation of hydrogen bonds with the surface and 

among water molecules,43 b) acid-based reactions, that is chemisorption or dissociative adsorption 

of the water molecules leading to hydroxylation and protonation of the surface,8, 10, 43 and c) a wide 

range of redox reactions, involving oxygen transfer from the water molecules to the surface, for 

example interacting with surface oxygen vacancies,2, 11, 15 or oxidative water reactions,20-21 

including those based on hole transfer from the surface.28 The main reactions are summarized in 

Figure 4.  

Physisorbed water is considered to be present especially for TiO2 terminated surfaces even at very 

low water pressures.8 Still, the predominant sites for water physisorption are lattice hydroxides, 
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i.e. protonated lattice oxides with which water tends to form hydrogen bonds, and can adopt 

different orientations as a function of the surface termination (SrO and TiO2).
8 Both surface 

terminations can hydroxylate at different stages of water exposure as starting from completely pure 

surface in vacuum conditions,51 even SrO seems to be more prone to hydroxylate easier. Besides, 

for very low water pressures, oxygen vacancies present at the surface are well known to promote 

dissociation of water which is taken as an oxidizing agent to fill up the surface oxygen vacancies 

and simultaneously transferring the proton to an adjacent O atom from the lattice after a surface 

protonation reaction, leading to the generation of a pair of lattice hydroxyl groups –OxH, 

contributing to the hydroxyl peak.2, 11, 15 In our case, any possible surface oxygen vacancy has 

already been compensated since the SrTiO3 single crystal was already previously exposed to 

atmospheric conditions, so the starting point is a predominantly lattice hydroxylated surface, as 

stated by the initial half monolayer coverage of hydroxyls groups, as observed in Figure 3a. These 

hydroxyl species are strongly bounded to the surface as evidenced by its trend over temperature 

observed in Figure 3b: at 200ºC, the coverage of the hydroxyl species is slightly enhanced as 

compared to room temperature, pointing out that probably they correspond to SrO hydroxylation 

groups,8 since the initial surface treatment was not able to remove them as should be expected for 

–OH groups tight to TiO2 terminated surfaces.3-4  

Even in already hydroxylated surfaces, further hydroxylation of the TiO2 terminated surfaces can 

happen in the form of water dissociative adsorption, by creating Ti-OH terminal hydroxyl groups 

plus surface protonation, and/or water pseudo-dissociation processes (followed by a back reaction 

to form a water molecule again). In any case, it is well known that surface hydrophilicity and 

wettability is strongly correlated with surface hydroxylation,31, 40 so the increase of molecular 

water adsorption (H2O peak) is expected to correlate with the presence of enough hydroxyls 
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coverage and a reasonable enhancement of the hydrated –OH terminations, i.e. water attached to 

–OH groups via hydrogen bonds. All of these processes contribute to the surface oxygen peak and 

could explain the initial enhancement of the surface oxygen peak upon water exposure from 

vacuum to 1 mbar together with the moderate enhancement of the hydroxyls coverage. 

Considering a hydroxylated and hydrated surface as a starting point, further adsorption of water 

can easily happen in the form of oxidative water dissociation, especially at TiO2 terminated 

surfaces, due to the known catalytic effect of Ti sites as compared to other metal sites, thought 

oxidation at hydroxylated SrO terminated surfaces cannot be completely neglected. Oxidative 

reaction processes that starts with the dissociation of water molecules at the Ti sites include first 

the generation of a terminal hydroxyl group Ti-OH, that can be followed by a further oxidation of 

the hydroxyl group to generate different types of surface peroxide species (Ti-O-, Ti-O-OH, Ti=O2
-

) that should strongly contribute to what we called surface oxygen peak.20-21 Thus, oxidative 

adsorption processes should be detected as the simultaneous enhancement of the two peaks; 

hydroxyls and surface oxyde.  

STO is known to perform poorly as a water oxidation catalyst. In this sense, water oxidative 

processes are not expected to be predominant under atmospheric conditions, but cannot be 

excluded in the experimental conditions of XPS measurements. This is confirmed by the beam 

overexposure enhanced catalytic activity shown in Figure 5. The spectra corresponding to fresh 

surface spots as a function of time for a water vapor pressure of 2.5 mbar show a constant  

hydroxyls coverage, saturation of water molecules coverage and a slight increase of the surface 

oxygen peak that could be attributed to surface hydration via hydrated –OH terminations (Figure 

5a and c). Instead, beam overexposure has a major impact in both, the hydroxyls and surface 

oxygen species peaks as shown in Figure 5 b and c. This suggests that the generation of holes by 
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X-ray irradiation induces the acceleration of oxidative reactions. Some DFT calculations indicate 

that the main active sites for hole transfer from the bulk to the surface are mediated by water 

molecules adsorbed on protonated bridge oxygens (lattice hydroxyls or Ox-H attached to a water 

molecule).28 In this case, the catalytic reaction starts from a hydrated lattice Ox-H and by further 

oxidation reactions, transforms the water molecule in Ti-OH species and other peroxide species 

releasing protons and finally oxygen. This surface oxidation can become a cyclic process of 

transformation of water adsorbed molecules in oxygen and protons, also steaming into surface 

hydroxylation process that could still boost surface water adsorption. The enhancement of the two 

corresponding peaks on beam exposure is clearly seen in Figure 5b and c, for the two experiments. 

It has to be taken into account that beam exposure can also affect the first spectra taken, however 

the exposure time scales between measure and oxidation differ by one order of magnitude, being 

the minimal time needed to obtain the first spectra of the order of 2 minutes, while the beam 

exposure time scales shown in Figure 5b and c for “damage” effects is of the order of 10 to 20 

minutes.  

The effect of TiO2 surface on water oxidative adsorption processes as measured by XPS should 

therefore not be limited to SrTiO3. In this sense, different Ti perovskite surfaces were analyzed, 

and contrasted with similar surfaces based on other metals such as Fe. O1s spectra taken on BTO, 

PZT and BFO were decomposed using the same peak assignment (see detailed information on the 

fitting parameters for each spectra in Table S1). Figure 6 shows the results on spectra taken at 1 

mbar of water vapor pressure for each material: the peaks assigned to the different oxygen related 

adsorbates are observed with different relative intensity depending on the material. It’s important 

to notice that the study was done on surfaces as used for atomic force microscopy experiments: 

the samples were exposed to atmospheric conditions, whether the surface was reconstructed or 
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not, and only a vacuum annealing was performed on the as received samples. As a counterpart, 

this leads to a relative intensity of the COx peak that in some cases is larger than for the STO 

surface, but nevertheless in all of them the calculated thickness of the COx is lower than 0.5 ML, 

and it turns out to be strongly spot dependent.  

Figure 6 clearly shows that while the surface oxygen peak in PZT and BTO shows a dominant 

contribution, in BFO its intensity strongly diminishes even below the hydroxyls peak and becomes 

almost residual. This probably denotes the presence of water molecules hydrating the surface and 

linked to hydroxyl groups by H-bonds. These results are in agreement with the mentioned fact that 

for TiO2 terminated surfaces, there should be and enhancement of water catalytic processes 

mediated by the presence of Ti, that is significantly lost for the BFO surface, reinforcing the idea 

that this peak is mainly associated to the TiO2 terminated surfaces, with less significant 

contribution from the SrO terminated surface.  

Although it seems clear that the presence of Ti4+ can play an important role on the different oxygen 

species formed at the surfaces of these materials it is premature to extract conclusions from this 

sole data because there are other factors than can also be determinant. One of the important factors 

would be the polarization state of the materials. The need to screen stray electric fields generated 

by the ferroelectric polarization at the surface should certainly impact on the event of surface 

oxidative reactions and modify the type of oxygen-related species present on the surface. The 

different species and reactions that can take place on the surface described here (see Figure 4) 

involve the formation of some ionic species, such as protons and hydroxyl groups with direct 

impact as screening agents,52 but also a wide range of peroxide species and subspecies of water 

oxidative reactions that could play a role in surface reconstruction and corrugation effects as 

screening mechanisms. Finally, the protons can also easily interact with water molecules at the 
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surface to form H3O
- species and move along the surface through different hoping mechanisms 

and modifying the acidity of the hydrated surface layer.53 On the other side, water molecules and 

also hydroxyl compounds are of polar nature, and the configuration of their bonding to the surface 

could be modulated by the ferroelectric polarization16, 23-24 and screening mechanisms.15, 22, 54 As 

a matter of fact, it is already well known that multilayer growth of dipolar water molecules is an 

active screening mechanism of polar surfaces due to the thermal disorder created in the dipole 

alignment.17 Finally, water layers allow the diffusion of other ionic species, facilitating electrical 

screening as already observed experimentally on different materials such as LiNbO3,
40 graphene55 

or NaCl.56 Once the different contribution to the XPS spectra from oxygen species known to be 

present at STO surfaces is established, current work is under progress for a better understanding 

of the role of those species on the screening mechanisms on ferroelectric Ti based perovskites.  

CONCLUSIONS: 

In summary, the dissociation of water and associated oxidative processes at coarse metal oxide 

perovskite surfaces, i.e., exposed to ambient, have been investigated by ambient AP-XPS under 

different water vapor pressures. We have detected the presence of four different oxygen related 

species in the O1s spectra besides the expected peak corresponding to bulk oxygen, that have been 

assigned to hydroxyl groups, either bound to Ti4+ and Sr2+ metal sites or lattice oxygen, hydrated 

water molecules either physisorbed or pseudo-dissociated, light contribution of carbonates due to 

inherent contamination of atmospheric exposed surfaces and finally and more remarkably, 

complex peroxide compounds resulting from surface oxidative reactions. We propose a model for 

the composition of the adsorbates layer that should prevail for environmental conditions, for which 

the hydroxyl groups remain on top of the oxide surface, overlaid by the carbonate and peroxide 

species at a higher level, and overall covered by physisorbed water molecules. We have described 
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different surface redox reactions for metal oxide perovskites leading to the observed surface 

oxygen related species, and we have determined the environmental conditions for which each of 

them is favored. Particularly, surface water oxidation cycle is enhanced by X-ray beam irradiation, 

leading to a higher coverage of peroxide species after beam overexposure. Peroxide species 

resulting from surface oxidative reactions on surfaces exposed to water are correlated with the 

presence of Ti4+ ions, which are observed to expressly promote surface oxidation and water 

dissociation as compared to other metals: in this sense, the enhanced water catalytic action of Ti4+ 

ions should be taken into account when studying screening effects in Ti-based ferroelectric 

perovskites.  
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FIGURE CAPTIONS: 

Figure 1. XPS spectra of STO single crystal (001) surface in three different ambient conditions at 

700 eV: high vacuum of 10-7 mbar (black line), 1 mbar of H2O pressure (light blue line) and 2.5 

mbar of H2O pressure (dark blue line). a) O1s region of XPS spectra. The inset shows the 

differential spectra upon water presence after subtraction of the 10-7 mbar spectra. b) Ti2p region 

c) Sr3d region and d) C1s region of XPS spectra under the different RH.  

Figure 2. a) Decomposition of the O1s XPS spectra at 700 eV of incident X-ray energy of STO 

single crystal (001) surface at 1 mbar of water pressure into the 6 the different contributions from 

right to left: bulk oxide (red peak filled with vertical lines), hydroxyl groups (purple peak with 

decreasing diagonal lines), carbonate species (grey peak with horizontal lines), surface oxygen 

species including peroxides (green peak with decreasing diagonal lines) and water molecules (dark 

blue peak with increasing diagonal lines) (see further explanation in the text). The final peak on 

the left hand side corresponds to the water in gas phase (light blue peak with increasing diagonal 

lines) b) Depth profile considering XPS spectra acquired at different incident energies. c) 

Schematic of the multilayer electron attenuation model used to determine coverages with the 

distribution of the considered species over the adsorbate layer thickness.  
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Figure 3 Coverage of the different components of the O1s spectra at 700 eV in terms of 

monolayers as calculated from the model: a) as a function of water pressure and b) at 1 mbar and 

at two different temperatures: RT (filled bars) and 200 ºC (patterned bars)  

Figure 4 Schematic drawing of the different types of water interactions with the surface. a) pseudo-

dissociative water adsorption b) molecular water physisorption c) redox reaction on oxygen 

vacancies and d) schematic sequences of subspecies appearing in surface oxidative water 

adsorption and catalytic reactions.  

Figure 5. Differential XPS spectra taken at 2.5 mbar and 700 eV under different conditions. a) 

Evolution over time at t1 = 3500 s and t2 = 5400 s on different spots and b) evolution after different 

number of XPS spectra acquisitions on the same spot, denoting the effect of beam exposure on the 

water oxidation dynamics. c) Composed picture of the coverage levels of the different species on 

a homogeneous scaled time bar for all the measurements. Filled symbols (blue ● for H2O, purple 

 for hydroxyls, green   for the surface oxygen peak, and grey  for the carbonate species) 

correspond to the effect of time of exposure at 1 mbar of water pressure with t1 and t2 of the order 

of minutes, and measurements done at different spots. Empty square and triangle symbols for each 

curve correspond to the effect of beam overexposure imposed to time,that is, the acquisition of 

various spectra (#1, #2 and up to #3 different shots) at the same spot.  

Figure 6. Decomposition of XPS spectra of O1s regions at 700 eV for a) PZT thin films b) BTO 

single crystals and c) BFO thin films. The legend of the peaks corresponds to the distribution of 

the peaks from right to left as follows: bulk oxide, hydroxils, carbonate species, surface oxygen 

including peroxide species, adsorbed molecular water and gas phase water. The color code is the 

same as in Figure 2.  
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